Which goods are most likely to be subject to click farming? An evidence from the Taobao platform

•We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click farming.•We identify click farming and compare its behavior on different categories of goods.•We conduct importance analysis and partial dependence ana...

Full description

Saved in:
Bibliographic Details
Published inElectronic commerce research and applications Vol. 50; p. 101107
Main Authors Jiang, Cuixia, Zhu, Jun, Xu, Qifa
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click farming.•We identify click farming and compare its behavior on different categories of goods.•We conduct importance analysis and partial dependence analysis to do further study.•The results confirm the effectiveness of our features in identifying click farming. Click farming is common in online shopping. It is thus important to identify click farming and compare its performance across different categories of online goods. To this end, we conduct an empirical analysis of click farming on the Taobao platform in China. First, we extract several new features from three sources, namely main goods, online shop itself, and online reviews, based on the formation mechanism of click farming. Second, we investigate their usefulness in identifying click farming among different online goods, including importance analysis and partial dependence analysis. Third, we further investigate the contribution of constructed features to predicting click farming. Our findings confirm the effectiveness of our created features and the heterogeneity of click farming among different online goods. Specifically, click farming is most likely to happen in clothing-related goods, then followed by electronic goods and service-related goods. Our results are significant for consumers to understand online information and for online business platforms to reduce the occurrence of click farming.
AbstractList •We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click farming.•We identify click farming and compare its behavior on different categories of goods.•We conduct importance analysis and partial dependence analysis to do further study.•The results confirm the effectiveness of our features in identifying click farming. Click farming is common in online shopping. It is thus important to identify click farming and compare its performance across different categories of online goods. To this end, we conduct an empirical analysis of click farming on the Taobao platform in China. First, we extract several new features from three sources, namely main goods, online shop itself, and online reviews, based on the formation mechanism of click farming. Second, we investigate their usefulness in identifying click farming among different online goods, including importance analysis and partial dependence analysis. Third, we further investigate the contribution of constructed features to predicting click farming. Our findings confirm the effectiveness of our created features and the heterogeneity of click farming among different online goods. Specifically, click farming is most likely to happen in clothing-related goods, then followed by electronic goods and service-related goods. Our results are significant for consumers to understand online information and for online business platforms to reduce the occurrence of click farming.
ArticleNumber 101107
Author Zhu, Jun
Jiang, Cuixia
Xu, Qifa
Author_xml – sequence: 1
  givenname: Cuixia
  surname: Jiang
  fullname: Jiang, Cuixia
  organization: School of Management, Hefei University of Technology, Hefei 230009, China
– sequence: 2
  givenname: Jun
  surname: Zhu
  fullname: Zhu, Jun
  organization: School of Management, Hefei University of Technology, Hefei 230009, China
– sequence: 3
  givenname: Qifa
  surname: Xu
  fullname: Xu, Qifa
  email: xuqifa@hfut.edu.cn
  organization: School of Management, Hefei University of Technology, Hefei 230009, China
BookMark eNqFkMtKAzEUhoNUsFXfwEVeYGqSuWTGhVKKNyi4qbiMmeSkTTszKUks9O2dYVy50NW5wPfD_83QpHMdIHRDyZwSWtzu5tCAl4c5I4wOL0r4GZrSkqcJL7Ni0u95wZOMsfQCzULYEcJIRfIp-vzYWrXFG-d0wNIDbl2IuLF7aE44OlwDDl_1DlQcLtVYtcdG-tZ2mwe86DAcrYZOATbetThuAa-lq6XDh0ZG43x7hc6NbAJc_8xL9P70uF6-JKu359flYpWolBQxMYpwVVKiqSqI5GAoy3VR8YIYJhlnVU6k5tqUaUnSuoTKUM6KtO-QKpNpml6ibMxV3oXgwYiDt630J0GJGCyJnRgticGSGC312N0vTNkoo3Vd9NI2_8H3Iwx9saMFL4Kygw1tfW9MaGf_DvgGYn2HHg
CitedBy_id crossref_primary_10_1016_j_ejor_2022_08_016
crossref_primary_10_3390_jtaer17040078
crossref_primary_10_6002_ect_2019_0205
crossref_primary_10_35295_osls_iisl_0000_0000_0000_1303
crossref_primary_10_1109_TKDE_2024_3485127
Cites_doi 10.1016/j.dss.2017.01.002
10.1016/j.eswa.2021.114750
10.1186/s40854-016-0039-4
10.1016/j.ejor.2019.06.022
10.1016/j.physa.2019.122026
10.1016/j.elerap.2020.100968
10.1016/j.knosys.2018.12.026
10.1016/j.dss.2019.113117
10.1016/j.tele.2020.101560
10.1016/j.chb.2015.12.028
10.1016/j.ipm.2019.102140
10.1016/j.ins.2019.05.035
10.1016/j.engappai.2021.104230
10.1080/07421222.2018.1451954
10.1016/j.ins.2020.03.063
10.1016/j.dss.2020.113421
10.1016/j.ins.2017.12.046
10.1016/j.jcorpfin.2020.101807
10.1016/j.im.2016.07.001
10.1080/07421222.2016.1205907
10.1109/TCYB.2018.2816984
10.1108/IntR-03-2015-0063
10.1016/j.elerap.2020.101002
10.1016/j.ins.2020.05.084
10.2753/JEC1086-4415170204
10.1016/j.future.2020.07.043
10.1016/j.eswa.2021.114585
10.1111/jori.12359
10.1016/j.physa.2019.123174
10.1016/j.jbusres.2007.11.017
10.1016/j.future.2017.09.048
10.1016/j.elerap.2012.06.003
10.1016/j.ipm.2019.03.002
10.1016/j.eswa.2020.114006
10.1016/j.dss.2017.11.001
10.1016/j.dss.2016.04.003
10.1109/TNNLS.2018.2870666
10.1080/07421222.2019.1661089
10.1016/j.jnca.2018.02.021
10.1016/j.dss.2018.02.008
10.1016/j.cosrev.2021.100402
10.1016/j.knosys.2020.105520
10.1080/07421222.2018.1440758
10.1016/j.eswa.2019.05.052
10.1080/07421222.2016.1205930
10.1016/j.dss.2013.07.009
10.1109/CC.2018.8357744
10.1016/j.asoc.2020.106983
10.1016/j.eswa.2012.07.059
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.elerap.2021.101107
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-7846
ExternalDocumentID 10_1016_j_elerap_2021_101107
S156742232100079X
GroupedDBID --K
--M
.~1
0R~
13V
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-fc07c810d1c60a7ef125d69760f2a272950ad7df83803b8e9f172639053cf4d13
IEDL.DBID .~1
ISSN 1567-4223
IngestDate Thu Apr 24 22:51:52 EDT 2025
Tue Jul 01 00:49:05 EDT 2025
Fri Feb 23 02:41:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Weighted random forest
Online goods
PU learning
Click farming
Taobao
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-fc07c810d1c60a7ef125d69760f2a272950ad7df83803b8e9f172639053cf4d13
ParticipantIDs crossref_primary_10_1016_j_elerap_2021_101107
crossref_citationtrail_10_1016_j_elerap_2021_101107
elsevier_sciencedirect_doi_10_1016_j_elerap_2021_101107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November-December 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November-December 2021
PublicationDecade 2020
PublicationTitle Electronic commerce research and applications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Washha, Qaroush, Mezghani, Sèdes (b0240) 2019; 135
Tang, Qian, You (b0225) 2020; 526
Craja, Kim, Lessmann (b0050) 2020; 139
Gomaa, Fahmy (b0080) 2013; 68
Kumar, Venugopal, Qiu, Kumar (b0130) 2019; 36
Li, Guo, Wang, Zhang (b0150) 2016; 26
Cai, Zhu (b0035) 2016; 2
Hu, Koh, Reddy (b0105) 2014; 57
Racherla, Friske (b0205) 2012; 11
Haider, Iqbal, Rahman, Rahman (b0090) 2018; 112
Al-Hashedi, Magalingam (b0005) 2021; 40
Hou, Chi, Li, Guan, Luo, Zhang (b0100) 2019; 534
Chen, Zheng, Xu, Liu, Wang (b0045) 2018; 108
Jiang, Zhu, Xu (b0120) 2020
Martín, Fernández-Isabel, González-Fernández, Lancho, Cuesta, de Diego (b0175) 2021; 101
Li, Du, Zheng, Xue, Zhu (b0145) 2018; 15
Gam, Gupta, Im, Shin (b0075) 2021; 66
Li, Liu (b0155) 2003
Asdaghi, Soleimani (b0015) 2019; 166
Kumar, Venugopal, Qiu, Kumar (b0125) 2018; 35
Liu, Lee, Yu, Li (b0170) 2003
Fresneda, Gefen (b0070) 2019; 125
Gomes, Jin, Yang (b0085) 2021; 88
Carneiro, Figueira, Costa (b0040) 2017; 95
de Campos, Fernández-Luna, Huete, Redondo-Expósito (b0055) 2018; 433
Denis (b0060) 1998
Qazi, Syed, Raj, Cambria, Tahir, Alghazzawi (b0200) 2016; 58
Ozbay, Alatas (b0190) 2020; 540
Dong, Liao, Zhang (b0065) 2018; 35
Yang, Ormerod, Liu, Ma, Zomaya, Yang (b0250) 2019; 49
Zhang, Gupta, Kauten, Deokar, Qin (b0255) 2019; 279
Siering, Koch, Deokar (b0220) 2016; 33
Zhang, Hao, Chao, Yuan (b0265) 2020; 193
Baek, Ahn, Choi (b0020) 2012; 17
Li, Lv, Xiao, Yang, Zhang (b0140) 2021; 171
Liu, Dai, Li, Lee, Philip (b0165) 2003
Yang, Li, Gao, Zhang (b0245) 2021; 114
Zhang, Zhou, Kehoe, Kilic (b0260) 2016; 33
Antonakaki, Fragopoulou, Ioannidis (b0010) 2021; 164
Wang, Li (b0230) 2020; 42
Bondielli, Marcelloni (b0030) 2019; 497
Li, Huang, Liu, Jiang (b0160) 2021; 175
Zhao, Lau, Zhang, Zhang, Chen, Tang (b0275) 2016; 86
Hlee, Lee, Koo, Chung (b0095) 2021; 59
Jiang, Han, Xu, Liu (b0115) 2020; 43
Sahoo, Gupta (b0215) 2020; 100
Barbado, Araque, Iglesias (b0025) 2019; 56
Wang, Xu (b0235) 2018; 105
Zhang, Wei, Yin, Tao (b0270) 2017; 81
Moraes, Valiati, Neto (b0180) 2013; 40
Noekhah, Salim, Zakaria (b0185) 2020; 57
Park, Lee (b0195) 2009; 62
Ren, Yang, Zhao, Chen, Xue, Miao, Huang, Liu (b0210) 2018; 30
Ji, Zhang, Li, Chiu, Xu, Yi, Gong (b0110) 2020; 536
Lai, Li, Lin (b0135) 2017; 54
de Campos (10.1016/j.elerap.2021.101107_b0055) 2018; 433
Baek (10.1016/j.elerap.2021.101107_b0020) 2012; 17
Li (10.1016/j.elerap.2021.101107_b0155) 2003
Siering (10.1016/j.elerap.2021.101107_b0220) 2016; 33
Craja (10.1016/j.elerap.2021.101107_b0050) 2020; 139
Jiang (10.1016/j.elerap.2021.101107_b0115) 2020; 43
Sahoo (10.1016/j.elerap.2021.101107_b0215) 2020; 100
Washha (10.1016/j.elerap.2021.101107_b0240) 2019; 135
Carneiro (10.1016/j.elerap.2021.101107_b0040) 2017; 95
Hou (10.1016/j.elerap.2021.101107_b0100) 2019; 534
Yang (10.1016/j.elerap.2021.101107_b0245) 2021; 114
Li (10.1016/j.elerap.2021.101107_b0140) 2021; 171
Zhang (10.1016/j.elerap.2021.101107_b0270) 2017; 81
Zhao (10.1016/j.elerap.2021.101107_b0275) 2016; 86
Gam (10.1016/j.elerap.2021.101107_b0075) 2021; 66
Kumar (10.1016/j.elerap.2021.101107_b0130) 2019; 36
Li (10.1016/j.elerap.2021.101107_b0160) 2021; 175
Kumar (10.1016/j.elerap.2021.101107_b0125) 2018; 35
Yang (10.1016/j.elerap.2021.101107_b0250) 2019; 49
Gomaa (10.1016/j.elerap.2021.101107_b0080) 2013; 68
Gomes (10.1016/j.elerap.2021.101107_b0085) 2021; 88
Ozbay (10.1016/j.elerap.2021.101107_b0190) 2020; 540
Wang (10.1016/j.elerap.2021.101107_b0235) 2018; 105
Moraes (10.1016/j.elerap.2021.101107_b0180) 2013; 40
Ji (10.1016/j.elerap.2021.101107_b0110) 2020; 536
Lai (10.1016/j.elerap.2021.101107_b0135) 2017; 54
Antonakaki (10.1016/j.elerap.2021.101107_b0010) 2021; 164
Bondielli (10.1016/j.elerap.2021.101107_b0030) 2019; 497
Li (10.1016/j.elerap.2021.101107_b0145) 2018; 15
Racherla (10.1016/j.elerap.2021.101107_b0205) 2012; 11
Park (10.1016/j.elerap.2021.101107_b0195) 2009; 62
Asdaghi (10.1016/j.elerap.2021.101107_b0015) 2019; 166
Denis (10.1016/j.elerap.2021.101107_b0060) 1998
Cai (10.1016/j.elerap.2021.101107_b0035) 2016; 2
Hu (10.1016/j.elerap.2021.101107_b0105) 2014; 57
Zhang (10.1016/j.elerap.2021.101107_b0255) 2019; 279
Chen (10.1016/j.elerap.2021.101107_b0045) 2018; 108
Haider (10.1016/j.elerap.2021.101107_b0090) 2018; 112
Ren (10.1016/j.elerap.2021.101107_b0210) 2018; 30
Wang (10.1016/j.elerap.2021.101107_b0230) 2020; 42
Tang (10.1016/j.elerap.2021.101107_b0225) 2020; 526
Zhang (10.1016/j.elerap.2021.101107_b0265) 2020; 193
Li (10.1016/j.elerap.2021.101107_b0150) 2016; 26
Qazi (10.1016/j.elerap.2021.101107_b0200) 2016; 58
Zhang (10.1016/j.elerap.2021.101107_b0260) 2016; 33
Barbado (10.1016/j.elerap.2021.101107_b0025) 2019; 56
Fresneda (10.1016/j.elerap.2021.101107_b0070) 2019; 125
Jiang (10.1016/j.elerap.2021.101107_b0120) 2020
Hlee (10.1016/j.elerap.2021.101107_b0095) 2021; 59
Noekhah (10.1016/j.elerap.2021.101107_b0185) 2020; 57
Liu (10.1016/j.elerap.2021.101107_b0165) 2003
Al-Hashedi (10.1016/j.elerap.2021.101107_b0005) 2021; 40
Martín (10.1016/j.elerap.2021.101107_b0175) 2021; 101
Dong (10.1016/j.elerap.2021.101107_b0065) 2018; 35
Liu (10.1016/j.elerap.2021.101107_b0170) 2003
References_xml – volume: 101
  start-page: 104230
  year: 2021
  ident: b0175
  article-title: Suspicious news detection through semantic and sentiment measures
  publication-title: Eng. Appl. Artif. Intell.
– volume: 279
  start-page: 1036
  year: 2019
  end-page: 1052
  ident: b0255
  article-title: Detecting fake news for reducing misinformation risks using analytics approaches
  publication-title: Eur. J. Oper. Res.
– volume: 166
  start-page: 198
  year: 2019
  end-page: 206
  ident: b0015
  article-title: An effective feature selection method for web spam detection
  publication-title: Knowledge-Based Syst.
– volume: 2
  start-page: 20
  year: 2016
  ident: b0035
  article-title: Fraud detections for online businesses: a perspective from blockchain technology
  publication-title: Financ. Innov.
– volume: 139
  start-page: 113421
  year: 2020
  ident: b0050
  article-title: Deep learning for detecting financial statement fraud - ScienceDirect
  publication-title: Decis. Support Syst.
– volume: 57
  year: 2020
  ident: b0185
  article-title: Opinion spam detection: Using multi-iterative graph-based model
  publication-title: Inf. Process. Manage.
– volume: 66
  start-page: 101807
  year: 2021
  ident: b0075
  article-title: Evasive shareholder meetings and corporate fraud
  publication-title: J. Corp. Finan.
– volume: 62
  start-page: 61
  year: 2009
  end-page: 67
  ident: b0195
  article-title: Information direction, website reputation and eWOM effect: A moderating role of product type
  publication-title: J. Bus. Res.
– volume: 35
  start-page: 350
  year: 2018
  end-page: 380
  ident: b0125
  article-title: Detecting review manipulation on online platforms with hierarchical supervised learning
  publication-title: J. Manage. Inform. Syst.
– volume: 105
  start-page: 87
  year: 2018
  end-page: 95
  ident: b0235
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decis. Support Syst.
– volume: 534
  start-page: 122026
  year: 2019
  ident: b0100
  article-title: Spreading dynamics of SVFR online fraud information model on heterogeneous networks
  publication-title: Phys. A
– start-page: 587
  year: 2003
  end-page: 592
  ident: b0155
  article-title: Learning to classify texts using positive and unlabeled data
  publication-title: IJCAI
– volume: 33
  start-page: 456
  year: 2016
  end-page: 481
  ident: b0260
  article-title: What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews
  publication-title: J. Manage. Inform. Syst.
– volume: 497
  start-page: 38
  year: 2019
  end-page: 55
  ident: b0030
  article-title: A survey on fake news and rumour detection techniques
  publication-title: Inf. Sci.
– volume: 125
  start-page: 113117
  year: 2019
  ident: b0070
  article-title: A semantic measure of online review helpfulness and the importance of message entropy
  publication-title: Decis. Support Syst.
– volume: 86
  start-page: 109
  year: 2016
  end-page: 121
  ident: b0275
  article-title: Extracting and reasoning about implicit behavioral evidences for detecting fraudulent online transactions in e-Commerce
  publication-title: Decis. Support Syst.
– volume: 43
  start-page: 101002
  year: 2020
  ident: b0115
  article-title: The impact of soft information extracted from descriptive text on crowdfunding performance
  publication-title: Electron. Commer. Res. Appl.
– volume: 526
  start-page: 274
  year: 2020
  end-page: 288
  ident: b0225
  article-title: Generating behavior features for cold-start spam review detection with adversarial learning
  publication-title: Inf. Sci.
– volume: 433
  start-page: 221
  year: 2018
  end-page: 232
  ident: b0055
  article-title: Positive unlabeled learning for building recommender systems in a parliamentary setting
  publication-title: Inf. Sci.
– volume: 40
  start-page: 100402
  year: 2021
  ident: b0005
  article-title: Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019
  publication-title: Comput. Sci. Rev.
– volume: 68
  start-page: 13
  year: 2013
  end-page: 18
  ident: b0080
  article-title: A survey of text similarity approaches
  publication-title: Int. J. Comput. Appl.
– volume: 95
  start-page: 91
  year: 2017
  end-page: 101
  ident: b0040
  article-title: A data mining based system for credit-card fraud detection in e-tail
  publication-title: Decis. Support Syst.
– volume: 40
  start-page: 621
  year: 2013
  end-page: 633
  ident: b0180
  article-title: Document-level sentiment classification: An empirical comparison between SVM and ANN
  publication-title: Expert Syst. Appl.
– volume: 58
  start-page: 75
  year: 2016
  end-page: 81
  ident: b0200
  article-title: A concept-level approach to the analysis of online review helpfulness
  publication-title: Comput. Hum. Behav.
– year: 2020
  ident: b0120
  article-title: Dissecting click farming on the Taobao platform in China via PU learning and weighted logistic regression
  publication-title: Electron. Commer. Res.
– volume: 36
  start-page: 1313
  year: 2019
  end-page: 1346
  ident: b0130
  article-title: Detecting anomalous online reviewers: An unsupervised approach using mixture models
  publication-title: J. Manage. Inform. Syst.
– volume: 175
  start-page: 114750
  year: 2021
  ident: b0160
  article-title: A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection
  publication-title: Expert Syst. Appl.
– volume: 56
  start-page: 1234
  year: 2019
  end-page: 1244
  ident: b0025
  article-title: A framework for fake review detection in online consumer electronics retailers
  publication-title: Inf. Process. Manage.
– volume: 35
  start-page: 461
  year: 2018
  end-page: 487
  ident: b0065
  article-title: Leveraging financial social media data for corporate fraud detection
  publication-title: J. Manage. Inform. Syst.
– volume: 193
  start-page: 105520
  year: 2020
  ident: b0265
  article-title: Label propagation-based approach for detecting review spammer groups on e-commerce websites
  publication-title: Knowledge-Based Syst.
– start-page: 387
  year: 2003
  end-page: 394
  ident: b0170
  article-title: Partially supervised classification of text documents
  publication-title: Nineteenth International Conference on Machine Learning
– volume: 15
  start-page: 98
  year: 2018
  end-page: 109
  ident: b0145
  article-title: Fake reviews tell no tales? Dissecting click farming in content-generated social networks
  publication-title: China Commun.
– volume: 30
  start-page: 3072
  year: 2018
  end-page: 3083
  ident: b0210
  article-title: A robust AUC maximization framework with simultaneous outlier detection and feature selection for positive-unlabeled classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 112
  start-page: 126
  year: 2018
  end-page: 141
  ident: b0090
  article-title: An ensemble learning based approach for impression fraud detection in mobile advertising
  publication-title: J. Netw. Comput. Appl.
– volume: 59
  start-page: 101560
  year: 2021
  ident: b0095
  article-title: Fake Reviews or Not: Exploring the relationship between time trend and online restaurant reviews
  publication-title: Telemat. Inform.
– volume: 536
  start-page: 454
  year: 2020
  end-page: 469
  ident: b0110
  article-title: A burst-based unsupervised method for detecting review spammer groups
  publication-title: Inf. Sci.
– volume: 81
  start-page: 395
  year: 2017
  end-page: 403
  ident: b0270
  article-title: Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary
  publication-title: Futur. Gener. Comp. Syst.
– volume: 26
  start-page: 1112
  year: 2016
  end-page: 1133
  ident: b0150
  article-title: Do buyers express their true assessment? Antecedents and consequences of customer praise feedback behaviour on Taobao
  publication-title: Internet Res.
– volume: 164
  start-page: 114006
  year: 2021
  ident: b0010
  article-title: A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks
  publication-title: Expert Syst. Appl.
– volume: 49
  start-page: 1932
  year: 2019
  end-page: 1943
  ident: b0250
  article-title: AdaSampling for positive-unlabeled and label noise learning with bioinformatics applications
  publication-title: IEEE T. Cybern.
– volume: 108
  start-page: 96
  year: 2018
  end-page: 106
  ident: b0045
  article-title: Secondhand seller reputation in online markets: A text analytics framework
  publication-title: Decis. Support Syst.
– volume: 33
  start-page: 421
  year: 2016
  end-page: 455
  ident: b0220
  article-title: Detecting fraudulent behavior on crowdfunding platforms: The role of linguistic and content-based cues in static and dynamic contexts
  publication-title: J. Manage. Inform. Syst.
– volume: 17
  start-page: 99
  year: 2012
  end-page: 126
  ident: b0020
  article-title: Helpfulness of online consumer reviews: Readers' objectives and review cues
  publication-title: Int. J. Electron. Commer.
– volume: 11
  start-page: 548
  year: 2012
  end-page: 559
  ident: b0205
  article-title: Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories
  publication-title: Electron. Commer. Res. Appl.
– volume: 88
  start-page: 591
  year: 2021
  end-page: 624
  ident: b0085
  article-title: Insurance fraud detection with unsupervised deep learning
  publication-title: J. Risk Ins.
– volume: 135
  start-page: 129
  year: 2019
  end-page: 152
  ident: b0240
  article-title: Unsupervised collective-based framework for dynamic retraining of supervised real-time spam tweets detection model
  publication-title: Expert Syst. Appl.
– volume: 54
  start-page: 269
  year: 2017
  end-page: 280
  ident: b0135
  article-title: A social referral appraising mechanism for the e-marketplace
  publication-title: Inf. Manage.
– volume: 540
  start-page: 123174
  year: 2020
  ident: b0190
  article-title: Fake news detection within online social media using supervised artificial intelligence algorithms
  publication-title: Phys. A
– volume: 100
  start-page: 106983
  year: 2020
  ident: b0215
  article-title: Multiple features based approach for automatic fake news detection on social networks using deep learning
  publication-title: Appl. Soft. Comput.
– volume: 171
  start-page: 114585
  year: 2021
  ident: b0140
  article-title: Exploring groups of opinion spam using sentiment analysis guided by nominated topics
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 100968
  year: 2020
  ident: b0230
  article-title: What determines onlne transaction price dispersion? evidence from the largest online platform in China
  publication-title: Electron. Commer. Res. Appl.
– start-page: 112
  year: 1998
  end-page: 126
  ident: b0060
  article-title: PAC Learning from positive statistical queries
  publication-title: Proceedings of the 9th International Conference on Algorithmic Learning Theory
– start-page: 179
  year: 2003
  end-page: 188
  ident: b0165
  article-title: Building text classifiers using positive and unlabeled examples
  publication-title: ICDM
– volume: 57
  start-page: 42
  year: 2014
  end-page: 53
  ident: b0105
  article-title: Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales
  publication-title: Decis. Support Syst.
– volume: 114
  start-page: 169
  year: 2021
  end-page: 180
  ident: b0245
  article-title: Measuring the short text similarity based on semantic and syntactic information
  publication-title: Futur. Gener. Comp. Syst.
– volume: 95
  start-page: 91
  year: 2017
  ident: 10.1016/j.elerap.2021.101107_b0040
  article-title: A data mining based system for credit-card fraud detection in e-tail
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2017.01.002
– volume: 175
  start-page: 114750
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0160
  article-title: A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114750
– volume: 2
  start-page: 20
  year: 2016
  ident: 10.1016/j.elerap.2021.101107_b0035
  article-title: Fraud detections for online businesses: a perspective from blockchain technology
  publication-title: Financ. Innov.
  doi: 10.1186/s40854-016-0039-4
– volume: 279
  start-page: 1036
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0255
  article-title: Detecting fake news for reducing misinformation risks using analytics approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.06.022
– volume: 534
  start-page: 122026
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0100
  article-title: Spreading dynamics of SVFR online fraud information model on heterogeneous networks
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.122026
– start-page: 587
  year: 2003
  ident: 10.1016/j.elerap.2021.101107_b0155
  article-title: Learning to classify texts using positive and unlabeled data
  publication-title: IJCAI
– volume: 42
  start-page: 100968
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0230
  article-title: What determines onlne transaction price dispersion? evidence from the largest online platform in China
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2020.100968
– start-page: 179
  year: 2003
  ident: 10.1016/j.elerap.2021.101107_b0165
  article-title: Building text classifiers using positive and unlabeled examples
  publication-title: ICDM
– volume: 166
  start-page: 198
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0015
  article-title: An effective feature selection method for web spam detection
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.12.026
– volume: 125
  start-page: 113117
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0070
  article-title: A semantic measure of online review helpfulness and the importance of message entropy
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2019.113117
– volume: 59
  start-page: 101560
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0095
  article-title: Fake Reviews or Not: Exploring the relationship between time trend and online restaurant reviews
  publication-title: Telemat. Inform.
  doi: 10.1016/j.tele.2020.101560
– volume: 58
  start-page: 75
  year: 2016
  ident: 10.1016/j.elerap.2021.101107_b0200
  article-title: A concept-level approach to the analysis of online review helpfulness
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2015.12.028
– volume: 57
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0185
  article-title: Opinion spam detection: Using multi-iterative graph-based model
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.102140
– volume: 497
  start-page: 38
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0030
  article-title: A survey on fake news and rumour detection techniques
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.035
– volume: 101
  start-page: 104230
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0175
  article-title: Suspicious news detection through semantic and sentiment measures
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104230
– start-page: 387
  year: 2003
  ident: 10.1016/j.elerap.2021.101107_b0170
  article-title: Partially supervised classification of text documents
– volume: 35
  start-page: 461
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0065
  article-title: Leveraging financial social media data for corporate fraud detection
  publication-title: J. Manage. Inform. Syst.
  doi: 10.1080/07421222.2018.1451954
– volume: 526
  start-page: 274
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0225
  article-title: Generating behavior features for cold-start spam review detection with adversarial learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.03.063
– volume: 139
  start-page: 113421
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0050
  article-title: Deep learning for detecting financial statement fraud - ScienceDirect
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2020.113421
– volume: 433
  start-page: 221
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0055
  article-title: Positive unlabeled learning for building recommender systems in a parliamentary setting
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.12.046
– volume: 66
  start-page: 101807
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0075
  article-title: Evasive shareholder meetings and corporate fraud
  publication-title: J. Corp. Finan.
  doi: 10.1016/j.jcorpfin.2020.101807
– volume: 54
  start-page: 269
  year: 2017
  ident: 10.1016/j.elerap.2021.101107_b0135
  article-title: A social referral appraising mechanism for the e-marketplace
  publication-title: Inf. Manage.
  doi: 10.1016/j.im.2016.07.001
– volume: 33
  start-page: 456
  year: 2016
  ident: 10.1016/j.elerap.2021.101107_b0260
  article-title: What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews
  publication-title: J. Manage. Inform. Syst.
  doi: 10.1080/07421222.2016.1205907
– volume: 49
  start-page: 1932
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0250
  article-title: AdaSampling for positive-unlabeled and label noise learning with bioinformatics applications
  publication-title: IEEE T. Cybern.
  doi: 10.1109/TCYB.2018.2816984
– start-page: 112
  year: 1998
  ident: 10.1016/j.elerap.2021.101107_b0060
  article-title: PAC Learning from positive statistical queries
– year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0120
  article-title: Dissecting click farming on the Taobao platform in China via PU learning and weighted logistic regression
  publication-title: Electron. Commer. Res.
– volume: 26
  start-page: 1112
  year: 2016
  ident: 10.1016/j.elerap.2021.101107_b0150
  article-title: Do buyers express their true assessment? Antecedents and consequences of customer praise feedback behaviour on Taobao
  publication-title: Internet Res.
  doi: 10.1108/IntR-03-2015-0063
– volume: 43
  start-page: 101002
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0115
  article-title: The impact of soft information extracted from descriptive text on crowdfunding performance
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2020.101002
– volume: 536
  start-page: 454
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0110
  article-title: A burst-based unsupervised method for detecting review spammer groups
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.084
– volume: 17
  start-page: 99
  year: 2012
  ident: 10.1016/j.elerap.2021.101107_b0020
  article-title: Helpfulness of online consumer reviews: Readers' objectives and review cues
  publication-title: Int. J. Electron. Commer.
  doi: 10.2753/JEC1086-4415170204
– volume: 114
  start-page: 169
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0245
  article-title: Measuring the short text similarity based on semantic and syntactic information
  publication-title: Futur. Gener. Comp. Syst.
  doi: 10.1016/j.future.2020.07.043
– volume: 171
  start-page: 114585
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0140
  article-title: Exploring groups of opinion spam using sentiment analysis guided by nominated topics
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114585
– volume: 88
  start-page: 591
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0085
  article-title: Insurance fraud detection with unsupervised deep learning
  publication-title: J. Risk Ins.
  doi: 10.1111/jori.12359
– volume: 540
  start-page: 123174
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0190
  article-title: Fake news detection within online social media using supervised artificial intelligence algorithms
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.123174
– volume: 62
  start-page: 61
  year: 2009
  ident: 10.1016/j.elerap.2021.101107_b0195
  article-title: Information direction, website reputation and eWOM effect: A moderating role of product type
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2007.11.017
– volume: 81
  start-page: 395
  year: 2017
  ident: 10.1016/j.elerap.2021.101107_b0270
  article-title: Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary
  publication-title: Futur. Gener. Comp. Syst.
  doi: 10.1016/j.future.2017.09.048
– volume: 11
  start-page: 548
  year: 2012
  ident: 10.1016/j.elerap.2021.101107_b0205
  article-title: Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2012.06.003
– volume: 56
  start-page: 1234
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0025
  article-title: A framework for fake review detection in online consumer electronics retailers
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.03.002
– volume: 164
  start-page: 114006
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0010
  article-title: A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114006
– volume: 105
  start-page: 87
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0235
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2017.11.001
– volume: 86
  start-page: 109
  year: 2016
  ident: 10.1016/j.elerap.2021.101107_b0275
  article-title: Extracting and reasoning about implicit behavioral evidences for detecting fraudulent online transactions in e-Commerce
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.04.003
– volume: 30
  start-page: 3072
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0210
  article-title: A robust AUC maximization framework with simultaneous outlier detection and feature selection for positive-unlabeled classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2870666
– volume: 36
  start-page: 1313
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0130
  article-title: Detecting anomalous online reviewers: An unsupervised approach using mixture models
  publication-title: J. Manage. Inform. Syst.
  doi: 10.1080/07421222.2019.1661089
– volume: 68
  start-page: 13
  year: 2013
  ident: 10.1016/j.elerap.2021.101107_b0080
  article-title: A survey of text similarity approaches
  publication-title: Int. J. Comput. Appl.
– volume: 112
  start-page: 126
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0090
  article-title: An ensemble learning based approach for impression fraud detection in mobile advertising
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.02.021
– volume: 108
  start-page: 96
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0045
  article-title: Secondhand seller reputation in online markets: A text analytics framework
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.02.008
– volume: 40
  start-page: 100402
  year: 2021
  ident: 10.1016/j.elerap.2021.101107_b0005
  article-title: Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100402
– volume: 193
  start-page: 105520
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0265
  article-title: Label propagation-based approach for detecting review spammer groups on e-commerce websites
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2020.105520
– volume: 35
  start-page: 350
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0125
  article-title: Detecting review manipulation on online platforms with hierarchical supervised learning
  publication-title: J. Manage. Inform. Syst.
  doi: 10.1080/07421222.2018.1440758
– volume: 135
  start-page: 129
  year: 2019
  ident: 10.1016/j.elerap.2021.101107_b0240
  article-title: Unsupervised collective-based framework for dynamic retraining of supervised real-time spam tweets detection model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.052
– volume: 33
  start-page: 421
  year: 2016
  ident: 10.1016/j.elerap.2021.101107_b0220
  article-title: Detecting fraudulent behavior on crowdfunding platforms: The role of linguistic and content-based cues in static and dynamic contexts
  publication-title: J. Manage. Inform. Syst.
  doi: 10.1080/07421222.2016.1205930
– volume: 57
  start-page: 42
  year: 2014
  ident: 10.1016/j.elerap.2021.101107_b0105
  article-title: Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2013.07.009
– volume: 15
  start-page: 98
  year: 2018
  ident: 10.1016/j.elerap.2021.101107_b0145
  article-title: Fake reviews tell no tales? Dissecting click farming in content-generated social networks
  publication-title: China Commun.
  doi: 10.1109/CC.2018.8357744
– volume: 100
  start-page: 106983
  year: 2020
  ident: 10.1016/j.elerap.2021.101107_b0215
  article-title: Multiple features based approach for automatic fake news detection on social networks using deep learning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106983
– volume: 40
  start-page: 621
  year: 2013
  ident: 10.1016/j.elerap.2021.101107_b0180
  article-title: Document-level sentiment classification: An empirical comparison between SVM and ANN
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.059
SSID ssj0020905
Score 2.31428
Snippet •We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101107
SubjectTerms Click farming
Online goods
PU learning
Taobao
Weighted random forest
Title Which goods are most likely to be subject to click farming? An evidence from the Taobao platform
URI https://dx.doi.org/10.1016/j.elerap.2021.101107
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lgngRn1gfJQevsft-nKQUS30V0RZ7W7PZpF27dku7PXjxtzuzj6IgCp6WhAwss8nMN8v3ZQg5Dw3T9bjDGaRnxazQsZknLY9xP7R1AeWPm6tc7_tOb2jdjOxRjXQqLQzSKsvYX8T0PFqXM63Sm615HLeeoPKAus5AEQokOn-ECnbLxV1-8bGmeRian9MYcTHD1ZV8Lud4QWRfcLy10tBxSsemsj-lpy8pp7tDtkusSNvF6-ySmpztkc2Kqr5PXp4nsZjQcZpGS8oXkr6ly4wm8VQm7zRLaSjpchXijxYciSQWU6o4kl_Gl7Q9o7LsKEpRY0IBCdIBh-Od0nnCMwSzB2TYvRp0eqzsmMAEQP-MKaG5wtO1SBeOxl2pAL5EDiAOTRncABxtazxyI-WZnmaGnvQV4BfAKHAShbIi3Twk9Vk6k0eE2iaamJHOoWZxQsdzfGUC9tM4lDhCqgYxK0cForxOHLtaJEHFG3sNCvcG6N6gcG-DsLXVvLhO44_1bvUNgm_bIoCI_6vl8b8tT8gWjgrB4SmpZ4uVPAPkkYXNfGs1yUa783j3gM_r217_E0ZU14g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSMAF8RTjmQPXsL4fJzQh0HhsFzaxW0nTZCsr7bR1By78duw-JpAQSByb2lLlxPbn6nNMyEVomK7HHc4gPStmhY7NPGl5jPuhrQsof9yiy7XbczoD635oD1fIdd0Lg7TKKvaXMb2I1tVKq7JmaxrHrSeoPKCuM7AJBRKdP1wlaxa4L44xuPxY8jwMzS94jCjNULzunytIXhDaZxyvrTR0XNJxquxP-elLzrndJlsVWKTt8nt2yIpMd8l6zVXfIy_P41iM6SjLojnlM0nfsnlOk3gik3eaZzSUdL4I8U8LPokkFhOqOLJfRle0nVJZjRSl2GRCAQrSPgf_zug04Tmi2X0yuL3pX3dYNTKBCcD-OVNCc4Wna5EuHI27UgF-iRyAHJoyuAFA2tZ45EbKMz3NDD3pKwAwAFLAFYWyIt08II00S-UhobaJKmakcyhanNDxHF-ZAP40DjWOkKpJzNpQgajuE8exFklQE8deg9K8AZo3KM3bJGypNS3v0_hD3q33IPh2LgII-b9qHv1b85xsdPrdx-DxrvdwTDbxTdl9eEIa-WwhTwGG5OFZccw-AZut14E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+goods+are+most+likely+to+be+subject+to+click+farming%3F+An+evidence+from+the+Taobao+platform&rft.jtitle=Electronic+commerce+research+and+applications&rft.au=Jiang%2C+Cuixia&rft.au=Zhu%2C+Jun&rft.au=Xu%2C+Qifa&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1567-4223&rft.eissn=1873-7846&rft.volume=50&rft_id=info:doi/10.1016%2Fj.elerap.2021.101107&rft.externalDocID=S156742232100079X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-4223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-4223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-4223&client=summon