High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis
Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of microorganisms is connected to a potential high diversity of NPs. Here, aqueous extracts of two cyanobacteria (Synechococcus elongatus and Microc...
Saved in:
Published in | Colloid and interface science communications Vol. 42; p. 100420 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of microorganisms is connected to a potential high diversity of NPs. Here, aqueous extracts of two cyanobacteria (Synechococcus elongatus and Microcystis aeruginosa) and four microalgae (the chlorophytes Coelastrum astroideum and Desmodesmus armatus; and the charophytes Cosmarium punctulatum and Klebsormidium flaccidum) were used for the biosynthesis of silver nanoparticles (AgNPs). The nanoparticle characterization was performed by UV–Visible absorption spectrum, Fourier Transforms Infrared (FT-IR), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This is the first study trying to establish some connection between the taxonomical diversity of microalgae and cyanobacteria and the synthesis of different silver nanoparticles. All algal and cyanobacterial extracts resulted in the synthesis of well-disperse and crystalline AgNPs, with no agglomerate formation. TEM analysis showed spherical AgNPs shape with size range within 1.8–5.4 nm. FTIR analysis demonstrated the presence of hydroxyl groups of peptidoglycan nature acting as stabilizing agents in the surface of the AgNPs. The nanoparticle shape and kind of stabilizing biomolecules were highly similar, but their size was significantly different, which can affect the NP properties. There was no pattern for the AgNPs in terms of the microorganism phyla. Our results showed a very high potential for the use of cyanobacteria and microalgae in the green synthesis of NPs since the variety of AgNPs obtained was species-specific.
[Display omitted]
•The many uses of nanoparticles (NPs) depends on their composition and structure.•The traditional synthesis of metal NPs results in environmental impacts.•Microorganisms can be applied for eco-friendly green synthesis of NPs.•Cyanobacteria and algae showed a species-specific synthesis of silver NPs.•Cyanobacteria and algae have high potential for expand silver NPs types and uses. |
---|---|
AbstractList | Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of microorganisms is connected to a potential high diversity of NPs. Here, aqueous extracts of two cyanobacteria (Synechococcus elongatus and Microcystis aeruginosa) and four microalgae (the chlorophytes Coelastrum astroideum and Desmodesmus armatus; and the charophytes Cosmarium punctulatum and Klebsormidium flaccidum) were used for the biosynthesis of silver nanoparticles (AgNPs). The nanoparticle characterization was performed by UV–Visible absorption spectrum, Fourier Transforms Infrared (FT-IR), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This is the first study trying to establish some connection between the taxonomical diversity of microalgae and cyanobacteria and the synthesis of different silver nanoparticles. All algal and cyanobacterial extracts resulted in the synthesis of well-disperse and crystalline AgNPs, with no agglomerate formation. TEM analysis showed spherical AgNPs shape with size range within 1.8–5.4 nm. FTIR analysis demonstrated the presence of hydroxyl groups of peptidoglycan nature acting as stabilizing agents in the surface of the AgNPs. The nanoparticle shape and kind of stabilizing biomolecules were highly similar, but their size was significantly different, which can affect the NP properties. There was no pattern for the AgNPs in terms of the microorganism phyla. Our results showed a very high potential for the use of cyanobacteria and microalgae in the green synthesis of NPs since the variety of AgNPs obtained was species-specific.
[Display omitted]
•The many uses of nanoparticles (NPs) depends on their composition and structure.•The traditional synthesis of metal NPs results in environmental impacts.•Microorganisms can be applied for eco-friendly green synthesis of NPs.•Cyanobacteria and algae showed a species-specific synthesis of silver NPs.•Cyanobacteria and algae have high potential for expand silver NPs types and uses. |
ArticleNumber | 100420 |
Author | Pontes-Silva, Augusto V. Figueiredo, Rute C. Figueredo, Cleber C. Giani, Alessandra Moraes, Leonardo C. Ribeiro-Andrade, Rodrigo Arantes, Mônica L. |
Author_xml | – sequence: 1 givenname: Leonardo C. surname: Moraes fullname: Moraes, Leonardo C. organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil – sequence: 2 givenname: Rute C. surname: Figueiredo fullname: Figueiredo, Rute C. email: rute@ufop.edu.br organization: Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Rua Diogo de Vasconcelos, 122, Pilar, Ouro Preto 35400-000, Brazil – sequence: 3 givenname: Rodrigo surname: Ribeiro-Andrade fullname: Ribeiro-Andrade, Rodrigo organization: Centro de Microscopia da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais 31970-901, Brazil – sequence: 4 givenname: Augusto V. surname: Pontes-Silva fullname: Pontes-Silva, Augusto V. organization: Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Rua Diogo de Vasconcelos, 122, Pilar, Ouro Preto 35400-000, Brazil – sequence: 5 givenname: Mônica L. surname: Arantes fullname: Arantes, Mônica L. organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil – sequence: 6 givenname: Alessandra surname: Giani fullname: Giani, Alessandra organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil – sequence: 7 givenname: Cleber C. surname: Figueredo fullname: Figueredo, Cleber C. email: cleberfigueredo@ufmg.br organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil |
BookMark | eNqFkE9LAzEQxYNUsNZ-Aw_5AlvzZ3e77UEoRa1Q8KLnkGYn7ZRtUpJQ6MXPbmoFxYOe3jAz78H7XZOe8w4IueVsxBmv77Yj4zvjdyPBBM8rVgp2QfpC8KpgshG9H_MVGca4ZSx_lkzIpk_eF7je0BYPECKmI_WW7tAEr7u1Bqoj1TR531HrA00boPHoskSMp88WrYUALtGIXU6gTju_1yGh6SBO6YzGPRiEWHyqRUPXAcB9p9yQS6u7CMMvHZC3x4fX-aJYvjw9z2fLwkhWp8LapqzG2oAwkxWTNbMtlysty3Er-IrbUhpe61XDuS5bOwEO1aRl3MjKaJZPckDKc26uFmMAq_YBdzocFWfqhFFt1RmjOmFUZ4zZNv1lM5h0Qu9S0Nj9Z74_myEXOyAEFTMLZ6DFACap1uPfAR_4k5UU |
CitedBy_id | crossref_primary_10_1007_s13399_025_06692_5 crossref_primary_10_1016_j_apt_2024_104552 crossref_primary_10_3390_plants13070981 crossref_primary_10_1016_j_bcab_2024_103046 crossref_primary_10_1016_j_arabjc_2021_103658 crossref_primary_10_1007_s11240_024_02778_6 crossref_primary_10_1016_j_algal_2024_103782 crossref_primary_10_1016_j_envpol_2023_121483 crossref_primary_10_1016_j_teac_2023_e00204 crossref_primary_10_1016_j_jksus_2024_103264 crossref_primary_10_1016_j_jtice_2023_105103 crossref_primary_10_1007_s13762_023_05321_w crossref_primary_10_1088_1755_1315_1371_2_022003 crossref_primary_10_1007_s00210_024_03235_z crossref_primary_10_3390_ma17010187 crossref_primary_10_3390_w15122208 crossref_primary_10_1016_j_colcom_2024_100780 crossref_primary_10_1016_j_tifs_2023_104127 crossref_primary_10_1016_j_biteb_2025_102089 crossref_primary_10_3390_ma15144784 crossref_primary_10_1016_j_nexres_2024_100058 crossref_primary_10_1016_j_inoche_2024_112954 crossref_primary_10_3390_ijms242216183 |
Cites_doi | 10.3390/v11121111 10.1016/B978-0-12-813586-0.00001-8 10.1016/j.matlet.2011.09.038 10.1186/1477-3155-9-56 10.1007/s10811-015-0715-1 10.1007/s12274-010-0008-6 10.1007/s10311-020-01074-x 10.1080/09670262.2011.653406 10.1016/j.matlet.2020.128344 10.1016/j.jaim.2017.11.003 10.3390/ijms17091534 10.1016/j.nano.2009.07.002 10.1088/0950-7671/36/3/302 10.1021/cr100449n 10.1016/j.jallcom.2018.05.012 10.1166/jnn.2005.034 10.1007/s10529-006-9256-7 10.1149/2.0181609jss 10.1039/C4DT03222E 10.1007/s11051-011-0221-6 10.1016/j.msec.2015.08.018 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K 10.1016/j.ccr.2015.07.013 10.1007/BF01584110 10.4014/jmb.1306.06014 10.1016/j.hydromet.2005.09.006 10.1186/1471-2148-11-104 10.1016/j.drudis.2014.11.014 10.1016/j.matlet.2014.03.026 10.1080/17458080.2016.1139196 10.1002/1097-4660(200006)75:6<436::AID-JCTB243>3.0.CO;2-O 10.1039/C8RA10483B 10.1039/b517312b 10.1016/j.msec.2018.12.066 10.1016/j.envres.2020.110672 10.1039/C8NR02278J 10.1088/2043-6254/aa84d4 10.1016/S2221-1691(13)60006-4 10.1016/j.tibtech.2016.02.006 10.1039/C6GC02346K 10.1016/S1872-2067(17)62915-2 10.1016/j.colcom.2020.100322 10.1007/s12668-012-0046-5 10.1016/j.jphotobiol.2016.09.042 10.1002/anie.201205923 10.1049/iet-nbt.2012.0041 10.1016/j.matlet.2020.129265 10.1186/2193-8865-3-44 10.1007/s10811-018-1555-6 10.1016/j.colsurfb.2012.11.022 10.1016/j.procbio.2015.04.004 10.1016/j.ccr.2018.01.006 10.1016/j.btre.2014.12.001 10.1016/j.cis.2020.102103 10.3762/bjnano.9.98 10.1016/j.saa.2014.02.119 10.1007/s13204-020-01324-y 10.1039/C8DT01152D 10.1039/c1nr10201j 10.3390/ijms20040865 10.1007/s13204-015-0426-6 10.1016/j.jphotobiol.2018.02.024 10.1007/s10811-008-9343-3 10.1039/C7NJ04224H 10.1016/j.colsurfb.2009.07.048 10.1016/j.mycmed.2019.01.005 10.1016/j.enzmictec.2016.10.018 10.1002/adfm.200400113 10.1016/j.bioorg.2018.04.011 10.1039/C5CC00211G |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.colcom.2021.100420 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2215-0382 |
ExternalDocumentID | 10_1016_j_colcom_2021_100420 S2215038221000601 |
GroupedDBID | --M 0R~ 0SF 4.4 457 4G. 6I. 7-5 AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEXQZ AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GROUPED_DOAJ IXB KOM KQ8 M41 M~E NCXOZ O9- OAUVE OK1 RIG ROL SPC SPCBC SSG SSK SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-ff8457ace2c9b0360fd13ba347d21b1f43c16ab811a4df9e1e59d01c35ca0c163 |
IEDL.DBID | AIKHN |
ISSN | 2215-0382 |
IngestDate | Tue Jul 01 01:24:29 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Fri Feb 23 02:44:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticle species-specific biosynthesis Environmental impacts Microorganisms Green synthesis Silver nanoparticles |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-ff8457ace2c9b0360fd13ba347d21b1f43c16ab811a4df9e1e59d01c35ca0c163 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2215038221000601 |
ParticipantIDs | crossref_primary_10_1016_j_colcom_2021_100420 crossref_citationtrail_10_1016_j_colcom_2021_100420 elsevier_sciencedirect_doi_10_1016_j_colcom_2021_100420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Colloid and interface science communications |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gahlawat, Choudhury (bb0260) 2019; 9 Gudikandula, Maringanti (bb0105) 2016; 11 Naimi-Shamel, Pourali, Dolatabadi (bb0150) 2019; 29 Martínez-Prieto, Urbaneja, Palma, Cámpora, Philippot, Chaudret (bb0385) 2015; 51 Santos, Lima, Oliveira, Souza-Filho, Amaral, Rodrigues-Filho, Takahashi (bb0345) 2018; 79 Nasrollahzadeh, Sajjadi, Dasmeh, Sajadi (bb0255) 2018; 763 Ferreira, ConzFerreira, Lima, Frasés, Souza, Sant’Anna (bb0285) 2017; 97 Sudha, Rajamanickam, Rengaramanujam (bb0305) 2013; 51 Patel, Berthold, Puranik, Gantar (bb0310) 2015; 5 Chernousova, Epple (bb0075) 2013; 52 González-Ballesteros, Rodríguez-Argüelles, Prado-López, Lastra, Grimaldi, Cavazza, Nasi, Salviati, Bigi (bb0140) 2019; 97 Dahoumane, Mechouet, Wijesekera, Filipe, Sicard, Bazylinski, Jeffryes (bb0265) 2017; 19 Wilcoxon, Abrams (bb0015) 2006; 35 Chaudhuri, Paria (bb0055) 2012; 112 Saxena, Tripathi, Zafar, Singh (bb0280) 2012; 67 Devi, Bhimba (bb0365) 2012; 1 Wodniok, Brinkmann, Glöckner, Heidel, Philippe, Melkonian, Becker (bb0355) 2011; 11 Thakkar, Mhatre, Parikh (bb0180) 2010; 6 Jadoun, Arif, Jangid, Meena (bb0335) 2021; 19 Chandhirasekar, Thendralmanikandan, Thangavelu, Nguyen, Nguyen, Sivashanmugan, Nareshkumar, Nguyen (bb0410) 2021; 287 De la Fuente, Grazu (bb0050) 2012 Nasrollahzadeh, Sajjadi, Dadashi, Ghafuri (bb0250) 2020; 276 Kim, Jung, Yoon, Jung, Yang, Yi, Lee (bb0235) 2016; 5 Horikoshi, Serpone (bb0020) 2013 Khan, Chen, Khan, Khan, Khan, Ahmad, Tahir, Wang, Khan, Wan (bb0070) 2016; 164 Zuas, Hamim, Sampora (bb0275) 2014; 123 Zielonka, Klimek-Ochab (bb0145) 2017; 8 Bindhu, Umadevi (bb0405) 2014; 128 Konishi, Tsukiyama, Ohno, Saitoh, Nomura (bb0120) 2006; 81 Rauwel, Küünal, Ferdov, Rauwel (bb0380) 2015; 682749 Kumar, Govindaraju, Senthamilselvi, Premkumar (bb0360) 2013; 103 Rao, Müller, Cheetham (bb0030) 2004 Kahn, Monge, Collière, Senocq, Maisonnat, Chaudret (bb0045) 2005; 15 Akilandaeaswari, Muthu (bb0240) 2020; 277 Keshari, Srivastava, Singh, Yadav, Nath (bb0270) 2020; 1 Nasrollahzadeh, Sajadi, Sajjadi, Issaabadi (bb0040) 2019; 28 Feldheim, Foss (bb0025) 2002 Ganachari, Bhat, Deshpande, Venkataraman (bb0320) 2012; 2 Gurunathan, Kalishwaralal, Vaidyanathan, Deepak, Pandian, Muniyandi, Hariharan, Eom (bb0350) 2009; 74 Niu, Volesky (bb0115) 2000; 75 Castro, Blázquez, Muñoz, González, Ballester (bb0290) 2013; 7 Meléndez-Villanueva, Morán-Santibañez, Martínez-Sanmiguel, Rangel-López, Garza-Navarro, Rodríguez-Padilla, Zarate-Triviño, Trejo-Ávila (bb0155) 2019; 11 AlNadhari, Al-Enazi, Alshehrei, Ameen (bb0330) 2021; 194 Zhang, Liu, Shen, Gurunathan (bb0080) 2016; 17 Aliofkhazraei (bb0035) 2016 Baker, Pradhan, Pakstis, Pochan, Shah (bb0100) 2005; 5 Schröfel, Kratosová, Krautová, Dobrocka, Vávra (bb0135) 2011; 13 Gonçalves, Figueiredo, Giani, Collado, Pérez-Inestrosa, Rojo, Figueredo (bb0340) 2019; 31 Khan, Ahmad, Koivisto, Kellomäki (bb0170) 2020; 39 Nasrollahzadeh, Sajjadi, Sajadi (bb0245) 2018; 39 Tobin, White, Gadd (bb0210) 1994; 13 Amiens, Ciuculescu-Pradines, Philippot (bb0005) 2016; 308 Singh, Kim, Zhang, Yang (bb0185) 2016; 34 Annamalai, Nallamuthu (bb0395) 2016; 6 Rasheed, Bilal, Li, Nabeel, Khalid, Iqbal (bb0085) 2018; 181 Adil, Assal, Khan, Al-Warthan, Siddiqui, Liz-Marzán (bb0200) 2015; 44 Sunkar, Nachiyar (bb0325) 2012; 2 Wei, Lu, Xu, Patel, Chen, Chen (bb0090) 2015; 20 Chakraborty, Banerjee, Lahiri, Panda, Ghosh, Pal (bb0130) 2009; 21 Mukherjee, Ahmad, Mandal, Senapati, Sainkar, Khan, Ramani, Parischa, Ajayakumar, Alam, Sastry, Kumar (bb0225) 2001; 40 Mariychuk, Porubská, Ostafin, Čaplovičová, Eliašová (bb0415) 2020; 10 Khan, Khan, Al-Marri, Al-Warthan, Alkhathlan, Siddiqui, Nayak, Kamal, Adil (bb0195) 2016; 11 Jeevanandam, Barhoum, Chan, Dufresne, Danquah (bb0060) 2018; 9 Sharma, Sharma, Sharma, Chetri, Vashishtha, Singh, Kumar, Rathi, Agrawal (bb0125) 2016; 28 Qin, Zeng, Lai, Huang, Xu, Zhang, Cheng, Liu, Liu, Li (bb0175) 2018; 359 Jena, Pradhan, Nayak, Dash, Sukla, Panda, Mishra (bb0295) 2014; 24 Some, Sen, Mandal, Aslan, Ustun, Yilmaz, Kati, Demirbas, Mandal, Ocsoy (bb0165) 2019; 6 Mourdikoudis, Pallares, Thanh (bb0095) 2018; 10 Parial, Patra, Dasgupta, Pal (bb0315) 2012; 47 Pessarakli (bb0375) 2016 He, Li, Zheng, Wang, Ma, Yang, Yao, Zhao, Zhang (bb0160) 2018; 42 Zahmakıran, Özkar (bb0010) 2011; 3 Jena, Pradhan, Dash, Sukla, Panda (bb0110) 2013; 3 Lee, Jun (bb0065) 2019; 20 Barwal, Ranjan, Kateriya, Yadav (bb0300) 2011; 9 Kumar, Abyaneh, Gosavi, Kulkarni, Pasricha, Ahmad, Khan (bb0220) 2007; 29 Gholami-Shabani, Shams-Ghahfarokhi, Gholami-Shabani, Akbarzadeh, Riazi, Ajdari, Amani, Razzaghi-Abyaneh (bb0215) 2015; 50 Raja, Suriya, Sekar, Rajasekaran (bb0370) 2012; 4 Khan, Shaik, Adil, Khan, Al-Warthan, Siddiqui, Tahir, Tremel (bb0205) 2018; 47 Spreadborough, Christian (bb0400) 1959; 36 Dhand, Soumya, Bharadwaj, Chakra, Bhatt, Sreedhar (bb0190) 2016; 58 Bao, Hao, Yang, Zhao (bb0230) 2010; 3 Rajeshkumar, Malarkodi, Gnanajobitha, Paulkumar, Vanaja, Kannan, Annadurai (bb0390) 2013; 3 Ferreira (10.1016/j.colcom.2021.100420_bb0285) 2017; 97 Sudha (10.1016/j.colcom.2021.100420_bb0305) 2013; 51 Patel (10.1016/j.colcom.2021.100420_bb0310) 2015; 5 Wodniok (10.1016/j.colcom.2021.100420_bb0355) 2011; 11 Kahn (10.1016/j.colcom.2021.100420_bb0045) 2005; 15 Rajeshkumar (10.1016/j.colcom.2021.100420_bb0390) 2013; 3 Aliofkhazraei (10.1016/j.colcom.2021.100420_bb0035) 2016 Niu (10.1016/j.colcom.2021.100420_bb0115) 2000; 75 Santos (10.1016/j.colcom.2021.100420_bb0345) 2018; 79 Konishi (10.1016/j.colcom.2021.100420_bb0120) 2006; 81 Qin (10.1016/j.colcom.2021.100420_bb0175) 2018; 359 Mariychuk (10.1016/j.colcom.2021.100420_bb0415) 2020; 10 Wei (10.1016/j.colcom.2021.100420_bb0090) 2015; 20 Chaudhuri (10.1016/j.colcom.2021.100420_bb0055) 2012; 112 Feldheim (10.1016/j.colcom.2021.100420_bb0025) 2002 Gahlawat (10.1016/j.colcom.2021.100420_bb0260) 2019; 9 Bao (10.1016/j.colcom.2021.100420_bb0230) 2010; 3 Kumar (10.1016/j.colcom.2021.100420_bb0360) 2013; 103 Keshari (10.1016/j.colcom.2021.100420_bb0270) 2020; 1 Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0245) 2018; 39 Kumar (10.1016/j.colcom.2021.100420_bb0220) 2007; 29 Annamalai (10.1016/j.colcom.2021.100420_bb0395) 2016; 6 Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0040) 2019; 28 Rasheed (10.1016/j.colcom.2021.100420_bb0085) 2018; 181 Horikoshi (10.1016/j.colcom.2021.100420_bb0020) 2013 Chakraborty (10.1016/j.colcom.2021.100420_bb0130) 2009; 21 Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0250) 2020; 276 Rauwel (10.1016/j.colcom.2021.100420_bb0380) 2015; 682749 Zahmakıran (10.1016/j.colcom.2021.100420_bb0010) 2011; 3 González-Ballesteros (10.1016/j.colcom.2021.100420_bb0140) 2019; 97 Castro (10.1016/j.colcom.2021.100420_bb0290) 2013; 7 Wilcoxon (10.1016/j.colcom.2021.100420_bb0015) 2006; 35 Devi (10.1016/j.colcom.2021.100420_bb0365) 2012; 1 Dhand (10.1016/j.colcom.2021.100420_bb0190) 2016; 58 Martínez-Prieto (10.1016/j.colcom.2021.100420_bb0385) 2015; 51 Kim (10.1016/j.colcom.2021.100420_bb0235) 2016; 5 Parial (10.1016/j.colcom.2021.100420_bb0315) 2012; 47 Chandhirasekar (10.1016/j.colcom.2021.100420_bb0410) 2021; 287 Tobin (10.1016/j.colcom.2021.100420_bb0210) 1994; 13 He (10.1016/j.colcom.2021.100420_bb0160) 2018; 42 Some (10.1016/j.colcom.2021.100420_bb0165) 2019; 6 Singh (10.1016/j.colcom.2021.100420_bb0185) 2016; 34 Amiens (10.1016/j.colcom.2021.100420_bb0005) 2016; 308 Naimi-Shamel (10.1016/j.colcom.2021.100420_bb0150) 2019; 29 Barwal (10.1016/j.colcom.2021.100420_bb0300) 2011; 9 Mourdikoudis (10.1016/j.colcom.2021.100420_bb0095) 2018; 10 Thakkar (10.1016/j.colcom.2021.100420_bb0180) 2010; 6 Zielonka (10.1016/j.colcom.2021.100420_bb0145) 2017; 8 Khan (10.1016/j.colcom.2021.100420_bb0195) 2016; 11 Schröfel (10.1016/j.colcom.2021.100420_bb0135) 2011; 13 Nasrollahzadeh (10.1016/j.colcom.2021.100420_bb0255) 2018; 763 Lee (10.1016/j.colcom.2021.100420_bb0065) 2019; 20 Baker (10.1016/j.colcom.2021.100420_bb0100) 2005; 5 Zuas (10.1016/j.colcom.2021.100420_bb0275) 2014; 123 Khan (10.1016/j.colcom.2021.100420_bb0070) 2016; 164 Jadoun (10.1016/j.colcom.2021.100420_bb0335) 2021; 19 Saxena (10.1016/j.colcom.2021.100420_bb0280) 2012; 67 Zhang (10.1016/j.colcom.2021.100420_bb0080) 2016; 17 Akilandaeaswari (10.1016/j.colcom.2021.100420_bb0240) 2020; 277 Sunkar (10.1016/j.colcom.2021.100420_bb0325) 2012; 2 De la Fuente (10.1016/j.colcom.2021.100420_bb0050) 2012 Meléndez-Villanueva (10.1016/j.colcom.2021.100420_bb0155) 2019; 11 Khan (10.1016/j.colcom.2021.100420_bb0205) 2018; 47 Jena (10.1016/j.colcom.2021.100420_bb0295) 2014; 24 Raja (10.1016/j.colcom.2021.100420_bb0370) 2012; 4 Bindhu (10.1016/j.colcom.2021.100420_bb0405) 2014; 128 Mukherjee (10.1016/j.colcom.2021.100420_bb0225) 2001; 40 Gurunathan (10.1016/j.colcom.2021.100420_bb0350) 2009; 74 Jeevanandam (10.1016/j.colcom.2021.100420_bb0060) 2018; 9 Ganachari (10.1016/j.colcom.2021.100420_bb0320) 2012; 2 AlNadhari (10.1016/j.colcom.2021.100420_bb0330) 2021; 194 Spreadborough (10.1016/j.colcom.2021.100420_bb0400) 1959; 36 Jena (10.1016/j.colcom.2021.100420_bb0110) 2013; 3 Chernousova (10.1016/j.colcom.2021.100420_bb0075) 2013; 52 Gholami-Shabani (10.1016/j.colcom.2021.100420_bb0215) 2015; 50 Pessarakli (10.1016/j.colcom.2021.100420_bb0375) 2016 Adil (10.1016/j.colcom.2021.100420_bb0200) 2015; 44 Dahoumane (10.1016/j.colcom.2021.100420_bb0265) 2017; 19 Gonçalves (10.1016/j.colcom.2021.100420_bb0340) 2019; 31 Khan (10.1016/j.colcom.2021.100420_bb0170) 2020; 39 Gudikandula (10.1016/j.colcom.2021.100420_bb0105) 2016; 11 Rao (10.1016/j.colcom.2021.100420_bb0030) 2004 Sharma (10.1016/j.colcom.2021.100420_bb0125) 2016; 28 |
References_xml | – volume: 81 start-page: 24 year: 2006 end-page: 29 ident: bb0120 article-title: Intracellular recovery of gold by microbial reduction of AuCl4 publication-title: Hydrometallurgy – volume: 97 start-page: 114 year: 2017 end-page: 121 ident: bb0285 article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria publication-title: Enzym. Microb. Technol. – volume: 682749 start-page: 1 year: 2015 end-page: 9 ident: bb0380 article-title: A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM publication-title: Adv. Mater. Sci. Eng. – volume: 40 start-page: 3585 year: 2001 end-page: 3588 ident: bb0225 article-title: Bioreduction of AuCl4 publication-title: Angew. Chem. Int. Ed – year: 2012 ident: bb0050 article-title: Nanobiotechnology: Inorganic Nanoparticles Vs Organic Nanoparticles – volume: 164 start-page: 344 year: 2016 end-page: 351 ident: bb0070 article-title: Antioxidant and catalytic applications of silver nanoparticles using publication-title: J. Photochem. Photobiol. B – year: 2013 ident: bb0020 article-title: Microwaves in Nanoparticle Synthesis: Fundamentals and Applications – volume: 11 start-page: 714 year: 2016 end-page: 721 ident: bb0105 article-title: Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties publication-title: J. Exp. Nanosci. – volume: 44 start-page: 9709 year: 2015 end-page: 9717 ident: bb0200 article-title: Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry publication-title: Dalton Trans. – volume: 287 start-page: 129265 year: 2021 ident: bb0410 article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of publication-title: Mater. Lett. – volume: 308 start-page: 409 year: 2016 end-page: 432 ident: bb0005 article-title: Controlled metal nanostructures: fertile ground for coordination chemists publication-title: Coord. Chem. Rev. – volume: 3 start-page: 3462 year: 2011 end-page: 3481 ident: bb0010 article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals publication-title: Nanoscale – year: 2002 ident: bb0025 article-title: Metal Nanoparticles: Preparation, Characterization and Applications – volume: 51 start-page: 393 year: 2013 end-page: 399 ident: bb0305 article-title: Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria publication-title: Indian J. Exp. Biol. – volume: 19 start-page: 552 year: 2017 end-page: 587 ident: bb0265 article-title: Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review publication-title: Green Chem. – volume: 50 start-page: 1076 year: 2015 end-page: 1085 ident: bb0215 article-title: Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from publication-title: Process Biochem. – volume: 11 start-page: 104 year: 2011 ident: bb0355 article-title: Origin of land plants: do conjugating green algae hold the key? publication-title: BMC Evol. Biol. – volume: 35 start-page: 1162 year: 2006 end-page: 1194 ident: bb0015 article-title: Synthesis, structure and properties of metal nanoclusters publication-title: Chem. Soc. Rev. – volume: 20 start-page: 595 year: 2015 end-page: 601 ident: bb0090 article-title: Silver nanoparticles: synthesis, properties and therapeutic applications publication-title: Drug Discov. Today – volume: 3 start-page: 1 year: 2013 end-page: 8 ident: bb0110 article-title: Biosynthesis and characterization of silver nanoparticles using microalga publication-title: Int. J. Nanomater. Biostruct. – volume: 13 start-page: 3207 year: 2011 end-page: 3216 ident: bb0135 article-title: Biosynthesis of gold nanoparticles using diatoms – silica-gold and EPS-gold bionanocomposite formation publication-title: J. Nanopart. Res. – volume: 4 start-page: 139 year: 2012 end-page: 143 ident: bb0370 article-title: Biomimetic of silver nanoparticles by publication-title: Int J Pharm Pharm Sci – volume: 3 start-page: 44 year: 2013 ident: bb0390 article-title: Seaweed-mediated synthesis of gold nanoparticles using publication-title: J. Nanostructure Chem. – volume: 97 start-page: 498 year: 2019 end-page: 509 ident: bb0140 article-title: Macroalgae to nanoparticles: Study of publication-title: Mater. Sci. Eng. C – volume: 28 start-page: 1 year: 2019 end-page: 27 ident: bb0040 article-title: Chapter 1 - an introduction to nanotechnology publication-title: Interface Sci. Technol. – volume: 24 start-page: 522 year: 2014 end-page: 533 ident: bb0295 article-title: Microalga publication-title: J. Microbiol. Biotechnol. – volume: 11 start-page: 873 year: 2016 end-page: 883 ident: bb0195 article-title: Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer publication-title: Int. J. Nanomedicine – volume: 42 start-page: 2882 year: 2018 end-page: 2888 ident: bb0160 article-title: A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities publication-title: New J. Chem. – volume: 36 start-page: 116 year: 1959 end-page: 118 ident: bb0400 article-title: High-temperature X-ray diffractometer publication-title: J. Sci. Instrum. – volume: 13 start-page: 126 year: 1994 end-page: 130 ident: bb0210 article-title: Metal accumulation by fungi: applications in environmental biotechnology publication-title: J. Ind. Microbiol. – volume: 79 start-page: 60 year: 2018 end-page: 63 ident: bb0345 article-title: New AChE inhibitors from microbial transformation of trachyloban-19-oic acid by publication-title: Bioorg. Chem. – volume: 51 start-page: 4647 year: 2015 end-page: 4650 ident: bb0385 article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles publication-title: Chem. Commun. – volume: 10 start-page: 12871 year: 2018 end-page: 12934 ident: bb0095 article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties publication-title: Nanoscale – volume: 11 start-page: 1111 year: 2019 ident: bb0155 article-title: Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract publication-title: Viruses – volume: 359 start-page: 1 year: 2018 end-page: 31 ident: bb0175 article-title: Gold rush in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing publication-title: Coord. Chem. Rev. – volume: 123 start-page: 156 year: 2014 end-page: 159 ident: bb0275 article-title: Bio-synthesis of silver nanoparticles using water extract of publication-title: Mater. Lett. – volume: 112 start-page: 2373 year: 2012 end-page: 2433 ident: bb0055 article-title: Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications publication-title: Chem. Rev. – volume: 15 start-page: 458 year: 2005 end-page: 468 ident: bb0045 article-title: Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method publication-title: Adv. Funct. Mater. – volume: 3 start-page: 481 year: 2010 end-page: 489 ident: bb0230 article-title: Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells publication-title: Nano Res. – volume: 1 start-page: 37 year: 2020 end-page: 44 ident: bb0270 article-title: Antioxidant and antibacterial activity of silver nanoparticles synthesized by publication-title: J. Ayurveda Integr. Med – volume: 763 start-page: 1024 year: 2018 end-page: 1034 ident: bb0255 article-title: Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity publication-title: J. Alloys Compd. – volume: 103 start-page: 658 year: 2013 end-page: 661 ident: bb0360 article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from publication-title: Colloids Surf. B – volume: 6 start-page: 259 year: 2016 end-page: 265 ident: bb0395 article-title: Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency publication-title: Appl. Nanosci. – volume: 181 start-page: 44 year: 2018 end-page: 52 ident: bb0085 article-title: Catalytic potential of bio-synthesized silver nanoparticles using publication-title: J. Photochem. Photobiol. B – volume: 21 start-page: 145 year: 2009 end-page: 152 ident: bb0130 article-title: Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation – a novel phenomenon publication-title: J. Appl. Phycol. – volume: 128 start-page: 37 year: 2014 end-page: 45 ident: bb0405 article-title: Silver and gold nanoparticles for sensor and antibacterial applications publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 9 start-page: 1050 year: 2018 end-page: 1074 ident: bb0060 article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations publication-title: Beilstein J. Nanotechnol. – volume: 19 start-page: 355 year: 2021 end-page: 374 ident: bb0335 article-title: Green synthesis of nanoparticles using plant extracts: a review publication-title: Environ. Chem. Lett. – volume: 7 start-page: 109 year: 2013 end-page: 116 ident: bb0290 article-title: Biological synthesis of metallic nanoparticles using algae publication-title: IET Nanobiotechnol. – volume: 47 start-page: 22 year: 2012 end-page: 29 ident: bb0315 article-title: Screening of different algae for green synthesis of gold nanoparticles publication-title: Eur. J. Phycol. – volume: 1 start-page: 242 year: 2012 ident: bb0365 article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed publication-title: Sci. Rep. – volume: 10 start-page: 4545 year: 2020 end-page: 4558 ident: bb0415 article-title: Green synthesis of stable nanocolloids of monodisperse silver and gold nanoparticles using natural polyphenols from fruits of publication-title: Appl. Nanosci. – year: 2004 ident: bb0030 article-title: The Chemistry of Nanomaterials: Synthesis, Properties and Applications – volume: 5 start-page: Q226 year: 2016 end-page: Q230 ident: bb0235 article-title: Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus nanotemplate for organic memory device publication-title: ECS J. Solid State Sci. Technol. – volume: 9 start-page: 12944 year: 2019 end-page: 12967 ident: bb0260 article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes publication-title: RSC Adv. – volume: 276 start-page: 102103 year: 2020 ident: bb0250 article-title: Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities publication-title: Adv. Colloid Interf. Sci. – volume: 58 start-page: 36 year: 2016 end-page: 43 ident: bb0190 article-title: Green synthesis of silver nanoparticles using publication-title: Mater. Sci. Eng. C – year: 2016 ident: bb0035 article-title: Handbook of Nanoparticles – volume: 194 start-page: 110672 year: 2021 ident: bb0330 article-title: A review on biogenic synthesis of metal nanoparticles using marine algae and its applications publication-title: Environ. Res. – year: 2016 ident: bb0375 article-title: Handbook of Photosynthesis – volume: 6 start-page: 257 year: 2010 end-page: 262 ident: bb0180 article-title: Biological synthesis of metallic nanoparticles publication-title: Nanomed. Nanotechnol. Biomed. – volume: 5 start-page: 112 year: 2015 end-page: 119 ident: bb0310 article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity publication-title: Biotechnol. Rep. – volume: 2 start-page: 953 year: 2012 end-page: 959 ident: bb0325 article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium publication-title: Asian Pac. J. Trop. Biomed. – volume: 29 start-page: 7 year: 2019 end-page: 13 ident: bb0150 article-title: Green synthesis of gold nanoparticles using publication-title: J. Mycol. Med. – volume: 39 start-page: 100322 year: 2020 ident: bb0170 article-title: Green synthesis of controlled size gold and silver nanoparticles using antioxidant as capping and reducing agent publication-title: Colloid Interfac. Sci. Commun. – volume: 5 start-page: 244 year: 2005 end-page: 249 ident: bb0100 article-title: Synthesis and antibacterial properties of silver nanoparticles publication-title: J. Nanosci. Nanotechnol. – volume: 67 start-page: 91 year: 2012 end-page: 94 ident: bb0280 article-title: Green synthesis of silver nanoparticles using aqueous solution of publication-title: Mater. Lett. – volume: 277 start-page: 128344 year: 2020 ident: bb0240 article-title: Green method for synthesis and characterization of gold nanoparticles using publication-title: Mater. Lett. – volume: 74 start-page: 328 year: 2009 end-page: 335 ident: bb0350 article-title: Biosynthesis, purification and characterization of silver nanoparticles using publication-title: Colloids Surf. B – volume: 52 start-page: 1636 year: 2013 end-page: 1653 ident: bb0075 article-title: Silver as antibacterial agent: ion, nanoparticle and metal publication-title: Angew. Chem. Int. Ed. – volume: 6 year: 2019 ident: bb0165 article-title: Biosynthesis of silver nanoparticles and their versatile antimicrobial properties publication-title: Mater. Res. Express – volume: 34 start-page: 588 year: 2016 end-page: 599 ident: bb0185 article-title: Biological synthesis of nanoparticles from plants and microorganisms publication-title: Trends Biotechnol. – volume: 28 start-page: 1759 year: 2016 end-page: 1774 ident: bb0125 article-title: Algae as crucial organisms in advancing nanotechnology: a systematic review publication-title: J. Appl. Phycol. – volume: 31 start-page: 211 year: 2019 end-page: 221 ident: bb0340 article-title: Detection of glycidic receptors in microalgae using glycodendrons as probes: a new tool for studies on cell surface interactions publication-title: J. Appl. Phycol. – volume: 75 start-page: 436 year: 2000 end-page: 442 ident: bb0115 article-title: Gold-cyanide biosorption with L-cysteine publication-title: J. Chem. Technol. Biotechnol. – volume: 8 year: 2017 ident: bb0145 article-title: Fungal synthesis of size-defined nanoparticles publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. – volume: 47 start-page: 11988 year: 2018 end-page: 12010 ident: bb0205 article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis publication-title: Dalton Trans. – volume: 9 start-page: 56 year: 2011 ident: bb0300 article-title: Cellular oxido-reductive proteins of publication-title: J. Nanobiotechnol. – volume: 2 start-page: 316 year: 2012 end-page: 321 ident: bb0320 article-title: Extracellular biosynthesis of silver nanoparticles using fungi publication-title: Bionanoscience – volume: 39 start-page: 109 year: 2018 end-page: 117 ident: bb0245 article-title: Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using publication-title: Chin. J. Catal. – volume: 29 start-page: 439 year: 2007 end-page: 445 ident: bb0220 article-title: Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO publication-title: Biotechnol. Lett. – volume: 20 start-page: 865 year: 2019 ident: bb0065 article-title: Silver nanoparticles: synthesis and application for nanomedicine publication-title: Int. J. Mol. Sci. – volume: 17 start-page: 1534 year: 2016 ident: bb0080 article-title: Silver nanoparticles: synthesis, characterization, properties, applications and therapeutic approaches publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 1111 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0155 article-title: Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract publication-title: Viruses doi: 10.3390/v11121111 – volume: 28 start-page: 1 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0040 article-title: Chapter 1 - an introduction to nanotechnology publication-title: Interface Sci. Technol. doi: 10.1016/B978-0-12-813586-0.00001-8 – volume: 3 start-page: 1 year: 2013 ident: 10.1016/j.colcom.2021.100420_bb0110 article-title: Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity publication-title: Int. J. Nanomater. Biostruct. – volume: 67 start-page: 91 year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0280 article-title: Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.09.038 – volume: 9 start-page: 56 year: 2011 ident: 10.1016/j.colcom.2021.100420_bb0300 article-title: Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-9-56 – volume: 28 start-page: 1759 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0125 article-title: Algae as crucial organisms in advancing nanotechnology: a systematic review publication-title: J. Appl. Phycol. doi: 10.1007/s10811-015-0715-1 – volume: 3 start-page: 481 year: 2010 ident: 10.1016/j.colcom.2021.100420_bb0230 article-title: Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells publication-title: Nano Res. doi: 10.1007/s12274-010-0008-6 – volume: 19 start-page: 355 year: 2021 ident: 10.1016/j.colcom.2021.100420_bb0335 article-title: Green synthesis of nanoparticles using plant extracts: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01074-x – volume: 47 start-page: 22 year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0315 article-title: Screening of different algae for green synthesis of gold nanoparticles publication-title: Eur. J. Phycol. doi: 10.1080/09670262.2011.653406 – volume: 277 start-page: 128344 year: 2020 ident: 10.1016/j.colcom.2021.100420_bb0240 article-title: Green method for synthesis and characterization of gold nanoparticles using Lawsonia inermis seed extract and their photocatalytic activity publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.128344 – volume: 1 start-page: 37 year: 2020 ident: 10.1016/j.colcom.2021.100420_bb0270 article-title: Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum publication-title: J. Ayurveda Integr. Med doi: 10.1016/j.jaim.2017.11.003 – volume: 17 start-page: 1534 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0080 article-title: Silver nanoparticles: synthesis, characterization, properties, applications and therapeutic approaches publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17091534 – volume: 6 start-page: 257 year: 2010 ident: 10.1016/j.colcom.2021.100420_bb0180 article-title: Biological synthesis of metallic nanoparticles publication-title: Nanomed. Nanotechnol. Biomed. doi: 10.1016/j.nano.2009.07.002 – volume: 4 start-page: 139 year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0370 article-title: Biomimetic of silver nanoparticles by Ulva lactuca seaweed and evaluation of its antibacterial activity publication-title: Int J Pharm Pharm Sci – year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0375 – volume: 36 start-page: 116 year: 1959 ident: 10.1016/j.colcom.2021.100420_bb0400 article-title: High-temperature X-ray diffractometer publication-title: J. Sci. Instrum. doi: 10.1088/0950-7671/36/3/302 – volume: 112 start-page: 2373 year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0055 article-title: Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications publication-title: Chem. Rev. doi: 10.1021/cr100449n – volume: 763 start-page: 1024 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0255 article-title: Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.012 – volume: 5 start-page: 244 year: 2005 ident: 10.1016/j.colcom.2021.100420_bb0100 article-title: Synthesis and antibacterial properties of silver nanoparticles publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2005.034 – volume: 29 start-page: 439 year: 2007 ident: 10.1016/j.colcom.2021.100420_bb0220 article-title: Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3 publication-title: Biotechnol. Lett. doi: 10.1007/s10529-006-9256-7 – volume: 5 start-page: Q226 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0235 article-title: Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus nanotemplate for organic memory device publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0181609jss – volume: 44 start-page: 9709 year: 2015 ident: 10.1016/j.colcom.2021.100420_bb0200 article-title: Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry publication-title: Dalton Trans. doi: 10.1039/C4DT03222E – volume: 13 start-page: 3207 year: 2011 ident: 10.1016/j.colcom.2021.100420_bb0135 article-title: Biosynthesis of gold nanoparticles using diatoms – silica-gold and EPS-gold bionanocomposite formation publication-title: J. Nanopart. Res. doi: 10.1007/s11051-011-0221-6 – volume: 58 start-page: 36 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0190 article-title: Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.08.018 – volume: 40 start-page: 3585 year: 2001 ident: 10.1016/j.colcom.2021.100420_bb0225 article-title: Bioreduction of AuCl4− Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed publication-title: Angew. Chem. Int. Ed doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K – volume: 308 start-page: 409 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0005 article-title: Controlled metal nanostructures: fertile ground for coordination chemists publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.07.013 – volume: 13 start-page: 126 year: 1994 ident: 10.1016/j.colcom.2021.100420_bb0210 article-title: Metal accumulation by fungi: applications in environmental biotechnology publication-title: J. Ind. Microbiol. doi: 10.1007/BF01584110 – volume: 24 start-page: 522 year: 2014 ident: 10.1016/j.colcom.2021.100420_bb0295 article-title: Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1306.06014 – volume: 81 start-page: 24 year: 2006 ident: 10.1016/j.colcom.2021.100420_bb0120 article-title: Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2005.09.006 – volume: 11 start-page: 104 year: 2011 ident: 10.1016/j.colcom.2021.100420_bb0355 article-title: Origin of land plants: do conjugating green algae hold the key? publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-11-104 – volume: 20 start-page: 595 year: 2015 ident: 10.1016/j.colcom.2021.100420_bb0090 article-title: Silver nanoparticles: synthesis, properties and therapeutic applications publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2014.11.014 – volume: 123 start-page: 156 year: 2014 ident: 10.1016/j.colcom.2021.100420_bb0275 article-title: Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant) publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.03.026 – volume: 11 start-page: 714 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0105 article-title: Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2016.1139196 – year: 2004 ident: 10.1016/j.colcom.2021.100420_bb0030 – volume: 75 start-page: 436 year: 2000 ident: 10.1016/j.colcom.2021.100420_bb0115 article-title: Gold-cyanide biosorption with L-cysteine publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/1097-4660(200006)75:6<436::AID-JCTB243>3.0.CO;2-O – volume: 9 start-page: 12944 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0260 article-title: A review on the biosynthesis of metal and metal salt nanoparticles by microbes publication-title: RSC Adv. doi: 10.1039/C8RA10483B – volume: 35 start-page: 1162 year: 2006 ident: 10.1016/j.colcom.2021.100420_bb0015 article-title: Synthesis, structure and properties of metal nanoclusters publication-title: Chem. Soc. Rev. doi: 10.1039/b517312b – volume: 97 start-page: 498 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0140 article-title: Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.12.066 – year: 2013 ident: 10.1016/j.colcom.2021.100420_bb0020 – volume: 194 start-page: 110672 year: 2021 ident: 10.1016/j.colcom.2021.100420_bb0330 article-title: A review on biogenic synthesis of metal nanoparticles using marine algae and its applications publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110672 – volume: 10 start-page: 12871 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0095 article-title: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties publication-title: Nanoscale doi: 10.1039/C8NR02278J – volume: 8 year: 2017 ident: 10.1016/j.colcom.2021.100420_bb0145 article-title: Fungal synthesis of size-defined nanoparticles publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. doi: 10.1088/2043-6254/aa84d4 – volume: 2 start-page: 953 year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0325 article-title: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus publication-title: Asian Pac. J. Trop. Biomed. doi: 10.1016/S2221-1691(13)60006-4 – volume: 34 start-page: 588 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0185 article-title: Biological synthesis of nanoparticles from plants and microorganisms publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.02.006 – volume: 19 start-page: 552 year: 2017 ident: 10.1016/j.colcom.2021.100420_bb0265 article-title: Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review publication-title: Green Chem. doi: 10.1039/C6GC02346K – volume: 39 start-page: 109 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0245 article-title: Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella asiatica L. leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62915-2 – volume: 39 start-page: 100322 year: 2020 ident: 10.1016/j.colcom.2021.100420_bb0170 article-title: Green synthesis of controlled size gold and silver nanoparticles using antioxidant as capping and reducing agent publication-title: Colloid Interfac. Sci. Commun. doi: 10.1016/j.colcom.2020.100322 – volume: 2 start-page: 316 year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0320 article-title: Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies publication-title: Bionanoscience doi: 10.1007/s12668-012-0046-5 – volume: 164 start-page: 344 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0070 article-title: Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2016.09.042 – volume: 52 start-page: 1636 year: 2013 ident: 10.1016/j.colcom.2021.100420_bb0075 article-title: Silver as antibacterial agent: ion, nanoparticle and metal publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205923 – volume: 7 start-page: 109 year: 2013 ident: 10.1016/j.colcom.2021.100420_bb0290 article-title: Biological synthesis of metallic nanoparticles using algae publication-title: IET Nanobiotechnol. doi: 10.1049/iet-nbt.2012.0041 – volume: 287 start-page: 129265 year: 2021 ident: 10.1016/j.colcom.2021.100420_bb0410 article-title: Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.129265 – volume: 3 start-page: 44 year: 2013 ident: 10.1016/j.colcom.2021.100420_bb0390 article-title: Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization publication-title: J. Nanostructure Chem. doi: 10.1186/2193-8865-3-44 – volume: 31 start-page: 211 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0340 article-title: Detection of glycidic receptors in microalgae using glycodendrons as probes: a new tool for studies on cell surface interactions publication-title: J. Appl. Phycol. doi: 10.1007/s10811-018-1555-6 – volume: 682749 start-page: 1 year: 2015 ident: 10.1016/j.colcom.2021.100420_bb0380 article-title: A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM publication-title: Adv. Mater. Sci. Eng. – volume: 11 start-page: 873 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0195 article-title: Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer publication-title: Int. J. Nanomedicine – volume: 103 start-page: 658 year: 2013 ident: 10.1016/j.colcom.2021.100420_bb0360 article-title: Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2012.11.022 – volume: 50 start-page: 1076 year: 2015 ident: 10.1016/j.colcom.2021.100420_bb0215 article-title: Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach publication-title: Process Biochem. doi: 10.1016/j.procbio.2015.04.004 – year: 2002 ident: 10.1016/j.colcom.2021.100420_bb0025 – volume: 359 start-page: 1 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0175 article-title: Gold rush in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.01.006 – year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0035 – volume: 5 start-page: 112 year: 2015 ident: 10.1016/j.colcom.2021.100420_bb0310 article-title: Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2014.12.001 – volume: 276 start-page: 102103 year: 2020 ident: 10.1016/j.colcom.2021.100420_bb0250 article-title: Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2020.102103 – volume: 9 start-page: 1050 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0060 article-title: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.98 – volume: 128 start-page: 37 year: 2014 ident: 10.1016/j.colcom.2021.100420_bb0405 article-title: Silver and gold nanoparticles for sensor and antibacterial applications publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2014.02.119 – volume: 10 start-page: 4545 year: 2020 ident: 10.1016/j.colcom.2021.100420_bb0415 article-title: Green synthesis of stable nanocolloids of monodisperse silver and gold nanoparticles using natural polyphenols from fruits of Sambucus nigra L publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01324-y – volume: 47 start-page: 11988 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0205 article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis publication-title: Dalton Trans. doi: 10.1039/C8DT01152D – volume: 1 start-page: 242 year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0365 article-title: Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca invitro publication-title: Sci. Rep. – volume: 3 start-page: 3462 year: 2011 ident: 10.1016/j.colcom.2021.100420_bb0010 article-title: Metal nanoparticles in liquid phase catalysis; from recent advances to future goals publication-title: Nanoscale doi: 10.1039/c1nr10201j – volume: 20 start-page: 865 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0065 article-title: Silver nanoparticles: synthesis and application for nanomedicine publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20040865 – volume: 6 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0165 article-title: Biosynthesis of silver nanoparticles and their versatile antimicrobial properties publication-title: Mater. Res. Express – volume: 6 start-page: 259 year: 2016 ident: 10.1016/j.colcom.2021.100420_bb0395 article-title: Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency publication-title: Appl. Nanosci. doi: 10.1007/s13204-015-0426-6 – volume: 181 start-page: 44 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0085 article-title: Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2018.02.024 – year: 2012 ident: 10.1016/j.colcom.2021.100420_bb0050 – volume: 21 start-page: 145 year: 2009 ident: 10.1016/j.colcom.2021.100420_bb0130 article-title: Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation – a novel phenomenon publication-title: J. Appl. Phycol. doi: 10.1007/s10811-008-9343-3 – volume: 42 start-page: 2882 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0160 article-title: A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities publication-title: New J. Chem. doi: 10.1039/C7NJ04224H – volume: 74 start-page: 328 year: 2009 ident: 10.1016/j.colcom.2021.100420_bb0350 article-title: Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2009.07.048 – volume: 29 start-page: 7 year: 2019 ident: 10.1016/j.colcom.2021.100420_bb0150 article-title: Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant publication-title: J. Mycol. Med. doi: 10.1016/j.mycmed.2019.01.005 – volume: 97 start-page: 114 year: 2017 ident: 10.1016/j.colcom.2021.100420_bb0285 article-title: Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2016.10.018 – volume: 15 start-page: 458 year: 2005 ident: 10.1016/j.colcom.2021.100420_bb0045 article-title: Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200400113 – volume: 51 start-page: 393 year: 2013 ident: 10.1016/j.colcom.2021.100420_bb0305 article-title: Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria publication-title: Indian J. Exp. Biol. – volume: 79 start-page: 60 year: 2018 ident: 10.1016/j.colcom.2021.100420_bb0345 article-title: New AChE inhibitors from microbial transformation of trachyloban-19-oic acid by Syncephalastrum racemosum publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2018.04.011 – volume: 51 start-page: 4647 year: 2015 ident: 10.1016/j.colcom.2021.100420_bb0385 article-title: A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles publication-title: Chem. Commun. doi: 10.1039/C5CC00211G |
SSID | ssj0002140238 |
Score | 2.3425748 |
Snippet | Autotrophic microorganisms can be useful for the green synthesis of nanoparticles (NPs), but there is a lack of knowledge to affirm if the high variety of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100420 |
SubjectTerms | Environmental impacts Green synthesis Microorganisms Nanoparticle species-specific biosynthesis Silver nanoparticles |
Title | High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis |
URI | https://dx.doi.org/10.1016/j.colcom.2021.100420 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADB58XLyIouKbOXgddl5tt95WUVYXPfjAvZV5VSraXWw9ePG3m2xbHyAKnoa2SSlpmC8ZviSEHHguPTexgLRExUw7rpjlrs8ADYVyUWwjiQXOF5fx8Fafj6PxHDnuamGQVtnu_c2ePtut2zu91pq9aVH0riWgFVcAcKLpKjJPFqVKY3DtxcHZaHj5cdQiIYmQs5nWqMJQpyuimzG9wOLIHJEgiKQBjbO_fwKpL8BzukKW24iRDpqPWiVzoVwjb8jPoL4jVdBJTp-QWoeVGYGaihpaTyaPFEJSCiEerV5LWKqiQsluKEpNqwKJ0bQ0JeTOLUXukA4o1l9CCs1ma144eo_0nM-3rJPb05Ob4yFrRykwBzlBzfK8r6PEuCBdagG0eO6FskbpxEthRa6VE7GxfSGM9nkaRIhSz4VTkTMcHqkNslBOyrBJaHB5mgQDYYO2WojYJg5nBfuIe8O1T7aI6myXubbPOI67eMw6QtlD1lg8Q4tnjcW3CPvQmjZ9Nv6QT7rfkn3zlwyg4FfN7X9r7pAlvGrojrtkoX5-CXsQktR2v3U5XEdXd6N9Mn82PnoHre_i-g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnoRRcX1mYPXsEmTtrveVJRVd_fiCnsreVUqa1dsPXjxtzvThw8QBU-BZqaUScg3U77JR8ix44HjOhJQlsiIKcslM9z2GKChkDaMTBhgg_NoHA3u1PU0nC6Q87YXBmmVzdlfn-nVad086TbR7D5lWfc2ALTiEgBO1LeKLJJlyAZi1G-4mp59_GgJoIQIKkVrdGDo0bbQVTwviDfyRgIwRMqAQuXvnyDqC-xcrpO1Jl-kp_UnbZAFn2-SN2RnUNdSKug8pY9IrMO-DE91QTUt5_MZhYSUQoJHi9cchiIr0LKVRClpkSEtmuY6h8q5Icid0FOK3ZdQQLNqTDNL75Gc8_mWLXJ3eTE5H7BGSIFZqAhKlqY9Fcba-sD2DUAWT52QRksVu0AYkSppRaRNTwitXNr3wod9x4WVodUcpuQ2Wcrnud8h1Nu0H3sNSYMySojIxBaVgl3InebKxR0i29gltrllHMUuZklLJ3tI6ognGPGkjniHsA-vp_qWjT_s43ZZkm-7JQEg-NVz99-eR2RlMBkNk-HV-GaPrOJMTXzcJ0vl84s_gOSkNIfV5nsHgvLiIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+diversity+of+microalgae+as+a+tool+for+the+synthesis+of+different+silver+nanoparticles%3A+A+species-specific+green+synthesis&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Moraes%2C+Leonardo+C.&rft.au=Figueiredo%2C+Rute+C.&rft.au=Ribeiro-Andrade%2C+Rodrigo&rft.au=Pontes-Silva%2C+Augusto+V.&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=42&rft_id=info:doi/10.1016%2Fj.colcom.2021.100420&rft.externalDocID=S2215038221000601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon |