Critical microstructural modifications of Cu/Zn/Al2O3 catalyst during CO2 hydrogenation to methanol
This contribution reports the impact of the reaction pressure (1, 10, 20 and 30 bar) on the deactivation of the commercial catalyst Cu/ZnO/Al2O3 during the CO2 hydrogenation to CH3OH. The best performance was obtained at 30 bar with ≈ 30 % of initial CO2 conversion (XCO2) and CH3OH space-time-yield...
Saved in:
Published in | Catalysis today Vol. 442; p. 114957 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0920-5861 |
DOI | 10.1016/j.cattod.2024.114957 |
Cover
Loading…
Abstract | This contribution reports the impact of the reaction pressure (1, 10, 20 and 30 bar) on the deactivation of the commercial catalyst Cu/ZnO/Al2O3 during the CO2 hydrogenation to CH3OH. The best performance was obtained at 30 bar with ≈ 30 % of initial CO2 conversion (XCO2) and CH3OH space-time-yield (STYMEOH) of 255 mgMeOH/gcat.h. Although the initial conversion decreased drastically the activity was kept along all the reaction time, ≈ 5 %. The analysis of fresh and post-reaction samples using X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Electron Microscopy (SEM-FEG, STEM, HRTEM), and Raman Spectroscopy demonstrated profound microstructural changes, characterized by phase sintering, formation of Cu-aluminate, segregation of phases, an imbalance among Cu-species, as well as the presence of coke. As the catalyst Cu/ZnO/Al2O3 has a particular microstructure, these modifications provoked the loss of the geometric configuration of the active sites, which might also originate a disturbance in the electronic interactions, resulting in activity loss. HRTEM and STEM image (dark field) of the passivated sample showed the presence of crystalline nanostructures (d < 4 nm) attributed to Cu0, surrounded by amorphous phases. STEM images of spent samples also reveals the development of hierarchical and elongated nanostructures spread on all the spent catalysts. This result foresees the co-existence of small nanoparticles (< 5 nm) with large ones in all the catalyst surface, corroborating XRD results. It is noteworthy that the hydrothermal environmental developed inside the reactor originated from the high pressure and the continuous H2O production, both which may favor the phase sintering and aluminate formation.
[Display omitted]
•Deep microstructural modifications of catalysts components.•Development of hierarchical nanostructures of Cu and Zn under reaction conditions.•Formation of inactive Cu-aluminates.•Segregation of phases ZnO and Al2O3.•All the mentioned modifications led to a drop on the catalyst performance but still keeping the activity under TOS. |
---|---|
AbstractList | This contribution reports the impact of the reaction pressure (1, 10, 20 and 30 bar) on the deactivation of the commercial catalyst Cu/ZnO/Al2O3 during the CO2 hydrogenation to CH3OH. The best performance was obtained at 30 bar with ≈ 30 % of initial CO2 conversion (XCO2) and CH3OH space-time-yield (STYMEOH) of 255 mgMeOH/gcat.h. Although the initial conversion decreased drastically the activity was kept along all the reaction time, ≈ 5 %. The analysis of fresh and post-reaction samples using X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Electron Microscopy (SEM-FEG, STEM, HRTEM), and Raman Spectroscopy demonstrated profound microstructural changes, characterized by phase sintering, formation of Cu-aluminate, segregation of phases, an imbalance among Cu-species, as well as the presence of coke. As the catalyst Cu/ZnO/Al2O3 has a particular microstructure, these modifications provoked the loss of the geometric configuration of the active sites, which might also originate a disturbance in the electronic interactions, resulting in activity loss. HRTEM and STEM image (dark field) of the passivated sample showed the presence of crystalline nanostructures (d < 4 nm) attributed to Cu0, surrounded by amorphous phases. STEM images of spent samples also reveals the development of hierarchical and elongated nanostructures spread on all the spent catalysts. This result foresees the co-existence of small nanoparticles (< 5 nm) with large ones in all the catalyst surface, corroborating XRD results. It is noteworthy that the hydrothermal environmental developed inside the reactor originated from the high pressure and the continuous H2O production, both which may favor the phase sintering and aluminate formation.
[Display omitted]
•Deep microstructural modifications of catalysts components.•Development of hierarchical nanostructures of Cu and Zn under reaction conditions.•Formation of inactive Cu-aluminates.•Segregation of phases ZnO and Al2O3.•All the mentioned modifications led to a drop on the catalyst performance but still keeping the activity under TOS. |
ArticleNumber | 114957 |
Author | dos Santos, João B.O. Silva, Adriana M. Kuznetsov, Oleksii Neto, Olavo T. Franchini, Carlos A. Archanjo, Bráulio S. Corat, Evaldo J. Barros, João L.M. |
Author_xml | – sequence: 1 givenname: João L.M. surname: Barros fullname: Barros, João L.M. organization: Universidade Federal de São Carlos (UFSCar), Brazil – sequence: 2 givenname: Olavo T. surname: Neto fullname: Neto, Olavo T. organization: Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil – sequence: 3 givenname: Bráulio S. surname: Archanjo fullname: Archanjo, Bráulio S. organization: Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil – sequence: 4 givenname: Oleksii surname: Kuznetsov fullname: Kuznetsov, Oleksii organization: Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil – sequence: 5 givenname: João B.O. surname: dos Santos fullname: dos Santos, João B.O. organization: Universidade Federal de São Carlos (UFSCar), Brazil – sequence: 6 givenname: Carlos A. surname: Franchini fullname: Franchini, Carlos A. organization: Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil – sequence: 7 givenname: Evaldo J. surname: Corat fullname: Corat, Evaldo J. organization: Instituto Nacional de Pesquisas Espaciais (INPE), Brazil – sequence: 8 givenname: Adriana M. surname: Silva fullname: Silva, Adriana M. email: amdasilva@inmetro.gov.br organization: Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil |
BookMark | eNqFkLtqwzAUhjWk0CTtG3TQC9iRLPnWoRBMbxDw0i5dhKxLouBIRZILefvacacO7XQ45_D98H8rsLDOKgDuMEoxwsXmmAoeo5NphjKaYkzrvFyAJaozlORVga_BKoQjQqiqaLYEovEmGsF7eDLCuxD9IOLgp91Jo8dPNM4G6DRshs2H3Wz7rCVwPPP-HCKUgzd2D5s2g4ez9G6v7IWA0cGTigduXX8DrjTvg7r9mWvw_vT41rwku_b5tdnuEkFQERMtBeGFRCXWCktKcVnlsqy4wrrmvKpLiWtMCalpKQreFagiHRG6y3PdoazsyBrQOXcqErzS7NObE_dnhhGb5LAjm-WwSQ6b5YzY_S9MmHgpET03_X_wwwyrsdiXUZ4FYZQVShqvRGTSmb8DvgHQgohW |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_10_006 crossref_primary_10_1021_acsanm_4c07243 |
Cites_doi | 10.1016/j.fuel.2020.120111 10.1021/acs.iecr.9b01898 10.1002/anie.201411581 10.1002/anie.200702600 10.1016/j.apcata.2019.04.021 10.1039/C7RA13546G 10.1002/anie.201301419 10.1038/nature13179 10.1039/C5EE02657A 10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N 10.1021/acs.iecr.9b01546 10.1186/s11671-018-2444-2 10.1016/j.apcata.2007.11.036 10.3390/catal12121555 10.1016/j.apcatb.2015.05.004 10.1016/S0926-860X(02)00147-3 10.1016/S0926-860X(01)00977-2 10.1016/j.apcata.2015.06.014 10.1016/0079-6786(75)90013-8 10.1016/S0926-860X(01)00650-0 10.1126/science.1219831 10.1039/c3cy00573a 10.1039/D2NJ05903G 10.1021/acs.iecr.6b04337 10.1103/PhysRevB.61.14095 10.1016/j.catcom.2010.02.005 10.1016/0920-5861(95)00306-1 10.1002/ejic.201201382 10.1039/D3EY00026E 10.1021/acs.chemrev.9b00723 10.1016/j.cattod.2011.03.078 10.1038/s41598-020-65296-3 10.1016/j.apsusc.2015.03.125 10.1002/anie.201603368 10.1023/A:1023555415577 10.1038/s43246-023-00400-4 10.1016/j.jcou.2019.11.013 10.1021/acsomega.1c03456 10.1021/ja208324n 10.1002/jrs.2546 10.1007/s11244-020-01405-w |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cattod.2024.114957 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_cattod_2024_114957 S0920586124004516 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K ZMT ~02 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EFKBS EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCE VH1 WUQ XPP |
ID | FETCH-LOGICAL-c306t-fdc3a6d071fe1d441785d78ae1f9aa897d191433947c6ab6083b3cfb55fb027b3 |
IEDL.DBID | .~1 |
ISSN | 0920-5861 |
IngestDate | Tue Aug 05 12:04:51 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Sat Feb 08 15:52:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reaction pressure Deactivation CH3OH CO2 hydrogenation Cu/ZnO/Al2O3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-fdc3a6d071fe1d441785d78ae1f9aa897d191433947c6ab6083b3cfb55fb027b3 |
ParticipantIDs | crossref_primary_10_1016_j_cattod_2024_114957 crossref_citationtrail_10_1016_j_cattod_2024_114957 elsevier_sciencedirect_doi_10_1016_j_cattod_2024_114957 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Catalysis today |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liang, Ma, Su, Yang, Duan, Zhou, Deng, Li, Huang (bib12) 2019; 58 Wu, Saito, Takeuchi, Watanabe (bib37) 2001; 218 Zhang, Wu, Liu, Hua, Shao, Wei, Huang, Wang, Sun (bib5) 2021; 64 Zhang, Hartlaub, Petrovic, Yilmaz (bib31) 2022; 7 Nishida, Atake, Li, Shishido, Oumi, Sano, Takehira (bib44) 2008; 337 Li, Zhang, Zhang, Sun, Zheng, Zhang (bib28) 2018; 13 Peinado, Liuzzi, Ladera-Gallardo, Retuerto, Ojeda, Peña, Rojas (bib20) 2020; 10 Fujiwara, Satake, Shiokawa, Sakurai (bib19) 2015; 179 da Silva, da Costa, Souza, Mattos, Noronha (bib29) 2010; 11 Jiang, Nie, Guo, Song, Chen (bib10) 2020; 120 Ficht, Schlereth, Jacobsen, Kasatkin, Schumann, Behrens, Schlögl, Hinrichsen (bib35) 2015; 502 Myers, Zanobetti, Kloog, Huybers, Leakey, Bloom, Carlisle, Dietterich, Fitzgerald, Hasegawa, Holbrook, Nelson, Ottman, Raboy, Sakai, Sartor, Schwartz, Seneweera, Tausz, Usui (bib1) 2014; 510 Zander, Kunkes, Schuster, Schumann, Weinberg, Teschner, Jacobsen, Schlögl, Behrens (bib18) 2013; 52 Šćepanović, Grujić-Brojčin, Vojisavljević, Bernik, Srećković (bib27) 2010; 41 Moodley, Saib, van de Loosdrecht, Welker-Nieuwoudt, Sigwebela, Niemantsverdriet (bib40) 2011; 171 Li, Xu, Cai, Chen, Zhan, Jiang (bib42) 2017; 56 O. Martina, J. Pérez-Ramírez, New and Revisited Insights Into the Promotion of Methanol Synthesis Catalysts by Co2, Catal. Sci. Technol. 3, 2013, 3343. Lin, McGregor, Sederman (bib33) 2016; 152 Behrens, Studt, Kasatkin, Khl, Hvecker, Abild-Pedersen, Zander, Girgsdies, Kurr, Kniep, Tovar, Fischer, Nørskov, Schlögl (bib9) 2012; 336 Deluca, Hu, Popov, Spitaler, Dieing (bib24) 2023; 4 Rozovskii, Lin (bib22) 2003; 22 Sahibzada, Chadwick, Metcalfe (bib21) 1996; 29 Kasatkin, Dipl.-Ing, Kniep, Trunschke, Schlögl (bib11) 2007; 46 Zhang, Han, Li, Wang, Huang, Wang, Li (bib17) 2023; 47 Xu, Ji, Shen, Li, Tang, Ye, Jia, Xin (bib25) 1999; 30 Li, Zhan, Zhang, Jacobs, Das, Davis (bib38) 2002; 228 Shang, Liu, Su, Huang, Zhanga (bib3) 2023; 1 Ye, Ding, Gong, Argyle, Zhong, Wang, Russell, Xu, Russell, Li, Fan, Yao (bib4) 2019; 10 Estevez, Aguado-Deblas, Bautista, López-Tenllado, Romero, Luna (bib6) 2022; 12 Blanco, Lima, Rodrigues, Palacio, Faro (bib23) 2019; 579 Ferrari, Robertson (bib30) 2000; 61 Jacobs, Patterson, Zhang, Das, Li, Davis (bib39) 2002; 233 Prašnikar, Pavlišič, Ruiz-Zepeda, Kovač, Likozar (bib36) 2019; 58 . Challa, Delariva, Hansen, Helveg, Sehested, Hansen, Garzon, Datye (bib34) 2011; 133 Liu, Tian, Yang, Zha, Ding, Chang (bib13) 2015; 345 Li, Wang, Jiang, Zhu, Liu, Guo, Song (bib2) 2018; 8 Lunkenbein, Schumann, Behrens, Schlögl, Willinger (bib15) 2015; 54 Fu, Bao, Ding, Chou, Li (bib43) 2011; 12 Singhal, Pai, Rao, Pillai, Lieberwirth, Tyagi (bib26) 2013 Lunkenbein, Girgsdies, Kandemir, Thomas, Behrens, Schlögl, Frei (bib14) 2016; 55 Porosoff, Yan, Chen (bib8) 2016; 9 Gao, Zhang, Jun, Kim, Park, Zhao, Wang, Wan, Guan (bib7) 2021; 291 Wynblatt, Gjostein (bib41) 1976; 9 Ren, Fan, Shang, Shoemaker, Ma, Wu, Li, Klinghoffer, Yu, Liang (bib32) 2020; 36 Ye (10.1016/j.cattod.2024.114957_bib4) 2019; 10 10.1016/j.cattod.2024.114957_bib16 Blanco (10.1016/j.cattod.2024.114957_bib23) 2019; 579 Kasatkin (10.1016/j.cattod.2024.114957_bib11) 2007; 46 Li (10.1016/j.cattod.2024.114957_bib2) 2018; 8 Deluca (10.1016/j.cattod.2024.114957_bib24) 2023; 4 Xu (10.1016/j.cattod.2024.114957_bib25) 1999; 30 Zhang (10.1016/j.cattod.2024.114957_bib17) 2023; 47 Peinado (10.1016/j.cattod.2024.114957_bib20) 2020; 10 Li (10.1016/j.cattod.2024.114957_bib28) 2018; 13 Lunkenbein (10.1016/j.cattod.2024.114957_bib15) 2015; 54 Šćepanović (10.1016/j.cattod.2024.114957_bib27) 2010; 41 Rozovskii (10.1016/j.cattod.2024.114957_bib22) 2003; 22 Estevez (10.1016/j.cattod.2024.114957_bib6) 2022; 12 Zhang (10.1016/j.cattod.2024.114957_bib5) 2021; 64 Shang (10.1016/j.cattod.2024.114957_bib3) 2023; 1 Fu (10.1016/j.cattod.2024.114957_bib43) 2011; 12 Zander (10.1016/j.cattod.2024.114957_bib18) 2013; 52 Prašnikar (10.1016/j.cattod.2024.114957_bib36) 2019; 58 Li (10.1016/j.cattod.2024.114957_bib38) 2002; 228 Moodley (10.1016/j.cattod.2024.114957_bib40) 2011; 171 Gao (10.1016/j.cattod.2024.114957_bib7) 2021; 291 da Silva (10.1016/j.cattod.2024.114957_bib29) 2010; 11 Liu (10.1016/j.cattod.2024.114957_bib13) 2015; 345 Ren (10.1016/j.cattod.2024.114957_bib32) 2020; 36 Behrens (10.1016/j.cattod.2024.114957_bib9) 2012; 336 Porosoff (10.1016/j.cattod.2024.114957_bib8) 2016; 9 Nishida (10.1016/j.cattod.2024.114957_bib44) 2008; 337 Jiang (10.1016/j.cattod.2024.114957_bib10) 2020; 120 Jacobs (10.1016/j.cattod.2024.114957_bib39) 2002; 233 Fujiwara (10.1016/j.cattod.2024.114957_bib19) 2015; 179 Sahibzada (10.1016/j.cattod.2024.114957_bib21) 1996; 29 Wynblatt (10.1016/j.cattod.2024.114957_bib41) 1976; 9 Li (10.1016/j.cattod.2024.114957_bib42) 2017; 56 Lin (10.1016/j.cattod.2024.114957_bib33) 2016; 152 Singhal (10.1016/j.cattod.2024.114957_bib26) 2013 Zhang (10.1016/j.cattod.2024.114957_bib31) 2022; 7 Liang (10.1016/j.cattod.2024.114957_bib12) 2019; 58 Ficht (10.1016/j.cattod.2024.114957_bib35) 2015; 502 Myers (10.1016/j.cattod.2024.114957_bib1) 2014; 510 Wu (10.1016/j.cattod.2024.114957_bib37) 2001; 218 Challa (10.1016/j.cattod.2024.114957_bib34) 2011; 133 Lunkenbein (10.1016/j.cattod.2024.114957_bib14) 2016; 55 Ferrari (10.1016/j.cattod.2024.114957_bib30) 2000; 61 |
References_xml | – volume: 55 start-page: 12708 year: 2016 ident: bib14 article-title: Bridging the time gap: a copper/zinc oxide/aluminum oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales publication-title: Angew. Chem. Int. Ed. Engl. – volume: 233 start-page: 215 year: 2002 ident: bib39 publication-title: Appl. Catal. A – volume: 12 start-page: 1555 year: 2022 ident: bib6 article-title: A review on green hydrogen valorization by heterogeneous catalytic hydrogenation of captured CO publication-title: Catalysts – volume: 579 start-page: 65 year: 2019 ident: bib23 article-title: Copper-manganese catalysts with high activity for methanol synthesis publication-title: Appl. Catal. A. – volume: 337 start-page: 48 year: 2008 ident: bib44 article-title: Effects of noble metal-doping on Cu/ZnO/Al publication-title: Appl. Catal. A – volume: 10 start-page: 1 year: 2019 ident: bib4 article-title: CO publication-title: Nat. Commun. – volume: 58 start-page: 13021 year: 2019 ident: bib36 article-title: Mechanisms of copper-based catalyst deactivation during CO publication-title: Ind. Eng. Chem. Res. – volume: 47 start-page: 5885 year: 2023 ident: bib17 article-title: Design of Cu/ZnO/Al publication-title: N. J. Chem. – volume: 9 start-page: 62 year: 2016 ident: bib8 article-title: Catalytic reduction of CO publication-title: Energy Environ. Sci. – reference: O. Martina, J. Pérez-Ramírez, New and Revisited Insights Into the Promotion of Methanol Synthesis Catalysts by Co2, Catal. Sci. Technol. 3, 2013, 3343. – start-page: 2640 year: 2013 ident: bib26 article-title: Copper (I) oxide nanocrystals – one step synthesis, characterization, formation mechanism, and photocatalytic properties publication-title: Eur. J. Inorg. Chem. – volume: 1 start-page: 353 year: 2023 ident: bib3 article-title: A review of the recent progress on direct heterogeneous catalytic CO publication-title: EES Catal. – volume: 9 start-page: 21 year: 1976 ident: bib41 article-title: Particle growth in model supported metal catalysts—I. Theory publication-title: Prog. Solid State – volume: 29 start-page: 367 year: 1996 ident: bib21 article-title: Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu/ZnO/A1 publication-title: Catal. Today – volume: 502 start-page: 262 year: 2015 ident: bib35 article-title: Kinetics of deactivation on Cu/ZnO/Al publication-title: Appl. Catal. A – volume: 30 start-page: 413 year: 1999 ident: bib25 article-title: Raman spectra of CuO nanocrystals publication-title: J. Raman Spectrosc. – volume: 58 start-page: 9030 year: 2019 ident: bib12 article-title: Investigation on deactivation of Cu/ZnO/Al publication-title: Ind. Eng. Chem. Res. – volume: 36 start-page: 82 year: 2020 ident: bib32 article-title: Enhanced catalytic performance of Zr modified CuO/ZnO/Al publication-title: J. CO – volume: 336 start-page: 893 year: 2012 ident: bib9 article-title: The active site of methanol synthesis over Cu/ZnO/Al publication-title: Science – volume: 11 start-page: 736 year: 2010 ident: bib29 article-title: The effect of space time on Co/CeO publication-title: Catal. Commun. – volume: 41 start-page: 914 year: 2010 ident: bib27 article-title: Raman ¨study of structural disorder in ZnO nanopowders publication-title: J. Raman Spectrosc. – volume: 22 start-page: 137 year: 2003 ident: bib22 article-title: Fundamentals of methanol synthesis and decomposition publication-title: Top. Catal. – volume: 13 start-page: 25 year: 2018 ident: bib28 article-title: Preparation and characterization of solution-processed nanocrystalline p-Type CuAlO publication-title: Nanoscale Res. Lett. – volume: 64 start-page: 371 year: 2021 ident: bib5 article-title: A short review of recent advances in direct CO publication-title: Top. Catal. – volume: 46 start-page: 7324 year: 2007 ident: bib11 article-title: Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al publication-title: Angew. Chem. Int. Ed. Engl. – volume: 54 start-page: 54 year: 2015 ident: bib15 article-title: Formation of a ZnO overlayer in industrial Cu/ZnO/Al publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: 14095 year: 2000 ident: bib30 article-title: Interpretation of Raman spectra of disordered and amorphous carbon publication-title: Phys. Rev. B – volume: 179 start-page: 37 year: 2015 ident: bib19 article-title: CO publication-title: Appl. Catal. B – volume: 120 start-page: 7984 year: 2020 ident: bib10 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. – volume: 171 start-page: 192 year: 2011 ident: bib40 article-title: The impact of cobalt aluminate formation on the deactivation of cobalt-based Fischer–Tropsch synthesis catalysts publication-title: Catal. Today – volume: 10 start-page: 8551 year: 2020 ident: bib20 article-title: Effects of support and reaction pressure for the synthesis of dimethyl ether over heteropolyacid catalysts publication-title: Sci. Rep. – volume: 345 start-page: 1 year: 2015 ident: bib13 article-title: Preparation of HZSM-5 membrane packed CuO–ZnO–Al publication-title: Appl. Surf. Sci. – volume: 4 start-page: 78 year: 2023 ident: bib24 article-title: Advantages and developments of Raman spectroscopy for electroceramics publication-title: Commun. Mater. – volume: 228 start-page: 203 year: 2002 ident: bib38 article-title: Fischer–Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al publication-title: Appl. Catal. A – volume: 56 start-page: 3175 year: 2017 ident: bib42 article-title: Characterization and catalytic performance of cu/zno/al2o3 water–gas shift catalysts derived from Cu–Zn–Al layered double hydroxides publication-title: Ind. Eng. Chem. Res. – reference: . – volume: 218 start-page: 235 year: 2001 ident: bib37 article-title: The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO publication-title: Appl. Catal. A – volume: 510 start-page: 139 year: 2014 ident: bib1 article-title: Increasing CO publication-title: Nature – volume: 52 start-page: 6536 year: 2013 ident: bib18 article-title: The role of the oxide component in the development of copper composite catalysts for methanol synthesis publication-title: Angew. Chem. Int. Ed. – volume: 152 start-page: 7547 year: 2016 ident: bib33 article-title: The role of the Boudouard and water–gas shift reactions in the methanation of CO or CO publication-title: Chem. Eng. Sci. – volume: 8 start-page: 7651 year: 2018 ident: bib2 article-title: A short review of recent advances in CO publication-title: RSC Adv. – volume: 7 start-page: 2565 year: 2022 ident: bib31 article-title: Raman spectroscopy characterization of amorphous coke generated in industrial processes publication-title: ACS Omega – volume: 291 year: 2021 ident: bib7 article-title: Transformation of CO publication-title: Fuel – volume: 133 start-page: 20672 year: 2011 ident: bib34 article-title: Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 505 year: 2011 ident: bib43 article-title: The synergistic effect of the structural precursors of Cu/ZnO/Al publication-title: Chem. Comm. – volume: 291 year: 2021 ident: 10.1016/j.cattod.2024.114957_bib7 article-title: Transformation of CO2 into liquid fuels and synthetic natural gas using green hydrogen: a comparative analysis publication-title: Fuel doi: 10.1016/j.fuel.2020.120111 – volume: 58 start-page: 13021 issue: 29 year: 2019 ident: 10.1016/j.cattod.2024.114957_bib36 article-title: Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01898 – volume: 54 start-page: 54 year: 2015 ident: 10.1016/j.cattod.2024.114957_bib15 article-title: Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal–support interaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411581 – volume: 46 start-page: 7324 issue: 38 year: 2007 ident: 10.1016/j.cattod.2024.114957_bib11 article-title: Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200702600 – volume: 579 start-page: 65 year: 2019 ident: 10.1016/j.cattod.2024.114957_bib23 article-title: Copper-manganese catalysts with high activity for methanol synthesis publication-title: Appl. Catal. A. doi: 10.1016/j.apcata.2019.04.021 – volume: 12 start-page: 505 issue: 6 year: 2011 ident: 10.1016/j.cattod.2024.114957_bib43 article-title: The synergistic effect of the structural precursors of Cu/ZnO/Al2O3 catalysts for water–gas shift reaction publication-title: Chem. Comm. – volume: 8 start-page: 7651 year: 2018 ident: 10.1016/j.cattod.2024.114957_bib2 article-title: A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts publication-title: RSC Adv. doi: 10.1039/C7RA13546G – volume: 52 start-page: 6536 year: 2013 ident: 10.1016/j.cattod.2024.114957_bib18 article-title: The role of the oxide component in the development of copper composite catalysts for methanol synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301419 – volume: 510 start-page: 139 year: 2014 ident: 10.1016/j.cattod.2024.114957_bib1 article-title: Increasing CO2 threatens human nutrition publication-title: Nature doi: 10.1038/nature13179 – volume: 10 start-page: 1 issue: 5698 year: 2019 ident: 10.1016/j.cattod.2024.114957_bib4 article-title: CO2 hydrogenation to high-value products via heterogeneous catalysis publication-title: Nat. Commun. – volume: 9 start-page: 62 year: 2016 ident: 10.1016/j.cattod.2024.114957_bib8 article-title: Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02657A – volume: 30 start-page: 413 year: 1999 ident: 10.1016/j.cattod.2024.114957_bib25 article-title: Raman spectra of CuO nanocrystals publication-title: J. Raman Spectrosc. doi: 10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N – volume: 58 start-page: 9030 year: 2019 ident: 10.1016/j.cattod.2024.114957_bib12 article-title: Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01546 – volume: 13 start-page: 25 year: 2018 ident: 10.1016/j.cattod.2024.114957_bib28 article-title: Preparation and characterization of solution-processed nanocrystalline p-Type CuAlO2 thin-film transistors publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2444-2 – volume: 337 start-page: 48 year: 2008 ident: 10.1016/j.cattod.2024.114957_bib44 article-title: Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water–gas shift reaction: catalyst preparation by adopting “memory effect” of hydrotalcite publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2007.11.036 – volume: 12 start-page: 1555 year: 2022 ident: 10.1016/j.cattod.2024.114957_bib6 article-title: A review on green hydrogen valorization by heterogeneous catalytic hydrogenation of captured CO2 into value-added product publication-title: Catalysts doi: 10.3390/catal12121555 – volume: 179 start-page: 37 issue: 37 year: 2015 ident: 10.1016/j.cattod.2024.114957_bib19 article-title: CO2 hydrogenation for C2+ hydrocarbon synthesis over composite catalyst using surface modified HB zeolite publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.05.004 – volume: 233 start-page: 215 year: 2002 ident: 10.1016/j.cattod.2024.114957_bib39 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(02)00147-3 – volume: 228 start-page: 203 year: 2002 ident: 10.1016/j.cattod.2024.114957_bib38 article-title: Fischer–Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(01)00977-2 – volume: 502 start-page: 262 year: 2015 ident: 10.1016/j.cattod.2024.114957_bib35 article-title: Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalyst publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2015.06.014 – volume: 9 start-page: 21 year: 1976 ident: 10.1016/j.cattod.2024.114957_bib41 article-title: Particle growth in model supported metal catalysts—I. Theory publication-title: Prog. Solid State doi: 10.1016/0079-6786(75)90013-8 – volume: 218 start-page: 235 year: 2001 ident: 10.1016/j.cattod.2024.114957_bib37 article-title: The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(01)00650-0 – volume: 336 start-page: 893 year: 2012 ident: 10.1016/j.cattod.2024.114957_bib9 article-title: The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts publication-title: Science doi: 10.1126/science.1219831 – ident: 10.1016/j.cattod.2024.114957_bib16 doi: 10.1039/c3cy00573a – volume: 47 start-page: 5885 year: 2023 ident: 10.1016/j.cattod.2024.114957_bib17 article-title: Design of Cu/ZnO/Al2O3 catalysts with a rich Cu–ZnO interface for enhanced CO2 hydrogenation to methanol using zinc-malachite as the precursor publication-title: N. J. Chem. doi: 10.1039/D2NJ05903G – volume: 56 start-page: 3175 issue: 12 year: 2017 ident: 10.1016/j.cattod.2024.114957_bib42 article-title: Characterization and catalytic performance of cu/zno/al2o3 water–gas shift catalysts derived from Cu–Zn–Al layered double hydroxides publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04337 – volume: 61 start-page: 14095 year: 2000 ident: 10.1016/j.cattod.2024.114957_bib30 article-title: Interpretation of Raman spectra of disordered and amorphous carbon publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.14095 – volume: 11 start-page: 736 year: 2010 ident: 10.1016/j.cattod.2024.114957_bib29 article-title: The effect of space time on Co/CeO2 catalyst deactivation during oxidative steam reforming of ethanol publication-title: Catal. Commun. doi: 10.1016/j.catcom.2010.02.005 – volume: 29 start-page: 367 year: 1996 ident: 10.1016/j.cattod.2024.114957_bib21 article-title: Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu/ZnO/A12O3 catalysts publication-title: Catal. Today doi: 10.1016/0920-5861(95)00306-1 – start-page: 2640 year: 2013 ident: 10.1016/j.cattod.2024.114957_bib26 article-title: Copper (I) oxide nanocrystals – one step synthesis, characterization, formation mechanism, and photocatalytic properties publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201201382 – volume: 1 start-page: 353 year: 2023 ident: 10.1016/j.cattod.2024.114957_bib3 article-title: A review of the recent progress on direct heterogeneous catalytic CO2 hydrogenation to gasoline-range hydrocarbons publication-title: EES Catal. doi: 10.1039/D3EY00026E – volume: 120 start-page: 7984 year: 2020 ident: 10.1016/j.cattod.2024.114957_bib10 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00723 – volume: 171 start-page: 192 year: 2011 ident: 10.1016/j.cattod.2024.114957_bib40 article-title: The impact of cobalt aluminate formation on the deactivation of cobalt-based Fischer–Tropsch synthesis catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2011.03.078 – volume: 10 start-page: 8551 year: 2020 ident: 10.1016/j.cattod.2024.114957_bib20 article-title: Effects of support and reaction pressure for the synthesis of dimethyl ether over heteropolyacid catalysts publication-title: Sci. Rep. doi: 10.1038/s41598-020-65296-3 – volume: 345 start-page: 1 year: 2015 ident: 10.1016/j.cattod.2024.114957_bib13 article-title: Preparation of HZSM-5 membrane packed CuO–ZnO–Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.125 – volume: 55 start-page: 12708 issue: 41 year: 2016 ident: 10.1016/j.cattod.2024.114957_bib14 article-title: Bridging the time gap: a copper/zinc oxide/aluminum oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201603368 – volume: 22 start-page: 137 year: 2003 ident: 10.1016/j.cattod.2024.114957_bib22 article-title: Fundamentals of methanol synthesis and decomposition publication-title: Top. Catal. doi: 10.1023/A:1023555415577 – volume: 4 start-page: 78 year: 2023 ident: 10.1016/j.cattod.2024.114957_bib24 article-title: Advantages and developments of Raman spectroscopy for electroceramics publication-title: Commun. Mater. doi: 10.1038/s43246-023-00400-4 – volume: 36 start-page: 82 year: 2020 ident: 10.1016/j.cattod.2024.114957_bib32 article-title: Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.11.013 – volume: 7 start-page: 2565 year: 2022 ident: 10.1016/j.cattod.2024.114957_bib31 article-title: Raman spectroscopy characterization of amorphous coke generated in industrial processes publication-title: ACS Omega doi: 10.1021/acsomega.1c03456 – volume: 133 start-page: 20672 issue: 51 year: 2011 ident: 10.1016/j.cattod.2024.114957_bib34 article-title: Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208324n – volume: 41 start-page: 914 year: 2010 ident: 10.1016/j.cattod.2024.114957_bib27 article-title: Raman ¨study of structural disorder in ZnO nanopowders publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2546 – volume: 152 start-page: 7547 year: 2016 ident: 10.1016/j.cattod.2024.114957_bib33 article-title: The role of the Boudouard and water–gas shift reactions in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst publication-title: Chem. Eng. Sci. – volume: 64 start-page: 371 year: 2021 ident: 10.1016/j.cattod.2024.114957_bib5 article-title: A short review of recent advances in direct CO2 hydrogenation to alcohols publication-title: Top. Catal. doi: 10.1007/s11244-020-01405-w |
SSID | ssj0008842 |
Score | 2.4749806 |
Snippet | This contribution reports the impact of the reaction pressure (1, 10, 20 and 30 bar) on the deactivation of the commercial catalyst Cu/ZnO/Al2O3 during the CO2... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114957 |
SubjectTerms | CH3OH CO2 hydrogenation Cu/ZnO/Al2O3 Deactivation Reaction pressure |
Title | Critical microstructural modifications of Cu/Zn/Al2O3 catalyst during CO2 hydrogenation to methanol |
URI | https://dx.doi.org/10.1016/j.cattod.2024.114957 |
Volume | 442 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LelAPoqvi-lhy8Fr7SJu0x6W4rK9d8QGLl5KkKa7stovWw1787Waa1geIgqeSkoEyE2Ym6ZfvQ-jYY0znPUEt5lA4upHMEkrpgLgqkowxGVbg8asRHd7755Ng0kJxcxcGYJV17jc5vcrW9Ru79qa9mE7tWyfynCDUFdqvSFKAdtv3GfDnn7x9wjzCsBLQgckWzG6uz1UYL8nLsgC-UM8H0twIitRP5elLyRlsoo26V8R98zlbqKXyDlqNG4m2Dlr_wia4jWQjW4DngLIzzLDAqoHnRQqIIHM4h4sMx6_2Q273Z96Y4OoAZ_lSYnNjEcdjDz8u0-dCL63KApcFBqFpnhezHXQ_OL2Lh1atoWBJvRkorSyVhNNUNxKZclPQGwuDlIVcuVnEeRixFAjeCIl0mCgXVHdkgshMBEEm9I5VkF3Uzotc7SHsZCwKiIyUI5SvXMpdzplHlfQz-DsYdBFpXJfImmAcdC5mSYMke0qMwxNweGIc3kXWh9XCEGz8MZ81UUm-LZRE14BfLff_bXmA1mBkUCyHqK3jp450L1KKXrXYemilH99cXsPz7GI4egeXut_X |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YnrMwevtY-0SXuUoqzvg7sgXkqSpqis7aL1sBd_u5mm9QGi4LXNQJkZZibpl-8DOAg4N3VPMod7DI9uFHek1iYgvk4U51zFDXj88ooNRuHZbXQ7A2l3FwZhlW3ttzW9qdbtE7f1pjt5eHBvvCTwoth06LAhSWGzMBdGlGNqH7594jziuFHQwdUOLu_uzzUgLyXqukLC0CBE1twEu9RP_elLzzlZhqV2WCRH9ntWYEaXqzCfdhptq7D4hU5wDVSnW0CeEGZnqWGRVoM8VTlCguzpHKkKkr66d6V7NA6uKWlOcKYvNbFXFkl6HZD7af5cmdxqLEhdEVSaFmU1XofRyfEwHTitiIKjzG6gdopcUcFyM0kU2s9RcCyOch4L7ReJEHHCc2R4ozQxcWJCMjOSSaoKGUWFNFtWSTegV1al3gTiFTyJqEq0J3WofSZ8IXjAtAoL_D0Y9YF2rstUyzCOQhfjrIOSPWbW4Rk6PLMO74PzYTWxDBt_rOddVLJvmZKZJvCr5da_LfdhfjC8vMguTq_Ot2EB31hIyw70TCz1rhlMarnXJN474uvf2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+microstructural+modifications+of+Cu%2FZn%2FAl2O3+catalyst+during+CO2+hydrogenation+to+methanol&rft.jtitle=Catalysis+today&rft.au=Barros%2C+Jo%C3%A3o+L.M.&rft.au=Neto%2C+Olavo+T.&rft.au=Archanjo%2C+Br%C3%A1ulio+S.&rft.au=Kuznetsov%2C+Oleksii&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0920-5861&rft.volume=442&rft_id=info:doi/10.1016%2Fj.cattod.2024.114957&rft.externalDocID=S0920586124004516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon |