The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry

[Display omitted] •Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with metal ions in surface belongs to hetero-coordination.•Spin state and polarizability of metal ions in surface determine the properties of bonding...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 171; p. 107067
Main Author Chen, Jianhua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2021
Subjects
Online AccessGet full text
ISSN0892-6875
1872-9444
DOI10.1016/j.mineng.2021.107067

Cover

Loading…
Abstract [Display omitted] •Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with metal ions in surface belongs to hetero-coordination.•Spin state and polarizability of metal ions in surface determine the properties of bonding with reagents.•Unoccupied π orbitals of a depressant molecule play an important role in its depressing power.•CFSE enhances the stability of reagents adsorbing on surface. The selective interaction between reagents and mineral surfaces is the core basis of mineral flotation separation. This paper creatively proposes a perspective from coordination chemistry to clarify the interaction mechanism of reagents with mineral surfaces systematically and profoundly. The metal ion in mineral surface is far different from the free ion. The former is in a semi-constrained state, causing the properties of surface metal ions to be greatly affected by surface structures and properties of surrounding atoms. Based on coordination chemistry, the π-backbonding model is advanced for the interaction between sulfhydryl collectors and sulphide minerals. It is of interest that with more π electron pairs, the surface metal ion is more likely to interact with sulfhydryl collectors containing unoccupied π orbitals; with greater polarizability, the metal ion is more prone to covalent interactions with sulfhydryl collectors. In addition, the unoccupied orbitals play a crucial role in selectivity of depressants. For example, the depressants NaCN and Ca(OH)+ containing unoccupied π orbitals can strongly depress pyrite holding π electron pairs, but can hardly depress galena possessing no π electron pair. Furthermore, the crystal field stabilization energy resulting from the interaction between reagents and surface metal ions can influence the stability of reagent adsorption, and can adequately explain the order of flotation critical pH for sulphide minerals. The coordination theory sheds new light on the interaction mechanism between flotation reagents and mineral surfaces.
AbstractList [Display omitted] •Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with metal ions in surface belongs to hetero-coordination.•Spin state and polarizability of metal ions in surface determine the properties of bonding with reagents.•Unoccupied π orbitals of a depressant molecule play an important role in its depressing power.•CFSE enhances the stability of reagents adsorbing on surface. The selective interaction between reagents and mineral surfaces is the core basis of mineral flotation separation. This paper creatively proposes a perspective from coordination chemistry to clarify the interaction mechanism of reagents with mineral surfaces systematically and profoundly. The metal ion in mineral surface is far different from the free ion. The former is in a semi-constrained state, causing the properties of surface metal ions to be greatly affected by surface structures and properties of surrounding atoms. Based on coordination chemistry, the π-backbonding model is advanced for the interaction between sulfhydryl collectors and sulphide minerals. It is of interest that with more π electron pairs, the surface metal ion is more likely to interact with sulfhydryl collectors containing unoccupied π orbitals; with greater polarizability, the metal ion is more prone to covalent interactions with sulfhydryl collectors. In addition, the unoccupied orbitals play a crucial role in selectivity of depressants. For example, the depressants NaCN and Ca(OH)+ containing unoccupied π orbitals can strongly depress pyrite holding π electron pairs, but can hardly depress galena possessing no π electron pair. Furthermore, the crystal field stabilization energy resulting from the interaction between reagents and surface metal ions can influence the stability of reagent adsorption, and can adequately explain the order of flotation critical pH for sulphide minerals. The coordination theory sheds new light on the interaction mechanism between flotation reagents and mineral surfaces.
ArticleNumber 107067
Author Chen, Jianhua
Author_xml – sequence: 1
  givenname: Jianhua
  surname: Chen
  fullname: Chen, Jianhua
  email: jhchen@gxu.edu.cn
  organization: School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
BookMark eNqFkMtKAzEUhoMo2FbfwEVeYGpuM5l2IZTiDQpu6jqkmZM2ZSYpSaz07Z06rlzo6vAf-P7D-cbo0gcPCN1RMqWEVvf7aec8-O2UEUb7lSSVvEAjWktWzIQQl2hE6hkrqlqW12ic0p4QUsp6NkJ5vQPsfIaoTXbB42CxbUPW3yGC3oLPCX-6vMMdZN3ifp96Ap9Pxj6nj2i1gTTHC3yAmA7QFx0B2xg6bEKIjfNDm9lB51KOpxt0ZXWb4PZnTtD70-N6-VKs3p5fl4tVYTipcmFrDlzwShBobKMZbBiXFSs151VJSU1Euam5ZCWpDQdbUWik1FrTckZLwQSfIDH0mhhSimDVIbpOx5OiRJ3Nqb0azKmzOTWY67H5L8y4QUiO2rX_wQ8DDP1jRwdRJePAG2hc7M2oJri_C74AOuOQOg
CitedBy_id crossref_primary_10_1016_j_molliq_2022_120485
crossref_primary_10_1016_j_psep_2022_07_039
crossref_primary_10_1016_j_apsusc_2021_151379
crossref_primary_10_1016_j_mineng_2024_108667
crossref_primary_10_1016_j_mineng_2023_108393
crossref_primary_10_3390_min13020200
crossref_primary_10_1016_j_seppur_2023_125831
crossref_primary_10_3390_pr10071381
crossref_primary_10_1039_D3RA03401A
crossref_primary_10_1016_S1003_6326_23_66178_3
crossref_primary_10_1016_j_apsusc_2023_157810
crossref_primary_10_1016_j_molliq_2022_119245
crossref_primary_10_1002_ange_202415051
crossref_primary_10_1016_j_apsusc_2022_153672
crossref_primary_10_3390_molecules29245882
crossref_primary_10_1016_j_mineng_2025_109192
crossref_primary_10_1016_j_seppur_2023_124919
crossref_primary_10_1016_j_colsurfa_2021_127920
crossref_primary_10_1016_j_mineng_2022_107469
crossref_primary_10_1016_j_surfin_2023_102820
crossref_primary_10_1016_j_apsusc_2024_160300
crossref_primary_10_1016_j_ijmst_2021_11_012
crossref_primary_10_1016_j_mineng_2022_107465
crossref_primary_10_1016_j_mineng_2024_109013
crossref_primary_10_1016_j_molliq_2022_120819
crossref_primary_10_1016_j_susc_2023_122419
crossref_primary_10_1016_j_mineng_2024_108839
crossref_primary_10_1021_acsomega_3c02009
crossref_primary_10_1016_j_molliq_2022_119879
crossref_primary_10_1016_j_seppur_2023_123268
crossref_primary_10_1016_j_colsurfa_2022_129613
crossref_primary_10_1007_s11705_022_2235_2
crossref_primary_10_1016_j_mineng_2022_107636
crossref_primary_10_1016_j_mineng_2022_107757
crossref_primary_10_20517_mmm_2023_12
crossref_primary_10_1016_j_colsurfa_2021_127954
crossref_primary_10_1016_j_mineng_2022_107478
crossref_primary_10_1016_j_mineng_2023_108402
crossref_primary_10_1016_j_mineng_2024_108651
crossref_primary_10_1016_j_apsusc_2022_154191
crossref_primary_10_1016_j_mineng_2021_107355
crossref_primary_10_1016_j_mineng_2024_109102
crossref_primary_10_1016_j_jre_2023_07_001
crossref_primary_10_3724_j_1000_4734_2024_44_003
crossref_primary_10_1155_2023_1660716
crossref_primary_10_3390_min12101271
crossref_primary_10_1016_j_apsusc_2022_155677
crossref_primary_10_1039_D3DT00366C
crossref_primary_10_1016_j_seppur_2023_125855
crossref_primary_10_1016_j_seppur_2024_128768
crossref_primary_10_1016_j_colsurfa_2021_127300
crossref_primary_10_1016_j_gsme_2024_05_003
crossref_primary_10_1016_j_surfin_2022_101973
crossref_primary_10_1016_j_mineng_2023_108117
crossref_primary_10_1016_j_mineng_2022_107520
crossref_primary_10_1016_S1003_6326_22_65977_6
crossref_primary_10_1016_j_apsusc_2025_162971
crossref_primary_10_1016_j_mineng_2023_108361
crossref_primary_10_3390_pr11010038
crossref_primary_10_1016_j_apsusc_2022_155703
crossref_primary_10_1016_j_jmrt_2022_11_001
crossref_primary_10_1016_j_colsurfa_2021_127571
crossref_primary_10_1016_j_apsusc_2024_161827
crossref_primary_10_1016_j_eurpolymj_2023_111852
crossref_primary_10_1016_j_jclepro_2023_137073
crossref_primary_10_1016_j_colsurfa_2022_129515
crossref_primary_10_1016_j_colsurfa_2023_131036
crossref_primary_10_1016_j_cej_2022_136350
crossref_primary_10_1016_j_apsusc_2023_156350
crossref_primary_10_1016_j_apsusc_2023_159181
crossref_primary_10_1016_j_mineng_2021_107375
crossref_primary_10_1016_j_cplett_2025_141870
crossref_primary_10_1016_j_scitotenv_2024_169969
crossref_primary_10_1016_j_mineng_2022_107893
crossref_primary_10_1016_j_mineng_2023_108102
crossref_primary_10_1080_2374068X_2022_2129225
crossref_primary_10_3390_min14111105
crossref_primary_10_3390_min14101026
crossref_primary_10_1016_j_apsusc_2022_153235
crossref_primary_10_1016_j_apsusc_2022_154963
crossref_primary_10_1016_j_exm_2025_02_001
crossref_primary_10_1016_j_psep_2024_08_039
crossref_primary_10_1016_j_mineng_2024_108629
crossref_primary_10_1016_j_molliq_2023_122906
crossref_primary_10_1016_j_seppur_2022_122993
crossref_primary_10_1016_j_molliq_2021_117560
crossref_primary_10_1016_j_apsusc_2023_156480
crossref_primary_10_1016_j_mineng_2022_107424
crossref_primary_10_1016_j_jmrt_2021_10_052
crossref_primary_10_1016_j_mineng_2022_107393
crossref_primary_10_1016_j_ijmst_2023_09_005
crossref_primary_10_1016_j_colsurfa_2024_134952
crossref_primary_10_1016_j_seppur_2024_126954
crossref_primary_10_1016_j_ijmst_2022_06_001
crossref_primary_10_1016_j_apsusc_2023_157723
crossref_primary_10_1016_j_jtice_2022_104221
crossref_primary_10_1016_j_molliq_2023_122885
crossref_primary_10_1016_j_apsusc_2024_159404
crossref_primary_10_1016_j_mineng_2025_109220
crossref_primary_10_1016_j_molliq_2022_120668
crossref_primary_10_1016_j_apt_2022_103695
crossref_primary_10_36790_epistemus_v18i37_377
crossref_primary_10_1016_j_mineng_2022_107710
crossref_primary_10_1080_19392699_2024_2438928
crossref_primary_10_1016_j_mineng_2022_107560
crossref_primary_10_1016_j_chemphys_2022_111668
crossref_primary_10_1016_j_colsurfa_2025_136229
crossref_primary_10_1016_j_inoche_2024_113528
crossref_primary_10_1016_j_molliq_2023_122756
crossref_primary_10_1016_j_molliq_2025_126918
crossref_primary_10_1016_j_powtec_2021_117040
crossref_primary_10_1021_acssuschemeng_1c05287
crossref_primary_10_3390_molecules30010147
crossref_primary_10_1016_j_surfin_2023_102884
crossref_primary_10_1016_j_chemphys_2022_111681
crossref_primary_10_1016_j_molliq_2024_124278
crossref_primary_10_1016_j_mineng_2022_107723
crossref_primary_10_1002_qua_27388
crossref_primary_10_1016_j_colsurfa_2022_130890
crossref_primary_10_1002_jssc_202300176
crossref_primary_10_1016_j_colsurfa_2022_130092
crossref_primary_10_1016_j_apsusc_2023_158080
crossref_primary_10_1016_j_mineng_2024_108734
crossref_primary_10_1016_j_mineng_2023_108281
crossref_primary_10_1016_j_molliq_2022_119977
crossref_primary_10_1002_anie_202415051
crossref_primary_10_1016_j_ijmst_2021_10_001
crossref_primary_10_1039_D3CP00039G
crossref_primary_10_1016_j_ijmst_2022_01_009
Cites_doi 10.1016/j.cej.2020.127176
10.1103/PhysRevLett.77.3865
10.1016/j.minpro.2010.11.001
10.1021/j100804a036
10.1016/j.mineng.2013.03.026
10.1063/1.1316015
10.1021/ie50539a056
10.1103/RevModPhys.64.1045
10.1103/PhysRevB.46.6671
10.1016/j.colsurfa.2017.01.061
10.1080/08827500008914176
10.1016/j.cplett.2011.06.078
10.1016/S0301-7516(03)00090-5
10.1063/1.458452
10.1021/j150478a002
10.1016/j.apsusc.2021.150137
10.1016/j.apsusc.2016.01.213
10.1071/CH9842403
10.1007/BF02644237
10.1016/j.chemgeo.2005.08.021
10.1071/CH9540146
10.1016/j.mineng.2010.07.005
10.1016/j.gca.2006.02.007
10.1016/S0301-7516(02)00130-8
10.1021/acs.jpcb.8b02717
10.1021/jp5000478
10.1007/978-981-4585-21-7_30
10.1111/j.1151-2916.1998.tb02679.x
10.1103/PhysRevB.16.1748
10.1103/PhysRevB.13.5188
10.1016/j.susc.2017.08.005
10.1016/j.mineng.2019.106020
10.1103/PhysRevB.41.7892
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2021.107067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2021_107067
S089268752100296X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
RIG
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c306t-f83e343640edfda2eb237625a3365108045b8372508c3ef61ed77aaa159154243
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Tue Jul 01 01:13:29 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Fri Feb 23 02:42:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords π-backbonding
Mineral surface
Reagent
Coordination chemistry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f83e343640edfda2eb237625a3365108045b8372508c3ef61ed77aaa159154243
ParticipantIDs crossref_primary_10_1016_j_mineng_2021_107067
crossref_citationtrail_10_1016_j_mineng_2021_107067
elsevier_sciencedirect_doi_10_1016_j_mineng_2021_107067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Allison, Goold, Nicol, Granville (b0005) 1972; 3
Chen, Long, Ye (b0025) 2014; 118
Vanderbilt (b0300) 1990; 41
Chen, Wang, Chen, Guo (b0035) 2011; 98
Cook, Nixon (b0065) 1950; 54
Gaudin (b0125) 1928; 79
Chena, Wang, Li, Liu, Liu, Zhao, Cui (b0030) 2021; 163
Mellgren (b0190) 1966; 235
Delley (b0080) 2000; 113
Ewans, L.E., Ewers, W.E., 1953. Recent developments in mineral dressing. (London), Ind. Eng. Chem. Inst. Min. Metall. 46, 2420.
Sutherland, K.L., Wark, I.W., 1955. Principles of flotation. Australasian Institute of Mining and Metallurgy.
Perdew, Burke, Ernezerhof (b0215) 1996; 77
Perdew, Chevary, Vosko, Jachson, Pederson, Singh, Fiolhais (b0220) 1992; 46
Kakovsky, I.A., 1957. Physicochemical properties of some flotation reagents and their salts with ions of heavy non-ferrous metals, in: Proceedings of the Second International Congress of Surface Activity, London. IV: 225-237.
Li, Chen, Jin (b0180) 2011; 511
Liu, Wen, Chen, Bai, Liu, Cao (b0185) 2013; 47
(Springer Series in Chemical Physics, pp. 621-646). Singapore: Springer Singapore.
Kakovsky, Grebnev (b0160) 1959; 5
Chenb, Liu, Chen (b0060) 2021; 165
Woods (b0325) 1971; 63
.
Fuerstenau (b0105) 1962
Fuerstenau (b0110) 1957; 208
Sun, C.Q., 2014. Compounds and nanocomposites: hetero-coordination. In
Relaxation of the Chemical Bond
Gaudin (b0120) 1957
Goh, Buckley, Lamb, Rosenberg, Moran (b0140) 2006; 70
Delley (b0075) 1990; 92
Foucaud, Badawi, Filippov, Filippova, Lebègue (b0095) 2018; 122
Wark, Cox (b0315) 1934; 112
Bulatovic (b0020) 2007
Pilipenko, Tananayko (b0225) 1988
Vacassy, Scholz-Odermatt, Dutta, Plummer, Houriet, Hofmann (b0295) 2010; 81
Souvi, Badawi, Virot, Cristol, Cantrel, Paul (b0265) 2017; 666
Ogwuegbu, Chileshe (b0200) 2000; 21
Chen, Xu, Chen (b0040) 2020
Chen, J.H., Zhu, Y.G., 2021. Study of semi-constrained properties of metal ions on mineral surface of flotation system. Journal of China University of Mining & Technology, 50(6), 1-8. (In Chinese) https://doi.org/10.13247/j.cnki.jcumt.001271.
Buckley, Woods (b0010) 1984; 37
Wark, I.W., 1994. The chemical basis of flotation, in: Proceedings of the Australasian Institute of Mining and Metallurgy. Parkville, Vic.: The Institute, 90, 61-72.
Foucaud, Canevesi, Celzard, Fierro, Badawi (b0100) 2021; 562
Glembotskii (b0135) 1981
Harada (b0150) 1964; 80
Taggart, Del Guidice, Ziehl (b0290) 1934; 112
Keller, C.H., Lewis, C.P., U.S. Pat., 1554216 and 1554220, 1925.
Sun (b0280) 2020
Chen, Chen, Guo (b0050) 2010; 23
Poling, Leja (b0230) 1963; 67
Gao, Li, Sun, Hu (b0115) 2017; 520
Salamy, Nixon (b0250) 1954; 7
Wark, Cox (b0310) 1934; 112
Pradip (b0235) 2003; 72
Reich, Becker (b0245) 2006; 225
Wang (b0305) 2008
Pack, Monkhorst (b0205) 1977; 16
Sarvaramini, Larachi, Hart (b0255) 2016; 367
Monkhorst, Pack (b0195) 1976; 13
Cui, Chen, Li, Chen, Zhao (b0070) 2020; 159
Rao, Finch (b0240) 2003; 69
Hounfodji, J.W., Kanhounnon, W.G., Kpotin, G., Atohoun, G.S., Lainé, J., Foucaud, Y., Badawi, M., 2020. Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem. Eng. J. (Lausanne, Switzerland: 1996), 407.
Payne, Teter, Allan, Arias, Joannopoulos (b0210) 1992; 64
Gaudin, A.M., Martin, J.S., 1928. Flotation fundamentals. Part 3. The flotation of the carbonates of copper: Malachite and Azurite. Univ. Utah US Bur. Mines, Tech. Pap. no. 5.
Foucaud, Badawi, Filippov, Filippova, Lebègue (b0090) 2019; 143
Perdew (10.1016/j.mineng.2021.107067_b0215) 1996; 77
Mellgren (10.1016/j.mineng.2021.107067_b0190) 1966; 235
Pack (10.1016/j.mineng.2021.107067_b0205) 1977; 16
Fuerstenau (10.1016/j.mineng.2021.107067_b0105) 1962
Taggart (10.1016/j.mineng.2021.107067_b0290) 1934; 112
Li (10.1016/j.mineng.2021.107067_b0180) 2011; 511
10.1016/j.mineng.2021.107067_b0130
Foucaud (10.1016/j.mineng.2021.107067_b0100) 2021; 562
Wang (10.1016/j.mineng.2021.107067_b0305) 2008
Reich (10.1016/j.mineng.2021.107067_b0245) 2006; 225
Gao (10.1016/j.mineng.2021.107067_b0115) 2017; 520
Cui (10.1016/j.mineng.2021.107067_b0070) 2020; 159
Pilipenko (10.1016/j.mineng.2021.107067_b0225) 1988
Woods (10.1016/j.mineng.2021.107067_b0325) 1971; 63
Chena (10.1016/j.mineng.2021.107067_b0030) 2021; 163
Glembotskii (10.1016/j.mineng.2021.107067_b0135) 1981
Gaudin (10.1016/j.mineng.2021.107067_b0120) 1957
Goh (10.1016/j.mineng.2021.107067_b0140) 2006; 70
Gaudin (10.1016/j.mineng.2021.107067_b0125) 1928; 79
10.1016/j.mineng.2021.107067_b0145
Salamy (10.1016/j.mineng.2021.107067_b0250) 1954; 7
Chen (10.1016/j.mineng.2021.107067_b0035) 2011; 98
Allison (10.1016/j.mineng.2021.107067_b0005) 1972; 3
Payne (10.1016/j.mineng.2021.107067_b0210) 1992; 64
Chen (10.1016/j.mineng.2021.107067_b0050) 2010; 23
Wark (10.1016/j.mineng.2021.107067_b0310) 1934; 112
Foucaud (10.1016/j.mineng.2021.107067_b0095) 2018; 122
Liu (10.1016/j.mineng.2021.107067_b0185) 2013; 47
Monkhorst (10.1016/j.mineng.2021.107067_b0195) 1976; 13
Rao (10.1016/j.mineng.2021.107067_b0240) 2003; 69
Kakovsky (10.1016/j.mineng.2021.107067_b0160) 1959; 5
Harada (10.1016/j.mineng.2021.107067_b0150) 1964; 80
Souvi (10.1016/j.mineng.2021.107067_b0265) 2017; 666
10.1016/j.mineng.2021.107067_b0155
Chen (10.1016/j.mineng.2021.107067_b0025) 2014; 118
Sun (10.1016/j.mineng.2021.107067_b0280) 2020
Chen (10.1016/j.mineng.2021.107067_b0040) 2020
Vacassy (10.1016/j.mineng.2021.107067_b0295) 2010; 81
10.1016/j.mineng.2021.107067_b0275
Wark (10.1016/j.mineng.2021.107067_b0315) 1934; 112
Delley (10.1016/j.mineng.2021.107067_b0075) 1990; 92
Vanderbilt (10.1016/j.mineng.2021.107067_b0300) 1990; 41
Perdew (10.1016/j.mineng.2021.107067_b0220) 1992; 46
Buckley (10.1016/j.mineng.2021.107067_b0010) 1984; 37
Ogwuegbu (10.1016/j.mineng.2021.107067_b0200) 2000; 21
Pradip (10.1016/j.mineng.2021.107067_b0235) 2003; 72
Cook (10.1016/j.mineng.2021.107067_b0065) 1950; 54
Delley (10.1016/j.mineng.2021.107067_b0080) 2000; 113
10.1016/j.mineng.2021.107067_b0045
10.1016/j.mineng.2021.107067_b0320
Chenb (10.1016/j.mineng.2021.107067_b0060) 2021; 165
Poling (10.1016/j.mineng.2021.107067_b0230) 1963; 67
Sarvaramini (10.1016/j.mineng.2021.107067_b0255) 2016; 367
Fuerstenau (10.1016/j.mineng.2021.107067_b0110) 1957; 208
Bulatovic (10.1016/j.mineng.2021.107067_b0020) 2007
10.1016/j.mineng.2021.107067_b0085
10.1016/j.mineng.2021.107067_b0285
10.1016/j.mineng.2021.107067_b0165
Foucaud (10.1016/j.mineng.2021.107067_b0090) 2019; 143
References_xml – volume: 80
  start-page: 669
  year: 1964
  end-page: 674
  ident: b0150
  article-title: Effects of oxidation of pyrrhotite, pyrite and marcasite on their flotation properties: fundamental studies on flotation of iron sulphide minerals (2nd Report)
  publication-title: J. Min. Inst. Japan.
– volume: 235
  start-page: 46
  year: 1966
  end-page: 59
  ident: b0190
  article-title: Heat of adsorption and surface reactions of potassium ethyl xanthate on galena
  publication-title: Trans. AIME
– volume: 562
  year: 2021
  ident: b0100
  article-title: Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 6
  year: 1959
  end-page: 10
  ident: b0160
  article-title: The concepts of flotation critical pH
  publication-title: Ore Dressing
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0215
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 63
  start-page: 68
  year: 1971
  ident: b0325
  article-title: Electrochemistry of sulphide flotation
  publication-title: Australian Mining
– volume: 118
  start-page: 11657
  year: 2014
  end-page: 11665
  ident: b0025
  article-title: Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: b0195
  article-title: Special points for Brillouin-zone integrations
  publication-title: Physical Review B
– volume: 122
  start-page: 6829
  year: 2018
  end-page: 6836
  ident: b0095
  article-title: Surface properties of fluorite in presence of water: an atomistic investigation
  publication-title: J. Phys. Chem. B
– volume: 79
  start-page: 50
  year: 1928
  end-page: 76
  ident: b0125
  article-title: Flotation mechanism, a discussion of the functions of floatation reagents
  publication-title: Trans. Am. Inst. Min. Metall. Eng.
– reference: Hounfodji, J.W., Kanhounnon, W.G., Kpotin, G., Atohoun, G.S., Lainé, J., Foucaud, Y., Badawi, M., 2020. Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem. Eng. J. (Lausanne, Switzerland: 1996), 407.
– volume: 3
  start-page: 2613
  year: 1972
  end-page: 2618
  ident: b0005
  article-title: A determination of the products of reaction between various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials
  publication-title: Metall. Mater. Trans. B.
– volume: 208
  start-page: 1365
  year: 1957
  end-page: 1367
  ident: b0110
  article-title: Correlation of contact angles, adsorption density, zeta potentials, and flotation rate
  publication-title: Trans. AIME
– year: 1988
  ident: b0225
  article-title: Hetero-ligand and hetero-metal complexes and their applications in analytical chemistry
– volume: 70
  start-page: 2210
  year: 2006
  end-page: 2228
  ident: b0140
  article-title: The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air
  publication-title: Geochim. Cosmochim. Acta
– volume: 16
  start-page: 1748
  year: 1977
  end-page: 1749
  ident: b0205
  article-title: Special points for Brillouin-zone integrations - A reply
  publication-title: Physical Review B
– year: 1962
  ident: b0105
  article-title: Froth flotation 50th anniversary volume. American Institute of Mining, Metallurgical
– volume: 511
  start-page: 389
  year: 2011
  end-page: 392
  ident: b0180
  article-title: DFT study of influences of As, Co and Ni impurities on pyrite (1 0 0) surface oxidation by O
  publication-title: Chem. Phys. Lett.
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: b0220
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 251
  year: 2003
  end-page: 258
  ident: b0240
  article-title: Base metal oxide flotation using long chain xanthates
  publication-title: Int. J. Miner. Process.
– volume: 112
  start-page: 189
  year: 1934
  end-page: 232
  ident: b0310
  article-title: Principles of flotation. I. an experimental study of the effect of xanthates on contact angles at mineral surfaces
  publication-title: Trans. AIME
– volume: 7
  start-page: 146
  year: 1954
  end-page: 156
  ident: b0250
  article-title: Reaction between a mercury surface and some flotation reagents: and electrochemical study
  publication-title: I. Polarization curves. Aust. J. Chem.
– year: 2020
  ident: b0280
  article-title: Electron and Phonon Spectrometrics
– year: 1957
  ident: b0120
  article-title: Flotation
– year: 2008
  ident: b0305
  article-title: Fundamental research of flotation on typical sulphides/carbonates/oxides of Cu, Pb, Zn and Fe, A Dissertation in Mineral Processing
  publication-title: North East University. (in Chinese)
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: b0080
  article-title: From molecules to solids with the DMol
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 1120
  year: 2010
  end-page: 1130
  ident: b0050
  article-title: A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite
  publication-title: Miner. Eng.
– volume: 520
  start-page: 53
  year: 2017
  end-page: 61
  ident: b0115
  article-title: Anisotropic surface properties of calcite: a consideration of surface broken bonds
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 165
  year: 2021
  ident: b0060
  article-title: Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study
  publication-title: Miner. Eng.
– reference: Keller, C.H., Lewis, C.P., U.S. Pat., 1554216 and 1554220, 1925.
– volume: 666
  start-page: 44
  year: 2017
  ident: b0265
  article-title: Influence of water, dihydrogen and dioxygen on the stability of the Cr
  publication-title: Surf. Sci.
– year: 2007
  ident: b0020
  article-title: Handbook of Flotation Reagents: Chemistry
– reference: Sun, C.Q., 2014. Compounds and nanocomposites: hetero-coordination. In:
– reference: Kakovsky, I.A., 1957. Physicochemical properties of some flotation reagents and their salts with ions of heavy non-ferrous metals, in: Proceedings of the Second International Congress of Surface Activity, London. IV: 225-237.
– volume: 21
  start-page: 497
  year: 2000
  end-page: 525
  ident: b0200
  article-title: Coordination chemistry in mineral processing
  publication-title: Miner. Process. Extr. Metall. Rev.
– reference: (Springer Series in Chemical Physics, pp. 621-646). Singapore: Springer Singapore.
– reference: Gaudin, A.M., Martin, J.S., 1928. Flotation fundamentals. Part 3. The flotation of the carbonates of copper: Malachite and Azurite. Univ. Utah US Bur. Mines, Tech. Pap. no. 5.
– volume: 37
  start-page: 2403
  year: 1984
  end-page: 2413
  ident: b0010
  article-title: An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite
  publication-title: Aust. J. Chem.
– volume: 64
  start-page: 1045
  year: 1992
  end-page: 1097
  ident: b0210
  article-title: Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients
  publication-title: Rev. Mod. Phys.
– volume: 143
  year: 2019
  ident: b0090
  article-title: A review of atomistic simulation methods for surface physical-chemistry phenomena applied to froth flotation
  publication-title: Miner. Eng.
– volume: 159
  year: 2020
  ident: b0070
  article-title: Interactions of xanthate molecule with different mineral surfaces: a comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry
  publication-title: Miner. Eng.
– reference: Chen, J.H., Zhu, Y.G., 2021. Study of semi-constrained properties of metal ions on mineral surface of flotation system. Journal of China University of Mining & Technology, 50(6), 1-8. (In Chinese) https://doi.org/10.13247/j.cnki.jcumt.001271.
– year: 2020
  ident: b0040
  article-title: Electronic Structure and Surfaces of Sulfide Minerals: Density Functional Theory and Applications
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: b0300
  article-title: Soft self-consistent pseudopotentials in generalized eigenvalue formalism
  publication-title: Physical Review B
– volume: 67
  start-page: 2121
  year: 1963
  end-page: 2126
  ident: b0230
  article-title: Infrared study of xanthate adsorption on vacuum deposited films of lead sulfide and metallic copper under conditions of controlled oxidation
  publication-title: J. Phys. Chem.
– reference: Sutherland, K.L., Wark, I.W., 1955. Principles of flotation. Australasian Institute of Mining and Metallurgy.
– volume: 225
  start-page: 278
  year: 2006
  end-page: 290
  ident: b0245
  article-title: First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite
  publication-title: Chem. Geol.
– reference: Ewans, L.E., Ewers, W.E., 1953. Recent developments in mineral dressing. (London), Ind. Eng. Chem. Inst. Min. Metall. 46, 2420.
– volume: 72
  start-page: 95
  year: 2003
  end-page: 110
  ident: b0235
  article-title: Molecular modeling and rational design of flotation reagents
  publication-title: Int. J. Miner. Process.
– volume: 112
  start-page: 245
  year: 1934
  end-page: 266
  ident: b0315
  article-title: Principles of flotation, II-an experimental study of the influence of cyanide, alkalis and copper sulphate on the effect of potassium ethyl xanthate at mineral surfaces
  publication-title: Trans. AIME
– reference: Wark, I.W., 1994. The chemical basis of flotation, in: Proceedings of the Australasian Institute of Mining and Metallurgy. Parkville, Vic.: The Institute, 90, 61-72.
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  ident: b0075
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
– reference: Relaxation of the Chemical Bond
– year: 1981
  ident: b0135
  article-title: Foundation of Physical Chemistry in the Process of Flotation
– volume: 81
  start-page: 2699
  year: 2010
  end-page: 2705
  ident: b0295
  article-title: Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions
  publication-title: J. Am. Ceram. Soc.
– reference: .
– volume: 54
  start-page: 445
  year: 1950
  end-page: 459
  ident: b0065
  article-title: The theory of water-repellent films on solids formed by adsorption from aqueous solutions of heteropolar compounds
  publication-title: J. Phys. Colloid Chem.
– volume: 47
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0185
  article-title: DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface
  publication-title: Miner. Eng.
– volume: 112
  start-page: 32
  year: 1934
  ident: b0290
  article-title: The case for the chemical theory of flotation
  publication-title: Trans. AIME
– volume: 163
  year: 2021
  ident: b0030
  article-title: Effects of surface spatial structures and electronic properties of chalcopyrite and pyrite on Z-200 selectivity
  publication-title: Miner. Eng.
– volume: 98
  start-page: 132
  year: 2011
  end-page: 136
  ident: b0035
  article-title: A DFT study of the effect of natural impurities on the electronic structure of galena
  publication-title: Int. J. Miner. Process.
– volume: 367
  start-page: 459
  year: 2016
  end-page: 472
  ident: b0255
  article-title: Collector attachment to lead-activated sphalerite - experiments and DFT study on pH and solvent effects
  publication-title: Appl. Surf. Sci.
– ident: 10.1016/j.mineng.2021.107067_b0145
  doi: 10.1016/j.cej.2020.127176
– volume: 63
  start-page: 68
  year: 1971
  ident: 10.1016/j.mineng.2021.107067_b0325
  article-title: Electrochemistry of sulphide flotation
  publication-title: Australian Mining
– year: 1962
  ident: 10.1016/j.mineng.2021.107067_b0105
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 10.1016/j.mineng.2021.107067_b0215
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 98
  start-page: 132
  issue: 3–4
  year: 2011
  ident: 10.1016/j.mineng.2021.107067_b0035
  article-title: A DFT study of the effect of natural impurities on the electronic structure of galena
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2010.11.001
– volume: 67
  start-page: 2121
  year: 1963
  ident: 10.1016/j.mineng.2021.107067_b0230
  article-title: Infrared study of xanthate adsorption on vacuum deposited films of lead sulfide and metallic copper under conditions of controlled oxidation
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100804a036
– volume: 112
  start-page: 245
  year: 1934
  ident: 10.1016/j.mineng.2021.107067_b0315
  article-title: Principles of flotation, II-an experimental study of the influence of cyanide, alkalis and copper sulphate on the effect of potassium ethyl xanthate at mineral surfaces
  publication-title: Trans. AIME
– year: 2007
  ident: 10.1016/j.mineng.2021.107067_b0020
– volume: 165
  year: 2021
  ident: 10.1016/j.mineng.2021.107067_b0060
  article-title: Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study
  publication-title: Miner. Eng.
– volume: 208
  start-page: 1365
  year: 1957
  ident: 10.1016/j.mineng.2021.107067_b0110
  article-title: Correlation of contact angles, adsorption density, zeta potentials, and flotation rate
  publication-title: Trans. AIME
– volume: 47
  start-page: 1
  year: 2013
  ident: 10.1016/j.mineng.2021.107067_b0185
  article-title: DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.03.026
– volume: 113
  start-page: 7756
  issue: 18
  year: 2000
  ident: 10.1016/j.mineng.2021.107067_b0080
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 80
  start-page: 669
  year: 1964
  ident: 10.1016/j.mineng.2021.107067_b0150
  article-title: Effects of oxidation of pyrrhotite, pyrite and marcasite on their flotation properties: fundamental studies on flotation of iron sulphide minerals (2nd Report)
  publication-title: J. Min. Inst. Japan.
– ident: 10.1016/j.mineng.2021.107067_b0085
  doi: 10.1021/ie50539a056
– year: 2020
  ident: 10.1016/j.mineng.2021.107067_b0040
– volume: 64
  start-page: 1045
  issue: 4
  year: 1992
  ident: 10.1016/j.mineng.2021.107067_b0210
  article-title: Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.64.1045
– ident: 10.1016/j.mineng.2021.107067_b0155
– volume: 79
  start-page: 50
  year: 1928
  ident: 10.1016/j.mineng.2021.107067_b0125
  article-title: Flotation mechanism, a discussion of the functions of floatation reagents
  publication-title: Trans. Am. Inst. Min. Metall. Eng.
– volume: 46
  start-page: 6671
  issue: 11
  year: 1992
  ident: 10.1016/j.mineng.2021.107067_b0220
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– ident: 10.1016/j.mineng.2021.107067_b0285
– volume: 520
  start-page: 53
  year: 2017
  ident: 10.1016/j.mineng.2021.107067_b0115
  article-title: Anisotropic surface properties of calcite: a consideration of surface broken bonds
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2017.01.061
– ident: 10.1016/j.mineng.2021.107067_b0130
– volume: 163
  year: 2021
  ident: 10.1016/j.mineng.2021.107067_b0030
  article-title: Effects of surface spatial structures and electronic properties of chalcopyrite and pyrite on Z-200 selectivity
  publication-title: Miner. Eng.
– volume: 235
  start-page: 46
  year: 1966
  ident: 10.1016/j.mineng.2021.107067_b0190
  article-title: Heat of adsorption and surface reactions of potassium ethyl xanthate on galena
  publication-title: Trans. AIME
– ident: 10.1016/j.mineng.2021.107067_b0165
– volume: 21
  start-page: 497
  year: 2000
  ident: 10.1016/j.mineng.2021.107067_b0200
  article-title: Coordination chemistry in mineral processing
  publication-title: Miner. Process. Extr. Metall. Rev.
  doi: 10.1080/08827500008914176
– volume: 511
  start-page: 389
  issue: 4–6
  year: 2011
  ident: 10.1016/j.mineng.2021.107067_b0180
  article-title: DFT study of influences of As, Co and Ni impurities on pyrite (1 0 0) surface oxidation by O2 molecule
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.06.078
– volume: 72
  start-page: 95
  year: 2003
  ident: 10.1016/j.mineng.2021.107067_b0235
  article-title: Molecular modeling and rational design of flotation reagents
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(03)00090-5
– volume: 92
  start-page: 508
  issue: 1
  year: 1990
  ident: 10.1016/j.mineng.2021.107067_b0075
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 112
  start-page: 189
  year: 1934
  ident: 10.1016/j.mineng.2021.107067_b0310
  article-title: Principles of flotation. I. an experimental study of the effect of xanthates on contact angles at mineral surfaces
  publication-title: Trans. AIME
– volume: 54
  start-page: 445
  year: 1950
  ident: 10.1016/j.mineng.2021.107067_b0065
  article-title: The theory of water-repellent films on solids formed by adsorption from aqueous solutions of heteropolar compounds
  publication-title: J. Phys. Colloid Chem.
  doi: 10.1021/j150478a002
– ident: 10.1016/j.mineng.2021.107067_b0045
– volume: 5
  start-page: 6
  year: 1959
  ident: 10.1016/j.mineng.2021.107067_b0160
  article-title: The concepts of flotation critical pH
  publication-title: Ore Dressing
– ident: 10.1016/j.mineng.2021.107067_b0320
– year: 1981
  ident: 10.1016/j.mineng.2021.107067_b0135
– volume: 562
  year: 2021
  ident: 10.1016/j.mineng.2021.107067_b0100
  article-title: Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150137
– volume: 367
  start-page: 459
  year: 2016
  ident: 10.1016/j.mineng.2021.107067_b0255
  article-title: Collector attachment to lead-activated sphalerite - experiments and DFT study on pH and solvent effects
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.01.213
– volume: 37
  start-page: 2403
  year: 1984
  ident: 10.1016/j.mineng.2021.107067_b0010
  article-title: An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH9842403
– volume: 159
  year: 2020
  ident: 10.1016/j.mineng.2021.107067_b0070
  article-title: Interactions of xanthate molecule with different mineral surfaces: a comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry
  publication-title: Miner. Eng.
– volume: 3
  start-page: 2613
  year: 1972
  ident: 10.1016/j.mineng.2021.107067_b0005
  article-title: A determination of the products of reaction between various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials
  publication-title: Metall. Mater. Trans. B.
  doi: 10.1007/BF02644237
– volume: 225
  start-page: 278
  issue: 3–4
  year: 2006
  ident: 10.1016/j.mineng.2021.107067_b0245
  article-title: First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2005.08.021
– volume: 7
  start-page: 146
  year: 1954
  ident: 10.1016/j.mineng.2021.107067_b0250
  article-title: Reaction between a mercury surface and some flotation reagents: and electrochemical study
  publication-title: I. Polarization curves. Aust. J. Chem.
  doi: 10.1071/CH9540146
– volume: 23
  start-page: 1120
  issue: 14
  year: 2010
  ident: 10.1016/j.mineng.2021.107067_b0050
  article-title: A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2010.07.005
– volume: 70
  start-page: 2210
  year: 2006
  ident: 10.1016/j.mineng.2021.107067_b0140
  article-title: The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.02.007
– volume: 69
  start-page: 251
  issue: 1
  year: 2003
  ident: 10.1016/j.mineng.2021.107067_b0240
  article-title: Base metal oxide flotation using long chain xanthates
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(02)00130-8
– volume: 122
  start-page: 6829
  issue: 26
  year: 2018
  ident: 10.1016/j.mineng.2021.107067_b0095
  article-title: Surface properties of fluorite in presence of water: an atomistic investigation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b02717
– volume: 118
  start-page: 11657
  issue: 22
  year: 2014
  ident: 10.1016/j.mineng.2021.107067_b0025
  article-title: Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: a DFT study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5000478
– ident: 10.1016/j.mineng.2021.107067_b0275
  doi: 10.1007/978-981-4585-21-7_30
– year: 1957
  ident: 10.1016/j.mineng.2021.107067_b0120
– year: 2008
  ident: 10.1016/j.mineng.2021.107067_b0305
  article-title: Fundamental research of flotation on typical sulphides/carbonates/oxides of Cu, Pb, Zn and Fe, A Dissertation in Mineral Processing
  publication-title: North East University. (in Chinese)
– volume: 81
  start-page: 2699
  year: 2010
  ident: 10.1016/j.mineng.2021.107067_b0295
  article-title: Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1998.tb02679.x
– volume: 16
  start-page: 1748
  issue: 4
  year: 1977
  ident: 10.1016/j.mineng.2021.107067_b0205
  article-title: Special points for Brillouin-zone integrations - A reply
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.16.1748
– volume: 13
  start-page: 5188
  issue: 12
  year: 1976
  ident: 10.1016/j.mineng.2021.107067_b0195
  article-title: Special points for Brillouin-zone integrations
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.13.5188
– volume: 666
  start-page: 44
  year: 2017
  ident: 10.1016/j.mineng.2021.107067_b0265
  article-title: Influence of water, dihydrogen and dioxygen on the stability of the Cr2O3 surface: A first-principles investigation
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2017.08.005
– volume: 143
  year: 2019
  ident: 10.1016/j.mineng.2021.107067_b0090
  article-title: A review of atomistic simulation methods for surface physical-chemistry phenomena applied to froth flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.106020
– year: 1988
  ident: 10.1016/j.mineng.2021.107067_b0225
– volume: 41
  start-page: 7892
  issue: 11
  year: 1990
  ident: 10.1016/j.mineng.2021.107067_b0300
  article-title: Soft self-consistent pseudopotentials in generalized eigenvalue formalism
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.41.7892
– volume: 112
  start-page: 32
  year: 1934
  ident: 10.1016/j.mineng.2021.107067_b0290
  article-title: The case for the chemical theory of flotation
  publication-title: Trans. AIME
– year: 2020
  ident: 10.1016/j.mineng.2021.107067_b0280
SSID ssj0005789
Score 2.6228752
Snippet [Display omitted] •Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107067
SubjectTerms Coordination chemistry
Mineral surface
Reagent
π-backbonding
Title The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry
URI https://dx.doi.org/10.1016/j.mineng.2021.107067
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qBa1ibpO3KbZqYBohdYNJuVZsmaGhrp6678tuxmxaGhEDi2CiWIseyP6f-bEKuUxGEXuoIFohEMemFIYuNUgzDU2IAkcsEyclPE388lQ8zb9Yiw4YLg2WVte-3Pr3y1vVKr9ZmbzWf956dfsh9gNscu4iG_gwZ7DLA_vk371tlHkE1Bg83M9zd0OeqGq8lILnsFbJE7sJS4FTT5n8IT1shZ3RA9musSAf2OIekpbMjsrfVQfCYlHDNFFs-FJagQHNDzSK3_9cpAEJkTq0pvrbSpQagTdHMQILioQr4Xm8Kg2VZt3RAV1_MS4q8E6pyyE3n9sGQqmY23AmZju5ehmNWD1JgCjKCkpm-0EIKXzo6NWnMIZsGv8K9WAjfwyJD6SWQqAIa6iuhje_qNAjiOAaoAwiLS3FK2lme6TNCPRxqozkHAzTSlTzWaepK7SpX8zAOZYeIRn-RqruM47CLRdSUk71FVusRaj2yWu8Q9im1sl02_tgfNFcTfbOWCALBr5Ln_5a8ILv4ZevLLkm7LDb6CgBJmXQri-uSncH943jyAXiF4Wk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDI4YHLYdpj019sxh1wiapC3dDaEhGI_LQOJWtWkyMfESlP8_u2kHk6ZN2rFpLEWOZX9u_dmEPCXCD9ykLpgvYsWkGwQsMkoxDE-xAUQuYyQnD4ZeZyxfJ-6kRFoFFwbLKnPfb3165q3zlVquzdpqOq291RsB9wBuc-wiGniTA1LB7lRg7JVmt9cZ7io9_GwSHu5nKFAw6LIyrzmAucU7JIrcgSW_ng2c_yFC7UWd9ik5yeEibdoTnZGSXpyT470mghckhZum2PVhbTkKdGmomS3tL3YKmBDJUxuKH1zpXAPWpmhpIEHxUGt43mzXBiuznmmTrnbkS4rUE6qWkJ5O7TdDqorxcJdk3H4ZtTosn6XAFCQFKTMNoYUUnqzrxCQRh4QaXAt3IyE8F-sMpRtDrgqAqKGENp6jE9-PogjQDoAsLsUVKS-WC31NqItzbTTnYINGOpJHOkkcqR3laB5EgawSUegvVHmjcZx3MQuLirKP0Go9RK2HVutVwr6kVrbRxh_7_eJqwm8GE0Is-FXy5t-Sj-SwMxr0w3532LslR_jGlpvdkXK63up7wCdp_JDb3yc33uQa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+interaction+of+flotation+reagents+with+metal+ions+in+mineral+surfaces%3A+A+perspective+from+coordination+chemistry&rft.jtitle=Minerals+engineering&rft.au=Chen%2C+Jianhua&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=171&rft_id=info:doi/10.1016%2Fj.mineng.2021.107067&rft.externalDocID=S089268752100296X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon