Isomorphism criterion for monomial graphs

Let q be a prime power, 𝔽q be the field of q elements, and k, m be positive integers. A bipartite graph G = Gq(k, m) is defined as follows. The vertex set of G is a union of two copies P and L of two‐dimensional vector spaces over 𝔽q, with two vertices (p1, p2) ∈ P and [ l1, l2] ∈ L being adjacent i...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 48; no. 4; pp. 322 - 328
Main Authors Dmytrenko, Vasyl, Lazebnik, Felix, Viglione, Raymond
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let q be a prime power, 𝔽q be the field of q elements, and k, m be positive integers. A bipartite graph G = Gq(k, m) is defined as follows. The vertex set of G is a union of two copies P and L of two‐dimensional vector spaces over 𝔽q, with two vertices (p1, p2) ∈ P and [ l1, l2] ∈ L being adjacent if and only if p2 + l2 = p 1kl 1m. We prove that graphs Gq(k, m) and Gq′(k′, m′) are isomorphic if and only if q = q′ and {gcd (k, q − 1), gcd (m, q − 1)} = {gcd (k′, q − 1),gcd (m′, q − 1)} as multisets. The proof is based on counting the number of complete bipartite INFgraphs in the graphs. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 322–328, 2005
AbstractList Let q be a prime power, 𝔽q be the field of q elements, and k, m be positive integers. A bipartite graph G = Gq(k, m) is defined as follows. The vertex set of G is a union of two copies P and L of two‐dimensional vector spaces over 𝔽q, with two vertices (p1, p2) ∈ P and [ l1, l2] ∈ L being adjacent if and only if p2 + l2 = p 1kl 1m. We prove that graphs Gq(k, m) and Gq′(k′, m′) are isomorphic if and only if q = q′ and {gcd (k, q − 1), gcd (m, q − 1)} = {gcd (k′, q − 1),gcd (m′, q − 1)} as multisets. The proof is based on counting the number of complete bipartite INFgraphs in the graphs. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 322–328, 2005
Abstract Let q be a prime power, q be the field of q elements, and k ,  m be positive integers. A bipartite graph G  =  G q ( k ,  m ) is defined as follows. The vertex set of G is a union of two copies P and L of two‐dimensional vector spaces over q , with two vertices ( p 1 ,  p 2 ) ∈ P and [ l 1 ,  l 2 ] ∈ L being adjacent if and only if p 2  +  l 2  =  p l . We prove that graphs G q ( k ,  m ) and G q ′ ( k ′,  m ′) are isomorphic if and only if q  =  q ′ and {gcd ( k ,  q  − 1), gcd ( m ,  q  − 1)} = {gcd ( k ′,  q  − 1),gcd ( m ′,  q  − 1)} as multisets. The proof is based on counting the number of complete bipartite INFgraphs in the graphs. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 322–328, 2005
Author Viglione, Raymond
Dmytrenko, Vasyl
Lazebnik, Felix
Author_xml – sequence: 1
  givenname: Vasyl
  surname: Dmytrenko
  fullname: Dmytrenko, Vasyl
  email: dmytrenk@math.udel.edu
  organization: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
– sequence: 2
  givenname: Felix
  surname: Lazebnik
  fullname: Lazebnik, Felix
  email: lazebnik@math.udel.edu
  organization: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
– sequence: 3
  givenname: Raymond
  surname: Viglione
  fullname: Viglione, Raymond
  email: rviglion@kean.edu
  organization: Department of Mathematics and Computer Science, Kean University, Union, New Jersey 07083
BookMark eNp1j09PwjAYhxuDiQM9-A125TB4265_djREJkLUA4Zj020dFNlKWhLl2zudevP0Jm-e55c8QzRoXWsQusUwwQBkut-eJgSAsQsUYchEAhjLAYqA8jTJgKRXaBjCHro3Axmh8SK4xvnjzoYmLr09GW9dG9fOx41rXWP1Id56fdyFa3RZ60MwNz93hF7n9-vZQ7J6zhezu1VSUhAsqajmMmUMuDC0EkxCmZU8zViRZVwIXGBRcCkJrXElsJGCUTCEaGKo4bjmdITG_W7pXQje1OrobaP9WWFQX42qa1TfjR077dl3ezDn_0H1mK9_jaQ3bDiZjz9D-zfFBRVMbZ5yJQVZLjf5XL3QT1m-YhM
CitedBy_id crossref_primary_10_1080_0025570X_2019_1614820
crossref_primary_10_1016_j_disc_2014_07_004
crossref_primary_10_1142_S0219265917410067
crossref_primary_10_1016_j_ffa_2006_03_001
Cites_doi 10.1002/jgt.10064
10.1007/978-1-4757-2103-4
10.1002/jgt.1024
10.1006/aama.2001.0794
10.1090/S0025-5718-03-01612-0
ContentType Journal Article
Copyright Copyright © 2005 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/jgt.20055
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 328
ExternalDocumentID 10_1002_jgt_20055
JGT20055
ark_67375_WNG_872KKWGF_P
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
G8K
AAYXX
CITATION
ID FETCH-LOGICAL-c3075-d3a68455067e3d7580c9c6495b996771b17b68823f1d71e87530e22a2e3e61f63
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Aug 23 01:15:42 EDT 2024
Sat Aug 24 01:02:47 EDT 2024
Wed Oct 30 10:04:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3075-d3a68455067e3d7580c9c6495b996771b17b68823f1d71e87530e22a2e3e61f63
Notes ark:/67375/WNG-872KKWGF-P
istex:C2C5E230F4A7029161B4AA24AE7DDCFE1A5826EE
ArticleID:JGT20055
PageCount 7
ParticipantIDs crossref_primary_10_1002_jgt_20055
wiley_primary_10_1002_jgt_20055_JGT20055
istex_primary_ark_67375_WNG_872KKWGF_P
PublicationCentury 2000
PublicationDate April 2005
PublicationDateYYYYMMDD 2005-04-01
PublicationDate_xml – month: 04
  year: 2005
  text: April 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationTitleAlternate J. Graph Theory
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References K. Ireland and M. Rosen, A classical introduction to modern number theory, Second edition, Graduate texts in mathematics, vol. 84, Springer-Verlag, New York, 1990.
F. Lazebnik and D. Mubayi, New lower bounds for Ramsey numbers of graphs and hypergraphs, Adv Appl Math 28 (3/4) (2002), 544-559.
F. Lazebnik and R. Viglione, An infinite series of regular edge- but not vertex-transitive graphs, J Graph Theory 41 (2002), 249-258.
F. Lazebnik and A. Thomason, Orthomorphisms and the construction of projective planes, Math Comput 73 (247) (2004), 1547-1557.
F. Lazebnik and J. Verstraëte, On hypergraphs of girth five, Electron J Combin 10 (R25) (2003), 1-15.
F. Lazebnik and A. J. Woldar, General properties of some families of graphs defined by systems of equations, J Graph Theory 38 (2001), 65-86.
1990; 84
2002; 28
2004; 73
2001; 38
2002
2002; 41
2003; 10
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
Lazebnik F. (e_1_2_1_6_2) 2003; 10
e_1_2_1_3_2
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – volume: 84
  year: 1990
– volume: 38
  start-page: 65
  year: 2001
  end-page: 86
  article-title: General properties of some families of graphs defined by systems of equations
  publication-title: J Graph Theory
– volume: 10
  start-page: 1
  issue: R25
  year: 2003
  end-page: 15
  article-title: On hypergraphs of girth five
  publication-title: Electron J Combin
– volume: 41
  start-page: 249
  year: 2002
  end-page: 258
  article-title: An infinite series of regular edge‐ but not vertex‐transitive graphs
  publication-title: J Graph Theory
– year: 2002
– volume: 73
  start-page: 1547
  issue: 247
  year: 2004
  end-page: 1557
  article-title: Orthomorphisms and the construction of projective planes
  publication-title: Math Comput
– volume: 28
  start-page: 544
  issue: 3/4
  year: 2002
  end-page: 559
  article-title: New lower bounds for Ramsey numbers of graphs and hypergraphs
  publication-title: Adv Appl Math
– ident: e_1_2_1_7_2
  doi: 10.1002/jgt.10064
– ident: e_1_2_1_2_2
  doi: 10.1007/978-1-4757-2103-4
– ident: e_1_2_1_8_2
  doi: 10.1002/jgt.1024
– ident: e_1_2_1_4_2
  doi: 10.1006/aama.2001.0794
– ident: e_1_2_1_9_2
– ident: e_1_2_1_3_2
– ident: e_1_2_1_5_2
  doi: 10.1090/S0025-5718-03-01612-0
– volume: 10
  start-page: 1
  issue: 25
  year: 2003
  ident: e_1_2_1_6_2
  article-title: On hypergraphs of girth five
  publication-title: Electron J Combin
  contributor:
    fullname: Lazebnik F.
SSID ssj0011508
Score 1.7520343
Snippet Let q be a prime power, 𝔽q be the field of q elements, and k, m be positive integers. A bipartite graph G = Gq(k, m) is defined as follows. The vertex set of...
Abstract Let q be a prime power, q be the field of q elements, and k ,  m be positive integers. A bipartite graph G  =  G q ( k ,  m ) is defined as follows....
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 322
SubjectTerms algebraic constructions
graph isomorphism
number of complete bipartite subgraphs
Title Isomorphism criterion for monomial graphs
URI https://api.istex.fr/ark:/67375/WNG-872KKWGF-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.20055
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfDmBc9-Fucvygioodsa9ImLZ5E3eaGQ2RjOwghSTPRsVbWDcS_3iRdKxME8dbDS0ke-fF97XufAHCmfDdSGEkYEsqh54Uu5KEIoZCCEhEon3JL--ySVt9rD_1hCVzltTAZH6L44GZWht2vzQLnIq19Q0PfXmwqpG8KzF1MTTrX7VOBjjJCJ8j-U3ow1AdRThWqo1rRcuksWjFu_VjWqPaQaWyA57x7WW7JuDqfiar8_EFu_Gf_N8H6Qnw619ls2QIlFW-DtYeC3JrugMv7NJkk2vmv6cTRO4pBOSexo6WtM7ElzLq9hVynu6DfuOvdtODiOgUo9UL2YYQ5CUwRM6EKRzpOqMtQEh0gCR3zUOoKlwqiBTceuRF1lQlk6gohjhRWxB0RvAfKcRKrfeBoEUS90G4HkYc9yX0ZaFuCIiR43cMVcJo7lr1n1AyW8ZER0-NmdtwVcG5dXljw6dikmVGfDbpNFlDU6QyaDfZYARfWkb-_irWbPftw8HfTQ7BqMaw2C-cIlGfTuTrWAmMmTuxM-gJpTchs
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_m9qA--C3OzyIi-tBtTdqkBV9E3feGyMb2IqFpM9GxVdYNxL_eJN0qEwTxrQ-X0jtyd79L734BuBCOFQqMAtMj1Ddt27NM3-OeyQNOCXeFQ33N9tkm1a5d7zv9DNwsZmESfoj0wE15ho7XysHVgXTxmzX07UX3QjrOCuSku2N1f8H9U0oepaCOm_yptE1PpqIFr1AJFdOlS9kopwz7sYxSdZopb8Lz4gOT7pJhYTblheDzB3fjfzXYgo05_jRukw2zDRkx3oH1VkreGu_CdS2ORpG0_2s8MmRQUWzO0diQ6NYY6SlmuV7zXMd70C0_dO6q5vxGBTOQvuyYIfaJq-aYCRU4lKVCKfACImskLsseSi1uUU4k5sYDK6SWULVMSSDkI4EFsQYE70N2HI3FARgSB1Hb0xEhtLEd-E7gSlmCQsT9ko3zcL6wLHtPiDNYQpGMmNSbab3zcKltnkr4k6HqNKMO67UrzKWo0ehVyuwxD1fakr-_itUrHf1w-HfRM1itdlpN1qy1G0ewpllZdVPOMWSnk5k4kXhjyk_1tvoCCZPMhg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS8MwEMcPnSD64G9x_iwiog-dbZImLT6JurlNh8jGfBBC02aisnWsG4h_vUlqKxME8a0PSWmO5O577d2nAEfSc2OJUWQHlIU2IYFrh4EIbBEJRoUvPRYa2meL3nRI49F7nIHzvBcm40MUL9z0yTD-Wh_wYdw7-4aGvj6bUkjPm4U5QrGj67muHgp2lFY6fvahktiBikQ5VshBZ8XUqWA0p-36Pi1STZSpLsNT_nxZcclbZTIWlejjB7rxnwtYgaUv9WldZNtlFWbkYA0W7wp0a7oOp_U06SfK-i9p31IuRbOck4GltK3VNz3Mar6hXKcb0Klety9v7K__KdiROsmeHeOQ-rqLmTKJY5UoOFEQUZUhCZX0MOYKlwmqFDfuuTFzpc5kHIlQiCSW1O1RvAmlQTKQW2ApFcRIYPxBTDCJQi_y1ViKYiRCh-AyHOaG5cMMm8EzQDLiat3crLsMx8bkxYhw9KbrzJjHu60a9xlqNru1Kr8vw4kx5O-34o1a21xs_33oAczfX1X5bb3V3IEFg2Q1FTm7UBqPJnJPiY2x2Deb6hPKess1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isomorphism+criterion+for+monomial+graphs&rft.jtitle=Journal+of+graph+theory&rft.au=Dmytrenko%2C+Vasyl&rft.au=Lazebnik%2C+Felix&rft.au=Viglione%2C+Raymond&rft.date=2005-04-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=48&rft.issue=4&rft.spage=322&rft.epage=328&rft_id=info:doi/10.1002%2Fjgt.20055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_20055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon