High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis

Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of microorganisms is connected to a potential high diversity of NPs. Here, aqueous extracts of two cyanobacteria (Synechococcus elongatus and Microc...

Full description

Saved in:
Bibliographic Details
Published inColloid and interface science communications Vol. 42; p. 100420
Main Authors Moraes, Leonardo C., Figueiredo, Rute C., Ribeiro-Andrade, Rodrigo, Pontes-Silva, Augusto V., Arantes, Mônica L., Giani, Alessandra, Figueredo, Cleber C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of microorganisms is connected to a potential high diversity of NPs. Here, aqueous extracts of two cyanobacteria (Synechococcus elongatus and Microcystis aeruginosa) and four microalgae (the chlorophytes Coelastrum astroideum and Desmodesmus armatus; and the charophytes Cosmarium punctulatum and Klebsormidium flaccidum) were used for the biosynthesis of silver nanoparticles (AgNPs). The nanoparticle characterization was performed by UV–Visible absorption spectrum, Fourier Transforms Infrared (FT-IR), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This is the first study trying to establish some connection between the taxonomical diversity of microalgae and cyanobacteria and the synthesis of different silver nanoparticles. All algal and cyanobacterial extracts resulted in the synthesis of well-disperse and crystalline AgNPs, with no agglomerate formation. TEM analysis showed spherical AgNPs shape with size range within 1.8–5.4 nm. FTIR analysis demonstrated the presence of hydroxyl groups of peptidoglycan nature acting as stabilizing agents in the surface of the AgNPs. The nanoparticle shape and kind of stabilizing biomolecules were highly similar, but their size was significantly different, which can affect the NP properties. There was no pattern for the AgNPs in terms of the microorganism phyla. Our results showed a very high potential for the use of cyanobacteria and microalgae in the green synthesis of NPs since the variety of AgNPs obtained was species-specific. [Display omitted] •The many uses of nanoparticles (NPs) depends on their composition and structure.•The traditional synthesis of metal NPs results in environmental impacts.•Microorganisms can be applied for eco-friendly green synthesis of NPs.•Cyanobacteria and algae showed a species-specific synthesis of silver NPs.•Cyanobacteria and algae have high potential for expand silver NPs types and uses.
AbstractList Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of microorganisms is connected to a potential high diversity of NPs. Here, aqueous extracts of two cyanobacteria (Synechococcus elongatus and Microcystis aeruginosa) and four microalgae (the chlorophytes Coelastrum astroideum and Desmodesmus armatus; and the charophytes Cosmarium punctulatum and Klebsormidium flaccidum) were used for the biosynthesis of silver nanoparticles (AgNPs). The nanoparticle characterization was performed by UV–Visible absorption spectrum, Fourier Transforms Infrared (FT-IR), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This is the first study trying to establish some connection between the taxonomical diversity of microalgae and cyanobacteria and the synthesis of different silver nanoparticles. All algal and cyanobacterial extracts resulted in the synthesis of well-disperse and crystalline AgNPs, with no agglomerate formation. TEM analysis showed spherical AgNPs shape with size range within 1.8–5.4 nm. FTIR analysis demonstrated the presence of hydroxyl groups of peptidoglycan nature acting as stabilizing agents in the surface of the AgNPs. The nanoparticle shape and kind of stabilizing biomolecules were highly similar, but their size was significantly different, which can affect the NP properties. There was no pattern for the AgNPs in terms of the microorganism phyla. Our results showed a very high potential for the use of cyanobacteria and microalgae in the green synthesis of NPs since the variety of AgNPs obtained was species-specific. [Display omitted] •The many uses of nanoparticles (NPs) depends on their composition and structure.•The traditional synthesis of metal NPs results in environmental impacts.•Microorganisms can be applied for eco-friendly green synthesis of NPs.•Cyanobacteria and algae showed a species-specific synthesis of silver NPs.•Cyanobacteria and algae have high potential for expand silver NPs types and uses.
ArticleNumber 100420
Author Pontes-Silva, Augusto V.
Figueiredo, Rute C.
Figueredo, Cleber C.
Giani, Alessandra
Moraes, Leonardo C.
Ribeiro-Andrade, Rodrigo
Arantes, Mônica L.
Author_xml – sequence: 1
  givenname: Leonardo C.
  surname: Moraes
  fullname: Moraes, Leonardo C.
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
– sequence: 2
  givenname: Rute C.
  surname: Figueiredo
  fullname: Figueiredo, Rute C.
  email: rute@ufop.edu.br
  organization: Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Rua Diogo de Vasconcelos, 122, Pilar, Ouro Preto 35400-000, Brazil
– sequence: 3
  givenname: Rodrigo
  surname: Ribeiro-Andrade
  fullname: Ribeiro-Andrade, Rodrigo
  organization: Centro de Microscopia da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais 31970-901, Brazil
– sequence: 4
  givenname: Augusto V.
  surname: Pontes-Silva
  fullname: Pontes-Silva, Augusto V.
  organization: Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Rua Diogo de Vasconcelos, 122, Pilar, Ouro Preto 35400-000, Brazil
– sequence: 5
  givenname: Mônica L.
  surname: Arantes
  fullname: Arantes, Mônica L.
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
– sequence: 6
  givenname: Alessandra
  surname: Giani
  fullname: Giani, Alessandra
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
– sequence: 7
  givenname: Cleber C.
  surname: Figueredo
  fullname: Figueredo, Cleber C.
  email: cleberfigueredo@ufmg.br
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
BookMark eNqFkE9LAzEQxYNUsNZ-Aw_5AlvzZ3e77UEoRa1Q8KLnkGYn7ZRtUpJQ6MXPbmoFxYOe3jAz78H7XZOe8w4IueVsxBmv77Yj4zvjdyPBBM8rVgp2QfpC8KpgshG9H_MVGca4ZSx_lkzIpk_eF7je0BYPECKmI_WW7tAEr7u1Bqoj1TR531HrA00boPHoskSMp88WrYUALtGIXU6gTju_1yGh6SBO6YzGPRiEWHyqRUPXAcB9p9yQS6u7CMMvHZC3x4fX-aJYvjw9z2fLwkhWp8LapqzG2oAwkxWTNbMtlysty3Er-IrbUhpe61XDuS5bOwEO1aRl3MjKaJZPckDKc26uFmMAq_YBdzocFWfqhFFt1RmjOmFUZ4zZNv1lM5h0Qu9S0Nj9Z74_myEXOyAEFTMLZ6DFACap1uPfAR_4k5UU
CitedBy_id crossref_primary_10_1007_s13399_025_06692_5
crossref_primary_10_1016_j_apt_2024_104552
crossref_primary_10_3390_plants13070981
crossref_primary_10_1016_j_bcab_2024_103046
crossref_primary_10_1016_j_arabjc_2021_103658
crossref_primary_10_1007_s11240_024_02778_6
crossref_primary_10_1016_j_algal_2024_103782
crossref_primary_10_1016_j_envpol_2023_121483
crossref_primary_10_1016_j_teac_2023_e00204
crossref_primary_10_1016_j_jksus_2024_103264
crossref_primary_10_1016_j_jtice_2023_105103
crossref_primary_10_1007_s13762_023_05321_w
crossref_primary_10_1088_1755_1315_1371_2_022003
crossref_primary_10_1007_s00210_024_03235_z
crossref_primary_10_3390_ma17010187
crossref_primary_10_3390_w15122208
crossref_primary_10_1016_j_colcom_2024_100780
crossref_primary_10_1016_j_tifs_2023_104127
crossref_primary_10_1016_j_biteb_2025_102089
crossref_primary_10_3390_ma15144784
crossref_primary_10_1016_j_nexres_2024_100058
crossref_primary_10_1016_j_inoche_2024_112954
crossref_primary_10_3390_ijms242216183
Cites_doi 10.3390/v11121111
10.1016/B978-0-12-813586-0.00001-8
10.1016/j.matlet.2011.09.038
10.1186/1477-3155-9-56
10.1007/s10811-015-0715-1
10.1007/s12274-010-0008-6
10.1007/s10311-020-01074-x
10.1080/09670262.2011.653406
10.1016/j.matlet.2020.128344
10.1016/j.jaim.2017.11.003
10.3390/ijms17091534
10.1016/j.nano.2009.07.002
10.1088/0950-7671/36/3/302
10.1021/cr100449n
10.1016/j.jallcom.2018.05.012
10.1166/jnn.2005.034
10.1007/s10529-006-9256-7
10.1149/2.0181609jss
10.1039/C4DT03222E
10.1007/s11051-011-0221-6
10.1016/j.msec.2015.08.018
10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
10.1016/j.ccr.2015.07.013
10.1007/BF01584110
10.4014/jmb.1306.06014
10.1016/j.hydromet.2005.09.006
10.1186/1471-2148-11-104
10.1016/j.drudis.2014.11.014
10.1016/j.matlet.2014.03.026
10.1080/17458080.2016.1139196
10.1002/1097-4660(200006)75:6<436::AID-JCTB243>3.0.CO;2-O
10.1039/C8RA10483B
10.1039/b517312b
10.1016/j.msec.2018.12.066
10.1016/j.envres.2020.110672
10.1039/C8NR02278J
10.1088/2043-6254/aa84d4
10.1016/S2221-1691(13)60006-4
10.1016/j.tibtech.2016.02.006
10.1039/C6GC02346K
10.1016/S1872-2067(17)62915-2
10.1016/j.colcom.2020.100322
10.1007/s12668-012-0046-5
10.1016/j.jphotobiol.2016.09.042
10.1002/anie.201205923
10.1049/iet-nbt.2012.0041
10.1016/j.matlet.2020.129265
10.1186/2193-8865-3-44
10.1007/s10811-018-1555-6
10.1016/j.colsurfb.2012.11.022
10.1016/j.procbio.2015.04.004
10.1016/j.ccr.2018.01.006
10.1016/j.btre.2014.12.001
10.1016/j.cis.2020.102103
10.3762/bjnano.9.98
10.1016/j.saa.2014.02.119
10.1007/s13204-020-01324-y
10.1039/C8DT01152D
10.1039/c1nr10201j
10.3390/ijms20040865
10.1007/s13204-015-0426-6
10.1016/j.jphotobiol.2018.02.024
10.1007/s10811-008-9343-3
10.1039/C7NJ04224H
10.1016/j.colsurfb.2009.07.048
10.1016/j.mycmed.2019.01.005
10.1016/j.enzmictec.2016.10.018
10.1002/adfm.200400113
10.1016/j.bioorg.2018.04.011
10.1039/C5CC00211G
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.colcom.2021.100420
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2215-0382
ExternalDocumentID 10_1016_j_colcom_2021_100420
S2215038221000601
GroupedDBID --M
0R~
0SF
4.4
457
4G.
6I.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEXQZ
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GROUPED_DOAJ
IXB
KOM
KQ8
M41
M~E
NCXOZ
O9-
OAUVE
OK1
RIG
ROL
SPC
SPCBC
SSG
SSK
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-ff8457ace2c9b0360fd13ba347d21b1f43c16ab811a4df9e1e59d01c35ca0c163
IEDL.DBID AIKHN
ISSN 2215-0382
IngestDate Tue Jul 01 01:24:29 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Fri Feb 23 02:44:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nanoparticle species-specific biosynthesis
Environmental impacts
Microorganisms
Green synthesis
Silver nanoparticles
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-ff8457ace2c9b0360fd13ba347d21b1f43c16ab811a4df9e1e59d01c35ca0c163
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2215038221000601
ParticipantIDs crossref_primary_10_1016_j_colcom_2021_100420
crossref_citationtrail_10_1016_j_colcom_2021_100420
elsevier_sciencedirect_doi_10_1016_j_colcom_2021_100420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Colloid and interface science communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gahlawat, Choudhury (bb0260) 2019; 9
Gudikandula, Maringanti (bb0105) 2016; 11
Naimi-Shamel, Pourali, Dolatabadi (bb0150) 2019; 29
Martínez-Prieto, Urbaneja, Palma, Cámpora, Philippot, Chaudret (bb0385) 2015; 51
Santos, Lima, Oliveira, Souza-Filho, Amaral, Rodrigues-Filho, Takahashi (bb0345) 2018; 79
Nasrollahzadeh, Sajjadi, Dasmeh, Sajadi (bb0255) 2018; 763
Ferreira, ConzFerreira, Lima, Frasés, Souza, Sant’Anna (bb0285) 2017; 97
Sudha, Rajamanickam, Rengaramanujam (bb0305) 2013; 51
Patel, Berthold, Puranik, Gantar (bb0310) 2015; 5
Chernousova, Epple (bb0075) 2013; 52
González-Ballesteros, Rodríguez-Argüelles, Prado-López, Lastra, Grimaldi, Cavazza, Nasi, Salviati, Bigi (bb0140) 2019; 97
Dahoumane, Mechouet, Wijesekera, Filipe, Sicard, Bazylinski, Jeffryes (bb0265) 2017; 19
Wilcoxon, Abrams (bb0015) 2006; 35
Chaudhuri, Paria (bb0055) 2012; 112
Saxena, Tripathi, Zafar, Singh (bb0280) 2012; 67
Devi, Bhimba (bb0365) 2012; 1
Wodniok, Brinkmann, Glöckner, Heidel, Philippe, Melkonian, Becker (bb0355) 2011; 11
Thakkar, Mhatre, Parikh (bb0180) 2010; 6
Jadoun, Arif, Jangid, Meena (bb0335) 2021; 19
Chandhirasekar, Thendralmanikandan, Thangavelu, Nguyen, Nguyen, Sivashanmugan, Nareshkumar, Nguyen (bb0410) 2021; 287
De la Fuente, Grazu (bb0050) 2012
Nasrollahzadeh, Sajjadi, Dadashi, Ghafuri (bb0250) 2020; 276
Kim, Jung, Yoon, Jung, Yang, Yi, Lee (bb0235) 2016; 5
Horikoshi, Serpone (bb0020) 2013
Khan, Chen, Khan, Khan, Khan, Ahmad, Tahir, Wang, Khan, Wan (bb0070) 2016; 164
Zuas, Hamim, Sampora (bb0275) 2014; 123
Zielonka, Klimek-Ochab (bb0145) 2017; 8
Bindhu, Umadevi (bb0405) 2014; 128
Konishi, Tsukiyama, Ohno, Saitoh, Nomura (bb0120) 2006; 81
Rauwel, Küünal, Ferdov, Rauwel (bb0380) 2015; 682749
Kumar, Govindaraju, Senthamilselvi, Premkumar (bb0360) 2013; 103
Rao, Müller, Cheetham (bb0030) 2004
Kahn, Monge, Collière, Senocq, Maisonnat, Chaudret (bb0045) 2005; 15
Akilandaeaswari, Muthu (bb0240) 2020; 277
Keshari, Srivastava, Singh, Yadav, Nath (bb0270) 2020; 1
Nasrollahzadeh, Sajadi, Sajjadi, Issaabadi (bb0040) 2019; 28
Feldheim, Foss (bb0025) 2002
Ganachari, Bhat, Deshpande, Venkataraman (bb0320) 2012; 2
Gurunathan, Kalishwaralal, Vaidyanathan, Deepak, Pandian, Muniyandi, Hariharan, Eom (bb0350) 2009; 74
Niu, Volesky (bb0115) 2000; 75
Castro, Blázquez, Muñoz, González, Ballester (bb0290) 2013; 7
Meléndez-Villanueva, Morán-Santibañez, Martínez-Sanmiguel, Rangel-López, Garza-Navarro, Rodríguez-Padilla, Zarate-Triviño, Trejo-Ávila (bb0155) 2019; 11
AlNadhari, Al-Enazi, Alshehrei, Ameen (bb0330) 2021; 194
Zhang, Liu, Shen, Gurunathan (bb0080) 2016; 17
Aliofkhazraei (bb0035) 2016
Baker, Pradhan, Pakstis, Pochan, Shah (bb0100) 2005; 5
Schröfel, Kratosová, Krautová, Dobrocka, Vávra (bb0135) 2011; 13
Gonçalves, Figueiredo, Giani, Collado, Pérez-Inestrosa, Rojo, Figueredo (bb0340) 2019; 31
Khan, Ahmad, Koivisto, Kellomäki (bb0170) 2020; 39
Nasrollahzadeh, Sajjadi, Sajadi (bb0245) 2018; 39
Tobin, White, Gadd (bb0210) 1994; 13
Amiens, Ciuculescu-Pradines, Philippot (bb0005) 2016; 308
Singh, Kim, Zhang, Yang (bb0185) 2016; 34
Annamalai, Nallamuthu (bb0395) 2016; 6
Rasheed, Bilal, Li, Nabeel, Khalid, Iqbal (bb0085) 2018; 181
Adil, Assal, Khan, Al-Warthan, Siddiqui, Liz-Marzán (bb0200) 2015; 44
Sunkar, Nachiyar (bb0325) 2012; 2
Wei, Lu, Xu, Patel, Chen, Chen (bb0090) 2015; 20
Chakraborty, Banerjee, Lahiri, Panda, Ghosh, Pal (bb0130) 2009; 21
Mukherjee, Ahmad, Mandal, Senapati, Sainkar, Khan, Ramani, Parischa, Ajayakumar, Alam, Sastry, Kumar (bb0225) 2001; 40
Mariychuk, Porubská, Ostafin, Čaplovičová, Eliašová (bb0415) 2020; 10
Khan, Khan, Al-Marri, Al-Warthan, Alkhathlan, Siddiqui, Nayak, Kamal, Adil (bb0195) 2016; 11
Jeevanandam, Barhoum, Chan, Dufresne, Danquah (bb0060) 2018; 9
Sharma, Sharma, Sharma, Chetri, Vashishtha, Singh, Kumar, Rathi, Agrawal (bb0125) 2016; 28
Qin, Zeng, Lai, Huang, Xu, Zhang, Cheng, Liu, Liu, Li (bb0175) 2018; 359
Jena, Pradhan, Nayak, Dash, Sukla, Panda, Mishra (bb0295) 2014; 24
Some, Sen, Mandal, Aslan, Ustun, Yilmaz, Kati, Demirbas, Mandal, Ocsoy (bb0165) 2019; 6
Mourdikoudis, Pallares, Thanh (bb0095) 2018; 10
Parial, Patra, Dasgupta, Pal (bb0315) 2012; 47
Pessarakli (bb0375) 2016
He, Li, Zheng, Wang, Ma, Yang, Yao, Zhao, Zhang (bb0160) 2018; 42
Zahmakıran, Özkar (bb0010) 2011; 3
Jena, Pradhan, Dash, Sukla, Panda (bb0110) 2013; 3
Lee, Jun (bb0065) 2019; 20
Barwal, Ranjan, Kateriya, Yadav (bb0300) 2011; 9
Kumar, Abyaneh, Gosavi, Kulkarni, Pasricha, Ahmad, Khan (bb0220) 2007; 29
Gholami-Shabani, Shams-Ghahfarokhi, Gholami-Shabani, Akbarzadeh, Riazi, Ajdari, Amani, Razzaghi-Abyaneh (bb0215) 2015; 50
Raja, Suriya, Sekar, Rajasekaran (bb0370) 2012; 4
Khan, Shaik, Adil, Khan, Al-Warthan, Siddiqui, Tahir, Tremel (bb0205) 2018; 47
Spreadborough, Christian (bb0400) 1959; 36
Dhand, Soumya, Bharadwaj, Chakra, Bhatt, Sreedhar (bb0190) 2016; 58
Bao, Hao, Yang, Zhao (bb0230) 2010; 3
Rajeshkumar, Malarkodi, Gnanajobitha, Paulkumar, Vanaja, Kannan, Annadurai (bb0390) 2013; 3
Ferreira (10.1016/j.colcom.2021.100420_bb0285) 2017; 97
Sudha (10.1016/j.colcom.2021.100420_bb0305) 2013; 51
Patel (10.1016/j.colcom.2021.100420_bb0310) 2015; 5
Wodniok (10.1016/j.colcom.2021.100420_bb0355) 2011; 11
Kahn (10.1016/j.colcom.2021.100420_bb0045) 2005; 15
Rajeshkumar (10.1016/j.colcom.2021.100420_bb0390) 2013; 3
Aliofkhazraei (10.1016/j.colcom.2021.100420_bb0035) 2016
Niu (10.1016/j.colcom.2021.100420_bb0115) 2000; 75
Santos (10.1016/j.colcom.2021.100420_bb0345) 2018; 79
Konishi (10.1016/j.colcom.2021.100420_bb0120) 2006; 81
Qin (10.1016/j.colcom.2021.100420_bb0175) 2018; 359
Mariychuk (10.1016/j.colcom.2021.100420_bb0415) 2020; 10
Wei (10.1016/j.colcom.2021.100420_bb0090) 2015; 20
Chaudhuri (10.1016/j.colcom.2021.100420_bb0055) 2012; 112
Feldheim (10.1016/j.colcom.2021.100420_bb0025) 2002
Gahlawat (10.1016/j.colcom.2021.100420_bb0260) 2019; 9
Bao (10.1016/j.colcom.2021.100420_bb0230) 2010; 3
Kumar (10.1016/j.colcom.2021.100420_bb0360) 2013; 103
Keshari (10.1016/j.colcom.2021.100420_bb0270) 2020; 1
Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0245) 2018; 39
Kumar (10.1016/j.colcom.2021.100420_bb0220) 2007; 29
Annamalai (10.1016/j.colcom.2021.100420_bb0395) 2016; 6
Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0040) 2019; 28
Rasheed (10.1016/j.colcom.2021.100420_bb0085) 2018; 181
Horikoshi (10.1016/j.colcom.2021.100420_bb0020) 2013
Chakraborty (10.1016/j.colcom.2021.100420_bb0130) 2009; 21
Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0250) 2020; 276
Rauwel (10.1016/j.colcom.2021.100420_bb0380) 2015; 682749
Zahmakıran (10.1016/j.colcom.2021.100420_bb0010) 2011; 3
González-Ballesteros (10.1016/j.colcom.2021.100420_bb0140) 2019; 97
Castro (10.1016/j.colcom.2021.100420_bb0290) 2013; 7
Wilcoxon (10.1016/j.colcom.2021.100420_bb0015) 2006; 35
Devi (10.1016/j.colcom.2021.100420_bb0365) 2012; 1
Dhand (10.1016/j.colcom.2021.100420_bb0190) 2016; 58
Martínez-Prieto (10.1016/j.colcom.2021.100420_bb0385) 2015; 51
Kim (10.1016/j.colcom.2021.100420_bb0235) 2016; 5
Parial (10.1016/j.colcom.2021.100420_bb0315) 2012; 47
Chandhirasekar (10.1016/j.colcom.2021.100420_bb0410) 2021; 287
Tobin (10.1016/j.colcom.2021.100420_bb0210) 1994; 13
He (10.1016/j.colcom.2021.100420_bb0160) 2018; 42
Some (10.1016/j.colcom.2021.100420_bb0165) 2019; 6
Singh (10.1016/j.colcom.2021.100420_bb0185) 2016; 34
Amiens (10.1016/j.colcom.2021.100420_bb0005) 2016; 308
Naimi-Shamel (10.1016/j.colcom.2021.100420_bb0150) 2019; 29
Barwal (10.1016/j.colcom.2021.100420_bb0300) 2011; 9
Mourdikoudis (10.1016/j.colcom.2021.100420_bb0095) 2018; 10
Thakkar (10.1016/j.colcom.2021.100420_bb0180) 2010; 6
Zielonka (10.1016/j.colcom.2021.100420_bb0145) 2017; 8
Khan (10.1016/j.colcom.2021.100420_bb0195) 2016; 11
Schröfel (10.1016/j.colcom.2021.100420_bb0135) 2011; 13
Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0255) 2018; 763
Lee (10.1016/j.colcom.2021.100420_bb0065) 2019; 20
Baker (10.1016/j.colcom.2021.100420_bb0100) 2005; 5
Zuas (10.1016/j.colcom.2021.100420_bb0275) 2014; 123
Khan (10.1016/j.colcom.2021.100420_bb0070) 2016; 164
Jadoun (10.1016/j.colcom.2021.100420_bb0335) 2021; 19
Saxena (10.1016/j.colcom.2021.100420_bb0280) 2012; 67
Zhang (10.1016/j.colcom.2021.100420_bb0080) 2016; 17
Akilandaeaswari (10.1016/j.colcom.2021.100420_bb0240) 2020; 277
Sunkar (10.1016/j.colcom.2021.100420_bb0325) 2012; 2
De la Fuente (10.1016/j.colcom.2021.100420_bb0050) 2012
Meléndez-Villanueva (10.1016/j.colcom.2021.100420_bb0155) 2019; 11
Khan (10.1016/j.colcom.2021.100420_bb0205) 2018; 47
Jena (10.1016/j.colcom.2021.100420_bb0295) 2014; 24
Raja (10.1016/j.colcom.2021.100420_bb0370) 2012; 4
Bindhu (10.1016/j.colcom.2021.100420_bb0405) 2014; 128
Mukherjee (10.1016/j.colcom.2021.100420_bb0225) 2001; 40
Gurunathan (10.1016/j.colcom.2021.100420_bb0350) 2009; 74
Jeevanandam (10.1016/j.colcom.2021.100420_bb0060) 2018; 9
Ganachari (10.1016/j.colcom.2021.100420_bb0320) 2012; 2
AlNadhari (10.1016/j.colcom.2021.100420_bb0330) 2021; 194
Spreadborough (10.1016/j.colcom.2021.100420_bb0400) 1959; 36
Jena (10.1016/j.colcom.2021.100420_bb0110) 2013; 3
Chernousova (10.1016/j.colcom.2021.100420_bb0075) 2013; 52
Gholami-Shabani (10.1016/j.colcom.2021.100420_bb0215) 2015; 50
Pessarakli (10.1016/j.colcom.2021.100420_bb0375) 2016
Adil (10.1016/j.colcom.2021.100420_bb0200) 2015; 44
Dahoumane (10.1016/j.colcom.2021.100420_bb0265) 2017; 19
Gonçalves (10.1016/j.colcom.2021.100420_bb0340) 2019; 31
Khan (10.1016/j.colcom.2021.100420_bb0170) 2020; 39
Gudikandula (10.1016/j.colcom.2021.100420_bb0105) 2016; 11
Rao (10.1016/j.colcom.2021.100420_bb0030) 2004
Sharma (10.1016/j.colcom.2021.100420_bb0125) 2016; 28
References_xml – volume: 81
  start-page: 24
  year: 2006
  end-page: 29
  ident: bb0120
  article-title: Intracellular recovery of gold by microbial reduction of AuCl4
  publication-title: Hydrometallurgy
– volume: 97
  start-page: 114
  year: 2017
  end-page: 121
  ident: bb0285
  article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria
  publication-title: Enzym. Microb. Technol.
– volume: 682749
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0380
  article-title: A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM
  publication-title: Adv. Mater. Sci. Eng.
– volume: 40
  start-page: 3585
  year: 2001
  end-page: 3588
  ident: bb0225
  article-title: Bioreduction of AuCl4
  publication-title: Angew. Chem. Int. Ed
– year: 2012
  ident: bb0050
  article-title: Nanobiotechnology: Inorganic Nanoparticles Vs Organic Nanoparticles
– volume: 164
  start-page: 344
  year: 2016
  end-page: 351
  ident: bb0070
  article-title: Antioxidant and catalytic applications of silver nanoparticles using
  publication-title: J. Photochem. Photobiol. B
– year: 2013
  ident: bb0020
  article-title: Microwaves in Nanoparticle Synthesis: Fundamentals and Applications
– volume: 11
  start-page: 714
  year: 2016
  end-page: 721
  ident: bb0105
  article-title: Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties
  publication-title: J. Exp. Nanosci.
– volume: 44
  start-page: 9709
  year: 2015
  end-page: 9717
  ident: bb0200
  article-title: Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry
  publication-title: Dalton Trans.
– volume: 287
  start-page: 129265
  year: 2021
  ident: bb0410
  article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of
  publication-title: Mater. Lett.
– volume: 308
  start-page: 409
  year: 2016
  end-page: 432
  ident: bb0005
  article-title: Controlled metal nanostructures: fertile ground for coordination chemists
  publication-title: Coord. Chem. Rev.
– volume: 3
  start-page: 3462
  year: 2011
  end-page: 3481
  ident: bb0010
  article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals
  publication-title: Nanoscale
– year: 2002
  ident: bb0025
  article-title: Metal Nanoparticles: Preparation, Characterization and Applications
– volume: 51
  start-page: 393
  year: 2013
  end-page: 399
  ident: bb0305
  article-title: Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria
  publication-title: Indian J. Exp. Biol.
– volume: 19
  start-page: 552
  year: 2017
  end-page: 587
  ident: bb0265
  article-title: Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review
  publication-title: Green Chem.
– volume: 50
  start-page: 1076
  year: 2015
  end-page: 1085
  ident: bb0215
  article-title: Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from
  publication-title: Process Biochem.
– volume: 11
  start-page: 104
  year: 2011
  ident: bb0355
  article-title: Origin of land plants: do conjugating green algae hold the key?
  publication-title: BMC Evol. Biol.
– volume: 35
  start-page: 1162
  year: 2006
  end-page: 1194
  ident: bb0015
  article-title: Synthesis, structure and properties of metal nanoclusters
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 595
  year: 2015
  end-page: 601
  ident: bb0090
  article-title: Silver nanoparticles: synthesis, properties and therapeutic applications
  publication-title: Drug Discov. Today
– volume: 3
  start-page: 1
  year: 2013
  end-page: 8
  ident: bb0110
  article-title: Biosynthesis and characterization of silver nanoparticles using microalga
  publication-title: Int. J. Nanomater. Biostruct.
– volume: 13
  start-page: 3207
  year: 2011
  end-page: 3216
  ident: bb0135
  article-title: Biosynthesis of gold nanoparticles using diatoms – silica-gold and EPS-gold bionanocomposite formation
  publication-title: J. Nanopart. Res.
– volume: 4
  start-page: 139
  year: 2012
  end-page: 143
  ident: bb0370
  article-title: Biomimetic of silver nanoparticles by
  publication-title: Int J Pharm Pharm Sci
– volume: 3
  start-page: 44
  year: 2013
  ident: bb0390
  article-title: Seaweed-mediated synthesis of gold nanoparticles using
  publication-title: J. Nanostructure Chem.
– volume: 97
  start-page: 498
  year: 2019
  end-page: 509
  ident: bb0140
  article-title: Macroalgae to nanoparticles: Study of
  publication-title: Mater. Sci. Eng. C
– volume: 28
  start-page: 1
  year: 2019
  end-page: 27
  ident: bb0040
  article-title: Chapter 1 - an introduction to nanotechnology
  publication-title: Interface Sci. Technol.
– volume: 24
  start-page: 522
  year: 2014
  end-page: 533
  ident: bb0295
  article-title: Microalga
  publication-title: J. Microbiol. Biotechnol.
– volume: 11
  start-page: 873
  year: 2016
  end-page: 883
  ident: bb0195
  article-title: Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer
  publication-title: Int. J. Nanomedicine
– volume: 42
  start-page: 2882
  year: 2018
  end-page: 2888
  ident: bb0160
  article-title: A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities
  publication-title: New J. Chem.
– volume: 36
  start-page: 116
  year: 1959
  end-page: 118
  ident: bb0400
  article-title: High-temperature X-ray diffractometer
  publication-title: J. Sci. Instrum.
– volume: 13
  start-page: 126
  year: 1994
  end-page: 130
  ident: bb0210
  article-title: Metal accumulation by fungi: applications in environmental biotechnology
  publication-title: J. Ind. Microbiol.
– volume: 79
  start-page: 60
  year: 2018
  end-page: 63
  ident: bb0345
  article-title: New AChE inhibitors from microbial transformation of trachyloban-19-oic acid by
  publication-title: Bioorg. Chem.
– volume: 51
  start-page: 4647
  year: 2015
  end-page: 4650
  ident: bb0385
  article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles
  publication-title: Chem. Commun.
– volume: 10
  start-page: 12871
  year: 2018
  end-page: 12934
  ident: bb0095
  article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties
  publication-title: Nanoscale
– volume: 11
  start-page: 1111
  year: 2019
  ident: bb0155
  article-title: Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract
  publication-title: Viruses
– volume: 359
  start-page: 1
  year: 2018
  end-page: 31
  ident: bb0175
  article-title: Gold rush in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing
  publication-title: Coord. Chem. Rev.
– volume: 123
  start-page: 156
  year: 2014
  end-page: 159
  ident: bb0275
  article-title: Bio-synthesis of silver nanoparticles using water extract of
  publication-title: Mater. Lett.
– volume: 112
  start-page: 2373
  year: 2012
  end-page: 2433
  ident: bb0055
  article-title: Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications
  publication-title: Chem. Rev.
– volume: 15
  start-page: 458
  year: 2005
  end-page: 468
  ident: bb0045
  article-title: Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 481
  year: 2010
  end-page: 489
  ident: bb0230
  article-title: Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells
  publication-title: Nano Res.
– volume: 1
  start-page: 37
  year: 2020
  end-page: 44
  ident: bb0270
  article-title: Antioxidant and antibacterial activity of silver nanoparticles synthesized by
  publication-title: J. Ayurveda Integr. Med
– volume: 763
  start-page: 1024
  year: 2018
  end-page: 1034
  ident: bb0255
  article-title: Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity
  publication-title: J. Alloys Compd.
– volume: 103
  start-page: 658
  year: 2013
  end-page: 661
  ident: bb0360
  article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from
  publication-title: Colloids Surf. B
– volume: 6
  start-page: 259
  year: 2016
  end-page: 265
  ident: bb0395
  article-title: Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency
  publication-title: Appl. Nanosci.
– volume: 181
  start-page: 44
  year: 2018
  end-page: 52
  ident: bb0085
  article-title: Catalytic potential of bio-synthesized silver nanoparticles using
  publication-title: J. Photochem. Photobiol. B
– volume: 21
  start-page: 145
  year: 2009
  end-page: 152
  ident: bb0130
  article-title: Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation – a novel phenomenon
  publication-title: J. Appl. Phycol.
– volume: 128
  start-page: 37
  year: 2014
  end-page: 45
  ident: bb0405
  article-title: Silver and gold nanoparticles for sensor and antibacterial applications
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 9
  start-page: 1050
  year: 2018
  end-page: 1074
  ident: bb0060
  article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations
  publication-title: Beilstein J. Nanotechnol.
– volume: 19
  start-page: 355
  year: 2021
  end-page: 374
  ident: bb0335
  article-title: Green synthesis of nanoparticles using plant extracts: a review
  publication-title: Environ. Chem. Lett.
– volume: 7
  start-page: 109
  year: 2013
  end-page: 116
  ident: bb0290
  article-title: Biological synthesis of metallic nanoparticles using algae
  publication-title: IET Nanobiotechnol.
– volume: 47
  start-page: 22
  year: 2012
  end-page: 29
  ident: bb0315
  article-title: Screening of different algae for green synthesis of gold nanoparticles
  publication-title: Eur. J. Phycol.
– volume: 1
  start-page: 242
  year: 2012
  ident: bb0365
  article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed
  publication-title: Sci. Rep.
– volume: 10
  start-page: 4545
  year: 2020
  end-page: 4558
  ident: bb0415
  article-title: Green synthesis of stable nanocolloids of monodisperse silver and gold nanoparticles using natural polyphenols from fruits of
  publication-title: Appl. Nanosci.
– year: 2004
  ident: bb0030
  article-title: The Chemistry of Nanomaterials: Synthesis, Properties and Applications
– volume: 5
  start-page: Q226
  year: 2016
  end-page: Q230
  ident: bb0235
  article-title: Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus nanotemplate for organic memory device
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 9
  start-page: 12944
  year: 2019
  end-page: 12967
  ident: bb0260
  article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes
  publication-title: RSC Adv.
– volume: 276
  start-page: 102103
  year: 2020
  ident: bb0250
  article-title: Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities
  publication-title: Adv. Colloid Interf. Sci.
– volume: 58
  start-page: 36
  year: 2016
  end-page: 43
  ident: bb0190
  article-title: Green synthesis of silver nanoparticles using
  publication-title: Mater. Sci. Eng. C
– year: 2016
  ident: bb0035
  article-title: Handbook of Nanoparticles
– volume: 194
  start-page: 110672
  year: 2021
  ident: bb0330
  article-title: A review on biogenic synthesis of metal nanoparticles using marine algae and its applications
  publication-title: Environ. Res.
– year: 2016
  ident: bb0375
  article-title: Handbook of Photosynthesis
– volume: 6
  start-page: 257
  year: 2010
  end-page: 262
  ident: bb0180
  article-title: Biological synthesis of metallic nanoparticles
  publication-title: Nanomed. Nanotechnol. Biomed.
– volume: 5
  start-page: 112
  year: 2015
  end-page: 119
  ident: bb0310
  article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity
  publication-title: Biotechnol. Rep.
– volume: 2
  start-page: 953
  year: 2012
  end-page: 959
  ident: bb0325
  article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium
  publication-title: Asian Pac. J. Trop. Biomed.
– volume: 29
  start-page: 7
  year: 2019
  end-page: 13
  ident: bb0150
  article-title: Green synthesis of gold nanoparticles using
  publication-title: J. Mycol. Med.
– volume: 39
  start-page: 100322
  year: 2020
  ident: bb0170
  article-title: Green synthesis of controlled size gold and silver nanoparticles using antioxidant as capping and reducing agent
  publication-title: Colloid Interfac. Sci. Commun.
– volume: 5
  start-page: 244
  year: 2005
  end-page: 249
  ident: bb0100
  article-title: Synthesis and antibacterial properties of silver nanoparticles
  publication-title: J. Nanosci. Nanotechnol.
– volume: 67
  start-page: 91
  year: 2012
  end-page: 94
  ident: bb0280
  article-title: Green synthesis of silver nanoparticles using aqueous solution of
  publication-title: Mater. Lett.
– volume: 277
  start-page: 128344
  year: 2020
  ident: bb0240
  article-title: Green method for synthesis and characterization of gold nanoparticles using
  publication-title: Mater. Lett.
– volume: 74
  start-page: 328
  year: 2009
  end-page: 335
  ident: bb0350
  article-title: Biosynthesis, purification and characterization of silver nanoparticles using
  publication-title: Colloids Surf. B
– volume: 52
  start-page: 1636
  year: 2013
  end-page: 1653
  ident: bb0075
  article-title: Silver as antibacterial agent: ion, nanoparticle and metal
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  year: 2019
  ident: bb0165
  article-title: Biosynthesis of silver nanoparticles and their versatile antimicrobial properties
  publication-title: Mater. Res. Express
– volume: 34
  start-page: 588
  year: 2016
  end-page: 599
  ident: bb0185
  article-title: Biological synthesis of nanoparticles from plants and microorganisms
  publication-title: Trends Biotechnol.
– volume: 28
  start-page: 1759
  year: 2016
  end-page: 1774
  ident: bb0125
  article-title: Algae as crucial organisms in advancing nanotechnology: a systematic review
  publication-title: J. Appl. Phycol.
– volume: 31
  start-page: 211
  year: 2019
  end-page: 221
  ident: bb0340
  article-title: Detection of glycidic receptors in microalgae using glycodendrons as probes: a new tool for studies on cell surface interactions
  publication-title: J. Appl. Phycol.
– volume: 75
  start-page: 436
  year: 2000
  end-page: 442
  ident: bb0115
  article-title: Gold-cyanide biosorption with L-cysteine
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 8
  year: 2017
  ident: bb0145
  article-title: Fungal synthesis of size-defined nanoparticles
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– volume: 47
  start-page: 11988
  year: 2018
  end-page: 12010
  ident: bb0205
  article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis
  publication-title: Dalton Trans.
– volume: 9
  start-page: 56
  year: 2011
  ident: bb0300
  article-title: Cellular oxido-reductive proteins of
  publication-title: J. Nanobiotechnol.
– volume: 2
  start-page: 316
  year: 2012
  end-page: 321
  ident: bb0320
  article-title: Extracellular biosynthesis of silver nanoparticles using fungi
  publication-title: Bionanoscience
– volume: 39
  start-page: 109
  year: 2018
  end-page: 117
  ident: bb0245
  article-title: Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using
  publication-title: Chin. J. Catal.
– volume: 29
  start-page: 439
  year: 2007
  end-page: 445
  ident: bb0220
  article-title: Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO
  publication-title: Biotechnol. Lett.
– volume: 20
  start-page: 865
  year: 2019
  ident: bb0065
  article-title: Silver nanoparticles: synthesis and application for nanomedicine
  publication-title: Int. J. Mol. Sci.
– volume: 17
  start-page: 1534
  year: 2016
  ident: bb0080
  article-title: Silver nanoparticles: synthesis, characterization, properties, applications and therapeutic approaches
  publication-title: Int. J. Mol. Sci.
– volume: 11
  start-page: 1111
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0155
  article-title: Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract
  publication-title: Viruses
  doi: 10.3390/v11121111
– volume: 28
  start-page: 1
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0040
  article-title: Chapter 1 - an introduction to nanotechnology
  publication-title: Interface Sci. Technol.
  doi: 10.1016/B978-0-12-813586-0.00001-8
– volume: 3
  start-page: 1
  year: 2013
  ident: 10.1016/j.colcom.2021.100420_bb0110
  article-title: Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity
  publication-title: Int. J. Nanomater. Biostruct.
– volume: 67
  start-page: 91
  year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0280
  article-title: Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.09.038
– volume: 9
  start-page: 56
  year: 2011
  ident: 10.1016/j.colcom.2021.100420_bb0300
  article-title: Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-9-56
– volume: 28
  start-page: 1759
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0125
  article-title: Algae as crucial organisms in advancing nanotechnology: a systematic review
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-015-0715-1
– volume: 3
  start-page: 481
  year: 2010
  ident: 10.1016/j.colcom.2021.100420_bb0230
  article-title: Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0008-6
– volume: 19
  start-page: 355
  year: 2021
  ident: 10.1016/j.colcom.2021.100420_bb0335
  article-title: Green synthesis of nanoparticles using plant extracts: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01074-x
– volume: 47
  start-page: 22
  year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0315
  article-title: Screening of different algae for green synthesis of gold nanoparticles
  publication-title: Eur. J. Phycol.
  doi: 10.1080/09670262.2011.653406
– volume: 277
  start-page: 128344
  year: 2020
  ident: 10.1016/j.colcom.2021.100420_bb0240
  article-title: Green method for synthesis and characterization of gold nanoparticles using Lawsonia inermis seed extract and their photocatalytic activity
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.128344
– volume: 1
  start-page: 37
  year: 2020
  ident: 10.1016/j.colcom.2021.100420_bb0270
  article-title: Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum
  publication-title: J. Ayurveda Integr. Med
  doi: 10.1016/j.jaim.2017.11.003
– volume: 17
  start-page: 1534
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0080
  article-title: Silver nanoparticles: synthesis, characterization, properties, applications and therapeutic approaches
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17091534
– volume: 6
  start-page: 257
  year: 2010
  ident: 10.1016/j.colcom.2021.100420_bb0180
  article-title: Biological synthesis of metallic nanoparticles
  publication-title: Nanomed. Nanotechnol. Biomed.
  doi: 10.1016/j.nano.2009.07.002
– volume: 4
  start-page: 139
  year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0370
  article-title: Biomimetic of silver nanoparticles by Ulva lactuca seaweed and evaluation of its antibacterial activity
  publication-title: Int J Pharm Pharm Sci
– year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0375
– volume: 36
  start-page: 116
  year: 1959
  ident: 10.1016/j.colcom.2021.100420_bb0400
  article-title: High-temperature X-ray diffractometer
  publication-title: J. Sci. Instrum.
  doi: 10.1088/0950-7671/36/3/302
– volume: 112
  start-page: 2373
  year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0055
  article-title: Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr100449n
– volume: 763
  start-page: 1024
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0255
  article-title: Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.012
– volume: 5
  start-page: 244
  year: 2005
  ident: 10.1016/j.colcom.2021.100420_bb0100
  article-title: Synthesis and antibacterial properties of silver nanoparticles
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2005.034
– volume: 29
  start-page: 439
  year: 2007
  ident: 10.1016/j.colcom.2021.100420_bb0220
  article-title: Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-006-9256-7
– volume: 5
  start-page: Q226
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0235
  article-title: Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus nanotemplate for organic memory device
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0181609jss
– volume: 44
  start-page: 9709
  year: 2015
  ident: 10.1016/j.colcom.2021.100420_bb0200
  article-title: Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03222E
– volume: 13
  start-page: 3207
  year: 2011
  ident: 10.1016/j.colcom.2021.100420_bb0135
  article-title: Biosynthesis of gold nanoparticles using diatoms – silica-gold and EPS-gold bionanocomposite formation
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-011-0221-6
– volume: 58
  start-page: 36
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0190
  article-title: Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.08.018
– volume: 40
  start-page: 3585
  year: 2001
  ident: 10.1016/j.colcom.2021.100420_bb0225
  article-title: Bioreduction of AuCl4− Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed
  publication-title: Angew. Chem. Int. Ed
  doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
– volume: 308
  start-page: 409
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0005
  article-title: Controlled metal nanostructures: fertile ground for coordination chemists
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.07.013
– volume: 13
  start-page: 126
  year: 1994
  ident: 10.1016/j.colcom.2021.100420_bb0210
  article-title: Metal accumulation by fungi: applications in environmental biotechnology
  publication-title: J. Ind. Microbiol.
  doi: 10.1007/BF01584110
– volume: 24
  start-page: 522
  year: 2014
  ident: 10.1016/j.colcom.2021.100420_bb0295
  article-title: Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1306.06014
– volume: 81
  start-page: 24
  year: 2006
  ident: 10.1016/j.colcom.2021.100420_bb0120
  article-title: Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2005.09.006
– volume: 11
  start-page: 104
  year: 2011
  ident: 10.1016/j.colcom.2021.100420_bb0355
  article-title: Origin of land plants: do conjugating green algae hold the key?
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-11-104
– volume: 20
  start-page: 595
  year: 2015
  ident: 10.1016/j.colcom.2021.100420_bb0090
  article-title: Silver nanoparticles: synthesis, properties and therapeutic applications
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.11.014
– volume: 123
  start-page: 156
  year: 2014
  ident: 10.1016/j.colcom.2021.100420_bb0275
  article-title: Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant)
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.03.026
– volume: 11
  start-page: 714
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0105
  article-title: Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2016.1139196
– year: 2004
  ident: 10.1016/j.colcom.2021.100420_bb0030
– volume: 75
  start-page: 436
  year: 2000
  ident: 10.1016/j.colcom.2021.100420_bb0115
  article-title: Gold-cyanide biosorption with L-cysteine
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/1097-4660(200006)75:6<436::AID-JCTB243>3.0.CO;2-O
– volume: 9
  start-page: 12944
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0260
  article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes
  publication-title: RSC Adv.
  doi: 10.1039/C8RA10483B
– volume: 35
  start-page: 1162
  year: 2006
  ident: 10.1016/j.colcom.2021.100420_bb0015
  article-title: Synthesis, structure and properties of metal nanoclusters
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b517312b
– volume: 97
  start-page: 498
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0140
  article-title: Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.12.066
– year: 2013
  ident: 10.1016/j.colcom.2021.100420_bb0020
– volume: 194
  start-page: 110672
  year: 2021
  ident: 10.1016/j.colcom.2021.100420_bb0330
  article-title: A review on biogenic synthesis of metal nanoparticles using marine algae and its applications
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110672
– volume: 10
  start-page: 12871
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0095
  article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties
  publication-title: Nanoscale
  doi: 10.1039/C8NR02278J
– volume: 8
  year: 2017
  ident: 10.1016/j.colcom.2021.100420_bb0145
  article-title: Fungal synthesis of size-defined nanoparticles
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
  doi: 10.1088/2043-6254/aa84d4
– volume: 2
  start-page: 953
  year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0325
  article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus
  publication-title: Asian Pac. J. Trop. Biomed.
  doi: 10.1016/S2221-1691(13)60006-4
– volume: 34
  start-page: 588
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0185
  article-title: Biological synthesis of nanoparticles from plants and microorganisms
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.02.006
– volume: 19
  start-page: 552
  year: 2017
  ident: 10.1016/j.colcom.2021.100420_bb0265
  article-title: Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review
  publication-title: Green Chem.
  doi: 10.1039/C6GC02346K
– volume: 39
  start-page: 109
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0245
  article-title: Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella asiatica L. leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62915-2
– volume: 39
  start-page: 100322
  year: 2020
  ident: 10.1016/j.colcom.2021.100420_bb0170
  article-title: Green synthesis of controlled size gold and silver nanoparticles using antioxidant as capping and reducing agent
  publication-title: Colloid Interfac. Sci. Commun.
  doi: 10.1016/j.colcom.2020.100322
– volume: 2
  start-page: 316
  year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0320
  article-title: Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies
  publication-title: Bionanoscience
  doi: 10.1007/s12668-012-0046-5
– volume: 164
  start-page: 344
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0070
  article-title: Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2016.09.042
– volume: 52
  start-page: 1636
  year: 2013
  ident: 10.1016/j.colcom.2021.100420_bb0075
  article-title: Silver as antibacterial agent: ion, nanoparticle and metal
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205923
– volume: 7
  start-page: 109
  year: 2013
  ident: 10.1016/j.colcom.2021.100420_bb0290
  article-title: Biological synthesis of metallic nanoparticles using algae
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2012.0041
– volume: 287
  start-page: 129265
  year: 2021
  ident: 10.1016/j.colcom.2021.100420_bb0410
  article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.129265
– volume: 3
  start-page: 44
  year: 2013
  ident: 10.1016/j.colcom.2021.100420_bb0390
  article-title: Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization
  publication-title: J. Nanostructure Chem.
  doi: 10.1186/2193-8865-3-44
– volume: 31
  start-page: 211
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0340
  article-title: Detection of glycidic receptors in microalgae using glycodendrons as probes: a new tool for studies on cell surface interactions
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-018-1555-6
– volume: 682749
  start-page: 1
  year: 2015
  ident: 10.1016/j.colcom.2021.100420_bb0380
  article-title: A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM
  publication-title: Adv. Mater. Sci. Eng.
– volume: 11
  start-page: 873
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0195
  article-title: Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer
  publication-title: Int. J. Nanomedicine
– volume: 103
  start-page: 658
  year: 2013
  ident: 10.1016/j.colcom.2021.100420_bb0360
  article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2012.11.022
– volume: 50
  start-page: 1076
  year: 2015
  ident: 10.1016/j.colcom.2021.100420_bb0215
  article-title: Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2015.04.004
– year: 2002
  ident: 10.1016/j.colcom.2021.100420_bb0025
– volume: 359
  start-page: 1
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0175
  article-title: Gold rush in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.01.006
– year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0035
– volume: 5
  start-page: 112
  year: 2015
  ident: 10.1016/j.colcom.2021.100420_bb0310
  article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2014.12.001
– volume: 276
  start-page: 102103
  year: 2020
  ident: 10.1016/j.colcom.2021.100420_bb0250
  article-title: Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2020.102103
– volume: 9
  start-page: 1050
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0060
  article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.98
– volume: 128
  start-page: 37
  year: 2014
  ident: 10.1016/j.colcom.2021.100420_bb0405
  article-title: Silver and gold nanoparticles for sensor and antibacterial applications
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2014.02.119
– volume: 10
  start-page: 4545
  year: 2020
  ident: 10.1016/j.colcom.2021.100420_bb0415
  article-title: Green synthesis of stable nanocolloids of monodisperse silver and gold nanoparticles using natural polyphenols from fruits of Sambucus nigra L
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01324-y
– volume: 47
  start-page: 11988
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0205
  article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01152D
– volume: 1
  start-page: 242
  year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0365
  article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca invitro
  publication-title: Sci. Rep.
– volume: 3
  start-page: 3462
  year: 2011
  ident: 10.1016/j.colcom.2021.100420_bb0010
  article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals
  publication-title: Nanoscale
  doi: 10.1039/c1nr10201j
– volume: 20
  start-page: 865
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0065
  article-title: Silver nanoparticles: synthesis and application for nanomedicine
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20040865
– volume: 6
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0165
  article-title: Biosynthesis of silver nanoparticles and their versatile antimicrobial properties
  publication-title: Mater. Res. Express
– volume: 6
  start-page: 259
  year: 2016
  ident: 10.1016/j.colcom.2021.100420_bb0395
  article-title: Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-015-0426-6
– volume: 181
  start-page: 44
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0085
  article-title: Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2018.02.024
– year: 2012
  ident: 10.1016/j.colcom.2021.100420_bb0050
– volume: 21
  start-page: 145
  year: 2009
  ident: 10.1016/j.colcom.2021.100420_bb0130
  article-title: Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation – a novel phenomenon
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-008-9343-3
– volume: 42
  start-page: 2882
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0160
  article-title: A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ04224H
– volume: 74
  start-page: 328
  year: 2009
  ident: 10.1016/j.colcom.2021.100420_bb0350
  article-title: Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2009.07.048
– volume: 29
  start-page: 7
  year: 2019
  ident: 10.1016/j.colcom.2021.100420_bb0150
  article-title: Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant
  publication-title: J. Mycol. Med.
  doi: 10.1016/j.mycmed.2019.01.005
– volume: 97
  start-page: 114
  year: 2017
  ident: 10.1016/j.colcom.2021.100420_bb0285
  article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2016.10.018
– volume: 15
  start-page: 458
  year: 2005
  ident: 10.1016/j.colcom.2021.100420_bb0045
  article-title: Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400113
– volume: 51
  start-page: 393
  year: 2013
  ident: 10.1016/j.colcom.2021.100420_bb0305
  article-title: Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria
  publication-title: Indian J. Exp. Biol.
– volume: 79
  start-page: 60
  year: 2018
  ident: 10.1016/j.colcom.2021.100420_bb0345
  article-title: New AChE inhibitors from microbial transformation of trachyloban-19-oic acid by Syncephalastrum racemosum
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2018.04.011
– volume: 51
  start-page: 4647
  year: 2015
  ident: 10.1016/j.colcom.2021.100420_bb0385
  article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00211G
SSID ssj0002140238
Score 2.3425748
Snippet Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100420
SubjectTerms Environmental impacts
Green synthesis
Microorganisms
Nanoparticle species-specific biosynthesis
Silver nanoparticles
Title High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis
URI https://dx.doi.org/10.1016/j.colcom.2021.100420
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADB58XLyIouKbOXgddl5tt95WUVYXPfjAvZV5VSraXWw9ePG3m2xbHyAKnoa2SSlpmC8ZviSEHHguPTexgLRExUw7rpjlrs8ADYVyUWwjiQXOF5fx8Fafj6PxHDnuamGQVtnu_c2ePtut2zu91pq9aVH0riWgFVcAcKLpKjJPFqVKY3DtxcHZaHj5cdQiIYmQs5nWqMJQpyuimzG9wOLIHJEgiKQBjbO_fwKpL8BzukKW24iRDpqPWiVzoVwjb8jPoL4jVdBJTp-QWoeVGYGaihpaTyaPFEJSCiEerV5LWKqiQsluKEpNqwKJ0bQ0JeTOLUXukA4o1l9CCs1ma144eo_0nM-3rJPb05Ob4yFrRykwBzlBzfK8r6PEuCBdagG0eO6FskbpxEthRa6VE7GxfSGM9nkaRIhSz4VTkTMcHqkNslBOyrBJaHB5mgQDYYO2WojYJg5nBfuIe8O1T7aI6myXubbPOI67eMw6QtlD1lg8Q4tnjcW3CPvQmjZ9Nv6QT7rfkn3zlwyg4FfN7X9r7pAlvGrojrtkoX5-CXsQktR2v3U5XEdXd6N9Mn82PnoHre_i-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnoRRcX1mYPXsEmTtrveVJRVd_fiCnsreVUqa1dsPXjxtzvThw8QBU-BZqaUScg3U77JR8ix44HjOhJQlsiIKcslM9z2GKChkDaMTBhgg_NoHA3u1PU0nC6Q87YXBmmVzdlfn-nVad086TbR7D5lWfc2ALTiEgBO1LeKLJJlyAZi1G-4mp59_GgJoIQIKkVrdGDo0bbQVTwviDfyRgIwRMqAQuXvnyDqC-xcrpO1Jl-kp_UnbZAFn2-SN2RnUNdSKug8pY9IrMO-DE91QTUt5_MZhYSUQoJHi9cchiIr0LKVRClpkSEtmuY6h8q5Icid0FOK3ZdQQLNqTDNL75Gc8_mWLXJ3eTE5H7BGSIFZqAhKlqY9Fcba-sD2DUAWT52QRksVu0AYkSppRaRNTwitXNr3wod9x4WVodUcpuQ2Wcrnud8h1Nu0H3sNSYMySojIxBaVgl3InebKxR0i29gltrllHMUuZklLJ3tI6ognGPGkjniHsA-vp_qWjT_s43ZZkm-7JQEg-NVz99-eR2RlMBkNk-HV-GaPrOJMTXzcJ0vl84s_gOSkNIfV5nsHgvLiIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+diversity+of+microalgae+as+a+tool+for+the+synthesis+of+different+silver+nanoparticles%3A+A+species-specific+green+synthesis&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Moraes%2C+Leonardo+C.&rft.au=Figueiredo%2C+Rute+C.&rft.au=Ribeiro-Andrade%2C+Rodrigo&rft.au=Pontes-Silva%2C+Augusto+V.&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=42&rft_id=info:doi/10.1016%2Fj.colcom.2021.100420&rft.externalDocID=S2215038221000601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon