Highly stretchable, self-healing, and 3D printing prefabricatable hydrophobic association hydrogels with the assistance of electrostatic interaction
Outstanding mechanical performances and designable architectures are essential for hydrogels when applied as structural materials. In this work, a series of physically cross-linked hydrogels were prepared by copolymerization of a hydrophobic monomer of butyl acrylate and an ampholytic cross-linker o...
Saved in:
Published in | Polymer chemistry Vol. 11; no. 29; pp. 4741 - 4748 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Outstanding mechanical performances and designable architectures are essential for hydrogels when applied as structural materials. In this work, a series of physically cross-linked hydrogels were prepared by copolymerization of a hydrophobic monomer of butyl acrylate and an ampholytic cross-linker of 2-(dimethylamino)ethyl methacrylate and methacrylic acid, followed by soaking in water. The ampholytic cross-linker supported the 3D-printing fabrication of hydrogel precursors, and further hydrated to induce hydrophobic association and caused the transformation from hydrogel precursors to hydrogels. These hydrogels with a water content of 10.4-57.0 wt% possessed excellent mechanical properties, with a tensile strength, elongation at break, and Young's modulus of 61.0-103.4 kPa, 1150-1560%, and 42.7-125.7 kPa, respectively, and meanwhile exhibited fast and high autonomous self-healing ability. This work developed a facile strategy to prepare self-healing hydrophobic association hydrogels besides emulsion polymerization, and offer new ways to construct physically cross-linked hydrogels with designable architectures.
Self-healing and 3D printing prefabricatable physically crosslinked hydrogels were prepared by copolymerization of butyl acrylate, 2-(dimethylamino)ethyl methacrylate, and methacrylic acid, followed by soaking in water. |
---|---|
AbstractList | Outstanding mechanical performances and designable architectures are essential for hydrogels when applied as structural materials. In this work, a series of physically cross-linked hydrogels were prepared by copolymerization of a hydrophobic monomer of butyl acrylate and an ampholytic cross-linker of 2-(dimethylamino)ethyl methacrylate and methacrylic acid, followed by soaking in water. The ampholytic cross-linker supported the 3D-printing fabrication of hydrogel precursors, and further hydrated to induce hydrophobic association and caused the transformation from hydrogel precursors to hydrogels. These hydrogels with a water content of 10.4–57.0 wt% possessed excellent mechanical properties, with a tensile strength, elongation at break, and Young's modulus of 61.0–103.4 kPa, 1150–1560%, and 42.7–125.7 kPa, respectively, and meanwhile exhibited fast and high autonomous self-healing ability. This work developed a facile strategy to prepare self-healing hydrophobic association hydrogels besides emulsion polymerization, and offer new ways to construct physically cross-linked hydrogels with designable architectures. Outstanding mechanical performances and designable architectures are essential for hydrogels when applied as structural materials. In this work, a series of physically cross-linked hydrogels were prepared by copolymerization of a hydrophobic monomer of butyl acrylate and an ampholytic cross-linker of 2-(dimethylamino)ethyl methacrylate and methacrylic acid, followed by soaking in water. The ampholytic cross-linker supported the 3D-printing fabrication of hydrogel precursors, and further hydrated to induce hydrophobic association and caused the transformation from hydrogel precursors to hydrogels. These hydrogels with a water content of 10.4-57.0 wt% possessed excellent mechanical properties, with a tensile strength, elongation at break, and Young's modulus of 61.0-103.4 kPa, 1150-1560%, and 42.7-125.7 kPa, respectively, and meanwhile exhibited fast and high autonomous self-healing ability. This work developed a facile strategy to prepare self-healing hydrophobic association hydrogels besides emulsion polymerization, and offer new ways to construct physically cross-linked hydrogels with designable architectures. Self-healing and 3D printing prefabricatable physically crosslinked hydrogels were prepared by copolymerization of butyl acrylate, 2-(dimethylamino)ethyl methacrylate, and methacrylic acid, followed by soaking in water. |
Author | Chen, Shaojun Chen, Heng Ge, Penghui Hao, Beibei |
AuthorAffiliation | College of Materials Science and Engineering Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen University |
AuthorAffiliation_xml | – name: Shenzhen University – name: Guangdong Research Center for Interfacial Engineering of Functional Materials – name: College of Materials Science and Engineering – name: Shenzhen Key Laboratory of Polymer Science and Technology |
Author_xml | – sequence: 1 givenname: Heng surname: Chen fullname: Chen, Heng – sequence: 2 givenname: Beibei surname: Hao fullname: Hao, Beibei – sequence: 3 givenname: Penghui surname: Ge fullname: Ge, Penghui – sequence: 4 givenname: Shaojun surname: Chen fullname: Chen, Shaojun |
BookMark | eNp9UU1LwzAYDqKgzl28CxFvYjVp2sUeZU4nCHrQg6eSpG_WSG1qkiH7H_5g01UmiJhLXp6vJE_20XZrW0DokJJzSlhxUZFuReJisIX2KM-LpCgm6fZmzrNdNPb-da2hWcome-hzbhZ1s8I-OAiqFrKBM-yh0UkNojHt4gyLtsLsGnfOtCECcQAtpDNKhF6O61XlbFdbaRQW3ltlRDC2HfAFNB5_mFDjUENPGx9EqwBbjaEBFZyNQIjWmA5OqN56gHa0aDyMv_cRer6ZPU3nyf3D7d306j5RjPCQUEbkpWScEUW01GleAWepynUO4rLIQIKQgirNSSFlrlNNBGUTqirNc1ZkFRuhkyG3c_Z9CT6Ur3bp2nhkmWYpzwrKOY-q00Gl4l19fHwZq3gTblVSUvbFl9fk8WVd6iyKyS-xMmHdR3DCNH9bjgaL82oT_fOXkT_-jy-7SrMvsgCg7w |
CitedBy_id | crossref_primary_10_1016_j_est_2023_109508 crossref_primary_10_1016_j_colsurfa_2023_132403 crossref_primary_10_1016_j_eurpolymj_2024_112864 crossref_primary_10_1016_j_eurpolymj_2024_113310 crossref_primary_10_3390_ma14164521 crossref_primary_10_1002_app_53287 crossref_primary_10_1002_app_55983 crossref_primary_10_1002_macp_202300228 crossref_primary_10_1021_acsapm_3c00987 crossref_primary_10_1016_j_eurpolymj_2024_112823 crossref_primary_10_1016_j_mtcomm_2021_102757 crossref_primary_10_1002_pol_20220266 crossref_primary_10_3390_polym16070924 crossref_primary_10_1016_j_actbio_2023_05_017 crossref_primary_10_1016_j_ensm_2023_01_034 crossref_primary_10_1039_D1RA05896G crossref_primary_10_1039_D3PY01098H crossref_primary_10_1016_j_jconrel_2023_01_048 crossref_primary_10_2139_ssrn_4128560 crossref_primary_10_1039_D1TA09096H crossref_primary_10_1002_adfm_202315046 crossref_primary_10_1002_adfm_202407529 crossref_primary_10_1021_acsapm_1c01885 crossref_primary_10_1016_j_carbpol_2022_119161 crossref_primary_10_1007_s10853_021_05930_1 crossref_primary_10_1039_D4TA08537J crossref_primary_10_1021_acs_chemrev_3c00498 crossref_primary_10_3390_gels7040216 crossref_primary_10_1016_j_cej_2023_142700 crossref_primary_10_1016_j_cherd_2023_07_026 crossref_primary_10_1002_adfm_202214885 crossref_primary_10_1039_D2TB00737A crossref_primary_10_1021_acs_bioconjchem_4c00003 crossref_primary_10_1016_j_reactfunctpolym_2021_105041 crossref_primary_10_1039_D0RA08561H crossref_primary_10_1039_D4PY00256C crossref_primary_10_1016_j_cis_2023_103000 crossref_primary_10_1021_acsami_2c15820 crossref_primary_10_1002_adma_202100047 |
Cites_doi | 10.1021/acs.macromol.7b00319 10.1002/adma.201600284 10.1038/nature11409 10.1021/ct1003077 10.1002/anie.201502957 10.1021/ma200579v 10.1002/adfm.201701807 10.1002/adma.201205321 10.1016/j.eurpolymj.2017.01.029 10.1126/science.aaf3627 10.1016/j.polymer.2016.06.053 10.1021/ma202672y 10.1021/ma201440v 10.1021/acs.macromol.8b01496 10.1038/nmat3713 10.1002/adma.201503724 10.1021/ja500205v 10.1038/s41578-018-0018-7 10.1002/adma.201501099 10.1039/b924290b 10.1021/acs.chemrev.5b00303 10.1021/mz200195n 10.1039/C8TA06561F 10.1002/adma.201700533 10.1021/acs.chemmater.7b02196 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/d0py00003e |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 4748 |
ExternalDocumentID | 10_1039_D0PY00003E d0py00003e |
GroupedDBID | 0-7 0R 29O 4.4 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- HZ H~N J3I JG O-G O9- P2P RCNCU RIG RNS RPMJG RRC RSCEA SKF SKH SKJ SKM SKR SKZ SLC SLF 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ADNWM AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c307t-130b8b3730c0fbf25de732c5f5ea894ebeaba1cf709bb5f2f0a1361cdf75394d3 |
ISSN | 1759-9954 |
IngestDate | Mon Jun 30 05:14:21 EDT 2025 Tue Jul 01 03:34:14 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Sat Jan 08 03:53:07 EST 2022 Wed Nov 11 00:27:42 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c307t-130b8b3730c0fbf25de732c5f5ea894ebeaba1cf709bb5f2f0a1361cdf75394d3 |
Notes | 10.1039/d0py00003e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8892-5136 0000-0002-1781-9050 |
PQID | 2427491777 |
PQPubID | 2047483 |
PageCount | 8 |
ParticipantIDs | rsc_primary_d0py00003e crossref_primary_10_1039_D0PY00003E proquest_journals_2427491777 crossref_citationtrail_10_1039_D0PY00003E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-07 |
PublicationDateYYYYMMDD | 2020-08-07 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Mihajlovic (D0PY00003E-(cit10)/*[position()=1]) 2017; 50 Setny (D0PY00003E-(cit15)/*[position()=1]) 2010; 6 Deng (D0PY00003E-(cit23)/*[position()=1]) 2012; 1 Ma (D0PY00003E-(cit3)/*[position()=1]) 2016; 98 Sun (D0PY00003E-(cit5)/*[position()=1]) 2012; 489 Peng (D0PY00003E-(cit21)/*[position()=1]) 2018; 6 Kakuta (D0PY00003E-(cit6)/*[position()=1]) 2013; 25 Hu (D0PY00003E-(cit12)/*[position()=1]) 2015; 27 Wei (D0PY00003E-(cit8)/*[position()=1]) 2017; 29 Jungst (D0PY00003E-(cit17)/*[position()=1]) 2016; 116 Odent (D0PY00003E-(cit20)/*[position()=1]) 2017; 27 Noro (D0PY00003E-(cit22)/*[position()=1]) 2011; 44 Zhang (D0PY00003E-(cit1)/*[position()=1]) 2017; 356 Tuncaboylu (D0PY00003E-(cit16)/*[position()=1]) 2012; 45 Guo (D0PY00003E-(cit11)/*[position()=1]) 2014; 136 Sun (D0PY00003E-(cit13)/*[position()=1]) 2013; 12 Xing (D0PY00003E-(cit14)/*[position()=1]) 2016; 28 Su (D0PY00003E-(cit24)/*[position()=1]) 2017; 88 Hong (D0PY00003E-(cit18)/*[position()=1]) 2015; 27 Darabi (D0PY00003E-(cit19)/*[position()=1]) 2017; 29 Gong (D0PY00003E-(cit4)/*[position()=1]) 2010; 6 Zhang (D0PY00003E-(cit25)/*[position()=1]) 2018; 51 Yang (D0PY00003E-(cit2)/*[position()=1]) 2018; 3 Tuncaboylu (D0PY00003E-(cit9)/*[position()=1]) 2011; 44 Miyamae (D0PY00003E-(cit7)/*[position()=1]) 2015; 54 |
References_xml | – volume: 50 start-page: 3333 year: 2017 ident: D0PY00003E-(cit10)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00319 – volume: 28 start-page: 3669 year: 2016 ident: D0PY00003E-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600284 – volume: 489 start-page: 133 year: 2012 ident: D0PY00003E-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/nature11409 – volume: 6 start-page: 2866 year: 2010 ident: D0PY00003E-(cit15)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct1003077 – volume: 54 start-page: 8984 year: 2015 ident: D0PY00003E-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502957 – volume: 44 start-page: 4997 year: 2011 ident: D0PY00003E-(cit9)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma200579v – volume: 27 start-page: 1701807 year: 2017 ident: D0PY00003E-(cit20)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701807 – volume: 25 start-page: 2849 year: 2013 ident: D0PY00003E-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201205321 – volume: 88 start-page: 191 year: 2017 ident: D0PY00003E-(cit24)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.01.029 – volume: 356 start-page: eaaf3627 year: 2017 ident: D0PY00003E-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf3627 – volume: 98 start-page: 516 year: 2016 ident: D0PY00003E-(cit3)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2016.06.053 – volume: 45 start-page: 1991 year: 2012 ident: D0PY00003E-(cit16)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma202672y – volume: 44 start-page: 6241 year: 2011 ident: D0PY00003E-(cit22)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma201440v – volume: 51 start-page: 8136 year: 2018 ident: D0PY00003E-(cit25)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01496 – volume: 12 start-page: 932 year: 2013 ident: D0PY00003E-(cit13)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3713 – volume: 27 start-page: 6899 year: 2015 ident: D0PY00003E-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503724 – volume: 136 start-page: 6969 year: 2014 ident: D0PY00003E-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500205v – volume: 3 start-page: 125 year: 2018 ident: D0PY00003E-(cit2)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0018-7 – volume: 27 start-page: 4035 year: 2015 ident: D0PY00003E-(cit18)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501099 – volume: 6 start-page: 2583 year: 2010 ident: D0PY00003E-(cit4)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b924290b – volume: 116 start-page: 1496 year: 2016 ident: D0PY00003E-(cit17)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00303 – volume: 1 start-page: 275 year: 2012 ident: D0PY00003E-(cit23)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/mz200195n – volume: 6 start-page: 19066 year: 2018 ident: D0PY00003E-(cit21)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06561F – volume: 29 start-page: 1700533 year: 2017 ident: D0PY00003E-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700533 – volume: 29 start-page: 8604 year: 2017 ident: D0PY00003E-(cit8)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02196 |
SSID | ssj0000314236 |
Score | 2.4587138 |
Snippet | Outstanding mechanical performances and designable architectures are essential for hydrogels when applied as structural materials. In this work, a series of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4741 |
SubjectTerms | Acrylics Copolymerization Crosslinking Elongation Emulsion polymerization Hydrogels Hydrophobicity Mechanical properties Methacrylic acid Modulus of elasticity Moisture content Polymer chemistry Precursors Tensile strength Three dimensional printing |
Title | Highly stretchable, self-healing, and 3D printing prefabricatable hydrophobic association hydrogels with the assistance of electrostatic interaction |
URI | https://www.proquest.com/docview/2427491777 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QEuiFdFSkErwQW1BttrZ73HtilEIFAlWlFOlne92wSFOHKTQ_gTXPjBzD5sb6MgARcr2YcV-fs8MzuZB0IvM_1nFYtS3TWABSD9eMAyVgaKUclZwoUwweMfPw3Hl8n7q_Sq1_vpRS2tlvy1-LE1r-R_UIUxwFVnyf4Dsu1NYQA-A75wBYTh-lcY6yCN2drke8DD10lQ-ondyJkKtAHo2pVo1zgZHWoP3tLmnktVcNMeyORNTdZlXS0mFdelWzu07Pg16E7nrAVCwbS2N7UwACPTtdDROUmwVReeqG2ahG_xnlez9XdZH4qms1wXUGAl3lg65WnkoPHcnsgpl9M2NMjmocGyyWq6ufvzpKi-rea-8yK2oXPUk7c0ZYEuSWfVkT-2IaQjj4zOR2JFbkJt5SynvuFrtlU1hERXVi3DxVrraCI7BdiGJXaTO2g3hnNH3Ee7xx9O3n1p3Xa62n9sGk-2P70pekvYm-4Gt82c7uyyUzeNZYwBc3Ef3XMnD3xsafQA9eT8Ibpz2sDyCP2ydMIenY6wT6YjDFTCZIQbKuENKmGPStijEm6phDWVMFAJd1TClcK3qIQ9Kj1Gl2_PLk7HgWvaEQhQF8sAbCKecQKKQ4SKqzgtJSWxSFUqi4wlIDMKXkRC0ZBxnqpYhUVEhpEoFRycWVKSPdSfV3P5BGFaJIRmQ1kMU5YkIS8SBbclGY8FbOXZAL1qnnEuXEV73VhllpvICsLyUXj-1eBxNkAv2rULW8dl66qDBqrcvec3ORixNGERpXSA9gC-dn-H9gDtb5_IF6Xa_9Oup-hu904coP6yXslnYOIu-XNHu99TY65n |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+stretchable%2C+self-healing%2C+and+3D+printing+prefabricatable+hydrophobic+association+hydrogels+with+the+assistance+of+electrostatic+interaction&rft.jtitle=Polymer+chemistry&rft.au=Chen%2C+Heng&rft.au=Hao%2C+Beibei&rft.au=Ge%2C+Penghui&rft.au=Chen%2C+Shaojun&rft.date=2020-08-07&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=11&rft.issue=29&rft.spage=4741&rft.epage=4748&rft_id=info:doi/10.1039%2Fd0py00003e&rft.externalDocID=d0py00003e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |