Transient thermal properties investigation for precision bearing-spindle system considering fixed-position preload and lubricant viscosity-temperature effect
Estimating the thermal properties of the precision bearing-spindle system is essential for machine tool operating accuracy and service life. To predict transient temperature field and related heat behavior exactly, an improved thermal network model for the spindle system considering fixed-position p...
Saved in:
Published in | Journal of manufacturing processes Vol. 96; pp. 41 - 53 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimating the thermal properties of the precision bearing-spindle system is essential for machine tool operating accuracy and service life. To predict transient temperature field and related heat behavior exactly, an improved thermal network model for the spindle system considering fixed-position preload and lubricant viscosity-temperature effect was proposed. Firstly, the thrust load-axial displacement relationship of angular contact ball bearing was deduced, as well as the difference of bearing inner/outer ring thermal displacement in condition of Double O configuration, and the structural deformation for the spindle system subject to thermal-mechanical effect. Then, the bearing heat generation via the local approach and thermal resistances were calculated, and heat balance equations were derived and solved. Finally, the transient model coupled with heat generation/transfer and structural deformation in service was constructed, and the temperature field and related heat behaviors were obtained. Moreover, the results of theoretical model were compared with those of experiment test, indicating that the bearing temperature rise and spindle end deformation were in good agreement. Meanwhile, the bearing temperature rise, bearing and spindle deformation, and actual preload force were discussed, which had a nonlinear relationship and a positive correlation trend with rotation speed and initial preload. In addition, the assembly status might change with the variation of rotation speed.
•A thermal network model for transient temperature field prediction of precision bearing-spindle system is promoted.•The influences of thermal effect, centrifugal effect, and assembly effect on bearing-spindle system structure are considered.•Bearing temperature rise, bearing and spindle deformation, assembly status, and actual preload force are all investigated. |
---|---|
AbstractList | Estimating the thermal properties of the precision bearing-spindle system is essential for machine tool operating accuracy and service life. To predict transient temperature field and related heat behavior exactly, an improved thermal network model for the spindle system considering fixed-position preload and lubricant viscosity-temperature effect was proposed. Firstly, the thrust load-axial displacement relationship of angular contact ball bearing was deduced, as well as the difference of bearing inner/outer ring thermal displacement in condition of Double O configuration, and the structural deformation for the spindle system subject to thermal-mechanical effect. Then, the bearing heat generation via the local approach and thermal resistances were calculated, and heat balance equations were derived and solved. Finally, the transient model coupled with heat generation/transfer and structural deformation in service was constructed, and the temperature field and related heat behaviors were obtained. Moreover, the results of theoretical model were compared with those of experiment test, indicating that the bearing temperature rise and spindle end deformation were in good agreement. Meanwhile, the bearing temperature rise, bearing and spindle deformation, and actual preload force were discussed, which had a nonlinear relationship and a positive correlation trend with rotation speed and initial preload. In addition, the assembly status might change with the variation of rotation speed.
•A thermal network model for transient temperature field prediction of precision bearing-spindle system is promoted.•The influences of thermal effect, centrifugal effect, and assembly effect on bearing-spindle system structure are considered.•Bearing temperature rise, bearing and spindle deformation, assembly status, and actual preload force are all investigated. |
Author | Hong, Jun Chen, Xuehang Zhu, Yongsheng Zhang, Xiaohong Yan, Ke Chen, Xiaoming |
Author_xml | – sequence: 1 givenname: Xiaohong surname: Zhang fullname: Zhang, Xiaohong – sequence: 2 givenname: Xiaoming surname: Chen fullname: Chen, Xiaoming – sequence: 3 givenname: Ke surname: Yan fullname: Yan, Ke email: yanke@mail.xjtu.edu.cn – sequence: 4 givenname: Xuehang surname: Chen fullname: Chen, Xuehang – sequence: 5 givenname: Yongsheng surname: Zhu fullname: Zhu, Yongsheng – sequence: 6 givenname: Jun surname: Hong fullname: Hong, Jun |
BookMark | eNqFkcFuEzEQhi1UJNLCG3DwC-xiO147ywEJVVCQKnEpZ2tij8tEG-_KdiPyMLwr3oYTBziNRuPvH83na3aV5oSMvZWil0Kad4f-cIQlz70SatsL3QspXrCNUlJ12khzxTZyUKYzUg2v2HUpByGk0kJu2K-HDKkQpsrrD8xHmHgLWjBXwsIpnbBUeoRKc-Jxzm2Insra7REypceuLJTChLycS8Uj93OLC7iOeKSfGLplLvTMN3aaIXBIgU9P-0we2toTFb--OHcNb4uhPmXkGCP6-pq9jDAVfPOn3rDvnz893H7p7r_dfb39eN_5rTC1i6CF0KNFFewIcicBdqO2cfRo1SjRWjuauIPReCM0DiEOOPjBirjfCxthe8P0JdfnuZSM0S2ZjpDPTgq3KnYHd1HsVsVOaNcUN-z9X5in-uyqZqDpf_CHC4ztsBNhdsW3f_AYqDmuLsz074Df0FKjEA |
CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110199 crossref_primary_10_1007_s00170_023_12347_4 crossref_primary_10_1016_j_tsep_2023_102105 crossref_primary_10_1007_s40430_024_05292_0 crossref_primary_10_1016_j_triboint_2023_109057 crossref_primary_10_1016_j_ijnonlinmec_2024_104879 crossref_primary_10_1007_s11071_024_10490_5 crossref_primary_10_1016_j_ijmecsci_2025_110010 crossref_primary_10_1016_j_precisioneng_2024_06_011 crossref_primary_10_1007_s10973_024_13889_9 |
Cites_doi | 10.3901/JME.2022.09.087 10.1016/j.applthermaleng.2016.11.194 10.1016/j.ymssp.2020.106929 10.1016/0043-1648(73)90020-3 10.1016/j.triboint.2017.01.035 10.1016/j.applthermaleng.2017.12.019 10.1115/1.3451843 10.1016/j.triboint.2012.10.009 10.1016/j.ijthermalsci.2015.12.007 10.1016/j.ijheatmasstransfer.2014.11.057 10.1243/13506501JET695 10.1016/S0890-6955(99)00005-X 10.1007/s11071-021-06613-x 10.1016/j.jmapro.2021.10.041 10.17973/MMSJ.2021_7_2021055 10.1115/1.1370516 10.1016/j.ymssp.2022.109826 10.1016/S0890-6955(00)00103-6 10.3390/lubricants11020044 10.1115/1.1349555 10.1080/10402000902774267 10.1016/j.ijmachtools.2003.10.011 10.3901/JME.2012.19.059 10.1115/1.4008346 10.1007/s12206-021-0127-x |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmapro.2023.04.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2212-4616 |
EndPage | 53 |
ExternalDocumentID | 10_1016_j_jmapro_2023_04_010 S1526612523003602 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 8FL 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_ABI_INFORM_COMPLETE HVGLF H~9 J1W JJJVA K60 K6~ KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RWL SDF SES SPC SPCBC SST SSZ T5K TAE TN5 U5U ~G- 29K 883 88I 8AO 8FE 8FG 8FW 8R4 8R5 9M8 AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJCF ABUWG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFKRA AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN AZQEC BENPR BEZIV BGLVJ BNPGV BPHCQ CCPQU CITATION D-I DWQXO EJD FGOYB FRNLG GNUQQ GROUPED_ABI_INFORM_RESEARCH HCIFZ HZ~ L6V M0C M0F M2P M7S PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS Q2X R2- RIG S0X SSH |
ID | FETCH-LOGICAL-c306t-fa400497e2d79a181aa8947f9ce7291e77796f8a96c604e5df5e5c570fbb07fa3 |
IEDL.DBID | .~1 |
ISSN | 1526-6125 |
IngestDate | Thu Apr 24 23:02:37 EDT 2025 Tue Jul 01 02:23:43 EDT 2025 Fri Feb 23 02:37:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temperature rise Precision bearing-spindle system Transient thermal characteristics Fixed-position preload |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-fa400497e2d79a181aa8947f9ce7291e77796f8a96c604e5df5e5c570fbb07fa3 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_jmapro_2023_04_010 crossref_citationtrail_10_1016_j_jmapro_2023_04_010 elsevier_sciencedirect_doi_10_1016_j_jmapro_2023_04_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-30 |
PublicationDateYYYYMMDD | 2023-06-30 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Journal of manufacturing processes |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gao, Han, Pennacchi, Chatterton, Chu (bb0095) 2022 Palmgren (bb0040) 1959 Brown, Forster (bb0100) 2000 Li, Huang, Bi (bb0185) 2004 Harris, Kotzalas (bb0195) 2006 Song (bb0110) 2017 Harris, Kotzalas (bb0160) 2006 Pouly, Changenet, Ville, Velex, Damien (bb0200) 2010; 224 Zheng, Chen, Li (bb0085) 2018; 131 Burton, Staph (bb0045) 1967; 10 Li, Lv, Yan, Liu, Hong (bb0005) 2017; 114 Jiang (bb0010) 2001 Cao, Li, Chen, He (bb0175) 2012; 48 Yu, Li, Yuan, Chen (bb0015) 2018; 33 Yan, Hong, Zhang, Mi, Wu (bb0070) 2016; 104 Zheng, Chen (bb0080) 2017; 109 Liu, Zhang, Li, Li (bb0150) 2021; 105 Chen, Wang, Gu, Zheng (bb0060) 2007; 22 Yuksel, Budak, Ozlu, Oral, Igrek, Tosun (bb0115) 2021 Jones (bb0190) 1959; 81 Wang, Yan, Zhang, Zhu, Hong (bb0035) 2023; 185 Yan, Wang, Zhai, Zhu, Zhang, Niu (bb0105) 2015; 84 Chen, Zhang (bb0120) 2021 Su, Chen (bb0145) 2021; 72 Rumbarger, Filetti, Gubernick (bb0055) 1973; 95 Gao, Han, Chu (bb0025) 2022; 58 Bossmanns, Tu (bb0140) 1999; 39 Fang, Zhang, Hong, Yan (bb0155) 2023; 11 Yang, Tao (bb0180) 2006 Takabi, Khonsari (bb0065) 2013; 60 Kim, Lee (bb0130) 2001; 41 Harris, Mindel (bb0050) 1973; 23 Bossmanns, Tu (bb0135) 2001; 123 Wang, Sheng, Luo (bb0125) 2021; 35 SKF (bb0165) 1997 Li, Yung (bb0170) 2004; 44 NSK (bb0215) Harris, Mindel (bb0205) 1973; 73 Muzychka, Yovanovitch (bb0210) 2001; 123 Wang, Yan, Ma, Hong (bb0030) 2022; 37 Gloeckner, Sebald, Bakolas (bb0020) 2009; 52 Zheng, Chen (bb0090) 2020; 145 Rumbarger (10.1016/j.jmapro.2023.04.010_bb0055) 1973; 95 Takabi (10.1016/j.jmapro.2023.04.010_bb0065) 2013; 60 Su (10.1016/j.jmapro.2023.04.010_bb0145) 2021; 72 Harris (10.1016/j.jmapro.2023.04.010_bb0160) 2006 Harris (10.1016/j.jmapro.2023.04.010_bb0050) 1973; 23 Liu (10.1016/j.jmapro.2023.04.010_bb0150) 2021; 105 Jiang (10.1016/j.jmapro.2023.04.010_bb0010) 2001 Zheng (10.1016/j.jmapro.2023.04.010_bb0080) 2017; 109 SKF (10.1016/j.jmapro.2023.04.010_bb0165) 1997 Fang (10.1016/j.jmapro.2023.04.010_bb0155) 2023; 11 Harris (10.1016/j.jmapro.2023.04.010_bb0195) 2006 Wang (10.1016/j.jmapro.2023.04.010_bb0030) 2022; 37 Yu (10.1016/j.jmapro.2023.04.010_bb0015) 2018; 33 NSK (10.1016/j.jmapro.2023.04.010_bb0215) Chen (10.1016/j.jmapro.2023.04.010_bb0060) 2007; 22 Palmgren (10.1016/j.jmapro.2023.04.010_bb0040) 1959 Bossmanns (10.1016/j.jmapro.2023.04.010_bb0135) 2001; 123 Wang (10.1016/j.jmapro.2023.04.010_bb0035) 2023; 185 Yan (10.1016/j.jmapro.2023.04.010_bb0105) 2015; 84 Burton (10.1016/j.jmapro.2023.04.010_bb0045) 1967; 10 Muzychka (10.1016/j.jmapro.2023.04.010_bb0210) 2001; 123 Chen (10.1016/j.jmapro.2023.04.010_bb0120) 2021 Zheng (10.1016/j.jmapro.2023.04.010_bb0085) 2018; 131 Gao (10.1016/j.jmapro.2023.04.010_bb0025) 2022; 58 Cao (10.1016/j.jmapro.2023.04.010_bb0175) 2012; 48 Jones (10.1016/j.jmapro.2023.04.010_bb0190) 1959; 81 Yang (10.1016/j.jmapro.2023.04.010_bb0180) 2006 Li (10.1016/j.jmapro.2023.04.010_bb0170) 2004; 44 Pouly (10.1016/j.jmapro.2023.04.010_bb0200) 2010; 224 Wang (10.1016/j.jmapro.2023.04.010_bb0125) 2021; 35 Bossmanns (10.1016/j.jmapro.2023.04.010_bb0140) 1999; 39 Li (10.1016/j.jmapro.2023.04.010_bb0005) 2017; 114 Li (10.1016/j.jmapro.2023.04.010_bb0185) 2004 Gao (10.1016/j.jmapro.2023.04.010_bb0095) 2022 Gloeckner (10.1016/j.jmapro.2023.04.010_bb0020) 2009; 52 Kim (10.1016/j.jmapro.2023.04.010_bb0130) 2001; 41 Brown (10.1016/j.jmapro.2023.04.010_bb0100) 2000 Song (10.1016/j.jmapro.2023.04.010_bb0110) 2017 Harris (10.1016/j.jmapro.2023.04.010_bb0205) 1973; 73 Yan (10.1016/j.jmapro.2023.04.010_bb0070) 2016; 104 Zheng (10.1016/j.jmapro.2023.04.010_bb0090) 2020; 145 Yuksel (10.1016/j.jmapro.2023.04.010_bb0115) 2021 |
References_xml | – volume: 95 start-page: 401 year: 1973 end-page: 416 ident: bb0055 article-title: Gas turbine engine mainshaft roller bearing-system analysis publication-title: J Lubr Technol – ident: bb0215 article-title: Super precision bearings – volume: 48 start-page: 59 year: 2012 end-page: 64 ident: bb0175 article-title: Centrifugal expansion of high-speed spindle and its influences on bearing dynamic characteristics publication-title: Jixie Gongcheng Xuebao/ChinJ Mech Eng – volume: 23 start-page: 311 year: 1973 end-page: 337 ident: bb0050 article-title: Rolling element bearing dynamics publication-title: Wear – volume: 224 start-page: 925 year: 2010 end-page: 933 ident: bb0200 article-title: Investigations on the power losses and thermal behaviour of rolling element bearings publication-title: Proc Inst Mech Eng J-J Eng – volume: 185 year: 2023 ident: bb0035 article-title: A comprehensive study on dynamic performance of ball bearing considering bearing deformations and ball-inner raceway separation publication-title: Mech Syst Signal Process – start-page: 1268 year: 2000 end-page: 1275 ident: bb0100 article-title: Operating temperatures in mist lubricated rolling element bearings for gas turbines publication-title: 35th Intersociety Energy Conversion Engineering Conference and Exhibit, New Jersey – volume: 123 start-page: 494 year: 2001 end-page: 505 ident: bb0135 article-title: A power flow model for high speed motorized spindles-heat generation characterization publication-title: ASMEJ Manuf Sci Eng – volume: 52 start-page: 534 year: 2009 end-page: 543 ident: bb0020 article-title: An approach to understanding micro-spalling in high-speed ball bearings using a thermal elastohydrodynamic model publication-title: Tribol Trans – volume: 131 start-page: 328 year: 2018 end-page: 339 ident: bb0085 article-title: An optimized thermal network model to estimate thermal performances on a pair of angular contact ball bearings under oil-air lubrication publication-title: Appl Therm Eng – year: 2017 ident: bb0110 article-title: Analysis on temperature field and thermo-stress coupling of high speed angular contact ball bearing with spin heat generation – volume: 41 start-page: 809 year: 2001 end-page: 831 ident: bb0130 article-title: Prediction of thermoplastic behavior in a spindle-bearing system considering bearing surroundings publication-title: Int J Mach Tool Manuf – year: 2006 ident: bb0160 article-title: Rolling bearing analysis: essential concepts of bearing technology – volume: 114 start-page: 221 year: 2017 end-page: 233 ident: bb0005 article-title: Study on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly publication-title: Appl Therm Eng – year: 1997 ident: bb0165 article-title: General catalog 4000US – volume: 109 start-page: 593 year: 2017 end-page: 601 ident: bb0080 article-title: Thermal performances on angular contact ball bearing of high-speed spindle considering structural constraints under oil-air lubrication publication-title: Tribol Int – volume: 22 start-page: 163 year: 2007 end-page: 168 ident: bb0060 article-title: Heating analysis of the high speed ball bearing publication-title: Hangkong Dongli Xuebao/J AerospPower – volume: 145 year: 2020 ident: bb0090 article-title: Effect of structure and assembly constraints on temperature of high-speed angular contact ball bearings with thermal network method publication-title: Mech Syst Signal Process – year: 2021 ident: bb0115 article-title: Prediction of thermal growth in a high-speed spindle by considering thermo-mechanical behavior publication-title: MM Sci J – year: 2004 ident: bb0185 article-title: Theoretical analysis and application of thermal stress – volume: 35 start-page: 669 year: 2021 end-page: 678 ident: bb0125 article-title: Thermal-mechanical fully coupled analysis of high-speed angular contact ball bearings publication-title: J Mech Sci Technol – year: 2006 ident: bb0180 article-title: Heat transfer – volume: 81 start-page: 1 year: 1959 end-page: 12 ident: bb0190 article-title: Ball motion and sliding friction in ball bearing publication-title: J Basic Eng – year: 2021 ident: bb0120 article-title: Flow-heat-solid coupling thermal deformation analysis of hydrostatic spindle under viscosity temperature effect – volume: 72 start-page: 483 year: 2021 end-page: 499 ident: bb0145 article-title: Thermal behavior on motorized spindle considering bearing thermal deformation under oil-air lubrication publication-title: J Manuf Process – volume: 58 start-page: 87 year: 2022 end-page: 97 ident: bb0025 article-title: Analysis of dynamic characteristics and skidding state of angular contact bearing by thermo-hydro-elasto-dynamic coupling mode publication-title: Jixie Gongcheng Xuebao/Chin. J. Mech. Eng – year: 1959 ident: bb0040 article-title: Ball and roller bearing engineering – volume: 37 start-page: 1134 year: 2022 end-page: 1149 ident: bb0030 article-title: Evolutionary regularity of dynamic characteristics for precision angular contact ball bearing under combined loads publication-title: Hangkong Dongli Xuebao/J Aerosp Power – volume: 104 start-page: 1 year: 2016 end-page: 12 ident: bb0070 article-title: Thermal-deformation coupling in thermal network for transient analysis of spindle-bearing system publication-title: Int J Therm Sci – volume: 73 start-page: 311 year: 1973 end-page: 337 ident: bb0205 article-title: Rolling element bearing dynamics publication-title: Wear – volume: 33 start-page: 477 year: 2018 end-page: 486 ident: bb0015 article-title: Dynamic property of spindle bearing considering the effect of thermal deformation publication-title: Hangkong Dongli Xuebao/J Aerosp. Power – volume: 105 start-page: 131 year: 2021 end-page: 166 ident: bb0150 article-title: Nonlinear dynamic analysis of CNC lathe spindle-bearing system considering thermal effect publication-title: Nonlinear Dyn – volume: 10 start-page: 408 year: 1967 end-page: 417 ident: bb0045 article-title: Thermally activated seizure of angular contact bearings publication-title: Tribol Trans – volume: 123 start-page: 624 year: 2001 end-page: 632 ident: bb0210 article-title: Thermal resistance of model for non-circular moving heat sources on a half space publication-title: J Heat Transf – volume: 44 start-page: 347 year: 2004 end-page: 364 ident: bb0170 article-title: Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model publication-title: Int J Mach Tool Manuf – year: 2001 ident: bb0010 article-title: Study on heat characteristics of spindle bearings and influences on speed and dynamics – volume: 84 start-page: 1119 year: 2015 end-page: 1130 ident: bb0105 article-title: Theoretical and experimental investigation on the thermal characteristics of double-row tapered roller bearings of high speed locomotive publication-title: Int J Heat Mass Transf – volume: 11 start-page: 44 year: 2023 ident: bb0155 article-title: Research on the nonlinear stiffness characteristics of double−row angular contact ball bearings under different working conditions publication-title: Lubricants – volume: 60 start-page: 93 year: 2013 end-page: 103 ident: bb0065 article-title: Experimental testing and thermal analysis of ball bearings publication-title: Tribol Int – year: 2022 ident: bb0095 article-title: Dynamic, thermal, and vibrational analysis of ball bearings with over-skidding behavior publication-title: Friction – year: 2006 ident: bb0195 article-title: Rolling bearing analysis: advanced concepts of bearing technology – volume: 39 start-page: 1345 year: 1999 end-page: 1366 ident: bb0140 article-title: A thermal model for high speed motorized spindles publication-title: Int J Mach Tool Manuf – year: 2006 ident: 10.1016/j.jmapro.2023.04.010_bb0195 – year: 1997 ident: 10.1016/j.jmapro.2023.04.010_bb0165 – volume: 58 start-page: 87 year: 2022 ident: 10.1016/j.jmapro.2023.04.010_bb0025 article-title: Analysis of dynamic characteristics and skidding state of angular contact bearing by thermo-hydro-elasto-dynamic coupling mode publication-title: Jixie Gongcheng Xuebao/Chin. J. Mech. Eng doi: 10.3901/JME.2022.09.087 – volume: 114 start-page: 221 year: 2017 ident: 10.1016/j.jmapro.2023.04.010_bb0005 article-title: Study on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.194 – volume: 145 year: 2020 ident: 10.1016/j.jmapro.2023.04.010_bb0090 article-title: Effect of structure and assembly constraints on temperature of high-speed angular contact ball bearings with thermal network method publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.106929 – start-page: 1268 year: 2000 ident: 10.1016/j.jmapro.2023.04.010_bb0100 article-title: Operating temperatures in mist lubricated rolling element bearings for gas turbines – year: 2021 ident: 10.1016/j.jmapro.2023.04.010_bb0120 – volume: 73 start-page: 311 year: 1973 ident: 10.1016/j.jmapro.2023.04.010_bb0205 article-title: Rolling element bearing dynamics publication-title: Wear doi: 10.1016/0043-1648(73)90020-3 – year: 2006 ident: 10.1016/j.jmapro.2023.04.010_bb0160 – year: 1959 ident: 10.1016/j.jmapro.2023.04.010_bb0040 – volume: 109 start-page: 593 year: 2017 ident: 10.1016/j.jmapro.2023.04.010_bb0080 article-title: Thermal performances on angular contact ball bearing of high-speed spindle considering structural constraints under oil-air lubrication publication-title: Tribol Int doi: 10.1016/j.triboint.2017.01.035 – volume: 22 start-page: 163 year: 2007 ident: 10.1016/j.jmapro.2023.04.010_bb0060 article-title: Heating analysis of the high speed ball bearing publication-title: Hangkong Dongli Xuebao/J AerospPower – volume: 131 start-page: 328 year: 2018 ident: 10.1016/j.jmapro.2023.04.010_bb0085 article-title: An optimized thermal network model to estimate thermal performances on a pair of angular contact ball bearings under oil-air lubrication publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.12.019 – volume: 95 start-page: 401 year: 1973 ident: 10.1016/j.jmapro.2023.04.010_bb0055 article-title: Gas turbine engine mainshaft roller bearing-system analysis publication-title: J Lubr Technol doi: 10.1115/1.3451843 – volume: 23 start-page: 311 year: 1973 ident: 10.1016/j.jmapro.2023.04.010_bb0050 article-title: Rolling element bearing dynamics publication-title: Wear doi: 10.1016/0043-1648(73)90020-3 – volume: 60 start-page: 93 year: 2013 ident: 10.1016/j.jmapro.2023.04.010_bb0065 article-title: Experimental testing and thermal analysis of ball bearings publication-title: Tribol Int doi: 10.1016/j.triboint.2012.10.009 – volume: 33 start-page: 477 year: 2018 ident: 10.1016/j.jmapro.2023.04.010_bb0015 article-title: Dynamic property of spindle bearing considering the effect of thermal deformation publication-title: Hangkong Dongli Xuebao/J Aerosp. Power – ident: 10.1016/j.jmapro.2023.04.010_bb0215 – volume: 104 start-page: 1 year: 2016 ident: 10.1016/j.jmapro.2023.04.010_bb0070 article-title: Thermal-deformation coupling in thermal network for transient analysis of spindle-bearing system publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2015.12.007 – year: 2022 ident: 10.1016/j.jmapro.2023.04.010_bb0095 article-title: Dynamic, thermal, and vibrational analysis of ball bearings with over-skidding behavior publication-title: Friction – volume: 84 start-page: 1119 year: 2015 ident: 10.1016/j.jmapro.2023.04.010_bb0105 article-title: Theoretical and experimental investigation on the thermal characteristics of double-row tapered roller bearings of high speed locomotive publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.11.057 – year: 2006 ident: 10.1016/j.jmapro.2023.04.010_bb0180 – volume: 224 start-page: 925 year: 2010 ident: 10.1016/j.jmapro.2023.04.010_bb0200 article-title: Investigations on the power losses and thermal behaviour of rolling element bearings publication-title: Proc Inst Mech Eng J-J Eng doi: 10.1243/13506501JET695 – volume: 39 start-page: 1345 year: 1999 ident: 10.1016/j.jmapro.2023.04.010_bb0140 article-title: A thermal model for high speed motorized spindles publication-title: Int J Mach Tool Manuf doi: 10.1016/S0890-6955(99)00005-X – year: 2004 ident: 10.1016/j.jmapro.2023.04.010_bb0185 – volume: 105 start-page: 131 year: 2021 ident: 10.1016/j.jmapro.2023.04.010_bb0150 article-title: Nonlinear dynamic analysis of CNC lathe spindle-bearing system considering thermal effect publication-title: Nonlinear Dyn doi: 10.1007/s11071-021-06613-x – volume: 72 start-page: 483 year: 2021 ident: 10.1016/j.jmapro.2023.04.010_bb0145 article-title: Thermal behavior on motorized spindle considering bearing thermal deformation under oil-air lubrication publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.10.041 – year: 2017 ident: 10.1016/j.jmapro.2023.04.010_bb0110 – year: 2021 ident: 10.1016/j.jmapro.2023.04.010_bb0115 article-title: Prediction of thermal growth in a high-speed spindle by considering thermo-mechanical behavior publication-title: MM Sci J doi: 10.17973/MMSJ.2021_7_2021055 – volume: 123 start-page: 624 year: 2001 ident: 10.1016/j.jmapro.2023.04.010_bb0210 article-title: Thermal resistance of model for non-circular moving heat sources on a half space publication-title: J Heat Transf doi: 10.1115/1.1370516 – volume: 185 year: 2023 ident: 10.1016/j.jmapro.2023.04.010_bb0035 article-title: A comprehensive study on dynamic performance of ball bearing considering bearing deformations and ball-inner raceway separation publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109826 – volume: 41 start-page: 809 year: 2001 ident: 10.1016/j.jmapro.2023.04.010_bb0130 article-title: Prediction of thermoplastic behavior in a spindle-bearing system considering bearing surroundings publication-title: Int J Mach Tool Manuf doi: 10.1016/S0890-6955(00)00103-6 – volume: 11 start-page: 44 year: 2023 ident: 10.1016/j.jmapro.2023.04.010_bb0155 article-title: Research on the nonlinear stiffness characteristics of double−row angular contact ball bearings under different working conditions publication-title: Lubricants doi: 10.3390/lubricants11020044 – year: 2001 ident: 10.1016/j.jmapro.2023.04.010_bb0010 – volume: 123 start-page: 494 year: 2001 ident: 10.1016/j.jmapro.2023.04.010_bb0135 article-title: A power flow model for high speed motorized spindles-heat generation characterization publication-title: ASMEJ Manuf Sci Eng doi: 10.1115/1.1349555 – volume: 52 start-page: 534 year: 2009 ident: 10.1016/j.jmapro.2023.04.010_bb0020 article-title: An approach to understanding micro-spalling in high-speed ball bearings using a thermal elastohydrodynamic model publication-title: Tribol Trans doi: 10.1080/10402000902774267 – volume: 44 start-page: 347 year: 2004 ident: 10.1016/j.jmapro.2023.04.010_bb0170 article-title: Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model publication-title: Int J Mach Tool Manuf doi: 10.1016/j.ijmachtools.2003.10.011 – volume: 37 start-page: 1134 year: 2022 ident: 10.1016/j.jmapro.2023.04.010_bb0030 article-title: Evolutionary regularity of dynamic characteristics for precision angular contact ball bearing under combined loads publication-title: Hangkong Dongli Xuebao/J Aerosp Power – volume: 10 start-page: 408 year: 1967 ident: 10.1016/j.jmapro.2023.04.010_bb0045 article-title: Thermally activated seizure of angular contact bearings publication-title: Tribol Trans – volume: 48 start-page: 59 year: 2012 ident: 10.1016/j.jmapro.2023.04.010_bb0175 article-title: Centrifugal expansion of high-speed spindle and its influences on bearing dynamic characteristics publication-title: Jixie Gongcheng Xuebao/ChinJ Mech Eng doi: 10.3901/JME.2012.19.059 – volume: 81 start-page: 1 year: 1959 ident: 10.1016/j.jmapro.2023.04.010_bb0190 article-title: Ball motion and sliding friction in ball bearing publication-title: J Basic Eng doi: 10.1115/1.4008346 – volume: 35 start-page: 669 year: 2021 ident: 10.1016/j.jmapro.2023.04.010_bb0125 article-title: Thermal-mechanical fully coupled analysis of high-speed angular contact ball bearings publication-title: J Mech Sci Technol doi: 10.1007/s12206-021-0127-x |
SSID | ssj0012401 |
Score | 2.3802042 |
Snippet | Estimating the thermal properties of the precision bearing-spindle system is essential for machine tool operating accuracy and service life. To predict... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Fixed-position preload Precision bearing-spindle system Temperature rise Transient thermal characteristics |
Title | Transient thermal properties investigation for precision bearing-spindle system considering fixed-position preload and lubricant viscosity-temperature effect |
URI | https://dx.doi.org/10.1016/j.jmapro.2023.04.010 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MHrtmmyySbHUixVsRct9BZ2kw2ktGloU9GL_8T_6kyyqRVEwWOyMyHsTOabDTPfEHIDKTePba1YDNZlHA5fLHB8zTQXcddTgOElmc7jyBuO-f3EnTRIv-6FwbJKE_urmF5Ga3OnY3azk6dp5wmQx0N8hiQawnBJKMm5QC9vv2_KPAC-rIoz1fYYStftc2WN13QuIU61cYR4SXiKfbQ_wdMW5AwOyL7JFWmvep1D0tDZEdnbYhA8Jh8l1mBPI8VMbg7iOf5eXyJPKk2_SDQWGYX0FBbNTB2qwMXhEWyVp8izQCtKZxqZAZ6wRJP0VcesLutC3dlCxlRmMZ2tVRlAC_qSriKUeGPIcmUommlVJnJCxoPb5_6QmYkLLIKjQ8ESiZ90ILQdi0AC-EvpB1wkQaQhCe9qIUTgJb4MvMizuHbjxNVu5AorUcoSiXROSTNbZPqMUGUD9rmJ07Utn3NbKaW51mCNSLt4TDknTr3RYWToyHEqxiys686mYWWeEM0TWjwE85wTttHKKzqOP-RFbcPwm1uFgBi_al78W_OS7OJVVVR4RZrFcq2vIXMpVKt0zRbZ6d09DEefzp3y9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVQGYAB8SnKpwdW0zRx4mRECNTS0oUisVm240hBJa3aguDH8F-5S5xSJAQSa-yLIp9z7zm5e0fIOVBunvpWsxS8yzgcvlgSxJZZLtJ2pAHDSzGdu0HUeeC3j-HjCrmqa2EwrdLF_iqml9HaXWm51WxN8rx1D8gTIT4DiYYwjIKSq6hOFTbI6mW31xksfiYAaFWyqX7E0KCuoCvTvJ6eFYSqC-wiXmqeYintTwi1hDo3W2TT0UV6WT3RNlmxxQ7ZWBIR3CUfJdxgWSNFMvcM0yf4hX2KUqk0_9LRGBcUGCoMurY6VMMuh1uw2SRHqQVaqTpT43p4whDN8jebsjqzC21HY5VSVaR09KLLGDqnr_nM4Ix3hkJXTqWZVpkie-Th5np41WGu6QIzcHqYs0zhW50I66ciUYD_SsUJF1liLPDwthVCJFEWqyQykcdtmGahDU0ovExrT2Qq2CeNYlzYA0K1D_AXZkHb92LOfa215daCN4wN8aTSJEG90NI4RXJsjDGSderZk6zcI9E90uMS3NMkbGE1qRQ5_pgvah_KbztLAmj8ann4b8szstYZ3vVlvzvoHZF1HKlyDI9JYz59sSdAZOb61G3UTxQC9ac |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+thermal+properties+investigation+for+precision+bearing-spindle+system+considering+fixed-position+preload+and+lubricant+viscosity-temperature+effect&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Zhang%2C+Xiaohong&rft.au=Chen%2C+Xiaoming&rft.au=Yan%2C+Ke&rft.au=Chen%2C+Xuehang&rft.date=2023-06-30&rft.pub=Elsevier+Ltd&rft.issn=1526-6125&rft.eissn=2212-4616&rft.volume=96&rft.spage=41&rft.epage=53&rft_id=info:doi/10.1016%2Fj.jmapro.2023.04.010&rft.externalDocID=S1526612523003602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon |