Cross-subject EEG-based emotion recognition through dynamic optimization of random forest with sparrow search algorithm
The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of cl...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 21; no. 3; pp. 4779 - 4800 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
29.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1551-0018 1551-0018 |
DOI | 10.3934/mbe.2024210 |
Cover
Loading…
Abstract | The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value. |
---|---|
AbstractList | The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value. The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value.The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value. |
Author | She, Yichong Xu, Kemeng Zhang, Xiaodan Wang, Shuyi Zhao, Rui |
Author_xml | – sequence: 1 givenname: Xiaodan surname: Zhang fullname: Zhang, Xiaodan organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China – sequence: 2 givenname: Shuyi surname: Wang fullname: Wang, Shuyi organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China – sequence: 3 givenname: Kemeng surname: Xu fullname: Xu, Kemeng organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China – sequence: 4 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China – sequence: 5 givenname: Yichong surname: She fullname: She, Yichong organization: School of Life Sciences, Xi Dian University, Xi'an, Shaanxi 710126, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38549349$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcuLFDEQxoOsuA89eZccBek1r37kKMO4Lix40XOopKtnMnR3xiTNsPvXm50ZFxFPKSq_-pL6vmtyMYcZCXnP2a3UUn2eLN4KJpTg7BW54nXNK8Z4d_FXfUmuU9oxJpWU6g25lF2tyqi-IodVDClVabE7dJmu13eVhYQ9xSlkH2Ya0YXN7I913sawbLa0f5xh8o6GffaTf4LjZRhohLkPEx1CxJTpwectTXuIMRxoQohuS2HchFj601vyeoAx4bvzeUN-fl3_WH2rHr7f3a--PFROspZVTjXl03aorRpAwyC01qIvm7paSLSKq74F1iqpUGvZ875TonZdgwVukUt5Q-5Pun2AndlHP0F8NAG8OTZC3BiI2bsRDbcdgGa6aywoPSitigzyplG1sNoORevjSWsfw6-lrGgmnxyOI8wYlmQkE6JuWtnogn44o4udsH95-I_xBfh0Atyz_xGHF4Qz8xyrKbGac6yF5v_Qzuej7TmCH_878xsLkKYX |
CitedBy_id | crossref_primary_10_3389_fnbot_2024_1481746 |
Cites_doi | 10.1109/TPAMI.2023.3299568 10.3390/s21144913 10.1016/j.mehy.2019.03.025 10.1016/j.compbiomed.2020.103927 10.1016/j.jneumeth.2023.109909 10.1007/s11517-022-02686-x 10.1109/ACCESS.2021.3110992 10.1007/s12652-019-01485-x 10.3389/fnins.2018.00162 10.1109/TAFFC.2018.2840973 10.1155/2022/7785929 10.3389/fnbot.2020.617531 10.1080/21642583.2019.1708830 10.1515/bmt-2020-0295 10.1016/j.neucom.2021.02.048 10.1016/j.elerap.2018.10.004 10.1088/1741-2552/abb580 10.1016/j.future.2021.01.010 10.1109/JSEN.2018.2883497 10.3390/app11020543 10.1109/WiSPNET.2017.8299778 10.1109/JBHI.2021.3096984 10.1016/j.compbiomed.2023.106860 10.32604/cmc.2020.011793 10.1109/TCDS.2018.2826840 10.3390/s19092212 10.1016/j.neucom.2017.03.027 10.1186/s12877-022-03425-5 10.1109/T-AFFC.2011.15 10.15388/20-INFOR419 10.3390/s21165317 10.3390/s22218250 10.3390/s20072034 10.1155/2013/573734 10.1155/2021/5585041 10.1016/j.jksuci.2019.11.003 10.1007/s00521-020-05024-0 10.1016/j.jestch.2021.03.012 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3934/mbe.2024210 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 4800 |
ExternalDocumentID | oai_doaj_org_article_1b8aa90986ba49f4946eae166452b9bf 38549349 10_3934_mbe_2024210 |
Genre | Journal Article |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS NPM 7X8 |
ID | FETCH-LOGICAL-c3070-c46034bf5b4fa9af29992d210c523eb414d7a07434e993d1d8425c86ea9a7e133 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 01:30:47 EDT 2025 Fri Jul 11 16:05:05 EDT 2025 Mon Jul 21 05:53:43 EDT 2025 Tue Jul 01 02:58:40 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SSA-RF cross-subject LMN emotion recognition DTN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3070-c46034bf5b4fa9af29992d210c523eb414d7a07434e993d1d8425c86ea9a7e133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/1b8aa90986ba49f4946eae166452b9bf |
PMID | 38549349 |
PQID | 3022567369 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1b8aa90986ba49f4946eae166452b9bf proquest_miscellaneous_3022567369 pubmed_primary_38549349 crossref_primary_10_3934_mbe_2024210 crossref_citationtrail_10_3934_mbe_2024210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb-29 |
PublicationDateYYYYMMDD | 2024-02-29 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationTitleAlternate | Math Biosci Eng |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2024210-29 key-10.3934/mbe.2024210-27 key-10.3934/mbe.2024210-28 key-10.3934/mbe.2024210-25 key-10.3934/mbe.2024210-26 key-10.3934/mbe.2024210-23 key-10.3934/mbe.2024210-24 key-10.3934/mbe.2024210-21 key-10.3934/mbe.2024210-22 key-10.3934/mbe.2024210-30 key-10.3934/mbe.2024210-31 key-10.3934/mbe.2024210-3 key-10.3934/mbe.2024210-4 key-10.3934/mbe.2024210-1 key-10.3934/mbe.2024210-2 key-10.3934/mbe.2024210-7 key-10.3934/mbe.2024210-8 key-10.3934/mbe.2024210-5 key-10.3934/mbe.2024210-18 key-10.3934/mbe.2024210-6 key-10.3934/mbe.2024210-19 key-10.3934/mbe.2024210-16 key-10.3934/mbe.2024210-38 key-10.3934/mbe.2024210-17 key-10.3934/mbe.2024210-39 key-10.3934/mbe.2024210-9 key-10.3934/mbe.2024210-14 key-10.3934/mbe.2024210-36 key-10.3934/mbe.2024210-15 key-10.3934/mbe.2024210-37 key-10.3934/mbe.2024210-12 key-10.3934/mbe.2024210-34 key-10.3934/mbe.2024210-13 key-10.3934/mbe.2024210-35 key-10.3934/mbe.2024210-10 key-10.3934/mbe.2024210-32 key-10.3934/mbe.2024210-11 key-10.3934/mbe.2024210-33 key-10.3934/mbe.2024210-20 key-10.3934/mbe.2024210-40 |
References_xml | – ident: key-10.3934/mbe.2024210-21 doi: 10.1109/TPAMI.2023.3299568 – ident: key-10.3934/mbe.2024210-8 doi: 10.3390/s21144913 – ident: key-10.3934/mbe.2024210-23 doi: 10.1016/j.mehy.2019.03.025 – ident: key-10.3934/mbe.2024210-27 doi: 10.1016/j.compbiomed.2020.103927 – ident: key-10.3934/mbe.2024210-40 doi: 10.1016/j.jneumeth.2023.109909 – ident: key-10.3934/mbe.2024210-33 doi: 10.1007/s11517-022-02686-x – ident: key-10.3934/mbe.2024210-4 doi: 10.1109/ACCESS.2021.3110992 – ident: key-10.3934/mbe.2024210-18 – ident: key-10.3934/mbe.2024210-6 doi: 10.1007/s12652-019-01485-x – ident: key-10.3934/mbe.2024210-29 doi: 10.3389/fnins.2018.00162 – ident: key-10.3934/mbe.2024210-2 doi: 10.1109/TAFFC.2018.2840973 – ident: key-10.3934/mbe.2024210-11 doi: 10.1155/2022/7785929 – ident: key-10.3934/mbe.2024210-15 doi: 10.3389/fnbot.2020.617531 – ident: key-10.3934/mbe.2024210-20 doi: 10.1080/21642583.2019.1708830 – ident: key-10.3934/mbe.2024210-32 doi: 10.1515/bmt-2020-0295 – ident: key-10.3934/mbe.2024210-9 doi: 10.1016/j.neucom.2021.02.048 – ident: key-10.3934/mbe.2024210-19 doi: 10.1016/j.elerap.2018.10.004 – ident: key-10.3934/mbe.2024210-37 doi: 10.1088/1741-2552/abb580 – ident: key-10.3934/mbe.2024210-5 doi: 10.1016/j.future.2021.01.010 – ident: key-10.3934/mbe.2024210-22 – ident: key-10.3934/mbe.2024210-36 doi: 10.1109/JSEN.2018.2883497 – ident: key-10.3934/mbe.2024210-17 doi: 10.3390/app11020543 – ident: key-10.3934/mbe.2024210-1 doi: 10.1109/WiSPNET.2017.8299778 – ident: key-10.3934/mbe.2024210-25 doi: 10.1109/JBHI.2021.3096984 – ident: key-10.3934/mbe.2024210-34 doi: 10.1016/j.compbiomed.2023.106860 – ident: key-10.3934/mbe.2024210-10 doi: 10.32604/cmc.2020.011793 – ident: key-10.3934/mbe.2024210-35 doi: 10.1109/TCDS.2018.2826840 – ident: key-10.3934/mbe.2024210-24 doi: 10.3390/s19092212 – ident: key-10.3934/mbe.2024210-28 doi: 10.1016/j.neucom.2017.03.027 – ident: key-10.3934/mbe.2024210-16 doi: 10.1186/s12877-022-03425-5 – ident: key-10.3934/mbe.2024210-26 doi: 10.1109/T-AFFC.2011.15 – ident: key-10.3934/mbe.2024210-7 doi: 10.15388/20-INFOR419 – ident: key-10.3934/mbe.2024210-14 doi: 10.3390/s21165317 – ident: key-10.3934/mbe.2024210-39 doi: 10.3390/s22218250 – ident: key-10.3934/mbe.2024210-31 doi: 10.3390/s20072034 – ident: key-10.3934/mbe.2024210-3 doi: 10.1155/2013/573734 – ident: key-10.3934/mbe.2024210-13 doi: 10.1155/2021/5585041 – ident: key-10.3934/mbe.2024210-30 doi: 10.1016/j.jksuci.2019.11.003 – ident: key-10.3934/mbe.2024210-12 doi: 10.1007/s00521-020-05024-0 – ident: key-10.3934/mbe.2024210-38 doi: 10.1016/j.jestch.2021.03.012 |
SSID | ssj0034334 |
Score | 2.3137856 |
Snippet | The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 4779 |
SubjectTerms | cross-subject dtn emotion recognition lmn ssa-rf |
Title | Cross-subject EEG-based emotion recognition through dynamic optimization of random forest with sparrow search algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38549349 https://www.proquest.com/docview/3022567369 https://doaj.org/article/1b8aa90986ba49f4946eae166452b9bf |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7Et-uLCD0Jod0m-8hRS2sR9GSht5DXeul2pQ_Ef-_MZrsoKF68LSFkk8lk5ptMZoaQTm554frWMw3ai4GUhDNntWC2Z6VNs4xzg4HCT8_peCIep8n0S6kvfBMW0gMHwnVjk2stezJPjRayEFKkXvs4RYeckaZA6Qs6b2NMBRnMBeciRONxyUW3NJgRE72fvW_6p07T_zu2rHXMaJ_sNeCQ3oVJHZAtPz8kO6Fc5McReR_gkGy5Nnh5QofDB4ZKyFEfavHQ9jUQfDcFeKgLJedpBbKhbIIuaVVQ0FGuKilgVpgRxetYCsIFMzLSwP1Uz16rBbSXx2QyGr4MxqwpnMAsHmFmRQokMEViRKGlLkDlyL6DxVswO70RsXCZRuwgPMATFzv0xdkcCCt15sFqPSHb82ruzwi1cQ4WWWZtwjVgNye9h1Fim3GT5NL5iNxuyKlsk1Uci1vMFFgXSHsFtFcN7SPSaTu_hWQaP3e7x31pu2AG7LoB-EI1fKH-4ouI3Gx2VcGJQTeInvtqvVQcYEuCz9lkRE7Ddre_4jnYy1zI8_-YwgXZxRXVAfDykmyvFmt_BRBmZa5rbv0E0YHwjQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG-based+emotion+recognition+through+dynamic+optimization+of+random+forest+with+sparrow+search+algorithm&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Zhang%2C+Xiaodan&rft.au=Wang%2C+Shuyi&rft.au=Xu%2C+Kemeng&rft.au=Zhao%2C+Rui&rft.date=2024-02-29&rft.eissn=1551-0018&rft.volume=21&rft.issue=3&rft.spage=4779&rft_id=info:doi/10.3934%2Fmbe.2024210&rft_id=info%3Apmid%2F38549349&rft.externalDocID=38549349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |