Cross-subject EEG-based emotion recognition through dynamic optimization of random forest with sparrow search algorithm

The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of cl...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 21; no. 3; pp. 4779 - 4800
Main Authors Zhang, Xiaodan, Wang, Shuyi, Xu, Kemeng, Zhao, Rui, She, Yichong
Format Journal Article
LanguageEnglish
Published United States AIMS Press 29.02.2024
Subjects
Online AccessGet full text
ISSN1551-0018
1551-0018
DOI10.3934/mbe.2024210

Cover

Loading…
Abstract The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value.
AbstractList The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value.
The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value.The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial intelligence and bioinformatics. Cross-subject emotion recognition is more difficult than intra-subject emotion recognition. The poor adaptability of classification model parameters is a significant factor of low accuracy in cross-subject emotion recognition. We propose a model of a dynamically optimized Random Forest based on the Sparrow Search Algorithm (SSA-RF). The decision trees number (DTN) and the leave minimum number (LMN) of the RF are dynamically optimized by the SSA. 12 features are used to construct feature combinations for selecting the optimal feature combination. DEAP and SEED datasets are employed for testing the performance of SSA-RF. The experimental results show that the accuracy of binary classification is 76.81% on DEAP, and the accuracy of triple classification is 75.96% on SEED based on SSA-RF, which are both higher than that of traditional RF. This study provides new insights for the development of cross-subject emotion recognition, and has significant theoretical value.
Author She, Yichong
Xu, Kemeng
Zhang, Xiaodan
Wang, Shuyi
Zhao, Rui
Author_xml – sequence: 1
  givenname: Xiaodan
  surname: Zhang
  fullname: Zhang, Xiaodan
  organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
– sequence: 2
  givenname: Shuyi
  surname: Wang
  fullname: Wang, Shuyi
  organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
– sequence: 3
  givenname: Kemeng
  surname: Xu
  fullname: Xu, Kemeng
  organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
– sequence: 4
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710060, China
– sequence: 5
  givenname: Yichong
  surname: She
  fullname: She, Yichong
  organization: School of Life Sciences, Xi Dian University, Xi'an, Shaanxi 710126, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38549349$$D View this record in MEDLINE/PubMed
BookMark eNptkcuLFDEQxoOsuA89eZccBek1r37kKMO4Lix40XOopKtnMnR3xiTNsPvXm50ZFxFPKSq_-pL6vmtyMYcZCXnP2a3UUn2eLN4KJpTg7BW54nXNK8Z4d_FXfUmuU9oxJpWU6g25lF2tyqi-IodVDClVabE7dJmu13eVhYQ9xSlkH2Ya0YXN7I913sawbLa0f5xh8o6GffaTf4LjZRhohLkPEx1CxJTpwectTXuIMRxoQohuS2HchFj601vyeoAx4bvzeUN-fl3_WH2rHr7f3a--PFROspZVTjXl03aorRpAwyC01qIvm7paSLSKq74F1iqpUGvZ875TonZdgwVukUt5Q-5Pun2AndlHP0F8NAG8OTZC3BiI2bsRDbcdgGa6aywoPSitigzyplG1sNoORevjSWsfw6-lrGgmnxyOI8wYlmQkE6JuWtnogn44o4udsH95-I_xBfh0Atyz_xGHF4Qz8xyrKbGac6yF5v_Qzuej7TmCH_878xsLkKYX
CitedBy_id crossref_primary_10_3389_fnbot_2024_1481746
Cites_doi 10.1109/TPAMI.2023.3299568
10.3390/s21144913
10.1016/j.mehy.2019.03.025
10.1016/j.compbiomed.2020.103927
10.1016/j.jneumeth.2023.109909
10.1007/s11517-022-02686-x
10.1109/ACCESS.2021.3110992
10.1007/s12652-019-01485-x
10.3389/fnins.2018.00162
10.1109/TAFFC.2018.2840973
10.1155/2022/7785929
10.3389/fnbot.2020.617531
10.1080/21642583.2019.1708830
10.1515/bmt-2020-0295
10.1016/j.neucom.2021.02.048
10.1016/j.elerap.2018.10.004
10.1088/1741-2552/abb580
10.1016/j.future.2021.01.010
10.1109/JSEN.2018.2883497
10.3390/app11020543
10.1109/WiSPNET.2017.8299778
10.1109/JBHI.2021.3096984
10.1016/j.compbiomed.2023.106860
10.32604/cmc.2020.011793
10.1109/TCDS.2018.2826840
10.3390/s19092212
10.1016/j.neucom.2017.03.027
10.1186/s12877-022-03425-5
10.1109/T-AFFC.2011.15
10.15388/20-INFOR419
10.3390/s21165317
10.3390/s22218250
10.3390/s20072034
10.1155/2013/573734
10.1155/2021/5585041
10.1016/j.jksuci.2019.11.003
10.1007/s00521-020-05024-0
10.1016/j.jestch.2021.03.012
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3934/mbe.2024210
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 4800
ExternalDocumentID oai_doaj_org_article_1b8aa90986ba49f4946eae166452b9bf
38549349
10_3934_mbe_2024210
Genre Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
NPM
7X8
ID FETCH-LOGICAL-c3070-c46034bf5b4fa9af29992d210c523eb414d7a07434e993d1d8425c86ea9a7e133
IEDL.DBID DOA
ISSN 1551-0018
IngestDate Wed Aug 27 01:30:47 EDT 2025
Fri Jul 11 16:05:05 EDT 2025
Mon Jul 21 05:53:43 EDT 2025
Tue Jul 01 02:58:40 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SSA-RF
cross-subject
LMN
emotion recognition
DTN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3070-c46034bf5b4fa9af29992d210c523eb414d7a07434e993d1d8425c86ea9a7e133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1b8aa90986ba49f4946eae166452b9bf
PMID 38549349
PQID 3022567369
PQPubID 23479
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_1b8aa90986ba49f4946eae166452b9bf
proquest_miscellaneous_3022567369
pubmed_primary_38549349
crossref_primary_10_3934_mbe_2024210
crossref_citationtrail_10_3934_mbe_2024210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Feb-29
PublicationDateYYYYMMDD 2024-02-29
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2024210-29
key-10.3934/mbe.2024210-27
key-10.3934/mbe.2024210-28
key-10.3934/mbe.2024210-25
key-10.3934/mbe.2024210-26
key-10.3934/mbe.2024210-23
key-10.3934/mbe.2024210-24
key-10.3934/mbe.2024210-21
key-10.3934/mbe.2024210-22
key-10.3934/mbe.2024210-30
key-10.3934/mbe.2024210-31
key-10.3934/mbe.2024210-3
key-10.3934/mbe.2024210-4
key-10.3934/mbe.2024210-1
key-10.3934/mbe.2024210-2
key-10.3934/mbe.2024210-7
key-10.3934/mbe.2024210-8
key-10.3934/mbe.2024210-5
key-10.3934/mbe.2024210-18
key-10.3934/mbe.2024210-6
key-10.3934/mbe.2024210-19
key-10.3934/mbe.2024210-16
key-10.3934/mbe.2024210-38
key-10.3934/mbe.2024210-17
key-10.3934/mbe.2024210-39
key-10.3934/mbe.2024210-9
key-10.3934/mbe.2024210-14
key-10.3934/mbe.2024210-36
key-10.3934/mbe.2024210-15
key-10.3934/mbe.2024210-37
key-10.3934/mbe.2024210-12
key-10.3934/mbe.2024210-34
key-10.3934/mbe.2024210-13
key-10.3934/mbe.2024210-35
key-10.3934/mbe.2024210-10
key-10.3934/mbe.2024210-32
key-10.3934/mbe.2024210-11
key-10.3934/mbe.2024210-33
key-10.3934/mbe.2024210-20
key-10.3934/mbe.2024210-40
References_xml – ident: key-10.3934/mbe.2024210-21
  doi: 10.1109/TPAMI.2023.3299568
– ident: key-10.3934/mbe.2024210-8
  doi: 10.3390/s21144913
– ident: key-10.3934/mbe.2024210-23
  doi: 10.1016/j.mehy.2019.03.025
– ident: key-10.3934/mbe.2024210-27
  doi: 10.1016/j.compbiomed.2020.103927
– ident: key-10.3934/mbe.2024210-40
  doi: 10.1016/j.jneumeth.2023.109909
– ident: key-10.3934/mbe.2024210-33
  doi: 10.1007/s11517-022-02686-x
– ident: key-10.3934/mbe.2024210-4
  doi: 10.1109/ACCESS.2021.3110992
– ident: key-10.3934/mbe.2024210-18
– ident: key-10.3934/mbe.2024210-6
  doi: 10.1007/s12652-019-01485-x
– ident: key-10.3934/mbe.2024210-29
  doi: 10.3389/fnins.2018.00162
– ident: key-10.3934/mbe.2024210-2
  doi: 10.1109/TAFFC.2018.2840973
– ident: key-10.3934/mbe.2024210-11
  doi: 10.1155/2022/7785929
– ident: key-10.3934/mbe.2024210-15
  doi: 10.3389/fnbot.2020.617531
– ident: key-10.3934/mbe.2024210-20
  doi: 10.1080/21642583.2019.1708830
– ident: key-10.3934/mbe.2024210-32
  doi: 10.1515/bmt-2020-0295
– ident: key-10.3934/mbe.2024210-9
  doi: 10.1016/j.neucom.2021.02.048
– ident: key-10.3934/mbe.2024210-19
  doi: 10.1016/j.elerap.2018.10.004
– ident: key-10.3934/mbe.2024210-37
  doi: 10.1088/1741-2552/abb580
– ident: key-10.3934/mbe.2024210-5
  doi: 10.1016/j.future.2021.01.010
– ident: key-10.3934/mbe.2024210-22
– ident: key-10.3934/mbe.2024210-36
  doi: 10.1109/JSEN.2018.2883497
– ident: key-10.3934/mbe.2024210-17
  doi: 10.3390/app11020543
– ident: key-10.3934/mbe.2024210-1
  doi: 10.1109/WiSPNET.2017.8299778
– ident: key-10.3934/mbe.2024210-25
  doi: 10.1109/JBHI.2021.3096984
– ident: key-10.3934/mbe.2024210-34
  doi: 10.1016/j.compbiomed.2023.106860
– ident: key-10.3934/mbe.2024210-10
  doi: 10.32604/cmc.2020.011793
– ident: key-10.3934/mbe.2024210-35
  doi: 10.1109/TCDS.2018.2826840
– ident: key-10.3934/mbe.2024210-24
  doi: 10.3390/s19092212
– ident: key-10.3934/mbe.2024210-28
  doi: 10.1016/j.neucom.2017.03.027
– ident: key-10.3934/mbe.2024210-16
  doi: 10.1186/s12877-022-03425-5
– ident: key-10.3934/mbe.2024210-26
  doi: 10.1109/T-AFFC.2011.15
– ident: key-10.3934/mbe.2024210-7
  doi: 10.15388/20-INFOR419
– ident: key-10.3934/mbe.2024210-14
  doi: 10.3390/s21165317
– ident: key-10.3934/mbe.2024210-39
  doi: 10.3390/s22218250
– ident: key-10.3934/mbe.2024210-31
  doi: 10.3390/s20072034
– ident: key-10.3934/mbe.2024210-3
  doi: 10.1155/2013/573734
– ident: key-10.3934/mbe.2024210-13
  doi: 10.1155/2021/5585041
– ident: key-10.3934/mbe.2024210-30
  doi: 10.1016/j.jksuci.2019.11.003
– ident: key-10.3934/mbe.2024210-12
  doi: 10.1007/s00521-020-05024-0
– ident: key-10.3934/mbe.2024210-38
  doi: 10.1016/j.jestch.2021.03.012
SSID ssj0034334
Score 2.3137856
Snippet The objective of EEG-based emotion recognition is to classify emotions by decoding signals, with potential applications in the fields of artificial...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 4779
SubjectTerms cross-subject
dtn
emotion recognition
lmn
ssa-rf
Title Cross-subject EEG-based emotion recognition through dynamic optimization of random forest with sparrow search algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/38549349
https://www.proquest.com/docview/3022567369
https://doaj.org/article/1b8aa90986ba49f4946eae166452b9bf
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7Et-uLCD0Jod0m-8hRS2sR9GSht5DXeul2pQ_Ef-_MZrsoKF68LSFkk8lk5ptMZoaQTm554frWMw3ai4GUhDNntWC2Z6VNs4xzg4HCT8_peCIep8n0S6kvfBMW0gMHwnVjk2stezJPjRayEFKkXvs4RYeckaZA6Qs6b2NMBRnMBeciRONxyUW3NJgRE72fvW_6p07T_zu2rHXMaJ_sNeCQ3oVJHZAtPz8kO6Fc5McReR_gkGy5Nnh5QofDB4ZKyFEfavHQ9jUQfDcFeKgLJedpBbKhbIIuaVVQ0FGuKilgVpgRxetYCsIFMzLSwP1Uz16rBbSXx2QyGr4MxqwpnMAsHmFmRQokMEViRKGlLkDlyL6DxVswO70RsXCZRuwgPMATFzv0xdkcCCt15sFqPSHb82ruzwi1cQ4WWWZtwjVgNye9h1Fim3GT5NL5iNxuyKlsk1Uci1vMFFgXSHsFtFcN7SPSaTu_hWQaP3e7x31pu2AG7LoB-EI1fKH-4ouI3Gx2VcGJQTeInvtqvVQcYEuCz9lkRE7Ddre_4jnYy1zI8_-YwgXZxRXVAfDykmyvFmt_BRBmZa5rbv0E0YHwjQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG-based+emotion+recognition+through+dynamic+optimization+of+random+forest+with+sparrow+search+algorithm&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Zhang%2C+Xiaodan&rft.au=Wang%2C+Shuyi&rft.au=Xu%2C+Kemeng&rft.au=Zhao%2C+Rui&rft.date=2024-02-29&rft.eissn=1551-0018&rft.volume=21&rft.issue=3&rft.spage=4779&rft_id=info:doi/10.3934%2Fmbe.2024210&rft_id=info%3Apmid%2F38549349&rft.externalDocID=38549349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon