From microstructure to multivariate prediction models: Decoding the biomechanical properties of tea stems via PLSR-Ridge regression and multifactorial orthogonal design
Efficient harvesting and field management of tea is closely related to the mechanical properties of tea stems; however, there have no research on variables and models that can be used to predict them. In this paper, the relationship between factors (number of segments, diameter, stem length, density...
Saved in:
Published in | Industrial crops and products Vol. 230; p. 121143 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient harvesting and field management of tea is closely related to the mechanical properties of tea stems; however, there have no research on variables and models that can be used to predict them. In this paper, the relationship between factors (number of segments, diameter, stem length, density, moisture content, moment of inertia, and fracture deflection) affecting the mechanical properties (tensile and bending strength) of tea stems was analysed using a combination of partial least squares regression and ridge regression analyses, using three tea varieties, namely, Jinxuan, Yinghong, and Liannan, as the research subjects. Ultra depth of field electron microscopy was used to aid in the interpretation of the mechanical properties. The regression fitting results showed that the R² values of the prediction models for the tensile and flexural strengths of Jinxuan tea stems were 0.9361 and 0.9054, respectively, and the root mean square errors of prediction (RMSEP) were 0.7709 MPa and 1.9083 MPa, respectively. The R² values of the tensile and bending strengths of Liannan tea stems were 0.9161 and 0.9240, respectively, and the RMSEP were 0.3948 MPa and 1.2973 MPa, respectively. The R² values of Yinghong tea stems were 0.9292 and 0.9196, and the RMSEP values were 1.3207 MPa and 1.7489 MPa, respectively. The RPD of all the prediction models was greater than 3, indicating high prediction accuracy. The results of the comprehensive orthogonal test using four factors and three levels showed that the factors affecting the shear strength of tea stems were in the following order: stem segment, variety, moisture content, and shear speed. The results of the study will help to understand the biomechanical properties of tea stems, improve their resource utilisation and provide a reference for the optimal design of industrial cutting devices.
•Tensile, bending, and shear tests were conducted and compared for the first time on three types of tea stems.•The microstructure of tea stems was examined to elucidate their mechanical properties.•Predictive models (PLSR and RRA) were developed to assess the mechanical properties of three types of tea stems. (Maximum R² = 0.9361 and minimum RMSEP= 0.3948, RPD>3)•The sequence of factors influencing shear performance and the optimal combination of these factors have been identified. |
---|---|
AbstractList | Efficient harvesting and field management of tea is closely related to the mechanical properties of tea stems; however, there have no research on variables and models that can be used to predict them. In this paper, the relationship between factors (number of segments, diameter, stem length, density, moisture content, moment of inertia, and fracture deflection) affecting the mechanical properties (tensile and bending strength) of tea stems was analysed using a combination of partial least squares regression and ridge regression analyses, using three tea varieties, namely, Jinxuan, Yinghong, and Liannan, as the research subjects. Ultra depth of field electron microscopy was used to aid in the interpretation of the mechanical properties. The regression fitting results showed that the R² values of the prediction models for the tensile and flexural strengths of Jinxuan tea stems were 0.9361 and 0.9054, respectively, and the root mean square errors of prediction (RMSEP) were 0.7709 MPa and 1.9083 MPa, respectively. The R² values of the tensile and bending strengths of Liannan tea stems were 0.9161 and 0.9240, respectively, and the RMSEP were 0.3948 MPa and 1.2973 MPa, respectively. The R² values of Yinghong tea stems were 0.9292 and 0.9196, and the RMSEP values were 1.3207 MPa and 1.7489 MPa, respectively. The RPD of all the prediction models was greater than 3, indicating high prediction accuracy. The results of the comprehensive orthogonal test using four factors and three levels showed that the factors affecting the shear strength of tea stems were in the following order: stem segment, variety, moisture content, and shear speed. The results of the study will help to understand the biomechanical properties of tea stems, improve their resource utilisation and provide a reference for the optimal design of industrial cutting devices.
•Tensile, bending, and shear tests were conducted and compared for the first time on three types of tea stems.•The microstructure of tea stems was examined to elucidate their mechanical properties.•Predictive models (PLSR and RRA) were developed to assess the mechanical properties of three types of tea stems. (Maximum R² = 0.9361 and minimum RMSEP= 0.3948, RPD>3)•The sequence of factors influencing shear performance and the optimal combination of these factors have been identified. |
ArticleNumber | 121143 |
Author | Lv, Jinhong Han, Chongyang Wu, Weibin Luo, Yuanqiang Li, Jiehao Wan, Chenyang Li, Haoxin Chen, Yingmei |
Author_xml | – sequence: 1 givenname: Chongyang surname: Han fullname: Han, Chongyang organization: State Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou, 510642, China – sequence: 2 givenname: Jinhong surname: Lv fullname: Lv, Jinhong organization: State Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou, 510642, China – sequence: 3 givenname: Haoxin surname: Li fullname: Li, Haoxin organization: State Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou, 510642, China – sequence: 4 givenname: Chenyang surname: Wan fullname: Wan, Chenyang organization: Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China – sequence: 5 givenname: Yingmei surname: Chen fullname: Chen, Yingmei organization: State Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou, 510642, China – sequence: 6 givenname: Weibin orcidid: 0000-0002-9895-1378 surname: Wu fullname: Wu, Weibin email: wuweibin@scau.edu.cn organization: State Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou, 510642, China – sequence: 7 givenname: Yuanqiang surname: Luo fullname: Luo, Yuanqiang organization: State Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou, 510642, China – sequence: 8 givenname: Jiehao surname: Li fullname: Li, Jiehao organization: State Key Laboratory of Agricultural Equipment Technology, College of Engineering, South China Agricultural University, Guangzhou, 510642, China |
BookMark | eNqF0MFKAzEQBuAcKthWH0HIC2xNsrvZrReRalUoKFXPIU1mt1N2k5KkBd_Ix3RLvXuaOcz_D3wTMnLeASE3nM044_J2N0NnTfD7mWCinHHBeZGPyJjNhcyknLNLMolxxxivmKjG5GcZfE97HCIxhYNJhwA0edofuoRHHVAnoPsAFk1C72jvLXTxjj6C8RZdS9MW6AZ9D2arHRrdDdd-DyEhROobmkDTmKCP9Iiavq8-1tkabQs0QBsgxlOpdvb8sNEm-eFnR31IW996N6wWIrbuilw0uotw_Ten5Gv59Ll4yVZvz6-Lh1VmciZT1uhiU3FRgrSi0rIotOFlXczzqigM1znUZQ6y0jAHqGsJm00hRa1lVdm6bITJp6Q8955EYoBG7QP2OnwrztSJWO3UH7E6Easz8ZC7P-cGHjgiBBUNgjODXACTlPX4T8Mv0zqQzw |
Cites_doi | 10.1016/j.jbiomech.2020.110198 10.1111/jace.14665 10.1016/j.livsci.2006.11.013 10.1093/aob/mcq227 10.1016/j.jmbbm.2018.03.040 10.1016/j.apenergy.2022.118936 10.1016/j.biosystemseng.2023.03.017 10.1016/j.eja.2024.127262 10.1016/j.foodchem.2024.142338 10.1016/j.compag.2024.108644 10.1016/j.compag.2023.107659 10.1016/j.tifs.2024.104337 10.1016/j.biosystemseng.2022.03.010 10.1590/S1677-04202007000400005 10.1016/j.scienta.2019.108886 10.1016/j.indcrop.2023.117898 10.1016/j.indcrop.2022.114880 10.1016/j.indcrop.2022.114856 10.1002/rob.22318 10.1016/j.indcrop.2022.114729 10.1016/j.biosystemseng.2021.03.013 10.1007/s10973-019-08387-2 10.1093/jxb/erx245 10.1016/j.indcrop.2017.12.034 10.1016/j.foodchem.2022.132147 10.1109/LSP.2021.3080181 10.1016/j.biosystemseng.2023.03.008 10.3390/agriculture12091361 10.1080/00401706.1970.10488635 10.1016/j.foodres.2023.113618 10.17221/10/2019-HORTSCI 10.1016/j.compag.2018.12.034 10.1016/j.biosystemseng.2005.07.003 10.1016/j.indcrop.2024.119934 10.1007/s42853-022-00140-2 10.1016/j.geotexmem.2019.103491 10.1016/j.biosystemseng.2020.10.020 10.1007/s10853-021-06854-6 10.1016/j.indcrop.2017.12.036 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.indcrop.2025.121143 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_indcrop_2025_121143 S0926669025006892 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HVGLF HZ~ IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSH SSZ T5K UNMZH WUQ ~G- ~KM AAYXX CITATION |
ID | FETCH-LOGICAL-c306t-fa4b7125e6d27a644ac158493744c1a3e853e67ae9ee886ebb4628a677d85f2c3 |
IEDL.DBID | .~1 |
ISSN | 0926-6690 |
IngestDate | Sun Jul 06 05:09:15 EDT 2025 Sat Jun 14 16:53:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomechanical property Regression analysis Microstructure Tea stem Cutting devices |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-fa4b7125e6d27a644ac158493744c1a3e853e67ae9ee886ebb4628a677d85f2c3 |
ORCID | 0000-0002-9895-1378 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0926669025006892 |
ParticipantIDs | crossref_primary_10_1016_j_indcrop_2025_121143 elsevier_sciencedirect_doi_10_1016_j_indcrop_2025_121143 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationTitle | Industrial crops and products |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cloé Paul-Victor (bib5) 2011; 107 Mohsenin (bib21) 2020; v. 1 Oduntan, Kunduru, Tabaracci, Mengistie, McDonald, Sekhon, Robertson (bib25) 2024; 159 Mousavi, Zamani, Estaji, Tayouri, Arjmand, Jafari, Khonakdar (bib22) 2022; 57 Soleimani, Kamandar, Khoshnam, Soleimani (bib32) 2023; 229 Wang, Zhang, Yang, Zhao, Yang, He, Xu (bib39) 2020; 200 Zok (bib45) 2017; 100 Du, Hu, Buttar (bib8) 2020; 260 Hoerl, Kennard (bib11) 1970; 12 Ndukwu, Ohia, Anozie (bib24) 2019; 100 De Costa, Mohotti, Wijeratne (bib6) 2007; 19 Du, Li, Ruan, Gao, Zhou, Gao, Guan (bib7) 2024; 222 Mladenović, Cvejić, Jocić, Ćuk, Čukanović, Jocković, Marjanović-Jeromela (bib20) 2020; 47 Tan, Chen, Chen, Gao (bib35) 2019 Li, Huan, Wang, Hui, You, Wang (bib15) 2024; 217 Du, Hu, Wu, Lu, Buttar (bib9) 2020; 7 Luo, Wu, Cao, Qin, Zhang, An (bib18) 2022; 12 Carneiro, Rocha, Carvalho, Fernández-Ramírez (bib3) 2022; 314 Li, Wu, He, Tong, Zhao, Jia, Wu (bib16) 2023; 206 Livingstone, Ang, Yuan, Swanepoel, Kerckhoffs (bib17) 2022; 182 Xu, Zhang, Zhang, Wei, Zhou (bib43) 2024; 175 Aydin, Arslan (bib2) 2018; 112 Qiu, Meng, Li, Shen (bib29) 2021; 206 Tabak, Sevimli, Kaya, Çağlar (bib34) 2019; 138 Hao, Wang, Zhuang, Feng, Lv, Feng, Ye, Tian, Pan, Chen, Lin, Chu (bib10) 2025; 467 Meng, Wei, Wei, Chen, Cui (bib19) 2019; 157 Shi, Jiang, Wang, Thuy, Yu (bib31) 2023; 230 Okyere, Kim, Basak, Khan, Bhujel, Park, Lee (bib26) 2022; 47 Huo, Ma, Li, Liang, Mo, Zeng, Nong, Ding, Qian, Li, Zhou (bib13) 2024; 208 Shah, Reynolds Thomas, Ramage (bib30) 2017; 68 Chen, Chen, Zhang, Zhou (bib4) 2007; 111 Wang, Wang, Ma, Li, Shi (bib38) 2021; 28 Wu, Chen, He, Gui, Jia (bib42) 2024; 41 [ISO] International Standards, 2019. Bamboo – Determination of physical and mechanical properties – Part I: Requirements ISO 22157–1:2019 (E), International Organization for Standardization, Geneva (SZ). Wen, Li, Kan, Li, Li, Ge, Shi (bib41) 2021; 118 Song, Zhou, Xu, Jia, Hu (bib33) 2022; 182 Naik, Kiran (bib23) 2018; 112 Tang, Liang, Wang, Zhang, Wang (bib36) 2022; 180 Tsigler, Bartlett (bib37) 2023; 24 İnce, Uğurluay, Güzel, Özcan (bib14) 2005; 92 Zhang, Zhang, Sun, Sun, Wang, Wu (bib44) 2017; 33 Qiao, Xia, Cui, Xu, Gao, Su, Li, Fan (bib28) 2022; 379 Ottesen, Larson, Stubbs, Cook (bib27) 2022; 218 Wei, Wen, Huang, Ma, Wang, Pan, Wei (bib40) 2024 Huang, Liu, Zhou, Peng (bib12) 2018; 82 Mohsenin (10.1016/j.indcrop.2025.121143_bib21) 2020; v. 1 Tabak (10.1016/j.indcrop.2025.121143_bib34) 2019; 138 Hao (10.1016/j.indcrop.2025.121143_bib10) 2025; 467 Livingstone (10.1016/j.indcrop.2025.121143_bib17) 2022; 182 Song (10.1016/j.indcrop.2025.121143_bib33) 2022; 182 Huang (10.1016/j.indcrop.2025.121143_bib12) 2018; 82 Soleimani (10.1016/j.indcrop.2025.121143_bib32) 2023; 229 Ndukwu (10.1016/j.indcrop.2025.121143_bib24) 2019; 100 Qiao (10.1016/j.indcrop.2025.121143_bib28) 2022; 379 Shah (10.1016/j.indcrop.2025.121143_bib30) 2017; 68 Wang (10.1016/j.indcrop.2025.121143_bib38) 2021; 28 İnce (10.1016/j.indcrop.2025.121143_bib14) 2005; 92 Qiu (10.1016/j.indcrop.2025.121143_bib29) 2021; 206 Zok (10.1016/j.indcrop.2025.121143_bib45) 2017; 100 Ottesen (10.1016/j.indcrop.2025.121143_bib27) 2022; 218 Shi (10.1016/j.indcrop.2025.121143_bib31) 2023; 230 Wei (10.1016/j.indcrop.2025.121143_bib40) 2024 Aydin (10.1016/j.indcrop.2025.121143_bib2) 2018; 112 Li (10.1016/j.indcrop.2025.121143_bib15) 2024; 217 Wen (10.1016/j.indcrop.2025.121143_bib41) 2021; 118 Huo (10.1016/j.indcrop.2025.121143_bib13) 2024; 208 Meng (10.1016/j.indcrop.2025.121143_bib19) 2019; 157 Mladenović (10.1016/j.indcrop.2025.121143_bib20) 2020; 47 Tsigler (10.1016/j.indcrop.2025.121143_bib37) 2023; 24 Xu (10.1016/j.indcrop.2025.121143_bib43) 2024; 175 Hoerl (10.1016/j.indcrop.2025.121143_bib11) 1970; 12 Luo (10.1016/j.indcrop.2025.121143_bib18) 2022; 12 Oduntan (10.1016/j.indcrop.2025.121143_bib25) 2024; 159 Du (10.1016/j.indcrop.2025.121143_bib7) 2024; 222 Tang (10.1016/j.indcrop.2025.121143_bib36) 2022; 180 Wu (10.1016/j.indcrop.2025.121143_bib42) 2024; 41 Chen (10.1016/j.indcrop.2025.121143_bib4) 2007; 111 Zhang (10.1016/j.indcrop.2025.121143_bib44) 2017; 33 Mousavi (10.1016/j.indcrop.2025.121143_bib22) 2022; 57 Du (10.1016/j.indcrop.2025.121143_bib9) 2020; 7 10.1016/j.indcrop.2025.121143_bib1 Okyere (10.1016/j.indcrop.2025.121143_bib26) 2022; 47 Carneiro (10.1016/j.indcrop.2025.121143_bib3) 2022; 314 Li (10.1016/j.indcrop.2025.121143_bib16) 2023; 206 Naik (10.1016/j.indcrop.2025.121143_bib23) 2018; 112 Tan (10.1016/j.indcrop.2025.121143_bib35) 2019 De Costa (10.1016/j.indcrop.2025.121143_bib6) 2007; 19 Du (10.1016/j.indcrop.2025.121143_bib8) 2020; 260 Wang (10.1016/j.indcrop.2025.121143_bib39) 2020; 200 Cloé Paul-Victor (10.1016/j.indcrop.2025.121143_bib5) 2011; 107 |
References_xml | – volume: 12 start-page: 69 year: 1970 end-page: 82 ident: bib11 article-title: Ridge regression:Applications to nonorthogonal problems publication-title: Technometrics – volume: 467 year: 2025 ident: bib10 article-title: Another inner truth of shaking: Water migration and transformation-advanced physicochemical alterations in tea leaves publication-title: Food Chem. – volume: 118 year: 2021 ident: bib41 article-title: Experimental study on microstructure and mechanical properties of stem for Glycyrrhiza glabra publication-title: J. Biomech. – volume: v. 1 year: 2020 ident: bib21 article-title: Physical properties of plant and animal materials publication-title: Physical characteristics and mechanical properties – volume: 379 year: 2022 ident: bib28 article-title: Effect of moisture, protein, starch, soluble sugar contents and microstructure on mechanical properties of maize kernels publication-title: Food Chem. – volume: 100 start-page: 417 year: 2019 end-page: 426 ident: bib24 article-title: Influence of moisture content and compression axis on mechanical, physical, and phytochemicals properties of Akuamma (Picralima nitida) fruits and seeds publication-title: J. Inst. Eng. (India): Ser. A – volume: 19 start-page: 299 year: 2007 end-page: 332 ident: bib6 article-title: Ecophysiology of tea publication-title: Braz. J. Plant Physiol. – volume: 100 start-page: 1265 year: 2017 end-page: 1268 ident: bib45 article-title: On weakest link theory and Weibull statistics publication-title: J. Am. Ceram. Soc. – volume: 208 year: 2024 ident: bib13 article-title: Influence of tensile properties and fiber fraction on the mechanical properties of the sugarcane top anti-tangling in the silage industry publication-title: Ind. Crops Prod. – volume: 24 start-page: 1 year: 2023 end-page: 76 ident: bib37 article-title: Benign overfitting in ridge regression publication-title: J. Mach. Learn. Res. – reference: [ISO] International Standards, 2019. Bamboo – Determination of physical and mechanical properties – Part I: Requirements ISO 22157–1:2019 (E), International Organization for Standardization, Geneva (SZ). – volume: 157 start-page: 38 year: 2019 end-page: 48 ident: bib19 article-title: An ANSYS/LS-DYNA simulation and experimental study of circular saw blade cutting system of mulberry cutting machine publication-title: Comput. Electron. Agric. – volume: 47 start-page: 197 year: 2022 end-page: 208 ident: bib26 article-title: Influence of operational properties and material’s physical characteristics on mechanical cutting properties of corn stems publication-title: J. Biosyst. Eng. – volume: 68 start-page: 4497 year: 2017 end-page: 4516 ident: bib30 article-title: The strength of plants: theory and experimental methods to measure the mechanical properties of stems publication-title: J. Exp. Bot. – year: 2024 ident: bib40 article-title: The dawn of intelligent technologies in tea industry publication-title: Trends Food Sci. Technol. – volume: 314 year: 2022 ident: bib3 article-title: Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain publication-title: Appl. Energy – volume: 182 year: 2022 ident: bib17 article-title: Analysis of inter-nodal properties of two industrial hemp cultivars (Fasamo and Ferimon 12) and their relationships with plant density and row spacing publication-title: Ind. Crops Prod. – volume: 206 start-page: 135 year: 2021 end-page: 149 ident: bib29 article-title: Sugarcane stem cut quality investigated by finite element simulation and experiment publication-title: Biosyst. Eng. – volume: 41 start-page: 1167 year: 2024 end-page: 1186 ident: bib42 article-title: An RGB-D object detection model with high-generalization ability applied to tea harvesting robot for outdoor cross-variety tea shoots detection publication-title: J. Field Robot. – volume: 180 year: 2022 ident: bib36 article-title: Effect of mechanical properties of rice stem and its fiber on the strength of straw rope publication-title: Ind. Crops Prod. – volume: 206 year: 2023 ident: bib16 article-title: Development and field evaluation of a robotic harvesting system for plucking high-quality tea publication-title: Comput. Electron. Agric. – volume: 260 year: 2020 ident: bib8 article-title: Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression publication-title: Sci. Hortic. – volume: 218 start-page: 110 year: 2022 end-page: 123 ident: bib27 article-title: A parameterised model of maize stem cross-sectional morphology publication-title: Biosyst. Eng. – volume: 107 start-page: 209 year: 2011 end-page: 218 ident: bib5 article-title: Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana publication-title: Ann. Bot. – volume: 138 start-page: 3885 year: 2019 end-page: 3895 ident: bib34 article-title: Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem publication-title: J. Therm. Anal. Calorim. – volume: 28 start-page: 1125 year: 2021 end-page: 1129 ident: bib38 article-title: High precision error prediction algorithm based on ridge regression predictor for reversible data hiding publication-title: IEEE Signal Process. Lett. – volume: 7 start-page: 242 year: 2020 end-page: 248 ident: bib9 article-title: Structural analysis on cutting notch of tea stem by X-ray micro-computed tomography publication-title: Inf. Process. Agric. – volume: 57 start-page: 3143 year: 2022 end-page: 3167 ident: bib22 article-title: Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies publication-title: J. Mater. Sci. – volume: 175 year: 2024 ident: bib43 article-title: Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea publication-title: Food Res. Int. – volume: 47 start-page: 45 year: 2020 end-page: 52 ident: bib20 article-title: Effect of plant density on stem and flower quality of single-stem ornamental sunflower genotypes publication-title: Hortic. Sci. – volume: 92 start-page: 175 year: 2005 end-page: 181 ident: bib14 article-title: Bending and shearing characteristics of sunflower stem residue publication-title: Biosyst. Eng. – volume: 112 start-page: 396 year: 2018 end-page: 401 ident: bib2 article-title: Mechanical properties of cotton shoots for topping publication-title: Ind. Crop. Prod. – volume: 12 start-page: 1361 year: 2022 ident: bib18 article-title: Biomechanical characterization of bionic mechanical harvesting of tea buds publication-title: Agriculture – volume: 222 year: 2024 ident: bib7 article-title: Machine learning prediction of mechanical properties of bamboo by hemicelluloses removal publication-title: Ind. Crops Prod. – volume: 229 start-page: 44 year: 2023 end-page: 56 ident: bib32 article-title: Defining and modelling sesame stem shear behaviour in harvesting by reciprocating cutting blade publication-title: Biosyst. Eng. – volume: 217 year: 2024 ident: bib15 article-title: Biomechanical properties and discrete element modeling of PSR stems during silage harvest publication-title: Comput. Electron. Agric. – volume: 182 year: 2022 ident: bib33 article-title: Cutting mechanical properties of sisal leaves under rotary impact cutting publication-title: Ind. Crops Prod. – volume: 111 start-page: 33 year: 2007 end-page: 44 ident: bib4 article-title: Effect of harvest date on shearing force of maize stems publication-title: Livest. Sci. – volume: 230 start-page: 1 year: 2023 end-page: 15 ident: bib31 article-title: A mechanical model of single wheat straw with failure characteristics based on discrete element method publication-title: Biosyst. Eng. – volume: 159 year: 2024 ident: bib25 article-title: The effect of structural bending properties versus material bending properties on maize stem lodging publication-title: Eur. J. Agron. – volume: 33 start-page: 264 year: 2017 end-page: 271 ident: bib44 article-title: Gray relation degree and constitutive modeling of chemo-mechanical properties for soybean seed publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 82 start-page: 239 year: 2018 end-page: 247 ident: bib12 article-title: Effect of multiscale structural parameters on the mechanical properties of rice stems publication-title: J. Mech. Behav. Biomed. Mater. – start-page: 780 year: 2019 end-page: 791 ident: bib35 article-title: Direct shear tests of shear strength of soils reinforced by geomats and plant roots publication-title: Geotext. Geomembr. – volume: 112 start-page: 434 year: 2018 end-page: 448 ident: bib23 article-title: Naïve Bayes classifier, multivariate linear regression and experimental testing for classification and characterization of wheat straw based on mechanical properties publication-title: Ind. Crops Prod. – volume: 200 start-page: 400 year: 2020 end-page: 414 ident: bib39 article-title: Discrete element modelling of citrus fruit stems and its verification publication-title: Biosyst. Eng. – ident: 10.1016/j.indcrop.2025.121143_bib1 – volume: 118 year: 2021 ident: 10.1016/j.indcrop.2025.121143_bib41 article-title: Experimental study on microstructure and mechanical properties of stem for Glycyrrhiza glabra publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.110198 – volume: 100 start-page: 1265 issue: 4 year: 2017 ident: 10.1016/j.indcrop.2025.121143_bib45 article-title: On weakest link theory and Weibull statistics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14665 – volume: 111 start-page: 33 issue: 1–2 year: 2007 ident: 10.1016/j.indcrop.2025.121143_bib4 article-title: Effect of harvest date on shearing force of maize stems publication-title: Livest. Sci. doi: 10.1016/j.livsci.2006.11.013 – volume: 107 start-page: 209 issue: 2 year: 2011 ident: 10.1016/j.indcrop.2025.121143_bib5 article-title: Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana publication-title: Ann. Bot. doi: 10.1093/aob/mcq227 – volume: 82 start-page: 239 year: 2018 ident: 10.1016/j.indcrop.2025.121143_bib12 article-title: Effect of multiscale structural parameters on the mechanical properties of rice stems publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.03.040 – volume: 314 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib3 article-title: Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118936 – volume: 230 start-page: 1 year: 2023 ident: 10.1016/j.indcrop.2025.121143_bib31 article-title: A mechanical model of single wheat straw with failure characteristics based on discrete element method publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.03.017 – volume: 159 year: 2024 ident: 10.1016/j.indcrop.2025.121143_bib25 article-title: The effect of structural bending properties versus material bending properties on maize stem lodging publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2024.127262 – volume: 467 year: 2025 ident: 10.1016/j.indcrop.2025.121143_bib10 article-title: Another inner truth of shaking: Water migration and transformation-advanced physicochemical alterations in tea leaves publication-title: Food Chem. doi: 10.1016/j.foodchem.2024.142338 – volume: 217 year: 2024 ident: 10.1016/j.indcrop.2025.121143_bib15 article-title: Biomechanical properties and discrete element modeling of PSR stems during silage harvest publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108644 – volume: 206 year: 2023 ident: 10.1016/j.indcrop.2025.121143_bib16 article-title: Development and field evaluation of a robotic harvesting system for plucking high-quality tea publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107659 – year: 2024 ident: 10.1016/j.indcrop.2025.121143_bib40 article-title: The dawn of intelligent technologies in tea industry publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2024.104337 – volume: 218 start-page: 110 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib27 article-title: A parameterised model of maize stem cross-sectional morphology publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2022.03.010 – volume: 19 start-page: 299 year: 2007 ident: 10.1016/j.indcrop.2025.121143_bib6 article-title: Ecophysiology of tea publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202007000400005 – volume: 260 year: 2020 ident: 10.1016/j.indcrop.2025.121143_bib8 article-title: Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.108886 – volume: 208 year: 2024 ident: 10.1016/j.indcrop.2025.121143_bib13 article-title: Influence of tensile properties and fiber fraction on the mechanical properties of the sugarcane top anti-tangling in the silage industry publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2023.117898 – volume: 100 start-page: 417 year: 2019 ident: 10.1016/j.indcrop.2025.121143_bib24 article-title: Influence of moisture content and compression axis on mechanical, physical, and phytochemicals properties of Akuamma (Picralima nitida) fruits and seeds publication-title: J. Inst. Eng. (India): Ser. A – volume: 182 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib17 article-title: Analysis of inter-nodal properties of two industrial hemp cultivars (Fasamo and Ferimon 12) and their relationships with plant density and row spacing publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.114880 – volume: 182 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib33 article-title: Cutting mechanical properties of sisal leaves under rotary impact cutting publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.114856 – volume: 41 start-page: 1167 issue: 4 year: 2024 ident: 10.1016/j.indcrop.2025.121143_bib42 article-title: An RGB-D object detection model with high-generalization ability applied to tea harvesting robot for outdoor cross-variety tea shoots detection publication-title: J. Field Robot. doi: 10.1002/rob.22318 – volume: 180 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib36 article-title: Effect of mechanical properties of rice stem and its fiber on the strength of straw rope publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.114729 – volume: 206 start-page: 135 year: 2021 ident: 10.1016/j.indcrop.2025.121143_bib29 article-title: Sugarcane stem cut quality investigated by finite element simulation and experiment publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.03.013 – volume: 138 start-page: 3885 year: 2019 ident: 10.1016/j.indcrop.2025.121143_bib34 article-title: Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08387-2 – volume: v. 1 year: 2020 ident: 10.1016/j.indcrop.2025.121143_bib21 article-title: Physical properties of plant and animal materials – volume: 68 start-page: 4497 issue: 16 year: 2017 ident: 10.1016/j.indcrop.2025.121143_bib30 article-title: The strength of plants: theory and experimental methods to measure the mechanical properties of stems publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx245 – volume: 24 start-page: 1 issue: 123 year: 2023 ident: 10.1016/j.indcrop.2025.121143_bib37 article-title: Benign overfitting in ridge regression publication-title: J. Mach. Learn. Res. – volume: 112 start-page: 434 year: 2018 ident: 10.1016/j.indcrop.2025.121143_bib23 article-title: Naïve Bayes classifier, multivariate linear regression and experimental testing for classification and characterization of wheat straw based on mechanical properties publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2017.12.034 – volume: 379 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib28 article-title: Effect of moisture, protein, starch, soluble sugar contents and microstructure on mechanical properties of maize kernels publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.132147 – volume: 28 start-page: 1125 year: 2021 ident: 10.1016/j.indcrop.2025.121143_bib38 article-title: High precision error prediction algorithm based on ridge regression predictor for reversible data hiding publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3080181 – volume: 229 start-page: 44 year: 2023 ident: 10.1016/j.indcrop.2025.121143_bib32 article-title: Defining and modelling sesame stem shear behaviour in harvesting by reciprocating cutting blade publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.03.008 – volume: 12 start-page: 1361 issue: 9 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib18 article-title: Biomechanical characterization of bionic mechanical harvesting of tea buds publication-title: Agriculture doi: 10.3390/agriculture12091361 – volume: 7 start-page: 242 issue: 2 year: 2020 ident: 10.1016/j.indcrop.2025.121143_bib9 article-title: Structural analysis on cutting notch of tea stem by X-ray micro-computed tomography publication-title: Inf. Process. Agric. – volume: 12 start-page: 69 issue: 1 year: 1970 ident: 10.1016/j.indcrop.2025.121143_bib11 article-title: Ridge regression:Applications to nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488635 – volume: 175 year: 2024 ident: 10.1016/j.indcrop.2025.121143_bib43 article-title: Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea publication-title: Food Res. Int. doi: 10.1016/j.foodres.2023.113618 – volume: 47 start-page: 45 issue: 1 year: 2020 ident: 10.1016/j.indcrop.2025.121143_bib20 article-title: Effect of plant density on stem and flower quality of single-stem ornamental sunflower genotypes publication-title: Hortic. Sci. doi: 10.17221/10/2019-HORTSCI – volume: 157 start-page: 38 year: 2019 ident: 10.1016/j.indcrop.2025.121143_bib19 article-title: An ANSYS/LS-DYNA simulation and experimental study of circular saw blade cutting system of mulberry cutting machine publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.12.034 – volume: 92 start-page: 175 issue: 2 year: 2005 ident: 10.1016/j.indcrop.2025.121143_bib14 article-title: Bending and shearing characteristics of sunflower stem residue publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2005.07.003 – volume: 222 year: 2024 ident: 10.1016/j.indcrop.2025.121143_bib7 article-title: Machine learning prediction of mechanical properties of bamboo by hemicelluloses removal publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2024.119934 – volume: 47 start-page: 197 issue: 2 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib26 article-title: Influence of operational properties and material’s physical characteristics on mechanical cutting properties of corn stems publication-title: J. Biosyst. Eng. doi: 10.1007/s42853-022-00140-2 – start-page: 780 year: 2019 ident: 10.1016/j.indcrop.2025.121143_bib35 article-title: Direct shear tests of shear strength of soils reinforced by geomats and plant roots publication-title: Geotext. Geomembr. doi: 10.1016/j.geotexmem.2019.103491 – volume: 200 start-page: 400 year: 2020 ident: 10.1016/j.indcrop.2025.121143_bib39 article-title: Discrete element modelling of citrus fruit stems and its verification publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.10.020 – volume: 57 start-page: 3143 issue: 5 year: 2022 ident: 10.1016/j.indcrop.2025.121143_bib22 article-title: Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06854-6 – volume: 33 start-page: 264 issue: 5 year: 2017 ident: 10.1016/j.indcrop.2025.121143_bib44 article-title: Gray relation degree and constitutive modeling of chemo-mechanical properties for soybean seed publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 112 start-page: 396 year: 2018 ident: 10.1016/j.indcrop.2025.121143_bib2 article-title: Mechanical properties of cotton shoots for topping publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2017.12.036 |
SSID | ssj0017027 |
Score | 2.4409673 |
Snippet | Efficient harvesting and field management of tea is closely related to the mechanical properties of tea stems; however, there have no research on variables and... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 121143 |
SubjectTerms | Biomechanical property Cutting devices Microstructure Regression analysis Tea stem |
Title | From microstructure to multivariate prediction models: Decoding the biomechanical properties of tea stems via PLSR-Ridge regression and multifactorial orthogonal design |
URI | https://dx.doi.org/10.1016/j.indcrop.2025.121143 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF2Me2kOIUkb8tGYOeSq2JZ3JW1vxq1xPhpKXYNvYlc7Mg5EMo7Jsb-nP7Mzu3LSQMghRy27SGiGmTfsezNCnFtdFD2NfSpLYhfJpNSRLZWLtJYYx4WiepvVyD9uk8lMXs3VvCVGWy0M0yqb2B9iuo_WzUq3-Zvd1XLZnfY0JZeEr8lY56A5DkuZspdf_HmiefTTXhjbSpsj3v2s4uneEbZ1PCiLysRYcZ8FL955LT_9l3PGe2K3AYswDN-zL1pYHYid4WLdNMzAT-LveF3fwz3T6kIrWFqFTQ2eKPhIhTBhSVit-TqGTQB-8s3DV_hGZSenLSAACF6DzxJgthjtrlfMtsYHqEsgJwDf1BwelwZ-3kx_cduRBcIaF4FDW4GpXHhhmN5DLg18HVQvGOaD8ySRz2I2_v57NIma6QtRQWXEJiqNtCnBH0xcnBqCTaboE1ohOCNl0TcDpESPSWpQI2ZZgtayzNUkaeoyVcbF4FC0q7rCIwGy0DZDa5xVKAfSWldqVQ50qZDCg1HH4mL7z_NVaLKRb9lnd3ljpJyNlAcjHYtsa5n8hbfklAjePnry_qOn4iM_BfrfF9Emq-IZQZKN7Xif64gPw8vryW3HF_b_AGVY564 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9owELUQe2h7qHa3rUq7u51DrykQ7CTuDe0WwfKhqoDELbLjCWIlEgSI39Sf2Zk49EOqeug1sZXIM5p5I783I8RHq7Oso7FLZUnoAhnlOrC5coHWEsMwU1Rvsxp5OouGS_m4UquGuD9rYZhWWcd-H9OraF0_aden2d5tNu15R1NyifiajHUOmuLwBXenUk1x0R-Nh7Oflwlxx09upfUBb_gl5Gk_Ebx1PCuLKsVQcauFSr_ztxT1W9oZXIqXNV6Evv-lK9HA4lq86K_3dc8MfCW-D_blFrbMrPPdYOkpHEuouIInqoUJTsJuzzcybAWoht8cPsMDVZ6cuYAwIFQyfFYBs9FodbljwjUeoMyB_ACqvuZw2hj4Opl_484ja4Q9rj2NtgBTOP9BP8CHvBr4RqhcM9IHV_FEXovl4MvifhjUAxiCjCqJY5AbaWNCQBi5MDaEnEzWJcBCiEbKrGt6SLkeo9igRkySCK1lpauJ4tglKg-z3hvRLMoC3wqQmbYJWuOsQtmT1rpcq7ync4UUIYxqiU_nM093vs9GeiagPaW1kVI2UuqN1BLJ2TLpHw6TUi7499Z3_7_1g3g2XEwn6WQ0G78Xz_mNZwPeiCZZGG8JoRztXe2BPwDaaOlq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+microstructure+to+multivariate+prediction+models%3A+Decoding+the+biomechanical+properties+of+tea+stems+via+PLSR-Ridge+regression+and+multifactorial+orthogonal+design&rft.jtitle=Industrial+crops+and+products&rft.au=Han%2C+Chongyang&rft.au=Lv%2C+Jinhong&rft.au=Li%2C+Haoxin&rft.au=Wan%2C+Chenyang&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0926-6690&rft.volume=230&rft_id=info:doi/10.1016%2Fj.indcrop.2025.121143&rft.externalDocID=S0926669025006892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6690&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6690&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6690&client=summon |