Which goods are most likely to be subject to click farming? An evidence from the Taobao platform
•We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click farming.•We identify click farming and compare its behavior on different categories of goods.•We conduct importance analysis and partial dependence ana...
Saved in:
Published in | Electronic commerce research and applications Vol. 50; p. 101107 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click farming.•We identify click farming and compare its behavior on different categories of goods.•We conduct importance analysis and partial dependence analysis to do further study.•The results confirm the effectiveness of our features in identifying click farming.
Click farming is common in online shopping. It is thus important to identify click farming and compare its performance across different categories of online goods. To this end, we conduct an empirical analysis of click farming on the Taobao platform in China. First, we extract several new features from three sources, namely main goods, online shop itself, and online reviews, based on the formation mechanism of click farming. Second, we investigate their usefulness in identifying click farming among different online goods, including importance analysis and partial dependence analysis. Third, we further investigate the contribution of constructed features to predicting click farming. Our findings confirm the effectiveness of our created features and the heterogeneity of click farming among different online goods. Specifically, click farming is most likely to happen in clothing-related goods, then followed by electronic goods and service-related goods. Our results are significant for consumers to understand online information and for online business platforms to reduce the occurrence of click farming. |
---|---|
AbstractList | •We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click farming.•We identify click farming and compare its behavior on different categories of goods.•We conduct importance analysis and partial dependence analysis to do further study.•The results confirm the effectiveness of our features in identifying click farming.
Click farming is common in online shopping. It is thus important to identify click farming and compare its performance across different categories of online goods. To this end, we conduct an empirical analysis of click farming on the Taobao platform in China. First, we extract several new features from three sources, namely main goods, online shop itself, and online reviews, based on the formation mechanism of click farming. Second, we investigate their usefulness in identifying click farming among different online goods, including importance analysis and partial dependence analysis. Third, we further investigate the contribution of constructed features to predicting click farming. Our findings confirm the effectiveness of our created features and the heterogeneity of click farming among different online goods. Specifically, click farming is most likely to happen in clothing-related goods, then followed by electronic goods and service-related goods. Our results are significant for consumers to understand online information and for online business platforms to reduce the occurrence of click farming. |
ArticleNumber | 101107 |
Author | Zhu, Jun Jiang, Cuixia Xu, Qifa |
Author_xml | – sequence: 1 givenname: Cuixia surname: Jiang fullname: Jiang, Cuixia organization: School of Management, Hefei University of Technology, Hefei 230009, China – sequence: 2 givenname: Jun surname: Zhu fullname: Zhu, Jun organization: School of Management, Hefei University of Technology, Hefei 230009, China – sequence: 3 givenname: Qifa surname: Xu fullname: Xu, Qifa email: xuqifa@hfut.edu.cn organization: School of Management, Hefei University of Technology, Hefei 230009, China |
BookMark | eNqFkMtKAzEUhoNUsFXfwEVeYGqSuWTGhVKKNyi4qbiMmeSkTTszKUks9O2dYVy50NW5wPfD_83QpHMdIHRDyZwSWtzu5tCAl4c5I4wOL0r4GZrSkqcJL7Ni0u95wZOMsfQCzULYEcJIRfIp-vzYWrXFG-d0wNIDbl2IuLF7aE44OlwDDl_1DlQcLtVYtcdG-tZ2mwe86DAcrYZOATbetThuAa-lq6XDh0ZG43x7hc6NbAJc_8xL9P70uF6-JKu359flYpWolBQxMYpwVVKiqSqI5GAoy3VR8YIYJhlnVU6k5tqUaUnSuoTKUM6KtO-QKpNpml6ibMxV3oXgwYiDt630J0GJGCyJnRgticGSGC312N0vTNkoo3Vd9NI2_8H3Iwx9saMFL4Kygw1tfW9MaGf_DvgGYn2HHg |
CitedBy_id | crossref_primary_10_1016_j_ejor_2022_08_016 crossref_primary_10_3390_jtaer17040078 crossref_primary_10_6002_ect_2019_0205 crossref_primary_10_35295_osls_iisl_0000_0000_0000_1303 crossref_primary_10_1109_TKDE_2024_3485127 |
Cites_doi | 10.1016/j.dss.2017.01.002 10.1016/j.eswa.2021.114750 10.1186/s40854-016-0039-4 10.1016/j.ejor.2019.06.022 10.1016/j.physa.2019.122026 10.1016/j.elerap.2020.100968 10.1016/j.knosys.2018.12.026 10.1016/j.dss.2019.113117 10.1016/j.tele.2020.101560 10.1016/j.chb.2015.12.028 10.1016/j.ipm.2019.102140 10.1016/j.ins.2019.05.035 10.1016/j.engappai.2021.104230 10.1080/07421222.2018.1451954 10.1016/j.ins.2020.03.063 10.1016/j.dss.2020.113421 10.1016/j.ins.2017.12.046 10.1016/j.jcorpfin.2020.101807 10.1016/j.im.2016.07.001 10.1080/07421222.2016.1205907 10.1109/TCYB.2018.2816984 10.1108/IntR-03-2015-0063 10.1016/j.elerap.2020.101002 10.1016/j.ins.2020.05.084 10.2753/JEC1086-4415170204 10.1016/j.future.2020.07.043 10.1016/j.eswa.2021.114585 10.1111/jori.12359 10.1016/j.physa.2019.123174 10.1016/j.jbusres.2007.11.017 10.1016/j.future.2017.09.048 10.1016/j.elerap.2012.06.003 10.1016/j.ipm.2019.03.002 10.1016/j.eswa.2020.114006 10.1016/j.dss.2017.11.001 10.1016/j.dss.2016.04.003 10.1109/TNNLS.2018.2870666 10.1080/07421222.2019.1661089 10.1016/j.jnca.2018.02.021 10.1016/j.dss.2018.02.008 10.1016/j.cosrev.2021.100402 10.1016/j.knosys.2020.105520 10.1080/07421222.2018.1440758 10.1016/j.eswa.2019.05.052 10.1080/07421222.2016.1205930 10.1016/j.dss.2013.07.009 10.1109/CC.2018.8357744 10.1016/j.asoc.2020.106983 10.1016/j.eswa.2012.07.059 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.elerap.2021.101107 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1873-7846 |
ExternalDocumentID | 10_1016_j_elerap_2021_101107 S156742232100079X |
GroupedDBID | --K --M .~1 0R~ 13V 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFRF ABJNI ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSL SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-fc07c810d1c60a7ef125d69760f2a272950ad7df83803b8e9f172639053cf4d13 |
IEDL.DBID | .~1 |
ISSN | 1567-4223 |
IngestDate | Thu Apr 24 22:51:52 EDT 2025 Tue Jul 01 00:49:05 EDT 2025 Fri Feb 23 02:41:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Weighted random forest Online goods PU learning Click farming Taobao |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-fc07c810d1c60a7ef125d69760f2a272950ad7df83803b8e9f172639053cf4d13 |
ParticipantIDs | crossref_primary_10_1016_j_elerap_2021_101107 crossref_citationtrail_10_1016_j_elerap_2021_101107 elsevier_sciencedirect_doi_10_1016_j_elerap_2021_101107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November-December 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November-December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Electronic commerce research and applications |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Washha, Qaroush, Mezghani, Sèdes (b0240) 2019; 135 Tang, Qian, You (b0225) 2020; 526 Craja, Kim, Lessmann (b0050) 2020; 139 Gomaa, Fahmy (b0080) 2013; 68 Kumar, Venugopal, Qiu, Kumar (b0130) 2019; 36 Li, Guo, Wang, Zhang (b0150) 2016; 26 Cai, Zhu (b0035) 2016; 2 Hu, Koh, Reddy (b0105) 2014; 57 Racherla, Friske (b0205) 2012; 11 Haider, Iqbal, Rahman, Rahman (b0090) 2018; 112 Al-Hashedi, Magalingam (b0005) 2021; 40 Hou, Chi, Li, Guan, Luo, Zhang (b0100) 2019; 534 Chen, Zheng, Xu, Liu, Wang (b0045) 2018; 108 Jiang, Zhu, Xu (b0120) 2020 Martín, Fernández-Isabel, González-Fernández, Lancho, Cuesta, de Diego (b0175) 2021; 101 Li, Du, Zheng, Xue, Zhu (b0145) 2018; 15 Gam, Gupta, Im, Shin (b0075) 2021; 66 Li, Liu (b0155) 2003 Asdaghi, Soleimani (b0015) 2019; 166 Kumar, Venugopal, Qiu, Kumar (b0125) 2018; 35 Liu, Lee, Yu, Li (b0170) 2003 Fresneda, Gefen (b0070) 2019; 125 Gomes, Jin, Yang (b0085) 2021; 88 Carneiro, Figueira, Costa (b0040) 2017; 95 de Campos, Fernández-Luna, Huete, Redondo-Expósito (b0055) 2018; 433 Denis (b0060) 1998 Qazi, Syed, Raj, Cambria, Tahir, Alghazzawi (b0200) 2016; 58 Ozbay, Alatas (b0190) 2020; 540 Dong, Liao, Zhang (b0065) 2018; 35 Yang, Ormerod, Liu, Ma, Zomaya, Yang (b0250) 2019; 49 Zhang, Gupta, Kauten, Deokar, Qin (b0255) 2019; 279 Siering, Koch, Deokar (b0220) 2016; 33 Zhang, Hao, Chao, Yuan (b0265) 2020; 193 Baek, Ahn, Choi (b0020) 2012; 17 Li, Lv, Xiao, Yang, Zhang (b0140) 2021; 171 Liu, Dai, Li, Lee, Philip (b0165) 2003 Yang, Li, Gao, Zhang (b0245) 2021; 114 Zhang, Zhou, Kehoe, Kilic (b0260) 2016; 33 Antonakaki, Fragopoulou, Ioannidis (b0010) 2021; 164 Wang, Li (b0230) 2020; 42 Bondielli, Marcelloni (b0030) 2019; 497 Li, Huang, Liu, Jiang (b0160) 2021; 175 Zhao, Lau, Zhang, Zhang, Chen, Tang (b0275) 2016; 86 Hlee, Lee, Koo, Chung (b0095) 2021; 59 Jiang, Han, Xu, Liu (b0115) 2020; 43 Sahoo, Gupta (b0215) 2020; 100 Barbado, Araque, Iglesias (b0025) 2019; 56 Wang, Xu (b0235) 2018; 105 Zhang, Wei, Yin, Tao (b0270) 2017; 81 Moraes, Valiati, Neto (b0180) 2013; 40 Noekhah, Salim, Zakaria (b0185) 2020; 57 Park, Lee (b0195) 2009; 62 Ren, Yang, Zhao, Chen, Xue, Miao, Huang, Liu (b0210) 2018; 30 Ji, Zhang, Li, Chiu, Xu, Yi, Gong (b0110) 2020; 536 Lai, Li, Lin (b0135) 2017; 54 de Campos (10.1016/j.elerap.2021.101107_b0055) 2018; 433 Baek (10.1016/j.elerap.2021.101107_b0020) 2012; 17 Li (10.1016/j.elerap.2021.101107_b0155) 2003 Siering (10.1016/j.elerap.2021.101107_b0220) 2016; 33 Craja (10.1016/j.elerap.2021.101107_b0050) 2020; 139 Jiang (10.1016/j.elerap.2021.101107_b0115) 2020; 43 Sahoo (10.1016/j.elerap.2021.101107_b0215) 2020; 100 Washha (10.1016/j.elerap.2021.101107_b0240) 2019; 135 Carneiro (10.1016/j.elerap.2021.101107_b0040) 2017; 95 Hou (10.1016/j.elerap.2021.101107_b0100) 2019; 534 Yang (10.1016/j.elerap.2021.101107_b0245) 2021; 114 Li (10.1016/j.elerap.2021.101107_b0140) 2021; 171 Zhang (10.1016/j.elerap.2021.101107_b0270) 2017; 81 Zhao (10.1016/j.elerap.2021.101107_b0275) 2016; 86 Gam (10.1016/j.elerap.2021.101107_b0075) 2021; 66 Kumar (10.1016/j.elerap.2021.101107_b0130) 2019; 36 Li (10.1016/j.elerap.2021.101107_b0160) 2021; 175 Kumar (10.1016/j.elerap.2021.101107_b0125) 2018; 35 Yang (10.1016/j.elerap.2021.101107_b0250) 2019; 49 Gomaa (10.1016/j.elerap.2021.101107_b0080) 2013; 68 Gomes (10.1016/j.elerap.2021.101107_b0085) 2021; 88 Ozbay (10.1016/j.elerap.2021.101107_b0190) 2020; 540 Wang (10.1016/j.elerap.2021.101107_b0235) 2018; 105 Moraes (10.1016/j.elerap.2021.101107_b0180) 2013; 40 Ji (10.1016/j.elerap.2021.101107_b0110) 2020; 536 Lai (10.1016/j.elerap.2021.101107_b0135) 2017; 54 Antonakaki (10.1016/j.elerap.2021.101107_b0010) 2021; 164 Bondielli (10.1016/j.elerap.2021.101107_b0030) 2019; 497 Li (10.1016/j.elerap.2021.101107_b0145) 2018; 15 Racherla (10.1016/j.elerap.2021.101107_b0205) 2012; 11 Park (10.1016/j.elerap.2021.101107_b0195) 2009; 62 Asdaghi (10.1016/j.elerap.2021.101107_b0015) 2019; 166 Denis (10.1016/j.elerap.2021.101107_b0060) 1998 Cai (10.1016/j.elerap.2021.101107_b0035) 2016; 2 Hu (10.1016/j.elerap.2021.101107_b0105) 2014; 57 Zhang (10.1016/j.elerap.2021.101107_b0255) 2019; 279 Chen (10.1016/j.elerap.2021.101107_b0045) 2018; 108 Haider (10.1016/j.elerap.2021.101107_b0090) 2018; 112 Ren (10.1016/j.elerap.2021.101107_b0210) 2018; 30 Wang (10.1016/j.elerap.2021.101107_b0230) 2020; 42 Tang (10.1016/j.elerap.2021.101107_b0225) 2020; 526 Zhang (10.1016/j.elerap.2021.101107_b0265) 2020; 193 Li (10.1016/j.elerap.2021.101107_b0150) 2016; 26 Qazi (10.1016/j.elerap.2021.101107_b0200) 2016; 58 Zhang (10.1016/j.elerap.2021.101107_b0260) 2016; 33 Barbado (10.1016/j.elerap.2021.101107_b0025) 2019; 56 Fresneda (10.1016/j.elerap.2021.101107_b0070) 2019; 125 Jiang (10.1016/j.elerap.2021.101107_b0120) 2020 Hlee (10.1016/j.elerap.2021.101107_b0095) 2021; 59 Noekhah (10.1016/j.elerap.2021.101107_b0185) 2020; 57 Liu (10.1016/j.elerap.2021.101107_b0165) 2003 Al-Hashedi (10.1016/j.elerap.2021.101107_b0005) 2021; 40 Martín (10.1016/j.elerap.2021.101107_b0175) 2021; 101 Dong (10.1016/j.elerap.2021.101107_b0065) 2018; 35 Liu (10.1016/j.elerap.2021.101107_b0170) 2003 |
References_xml | – volume: 101 start-page: 104230 year: 2021 ident: b0175 article-title: Suspicious news detection through semantic and sentiment measures publication-title: Eng. Appl. Artif. Intell. – volume: 279 start-page: 1036 year: 2019 end-page: 1052 ident: b0255 article-title: Detecting fake news for reducing misinformation risks using analytics approaches publication-title: Eur. J. Oper. Res. – volume: 166 start-page: 198 year: 2019 end-page: 206 ident: b0015 article-title: An effective feature selection method for web spam detection publication-title: Knowledge-Based Syst. – volume: 2 start-page: 20 year: 2016 ident: b0035 article-title: Fraud detections for online businesses: a perspective from blockchain technology publication-title: Financ. Innov. – volume: 139 start-page: 113421 year: 2020 ident: b0050 article-title: Deep learning for detecting financial statement fraud - ScienceDirect publication-title: Decis. Support Syst. – volume: 57 year: 2020 ident: b0185 article-title: Opinion spam detection: Using multi-iterative graph-based model publication-title: Inf. Process. Manage. – volume: 66 start-page: 101807 year: 2021 ident: b0075 article-title: Evasive shareholder meetings and corporate fraud publication-title: J. Corp. Finan. – volume: 62 start-page: 61 year: 2009 end-page: 67 ident: b0195 article-title: Information direction, website reputation and eWOM effect: A moderating role of product type publication-title: J. Bus. Res. – volume: 35 start-page: 350 year: 2018 end-page: 380 ident: b0125 article-title: Detecting review manipulation on online platforms with hierarchical supervised learning publication-title: J. Manage. Inform. Syst. – volume: 105 start-page: 87 year: 2018 end-page: 95 ident: b0235 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. – volume: 534 start-page: 122026 year: 2019 ident: b0100 article-title: Spreading dynamics of SVFR online fraud information model on heterogeneous networks publication-title: Phys. A – start-page: 587 year: 2003 end-page: 592 ident: b0155 article-title: Learning to classify texts using positive and unlabeled data publication-title: IJCAI – volume: 33 start-page: 456 year: 2016 end-page: 481 ident: b0260 article-title: What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews publication-title: J. Manage. Inform. Syst. – volume: 497 start-page: 38 year: 2019 end-page: 55 ident: b0030 article-title: A survey on fake news and rumour detection techniques publication-title: Inf. Sci. – volume: 125 start-page: 113117 year: 2019 ident: b0070 article-title: A semantic measure of online review helpfulness and the importance of message entropy publication-title: Decis. Support Syst. – volume: 86 start-page: 109 year: 2016 end-page: 121 ident: b0275 article-title: Extracting and reasoning about implicit behavioral evidences for detecting fraudulent online transactions in e-Commerce publication-title: Decis. Support Syst. – volume: 43 start-page: 101002 year: 2020 ident: b0115 article-title: The impact of soft information extracted from descriptive text on crowdfunding performance publication-title: Electron. Commer. Res. Appl. – volume: 526 start-page: 274 year: 2020 end-page: 288 ident: b0225 article-title: Generating behavior features for cold-start spam review detection with adversarial learning publication-title: Inf. Sci. – volume: 433 start-page: 221 year: 2018 end-page: 232 ident: b0055 article-title: Positive unlabeled learning for building recommender systems in a parliamentary setting publication-title: Inf. Sci. – volume: 40 start-page: 100402 year: 2021 ident: b0005 article-title: Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019 publication-title: Comput. Sci. Rev. – volume: 68 start-page: 13 year: 2013 end-page: 18 ident: b0080 article-title: A survey of text similarity approaches publication-title: Int. J. Comput. Appl. – volume: 95 start-page: 91 year: 2017 end-page: 101 ident: b0040 article-title: A data mining based system for credit-card fraud detection in e-tail publication-title: Decis. Support Syst. – volume: 40 start-page: 621 year: 2013 end-page: 633 ident: b0180 article-title: Document-level sentiment classification: An empirical comparison between SVM and ANN publication-title: Expert Syst. Appl. – volume: 58 start-page: 75 year: 2016 end-page: 81 ident: b0200 article-title: A concept-level approach to the analysis of online review helpfulness publication-title: Comput. Hum. Behav. – year: 2020 ident: b0120 article-title: Dissecting click farming on the Taobao platform in China via PU learning and weighted logistic regression publication-title: Electron. Commer. Res. – volume: 36 start-page: 1313 year: 2019 end-page: 1346 ident: b0130 article-title: Detecting anomalous online reviewers: An unsupervised approach using mixture models publication-title: J. Manage. Inform. Syst. – volume: 175 start-page: 114750 year: 2021 ident: b0160 article-title: A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection publication-title: Expert Syst. Appl. – volume: 56 start-page: 1234 year: 2019 end-page: 1244 ident: b0025 article-title: A framework for fake review detection in online consumer electronics retailers publication-title: Inf. Process. Manage. – volume: 35 start-page: 461 year: 2018 end-page: 487 ident: b0065 article-title: Leveraging financial social media data for corporate fraud detection publication-title: J. Manage. Inform. Syst. – volume: 193 start-page: 105520 year: 2020 ident: b0265 article-title: Label propagation-based approach for detecting review spammer groups on e-commerce websites publication-title: Knowledge-Based Syst. – start-page: 387 year: 2003 end-page: 394 ident: b0170 article-title: Partially supervised classification of text documents publication-title: Nineteenth International Conference on Machine Learning – volume: 15 start-page: 98 year: 2018 end-page: 109 ident: b0145 article-title: Fake reviews tell no tales? Dissecting click farming in content-generated social networks publication-title: China Commun. – volume: 30 start-page: 3072 year: 2018 end-page: 3083 ident: b0210 article-title: A robust AUC maximization framework with simultaneous outlier detection and feature selection for positive-unlabeled classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 112 start-page: 126 year: 2018 end-page: 141 ident: b0090 article-title: An ensemble learning based approach for impression fraud detection in mobile advertising publication-title: J. Netw. Comput. Appl. – volume: 59 start-page: 101560 year: 2021 ident: b0095 article-title: Fake Reviews or Not: Exploring the relationship between time trend and online restaurant reviews publication-title: Telemat. Inform. – volume: 536 start-page: 454 year: 2020 end-page: 469 ident: b0110 article-title: A burst-based unsupervised method for detecting review spammer groups publication-title: Inf. Sci. – volume: 81 start-page: 395 year: 2017 end-page: 403 ident: b0270 article-title: Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary publication-title: Futur. Gener. Comp. Syst. – volume: 26 start-page: 1112 year: 2016 end-page: 1133 ident: b0150 article-title: Do buyers express their true assessment? Antecedents and consequences of customer praise feedback behaviour on Taobao publication-title: Internet Res. – volume: 164 start-page: 114006 year: 2021 ident: b0010 article-title: A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks publication-title: Expert Syst. Appl. – volume: 49 start-page: 1932 year: 2019 end-page: 1943 ident: b0250 article-title: AdaSampling for positive-unlabeled and label noise learning with bioinformatics applications publication-title: IEEE T. Cybern. – volume: 108 start-page: 96 year: 2018 end-page: 106 ident: b0045 article-title: Secondhand seller reputation in online markets: A text analytics framework publication-title: Decis. Support Syst. – volume: 33 start-page: 421 year: 2016 end-page: 455 ident: b0220 article-title: Detecting fraudulent behavior on crowdfunding platforms: The role of linguistic and content-based cues in static and dynamic contexts publication-title: J. Manage. Inform. Syst. – volume: 17 start-page: 99 year: 2012 end-page: 126 ident: b0020 article-title: Helpfulness of online consumer reviews: Readers' objectives and review cues publication-title: Int. J. Electron. Commer. – volume: 11 start-page: 548 year: 2012 end-page: 559 ident: b0205 article-title: Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories publication-title: Electron. Commer. Res. Appl. – volume: 88 start-page: 591 year: 2021 end-page: 624 ident: b0085 article-title: Insurance fraud detection with unsupervised deep learning publication-title: J. Risk Ins. – volume: 135 start-page: 129 year: 2019 end-page: 152 ident: b0240 article-title: Unsupervised collective-based framework for dynamic retraining of supervised real-time spam tweets detection model publication-title: Expert Syst. Appl. – volume: 54 start-page: 269 year: 2017 end-page: 280 ident: b0135 article-title: A social referral appraising mechanism for the e-marketplace publication-title: Inf. Manage. – volume: 540 start-page: 123174 year: 2020 ident: b0190 article-title: Fake news detection within online social media using supervised artificial intelligence algorithms publication-title: Phys. A – volume: 100 start-page: 106983 year: 2020 ident: b0215 article-title: Multiple features based approach for automatic fake news detection on social networks using deep learning publication-title: Appl. Soft. Comput. – volume: 171 start-page: 114585 year: 2021 ident: b0140 article-title: Exploring groups of opinion spam using sentiment analysis guided by nominated topics publication-title: Expert Syst. Appl. – volume: 42 start-page: 100968 year: 2020 ident: b0230 article-title: What determines onlne transaction price dispersion? evidence from the largest online platform in China publication-title: Electron. Commer. Res. Appl. – start-page: 112 year: 1998 end-page: 126 ident: b0060 article-title: PAC Learning from positive statistical queries publication-title: Proceedings of the 9th International Conference on Algorithmic Learning Theory – start-page: 179 year: 2003 end-page: 188 ident: b0165 article-title: Building text classifiers using positive and unlabeled examples publication-title: ICDM – volume: 57 start-page: 42 year: 2014 end-page: 53 ident: b0105 article-title: Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales publication-title: Decis. Support Syst. – volume: 114 start-page: 169 year: 2021 end-page: 180 ident: b0245 article-title: Measuring the short text similarity based on semantic and syntactic information publication-title: Futur. Gener. Comp. Syst. – volume: 95 start-page: 91 year: 2017 ident: 10.1016/j.elerap.2021.101107_b0040 article-title: A data mining based system for credit-card fraud detection in e-tail publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.01.002 – volume: 175 start-page: 114750 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0160 article-title: A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114750 – volume: 2 start-page: 20 year: 2016 ident: 10.1016/j.elerap.2021.101107_b0035 article-title: Fraud detections for online businesses: a perspective from blockchain technology publication-title: Financ. Innov. doi: 10.1186/s40854-016-0039-4 – volume: 279 start-page: 1036 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0255 article-title: Detecting fake news for reducing misinformation risks using analytics approaches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2019.06.022 – volume: 534 start-page: 122026 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0100 article-title: Spreading dynamics of SVFR online fraud information model on heterogeneous networks publication-title: Phys. A doi: 10.1016/j.physa.2019.122026 – start-page: 587 year: 2003 ident: 10.1016/j.elerap.2021.101107_b0155 article-title: Learning to classify texts using positive and unlabeled data publication-title: IJCAI – volume: 42 start-page: 100968 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0230 article-title: What determines onlne transaction price dispersion? evidence from the largest online platform in China publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2020.100968 – start-page: 179 year: 2003 ident: 10.1016/j.elerap.2021.101107_b0165 article-title: Building text classifiers using positive and unlabeled examples publication-title: ICDM – volume: 166 start-page: 198 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0015 article-title: An effective feature selection method for web spam detection publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2018.12.026 – volume: 125 start-page: 113117 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0070 article-title: A semantic measure of online review helpfulness and the importance of message entropy publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2019.113117 – volume: 59 start-page: 101560 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0095 article-title: Fake Reviews or Not: Exploring the relationship between time trend and online restaurant reviews publication-title: Telemat. Inform. doi: 10.1016/j.tele.2020.101560 – volume: 58 start-page: 75 year: 2016 ident: 10.1016/j.elerap.2021.101107_b0200 article-title: A concept-level approach to the analysis of online review helpfulness publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2015.12.028 – volume: 57 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0185 article-title: Opinion spam detection: Using multi-iterative graph-based model publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.102140 – volume: 497 start-page: 38 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0030 article-title: A survey on fake news and rumour detection techniques publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.035 – volume: 101 start-page: 104230 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0175 article-title: Suspicious news detection through semantic and sentiment measures publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104230 – start-page: 387 year: 2003 ident: 10.1016/j.elerap.2021.101107_b0170 article-title: Partially supervised classification of text documents – volume: 35 start-page: 461 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0065 article-title: Leveraging financial social media data for corporate fraud detection publication-title: J. Manage. Inform. Syst. doi: 10.1080/07421222.2018.1451954 – volume: 526 start-page: 274 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0225 article-title: Generating behavior features for cold-start spam review detection with adversarial learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.03.063 – volume: 139 start-page: 113421 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0050 article-title: Deep learning for detecting financial statement fraud - ScienceDirect publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2020.113421 – volume: 433 start-page: 221 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0055 article-title: Positive unlabeled learning for building recommender systems in a parliamentary setting publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.046 – volume: 66 start-page: 101807 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0075 article-title: Evasive shareholder meetings and corporate fraud publication-title: J. Corp. Finan. doi: 10.1016/j.jcorpfin.2020.101807 – volume: 54 start-page: 269 year: 2017 ident: 10.1016/j.elerap.2021.101107_b0135 article-title: A social referral appraising mechanism for the e-marketplace publication-title: Inf. Manage. doi: 10.1016/j.im.2016.07.001 – volume: 33 start-page: 456 year: 2016 ident: 10.1016/j.elerap.2021.101107_b0260 article-title: What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews publication-title: J. Manage. Inform. Syst. doi: 10.1080/07421222.2016.1205907 – volume: 49 start-page: 1932 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0250 article-title: AdaSampling for positive-unlabeled and label noise learning with bioinformatics applications publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2018.2816984 – start-page: 112 year: 1998 ident: 10.1016/j.elerap.2021.101107_b0060 article-title: PAC Learning from positive statistical queries – year: 2020 ident: 10.1016/j.elerap.2021.101107_b0120 article-title: Dissecting click farming on the Taobao platform in China via PU learning and weighted logistic regression publication-title: Electron. Commer. Res. – volume: 26 start-page: 1112 year: 2016 ident: 10.1016/j.elerap.2021.101107_b0150 article-title: Do buyers express their true assessment? Antecedents and consequences of customer praise feedback behaviour on Taobao publication-title: Internet Res. doi: 10.1108/IntR-03-2015-0063 – volume: 43 start-page: 101002 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0115 article-title: The impact of soft information extracted from descriptive text on crowdfunding performance publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2020.101002 – volume: 536 start-page: 454 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0110 article-title: A burst-based unsupervised method for detecting review spammer groups publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.084 – volume: 17 start-page: 99 year: 2012 ident: 10.1016/j.elerap.2021.101107_b0020 article-title: Helpfulness of online consumer reviews: Readers' objectives and review cues publication-title: Int. J. Electron. Commer. doi: 10.2753/JEC1086-4415170204 – volume: 114 start-page: 169 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0245 article-title: Measuring the short text similarity based on semantic and syntactic information publication-title: Futur. Gener. Comp. Syst. doi: 10.1016/j.future.2020.07.043 – volume: 171 start-page: 114585 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0140 article-title: Exploring groups of opinion spam using sentiment analysis guided by nominated topics publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114585 – volume: 88 start-page: 591 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0085 article-title: Insurance fraud detection with unsupervised deep learning publication-title: J. Risk Ins. doi: 10.1111/jori.12359 – volume: 540 start-page: 123174 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0190 article-title: Fake news detection within online social media using supervised artificial intelligence algorithms publication-title: Phys. A doi: 10.1016/j.physa.2019.123174 – volume: 62 start-page: 61 year: 2009 ident: 10.1016/j.elerap.2021.101107_b0195 article-title: Information direction, website reputation and eWOM effect: A moderating role of product type publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2007.11.017 – volume: 81 start-page: 395 year: 2017 ident: 10.1016/j.elerap.2021.101107_b0270 article-title: Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary publication-title: Futur. Gener. Comp. Syst. doi: 10.1016/j.future.2017.09.048 – volume: 11 start-page: 548 year: 2012 ident: 10.1016/j.elerap.2021.101107_b0205 article-title: Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2012.06.003 – volume: 56 start-page: 1234 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0025 article-title: A framework for fake review detection in online consumer electronics retailers publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.03.002 – volume: 164 start-page: 114006 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0010 article-title: A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114006 – volume: 105 start-page: 87 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0235 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.11.001 – volume: 86 start-page: 109 year: 2016 ident: 10.1016/j.elerap.2021.101107_b0275 article-title: Extracting and reasoning about implicit behavioral evidences for detecting fraudulent online transactions in e-Commerce publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2016.04.003 – volume: 30 start-page: 3072 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0210 article-title: A robust AUC maximization framework with simultaneous outlier detection and feature selection for positive-unlabeled classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2870666 – volume: 36 start-page: 1313 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0130 article-title: Detecting anomalous online reviewers: An unsupervised approach using mixture models publication-title: J. Manage. Inform. Syst. doi: 10.1080/07421222.2019.1661089 – volume: 68 start-page: 13 year: 2013 ident: 10.1016/j.elerap.2021.101107_b0080 article-title: A survey of text similarity approaches publication-title: Int. J. Comput. Appl. – volume: 112 start-page: 126 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0090 article-title: An ensemble learning based approach for impression fraud detection in mobile advertising publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.02.021 – volume: 108 start-page: 96 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0045 article-title: Secondhand seller reputation in online markets: A text analytics framework publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2018.02.008 – volume: 40 start-page: 100402 year: 2021 ident: 10.1016/j.elerap.2021.101107_b0005 article-title: Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100402 – volume: 193 start-page: 105520 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0265 article-title: Label propagation-based approach for detecting review spammer groups on e-commerce websites publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2020.105520 – volume: 35 start-page: 350 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0125 article-title: Detecting review manipulation on online platforms with hierarchical supervised learning publication-title: J. Manage. Inform. Syst. doi: 10.1080/07421222.2018.1440758 – volume: 135 start-page: 129 year: 2019 ident: 10.1016/j.elerap.2021.101107_b0240 article-title: Unsupervised collective-based framework for dynamic retraining of supervised real-time spam tweets detection model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.052 – volume: 33 start-page: 421 year: 2016 ident: 10.1016/j.elerap.2021.101107_b0220 article-title: Detecting fraudulent behavior on crowdfunding platforms: The role of linguistic and content-based cues in static and dynamic contexts publication-title: J. Manage. Inform. Syst. doi: 10.1080/07421222.2016.1205930 – volume: 57 start-page: 42 year: 2014 ident: 10.1016/j.elerap.2021.101107_b0105 article-title: Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2013.07.009 – volume: 15 start-page: 98 year: 2018 ident: 10.1016/j.elerap.2021.101107_b0145 article-title: Fake reviews tell no tales? Dissecting click farming in content-generated social networks publication-title: China Commun. doi: 10.1109/CC.2018.8357744 – volume: 100 start-page: 106983 year: 2020 ident: 10.1016/j.elerap.2021.101107_b0215 article-title: Multiple features based approach for automatic fake news detection on social networks using deep learning publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2020.106983 – volume: 40 start-page: 621 year: 2013 ident: 10.1016/j.elerap.2021.101107_b0180 article-title: Document-level sentiment classification: An empirical comparison between SVM and ANN publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.059 |
SSID | ssj0020905 |
Score | 2.31428 |
Snippet | •We conduct an empirical analysis of click farming on the Taobao platform in China.•We extract several new features with our own experience in click... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101107 |
SubjectTerms | Click farming Online goods PU learning Taobao Weighted random forest |
Title | Which goods are most likely to be subject to click farming? An evidence from the Taobao platform |
URI | https://dx.doi.org/10.1016/j.elerap.2021.101107 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lgngRn1gfJQevsft-nKQUS30V0RZ7W7PZpF27dku7PXjxtzuzj6IgCp6WhAwss8nMN8v3ZQg5Dw3T9bjDGaRnxazQsZknLY9xP7R1AeWPm6tc7_tOb2jdjOxRjXQqLQzSKsvYX8T0PFqXM63Sm615HLeeoPKAus5AEQokOn-ECnbLxV1-8bGmeRian9MYcTHD1ZV8Lud4QWRfcLy10tBxSsemsj-lpy8pp7tDtkusSNvF6-ySmpztkc2Kqr5PXp4nsZjQcZpGS8oXkr6ly4wm8VQm7zRLaSjpchXijxYciSQWU6o4kl_Gl7Q9o7LsKEpRY0IBCdIBh-Od0nnCMwSzB2TYvRp0eqzsmMAEQP-MKaG5wtO1SBeOxl2pAL5EDiAOTRncABxtazxyI-WZnmaGnvQV4BfAKHAShbIi3Twk9Vk6k0eE2iaamJHOoWZxQsdzfGUC9tM4lDhCqgYxK0cForxOHLtaJEHFG3sNCvcG6N6gcG-DsLXVvLhO44_1bvUNgm_bIoCI_6vl8b8tT8gWjgrB4SmpZ4uVPAPkkYXNfGs1yUa783j3gM_r217_E0ZU14g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSMAF8RTjmQPXsL4fJzQh0HhsFzaxW0nTZCsr7bR1By78duw-JpAQSByb2lLlxPbn6nNMyEVomK7HHc4gPStmhY7NPGl5jPuhrQsof9yiy7XbczoD635oD1fIdd0Lg7TKKvaXMb2I1tVKq7JmaxrHrSeoPKCuM7AJBRKdP1wlaxa4L44xuPxY8jwMzS94jCjNULzunytIXhDaZxyvrTR0XNJxquxP-elLzrndJlsVWKTt8nt2yIpMd8l6zVXfIy_P41iM6SjLojnlM0nfsnlOk3gik3eaZzSUdL4I8U8LPokkFhOqOLJfRle0nVJZjRSl2GRCAQrSPgf_zug04Tmi2X0yuL3pX3dYNTKBCcD-OVNCc4Wna5EuHI27UgF-iRyAHJoyuAFA2tZ45EbKMz3NDD3pKwAwAFLAFYWyIt08II00S-UhobaJKmakcyhanNDxHF-ZAP40DjWOkKpJzNpQgajuE8exFklQE8deg9K8AZo3KM3bJGypNS3v0_hD3q33IPh2LgII-b9qHv1b85xsdPrdx-DxrvdwTDbxTdl9eEIa-WwhTwGG5OFZccw-AZut14E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+goods+are+most+likely+to+be+subject+to+click+farming%3F+An+evidence+from+the+Taobao+platform&rft.jtitle=Electronic+commerce+research+and+applications&rft.au=Jiang%2C+Cuixia&rft.au=Zhu%2C+Jun&rft.au=Xu%2C+Qifa&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1567-4223&rft.eissn=1873-7846&rft.volume=50&rft_id=info:doi/10.1016%2Fj.elerap.2021.101107&rft.externalDocID=S156742232100079X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-4223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-4223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-4223&client=summon |