Two-pion interferometry for viscous hydrodynamic sources
The space-time evolution of the (1+1)-dimensional viscous hydrodynamics with an initial quarkgluon plasma (QGP) produced in ultrarelativistic heavy ion collisions is studied numerically. The particleemitting sources undergo a crossover transition from the QGP to hadronic gas. We take into account a...
Saved in:
Published in | Chinese physics C Vol. 36; no. 5; pp. 410 - 422 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.05.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1137 0254-3052 |
DOI | 10.1088/1674-1137/36/5/006 |
Cover
Summary: | The space-time evolution of the (1+1)-dimensional viscous hydrodynamics with an initial quarkgluon plasma (QGP) produced in ultrarelativistic heavy ion collisions is studied numerically. The particleemitting sources undergo a crossover transition from the QGP to hadronic gas. We take into account a usual shear viscosity for the strongly coupled QGP as well as the bulk viscosity which increases significantly in the crossover region. The two-pion Hanbury-Brown-Twiss (HBT) interferometry for the viscous hydrodynamic sources is performed. The HBT analyses indicate that the viscosity effect on the two-pion HBT results is small if only the shear viscosity is taken into consideration in the calculations. The bulk viscosity leads to a larger transverse freeze-out configuration of the pion-emitting sources, and thus increases the transverse HBT radii. The results of the longitudinal HBT radius for the source with Bjorken longitudinal scaling are consistent with the experimental data. |
---|---|
Bibliography: | Efaaf M. J. 1 SU Zhong-Qian1 ZHANG Wei-Ning1,2;1) 1 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China 2 Department of Physics, Harbin Institute of Technology, Harbin 150006, China 11-5641/O4 The space-time evolution of the (1+1)-dimensional viscous hydrodynamics with an initial quarkgluon plasma (QGP) produced in ultrarelativistic heavy ion collisions is studied numerically. The particleemitting sources undergo a crossover transition from the QGP to hadronic gas. We take into account a usual shear viscosity for the strongly coupled QGP as well as the bulk viscosity which increases significantly in the crossover region. The two-pion Hanbury-Brown-Twiss (HBT) interferometry for the viscous hydrodynamic sources is performed. The HBT analyses indicate that the viscosity effect on the two-pion HBT results is small if only the shear viscosity is taken into consideration in the calculations. The bulk viscosity leads to a larger transverse freeze-out configuration of the pion-emitting sources, and thus increases the transverse HBT radii. The results of the longitudinal HBT radius for the source with Bjorken longitudinal scaling are consistent with the experimental data. two-pion interferometry; viscous hydrodynamic sources; bulk viscosity; shear viscosity ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/36/5/006 |