A Deep Learning Approach for Infant Pain Assessment Using Facial Expressions Through Convolutional Neural Network
This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we...
Saved in:
Published in | Computers, informatics, nursing Vol. 43; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
27.03.2025
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we developed a CNN model utilizing the COPE (Classification of Pain Expression) database. Our model achieved a test accuracy of 90.24%, with an average precision and recall of 87.58%, and an F1 score of 0.8758. Additionally, the model demonstrated high performance with an area under the curve of 0.9818 on the receiver operating characteristic curve. These results underscore the potential utility of CNNs for providing an objective pain assessment in clinical settings. However, the study acknowledges limitations, including a small sample size, the need for external validation, and ethical considerations. Future research should focus on expanding the dataset, conducting external validation, refining model architectures, and addressing ethical considerations to enhance performance and applicability. These efforts will advance infant pain management, ensure ethical integrity, and improve the overall quality of care. |
---|---|
AbstractList | This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs). Given infants' inability to verbally articulate pain, reliable assessment methods are crucial in clinical nursing. To address this need, we developed a CNN model utilizing the COPE (Classification of Pain Expression) database. Our model achieved a test accuracy of 90.24%, with an average precision and recall of 87.58%, and an F1 score of 0.8758. Additionally, the model demonstrated high performance with an area under the curve of 0.9818 on the receiver operating characteristic curve. These results underscore the potential utility of CNNs for providing an objective pain assessment in clinical settings. However, the study acknowledges limitations, including a small sample size, the need for external validation, and ethical considerations. Future research should focus on expanding the dataset, conducting external validation, refining model architectures, and addressing ethical considerations to enhance performance and applicability. These efforts will advance infant pain management, ensure ethical integrity, and improve the overall quality of care. |
Author | Zhu, Ting Yan Zhang, Ying Zhang, Long |
Author_xml | – sequence: 1 givenname: Long surname: Zhang fullname: Zhang, Long organization: Author Affiliations: Nursing School of Kunming Medical University, Kunming (Zhang); Kunming Children's Hospital (Dr Zhu); and Chuxiong Medical College, Chuxiong; and Department of Physiology, School of Basic Medicine, Kunming Medical University (Dr Zhang), Kunming, Yunnan, China – sequence: 2 givenname: Ting Yan orcidid: 0009-0002-1415-920 surname: Zhu fullname: Zhu, Ting Yan – sequence: 3 givenname: Ying orcidid: 0000-0001-8289-1457 surname: Zhang fullname: Zhang, Ying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40164059$$D View this record in MEDLINE/PubMed |
BookMark | eNpNj9lOwzAQRS0Eogv8AUL-gZTxkrh-jEILlarCQ_tcObHdBlo72AnL3xM2iXm5c89cjXRH6NR5ZxC6IjAhIMVNsVhN4N8QBvQEDUnKpokUgg_QKMannqeCyHM04EAyDqkcopcc3xrT4KVRwdVuh_OmCV5Ve2x9wAtnlWvxo6odzmM0MR5N7zfxKzlXVa0OePbehP5Qexfxeh98t9vjwrtXf-jaHvaJlenCt7RvPjxfoDOrDtFc_uoYbeazdXGfLB_uFkW-TCoGgiYsyxiAZaBlJUjJRWm4NTrlmlqtuACmJO83VdKMTi1ITsVUKqGZ1JASSsfo-udv05VHo7dNqI8qfGz_utNPNKJdCg |
ContentType | Journal Article |
Copyright | Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/CIN.0000000000001302 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Nursing |
EISSN | 1538-9774 |
ExternalDocumentID | 40164059 |
Genre | Journal Article |
GroupedDBID | --- .Z2 0-6 0R~ 2FS 3T~ 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6J9 6PF 85S 8L- 9V3 AAAAV AAHPQ AAIQE AAMTA AARTV AASCR AAUEB AAWTL ABASU ABBUW ABDIG ABILE ABNJN ABPPZ ABPXF ABVCZ ABXVJ ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACIFK ACIKV ACILI ACJBD ACJIL ACNCT ACNWC ACTAD ACTHT ACWDW ACWRI ACXJB ACXNZ ADBIZ ADEGP ADGGA ADGHP ADHPY ADRCX ADTGS ADUKH AFBFQ AFDTB AFMBP AFMFG AFPHX AFSOK AFYGQ AGBRE AHQNM AHVBC AHWXW AINUH AJCLO AJEOO AJIOK AJNWD AJZMW AKCTQ ALBXT ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ATPOU AXR BQLVK C45 CGR CS3 CUY CVF DIWNM E.X EBS ECM EEVPB EIF EX3 F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HYJ HZ~ H~9 I6D IKREB IN~ IYOWL JF7 JK3 JK8 K8S KD2 L-C LK2 MMDCI MPPUT NPM N~6 O9- OAG OAH OBZCC OEN OFFRU OGKNY OHCKH OKBHI OLL ON2 ONU OPUJH OROCO OUGNH OUVZD OVD OVDLW OVDNE OVOZU OWY OXXIT QMB RLZ S4R S4S T8P TEORI TSPGW UKR V2I VVN W3M WG1 WH7 WOQ WOW X3V X3W XZL YZZ ZFV |
ID | FETCH-LOGICAL-c3072-366300f30d9c71b47be4fed54d2fda4703a94fdaab2628f0942789a7d39d05122 |
IngestDate | Thu Jul 10 08:25:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Deep learning Computer Infant Nursing assessment Neural networks Pain measurement |
Language | English |
License | Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3072-366300f30d9c71b47be4fed54d2fda4703a94fdaab2628f0942789a7d39d05122 |
ORCID | 0000-0001-8289-1457 0009-0002-1415-920 |
PMID | 40164059 |
ParticipantIDs | pubmed_primary_40164059 |
PublicationCentury | 2000 |
PublicationDate | 20250327 |
PublicationDateYYYYMMDD | 2025-03-27 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250327 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Computers, informatics, nursing |
PublicationTitleAlternate | Comput Inform Nurs |
PublicationYear | 2025 |
SSID | ssj0015719 |
Score | 2.3727775 |
Snippet | This study presents a deep learning-based approach for assessing infant pain through facial expression analysis using Convolutional Neural Networks (CNNs).... |
SourceID | pubmed |
SourceType | Index Database |
SubjectTerms | Convolutional Neural Networks Deep Learning Facial Expression Humans Infant Infant, Newborn Neural Networks, Computer Pain Measurement - methods |
Title | A Deep Learning Approach for Infant Pain Assessment Using Facial Expressions Through Convolutional Neural Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40164059 |
Volume | 43 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG5Ao-FifL9ND97I4j66W3okBAJGOUECJ7Lbdj25YARD_PVOty2siEblsGza0jSdj9np7Mw3CN0GgScE94jDaRA6hHLqxJEnnciHpy1NGYhd5Q4_9qLOgNwPw2GptChELc1nSY2_b8wr-Y9UoQ3kqrJk_yDZ5aTQAPcgX7iChOH6Kxk3QF3IqeVIfVImpU6QUrGD3SyFXQMTUXk0lvybVR0j0I5zV3lrYeJgs9dq31TsaU6yN7NqGKHIO_KvPFq8aMraehA5EAz_6syEHZmAgi9e6YdJsXGuwQLLGa0wuhw7shMYn4QfqqAsneJfkwU9SnUBHqtoNR-TARTdqL8NL3C3p3klzUe9XC0OBylMn3OZEsUQ5mpO8Z9711i1bVcZleF8oQqmKi-PefsUUo_ZNEtG7zYtp4J27RRrB5LcMOnvoz1zosANDY8DVJLZIdoxXqAj9NLACiTYggRbkGCQGNYgwQokeAUSnIMEa5DgAkiwAQn-BBKsQYINSI7RoN3qNzuOqbPhcNDwvhNEinctDVzBOPUSQhNJUilCIvxUxASeCTEjcBcnfuTXU5ep8iwspiJgAnS675-grWySyTOEmXR5HYxwLlOPhFwwVxIOP6ZgRwvKvXN0qvdqPNVkKmO7ixff9lyiygpjV2g7hX-vvAZTcJbc5HL7AMG0XTY |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Infant+Pain+Assessment+Using+Facial+Expressions+Through+Convolutional+Neural+Network&rft.jtitle=Computers%2C+informatics%2C+nursing&rft.au=Zhang%2C+Long&rft.au=Zhu%2C+Ting+Yan&rft.au=Zhang%2C+Ying&rft.date=2025-03-27&rft.eissn=1538-9774&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1097%2FCIN.0000000000001302&rft_id=info%3Apmid%2F40164059&rft_id=info%3Apmid%2F40164059&rft.externalDocID=40164059 |