A Deep Learning Approach for Infant Pain Assessment Using Facial Expressions Through Convolutional Neural Network

This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we...

Full description

Saved in:
Bibliographic Details
Published inComputers, informatics, nursing Vol. 43; no. 7
Main Authors Zhang, Long, Zhu, Ting Yan, Zhang, Ying
Format Journal Article
LanguageEnglish
Published United States 27.03.2025
Subjects
Online AccessGet more information

Cover

Loading…
Abstract This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we developed a CNN model utilizing the COPE (Classification of Pain Expression) database. Our model achieved a test accuracy of 90.24%, with an average precision and recall of 87.58%, and an F1 score of 0.8758. Additionally, the model demonstrated high performance with an area under the curve of 0.9818 on the receiver operating characteristic curve. These results underscore the potential utility of CNNs for providing an objective pain assessment in clinical settings. However, the study acknowledges limitations, including a small sample size, the need for external validation, and ethical considerations. Future research should focus on expanding the dataset, conducting external validation, refining model architectures, and addressing ethical considerations to enhance performance and applicability. These efforts will advance infant pain management, ensure ethical integrity, and improve the overall quality of care.
AbstractList This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we developed a CNN model utilizing the COPE (Classification of Pain Expression) database. Our model achieved a test accuracy of 90.24%, with an average precision and recall of 87.58%, and an F1 score of 0.8758. Additionally, the model demonstrated high performance with an area under the curve of 0.9818 on the receiver operating characteristic curve. These results underscore the potential utility of CNNs for providing an objective pain assessment in clinical settings. However, the study acknowledges limitations, including a small sample size, the need for external validation, and ethical considerations. Future research should focus on expanding the dataset, conducting external validation, refining model architectures, and addressing ethical considerations to enhance performance and applicability. These efforts will advance infant pain management, ensure ethical integrity, and improve the overall quality of care.
Author Zhu, Ting Yan
Zhang, Ying
Zhang, Long
Author_xml – sequence: 1
  givenname: Long
  surname: Zhang
  fullname: Zhang, Long
  organization: Author Affiliations: Nursing School of Kunming Medical University, Kunming (Zhang); Kunming Children's Hospital (Dr Zhu); and Chuxiong Medical College, Chuxiong; and Department of Physiology, School of Basic Medicine, Kunming Medical University (Dr Zhang), Kunming, Yunnan, China
– sequence: 2
  givenname: Ting Yan
  orcidid: 0009-0002-1415-920
  surname: Zhu
  fullname: Zhu, Ting Yan
– sequence: 3
  givenname: Ying
  orcidid: 0000-0001-8289-1457
  surname: Zhang
  fullname: Zhang, Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40164059$$D View this record in MEDLINE/PubMed
BookMark eNpNj9lOwzAQRS0Eogv8AUL-gZTxkrh-jEILlarCQ_tcObHdBlo72AnL3xM2iXm5c89cjXRH6NR5ZxC6IjAhIMVNsVhN4N8QBvQEDUnKpokUgg_QKMannqeCyHM04EAyDqkcopcc3xrT4KVRwdVuh_OmCV5Ve2x9wAtnlWvxo6odzmM0MR5N7zfxKzlXVa0OePbehP5Qexfxeh98t9vjwrtXf-jaHvaJlenCt7RvPjxfoDOrDtFc_uoYbeazdXGfLB_uFkW-TCoGgiYsyxiAZaBlJUjJRWm4NTrlmlqtuACmJO83VdKMTi1ITsVUKqGZ1JASSsfo-udv05VHo7dNqI8qfGz_utNPNKJdCg
ContentType Journal Article
Copyright Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/CIN.0000000000001302
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Nursing
EISSN 1538-9774
ExternalDocumentID 40164059
Genre Journal Article
GroupedDBID ---
.Z2
0-6
0R~
2FS
3T~
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6J9
6PF
85S
8L-
9V3
AAAAV
AAHPQ
AAIQE
AAMTA
AARTV
AASCR
AAUEB
AAWTL
ABASU
ABBUW
ABDIG
ABILE
ABNJN
ABPPZ
ABPXF
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACIFK
ACIKV
ACILI
ACJBD
ACJIL
ACNCT
ACNWC
ACTAD
ACTHT
ACWDW
ACWRI
ACXJB
ACXNZ
ADBIZ
ADEGP
ADGGA
ADGHP
ADHPY
ADRCX
ADTGS
ADUKH
AFBFQ
AFDTB
AFMBP
AFMFG
AFPHX
AFSOK
AFYGQ
AGBRE
AHQNM
AHVBC
AHWXW
AINUH
AJCLO
AJEOO
AJIOK
AJNWD
AJZMW
AKCTQ
ALBXT
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ATPOU
AXR
BQLVK
C45
CGR
CS3
CUY
CVF
DIWNM
E.X
EBS
ECM
EEVPB
EIF
EX3
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HYJ
HZ~
H~9
I6D
IKREB
IN~
IYOWL
JF7
JK3
JK8
K8S
KD2
L-C
LK2
MMDCI
MPPUT
NPM
N~6
O9-
OAG
OAH
OBZCC
OEN
OFFRU
OGKNY
OHCKH
OKBHI
OLL
ON2
ONU
OPUJH
OROCO
OUGNH
OUVZD
OVD
OVDLW
OVDNE
OVOZU
OWY
OXXIT
QMB
RLZ
S4R
S4S
T8P
TEORI
TSPGW
UKR
V2I
VVN
W3M
WG1
WH7
WOQ
WOW
X3V
X3W
XZL
YZZ
ZFV
ID FETCH-LOGICAL-c3072-366300f30d9c71b47be4fed54d2fda4703a94fdaab2628f0942789a7d39d05122
IngestDate Thu Jul 10 08:25:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Computer
Infant
Nursing assessment
Neural networks
Pain measurement
Language English
License Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3072-366300f30d9c71b47be4fed54d2fda4703a94fdaab2628f0942789a7d39d05122
ORCID 0000-0001-8289-1457
0009-0002-1415-920
PMID 40164059
ParticipantIDs pubmed_primary_40164059
PublicationCentury 2000
PublicationDate 20250327
PublicationDateYYYYMMDD 2025-03-27
PublicationDate_xml – month: 3
  year: 2025
  text: 20250327
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers, informatics, nursing
PublicationTitleAlternate Comput Inform Nurs
PublicationYear 2025
SSID ssj0015719
Score 2.3727775
Snippet This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs)....
SourceID pubmed
SourceType Index Database
SubjectTerms Convolutional Neural Networks
Deep Learning
Facial Expression
Humans
Infant
Infant, Newborn
Neural Networks, Computer
Pain Measurement - methods
Title A Deep Learning Approach for Infant Pain Assessment Using Facial Expressions Through Convolutional Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/40164059
Volume 43
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG5Ao-FifL9ND97I4j66W3okBAJGOUECJ7Lbdj25YARD_PVOty2siEblsGza0jSdj9np7Mw3CN0GgScE94jDaRA6hHLqxJEnnciHpy1NGYhd5Q4_9qLOgNwPw2GptChELc1nSY2_b8wr-Y9UoQ3kqrJk_yDZ5aTQAPcgX7iChOH6Kxk3QF3IqeVIfVImpU6QUrGD3SyFXQMTUXk0lvybVR0j0I5zV3lrYeJgs9dq31TsaU6yN7NqGKHIO_KvPFq8aMraehA5EAz_6syEHZmAgi9e6YdJsXGuwQLLGa0wuhw7shMYn4QfqqAsneJfkwU9SnUBHqtoNR-TARTdqL8NL3C3p3klzUe9XC0OBylMn3OZEsUQ5mpO8Z9711i1bVcZleF8oQqmKi-PefsUUo_ZNEtG7zYtp4J27RRrB5LcMOnvoz1zosANDY8DVJLZIdoxXqAj9NLACiTYggRbkGCQGNYgwQokeAUSnIMEa5DgAkiwAQn-BBKsQYINSI7RoN3qNzuOqbPhcNDwvhNEinctDVzBOPUSQhNJUilCIvxUxASeCTEjcBcnfuTXU5ep8iwspiJgAnS675-grWySyTOEmXR5HYxwLlOPhFwwVxIOP6ZgRwvKvXN0qvdqPNVkKmO7ixff9lyiygpjV2g7hX-vvAZTcJbc5HL7AMG0XTY
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Infant+Pain+Assessment+Using+Facial+Expressions+Through+Convolutional+Neural+Network&rft.jtitle=Computers%2C+informatics%2C+nursing&rft.au=Zhang%2C+Long&rft.au=Zhu%2C+Ting+Yan&rft.au=Zhang%2C+Ying&rft.date=2025-03-27&rft.eissn=1538-9774&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1097%2FCIN.0000000000001302&rft_id=info%3Apmid%2F40164059&rft_id=info%3Apmid%2F40164059&rft.externalDocID=40164059