The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry
[Display omitted] •Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with metal ions in surface belongs to hetero-coordination.•Spin state and polarizability of metal ions in surface determine the properties of bonding...
Saved in:
Published in | Minerals engineering Vol. 171; p. 107067 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0892-6875 1872-9444 |
DOI | 10.1016/j.mineng.2021.107067 |
Cover
Loading…
Abstract | [Display omitted]
•Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with metal ions in surface belongs to hetero-coordination.•Spin state and polarizability of metal ions in surface determine the properties of bonding with reagents.•Unoccupied π orbitals of a depressant molecule play an important role in its depressing power.•CFSE enhances the stability of reagents adsorbing on surface.
The selective interaction between reagents and mineral surfaces is the core basis of mineral flotation separation. This paper creatively proposes a perspective from coordination chemistry to clarify the interaction mechanism of reagents with mineral surfaces systematically and profoundly. The metal ion in mineral surface is far different from the free ion. The former is in a semi-constrained state, causing the properties of surface metal ions to be greatly affected by surface structures and properties of surrounding atoms. Based on coordination chemistry, the π-backbonding model is advanced for the interaction between sulfhydryl collectors and sulphide minerals. It is of interest that with more π electron pairs, the surface metal ion is more likely to interact with sulfhydryl collectors containing unoccupied π orbitals; with greater polarizability, the metal ion is more prone to covalent interactions with sulfhydryl collectors. In addition, the unoccupied orbitals play a crucial role in selectivity of depressants. For example, the depressants NaCN and Ca(OH)+ containing unoccupied π orbitals can strongly depress pyrite holding π electron pairs, but can hardly depress galena possessing no π electron pair. Furthermore, the crystal field stabilization energy resulting from the interaction between reagents and surface metal ions can influence the stability of reagent adsorption, and can adequately explain the order of flotation critical pH for sulphide minerals. The coordination theory sheds new light on the interaction mechanism between flotation reagents and mineral surfaces. |
---|---|
AbstractList | [Display omitted]
•Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with metal ions in surface belongs to hetero-coordination.•Spin state and polarizability of metal ions in surface determine the properties of bonding with reagents.•Unoccupied π orbitals of a depressant molecule play an important role in its depressing power.•CFSE enhances the stability of reagents adsorbing on surface.
The selective interaction between reagents and mineral surfaces is the core basis of mineral flotation separation. This paper creatively proposes a perspective from coordination chemistry to clarify the interaction mechanism of reagents with mineral surfaces systematically and profoundly. The metal ion in mineral surface is far different from the free ion. The former is in a semi-constrained state, causing the properties of surface metal ions to be greatly affected by surface structures and properties of surrounding atoms. Based on coordination chemistry, the π-backbonding model is advanced for the interaction between sulfhydryl collectors and sulphide minerals. It is of interest that with more π electron pairs, the surface metal ion is more likely to interact with sulfhydryl collectors containing unoccupied π orbitals; with greater polarizability, the metal ion is more prone to covalent interactions with sulfhydryl collectors. In addition, the unoccupied orbitals play a crucial role in selectivity of depressants. For example, the depressants NaCN and Ca(OH)+ containing unoccupied π orbitals can strongly depress pyrite holding π electron pairs, but can hardly depress galena possessing no π electron pair. Furthermore, the crystal field stabilization energy resulting from the interaction between reagents and surface metal ions can influence the stability of reagent adsorption, and can adequately explain the order of flotation critical pH for sulphide minerals. The coordination theory sheds new light on the interaction mechanism between flotation reagents and mineral surfaces. |
ArticleNumber | 107067 |
Author | Chen, Jianhua |
Author_xml | – sequence: 1 givenname: Jianhua surname: Chen fullname: Chen, Jianhua email: jhchen@gxu.edu.cn organization: School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China |
BookMark | eNqFkMtKAzEUhoMo2FbfwEVeYGpuM5l2IZTiDQpu6jqkmZM2ZSYpSaz07Z06rlzo6vAf-P7D-cbo0gcPCN1RMqWEVvf7aec8-O2UEUb7lSSVvEAjWktWzIQQl2hE6hkrqlqW12ic0p4QUsp6NkJ5vQPsfIaoTXbB42CxbUPW3yGC3oLPCX-6vMMdZN3ifp96Ap9Pxj6nj2i1gTTHC3yAmA7QFx0B2xg6bEKIjfNDm9lB51KOpxt0ZXWb4PZnTtD70-N6-VKs3p5fl4tVYTipcmFrDlzwShBobKMZbBiXFSs151VJSU1Euam5ZCWpDQdbUWik1FrTckZLwQSfIDH0mhhSimDVIbpOx5OiRJ3Nqb0azKmzOTWY67H5L8y4QUiO2rX_wQ8DDP1jRwdRJePAG2hc7M2oJri_C74AOuOQOg |
CitedBy_id | crossref_primary_10_1016_j_molliq_2022_120485 crossref_primary_10_1016_j_psep_2022_07_039 crossref_primary_10_1016_j_apsusc_2021_151379 crossref_primary_10_1016_j_mineng_2024_108667 crossref_primary_10_1016_j_mineng_2023_108393 crossref_primary_10_3390_min13020200 crossref_primary_10_1016_j_seppur_2023_125831 crossref_primary_10_3390_pr10071381 crossref_primary_10_1039_D3RA03401A crossref_primary_10_1016_S1003_6326_23_66178_3 crossref_primary_10_1016_j_apsusc_2023_157810 crossref_primary_10_1016_j_molliq_2022_119245 crossref_primary_10_1002_ange_202415051 crossref_primary_10_1016_j_apsusc_2022_153672 crossref_primary_10_3390_molecules29245882 crossref_primary_10_1016_j_mineng_2025_109192 crossref_primary_10_1016_j_seppur_2023_124919 crossref_primary_10_1016_j_colsurfa_2021_127920 crossref_primary_10_1016_j_mineng_2022_107469 crossref_primary_10_1016_j_surfin_2023_102820 crossref_primary_10_1016_j_apsusc_2024_160300 crossref_primary_10_1016_j_ijmst_2021_11_012 crossref_primary_10_1016_j_mineng_2022_107465 crossref_primary_10_1016_j_mineng_2024_109013 crossref_primary_10_1016_j_molliq_2022_120819 crossref_primary_10_1016_j_susc_2023_122419 crossref_primary_10_1016_j_mineng_2024_108839 crossref_primary_10_1021_acsomega_3c02009 crossref_primary_10_1016_j_molliq_2022_119879 crossref_primary_10_1016_j_seppur_2023_123268 crossref_primary_10_1016_j_colsurfa_2022_129613 crossref_primary_10_1007_s11705_022_2235_2 crossref_primary_10_1016_j_mineng_2022_107636 crossref_primary_10_1016_j_mineng_2022_107757 crossref_primary_10_20517_mmm_2023_12 crossref_primary_10_1016_j_colsurfa_2021_127954 crossref_primary_10_1016_j_mineng_2022_107478 crossref_primary_10_1016_j_mineng_2023_108402 crossref_primary_10_1016_j_mineng_2024_108651 crossref_primary_10_1016_j_apsusc_2022_154191 crossref_primary_10_1016_j_mineng_2021_107355 crossref_primary_10_1016_j_mineng_2024_109102 crossref_primary_10_1016_j_jre_2023_07_001 crossref_primary_10_3724_j_1000_4734_2024_44_003 crossref_primary_10_1155_2023_1660716 crossref_primary_10_3390_min12101271 crossref_primary_10_1016_j_apsusc_2022_155677 crossref_primary_10_1039_D3DT00366C crossref_primary_10_1016_j_seppur_2023_125855 crossref_primary_10_1016_j_seppur_2024_128768 crossref_primary_10_1016_j_colsurfa_2021_127300 crossref_primary_10_1016_j_gsme_2024_05_003 crossref_primary_10_1016_j_surfin_2022_101973 crossref_primary_10_1016_j_mineng_2023_108117 crossref_primary_10_1016_j_mineng_2022_107520 crossref_primary_10_1016_S1003_6326_22_65977_6 crossref_primary_10_1016_j_apsusc_2025_162971 crossref_primary_10_1016_j_mineng_2023_108361 crossref_primary_10_3390_pr11010038 crossref_primary_10_1016_j_apsusc_2022_155703 crossref_primary_10_1016_j_jmrt_2022_11_001 crossref_primary_10_1016_j_colsurfa_2021_127571 crossref_primary_10_1016_j_apsusc_2024_161827 crossref_primary_10_1016_j_eurpolymj_2023_111852 crossref_primary_10_1016_j_jclepro_2023_137073 crossref_primary_10_1016_j_colsurfa_2022_129515 crossref_primary_10_1016_j_colsurfa_2023_131036 crossref_primary_10_1016_j_cej_2022_136350 crossref_primary_10_1016_j_apsusc_2023_156350 crossref_primary_10_1016_j_apsusc_2023_159181 crossref_primary_10_1016_j_mineng_2021_107375 crossref_primary_10_1016_j_cplett_2025_141870 crossref_primary_10_1016_j_scitotenv_2024_169969 crossref_primary_10_1016_j_mineng_2022_107893 crossref_primary_10_1016_j_mineng_2023_108102 crossref_primary_10_1080_2374068X_2022_2129225 crossref_primary_10_3390_min14111105 crossref_primary_10_3390_min14101026 crossref_primary_10_1016_j_apsusc_2022_153235 crossref_primary_10_1016_j_apsusc_2022_154963 crossref_primary_10_1016_j_exm_2025_02_001 crossref_primary_10_1016_j_psep_2024_08_039 crossref_primary_10_1016_j_mineng_2024_108629 crossref_primary_10_1016_j_molliq_2023_122906 crossref_primary_10_1016_j_seppur_2022_122993 crossref_primary_10_1016_j_molliq_2021_117560 crossref_primary_10_1016_j_apsusc_2023_156480 crossref_primary_10_1016_j_mineng_2022_107424 crossref_primary_10_1016_j_jmrt_2021_10_052 crossref_primary_10_1016_j_mineng_2022_107393 crossref_primary_10_1016_j_ijmst_2023_09_005 crossref_primary_10_1016_j_colsurfa_2024_134952 crossref_primary_10_1016_j_seppur_2024_126954 crossref_primary_10_1016_j_ijmst_2022_06_001 crossref_primary_10_1016_j_apsusc_2023_157723 crossref_primary_10_1016_j_jtice_2022_104221 crossref_primary_10_1016_j_molliq_2023_122885 crossref_primary_10_1016_j_apsusc_2024_159404 crossref_primary_10_1016_j_mineng_2025_109220 crossref_primary_10_1016_j_molliq_2022_120668 crossref_primary_10_1016_j_apt_2022_103695 crossref_primary_10_36790_epistemus_v18i37_377 crossref_primary_10_1016_j_mineng_2022_107710 crossref_primary_10_1080_19392699_2024_2438928 crossref_primary_10_1016_j_mineng_2022_107560 crossref_primary_10_1016_j_chemphys_2022_111668 crossref_primary_10_1016_j_colsurfa_2025_136229 crossref_primary_10_1016_j_inoche_2024_113528 crossref_primary_10_1016_j_molliq_2023_122756 crossref_primary_10_1016_j_molliq_2025_126918 crossref_primary_10_1016_j_powtec_2021_117040 crossref_primary_10_1021_acssuschemeng_1c05287 crossref_primary_10_3390_molecules30010147 crossref_primary_10_1016_j_surfin_2023_102884 crossref_primary_10_1016_j_chemphys_2022_111681 crossref_primary_10_1016_j_molliq_2024_124278 crossref_primary_10_1016_j_mineng_2022_107723 crossref_primary_10_1002_qua_27388 crossref_primary_10_1016_j_colsurfa_2022_130890 crossref_primary_10_1002_jssc_202300176 crossref_primary_10_1016_j_colsurfa_2022_130092 crossref_primary_10_1016_j_apsusc_2023_158080 crossref_primary_10_1016_j_mineng_2024_108734 crossref_primary_10_1016_j_mineng_2023_108281 crossref_primary_10_1016_j_molliq_2022_119977 crossref_primary_10_1002_anie_202415051 crossref_primary_10_1016_j_ijmst_2021_10_001 crossref_primary_10_1039_D3CP00039G crossref_primary_10_1016_j_ijmst_2022_01_009 |
Cites_doi | 10.1016/j.cej.2020.127176 10.1103/PhysRevLett.77.3865 10.1016/j.minpro.2010.11.001 10.1021/j100804a036 10.1016/j.mineng.2013.03.026 10.1063/1.1316015 10.1021/ie50539a056 10.1103/RevModPhys.64.1045 10.1103/PhysRevB.46.6671 10.1016/j.colsurfa.2017.01.061 10.1080/08827500008914176 10.1016/j.cplett.2011.06.078 10.1016/S0301-7516(03)00090-5 10.1063/1.458452 10.1021/j150478a002 10.1016/j.apsusc.2021.150137 10.1016/j.apsusc.2016.01.213 10.1071/CH9842403 10.1007/BF02644237 10.1016/j.chemgeo.2005.08.021 10.1071/CH9540146 10.1016/j.mineng.2010.07.005 10.1016/j.gca.2006.02.007 10.1016/S0301-7516(02)00130-8 10.1021/acs.jpcb.8b02717 10.1021/jp5000478 10.1007/978-981-4585-21-7_30 10.1111/j.1151-2916.1998.tb02679.x 10.1103/PhysRevB.16.1748 10.1103/PhysRevB.13.5188 10.1016/j.susc.2017.08.005 10.1016/j.mineng.2019.106020 10.1103/PhysRevB.41.7892 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2021.107067 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
ExternalDocumentID | 10_1016_j_mineng_2021_107067 S089268752100296X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- RIG SEP SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c306t-f83e343640edfda2eb237625a3365108045b8372508c3ef61ed77aaa159154243 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Tue Jul 01 01:13:29 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Fri Feb 23 02:42:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | π-backbonding Mineral surface Reagent Coordination chemistry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-f83e343640edfda2eb237625a3365108045b8372508c3ef61ed77aaa159154243 |
ParticipantIDs | crossref_primary_10_1016_j_mineng_2021_107067 crossref_citationtrail_10_1016_j_mineng_2021_107067 elsevier_sciencedirect_doi_10_1016_j_mineng_2021_107067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Minerals engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Allison, Goold, Nicol, Granville (b0005) 1972; 3 Chen, Long, Ye (b0025) 2014; 118 Vanderbilt (b0300) 1990; 41 Chen, Wang, Chen, Guo (b0035) 2011; 98 Cook, Nixon (b0065) 1950; 54 Gaudin (b0125) 1928; 79 Chena, Wang, Li, Liu, Liu, Zhao, Cui (b0030) 2021; 163 Mellgren (b0190) 1966; 235 Delley (b0080) 2000; 113 Ewans, L.E., Ewers, W.E., 1953. Recent developments in mineral dressing. (London), Ind. Eng. Chem. Inst. Min. Metall. 46, 2420. Sutherland, K.L., Wark, I.W., 1955. Principles of flotation. Australasian Institute of Mining and Metallurgy. Perdew, Burke, Ernezerhof (b0215) 1996; 77 Perdew, Chevary, Vosko, Jachson, Pederson, Singh, Fiolhais (b0220) 1992; 46 Kakovsky, I.A., 1957. Physicochemical properties of some flotation reagents and their salts with ions of heavy non-ferrous metals, in: Proceedings of the Second International Congress of Surface Activity, London. IV: 225-237. Li, Chen, Jin (b0180) 2011; 511 Liu, Wen, Chen, Bai, Liu, Cao (b0185) 2013; 47 (Springer Series in Chemical Physics, pp. 621-646). Singapore: Springer Singapore. Kakovsky, Grebnev (b0160) 1959; 5 Chenb, Liu, Chen (b0060) 2021; 165 Woods (b0325) 1971; 63 . Fuerstenau (b0105) 1962 Fuerstenau (b0110) 1957; 208 Sun, C.Q., 2014. Compounds and nanocomposites: hetero-coordination. In Relaxation of the Chemical Bond Gaudin (b0120) 1957 Goh, Buckley, Lamb, Rosenberg, Moran (b0140) 2006; 70 Delley (b0075) 1990; 92 Foucaud, Badawi, Filippov, Filippova, Lebègue (b0095) 2018; 122 Wark, Cox (b0315) 1934; 112 Bulatovic (b0020) 2007 Pilipenko, Tananayko (b0225) 1988 Vacassy, Scholz-Odermatt, Dutta, Plummer, Houriet, Hofmann (b0295) 2010; 81 Souvi, Badawi, Virot, Cristol, Cantrel, Paul (b0265) 2017; 666 Ogwuegbu, Chileshe (b0200) 2000; 21 Chen, Xu, Chen (b0040) 2020 Chen, J.H., Zhu, Y.G., 2021. Study of semi-constrained properties of metal ions on mineral surface of flotation system. Journal of China University of Mining & Technology, 50(6), 1-8. (In Chinese) https://doi.org/10.13247/j.cnki.jcumt.001271. Buckley, Woods (b0010) 1984; 37 Wark, I.W., 1994. The chemical basis of flotation, in: Proceedings of the Australasian Institute of Mining and Metallurgy. Parkville, Vic.: The Institute, 90, 61-72. Foucaud, Canevesi, Celzard, Fierro, Badawi (b0100) 2021; 562 Glembotskii (b0135) 1981 Harada (b0150) 1964; 80 Taggart, Del Guidice, Ziehl (b0290) 1934; 112 Keller, C.H., Lewis, C.P., U.S. Pat., 1554216 and 1554220, 1925. Sun (b0280) 2020 Chen, Chen, Guo (b0050) 2010; 23 Poling, Leja (b0230) 1963; 67 Gao, Li, Sun, Hu (b0115) 2017; 520 Salamy, Nixon (b0250) 1954; 7 Wark, Cox (b0310) 1934; 112 Pradip (b0235) 2003; 72 Reich, Becker (b0245) 2006; 225 Wang (b0305) 2008 Pack, Monkhorst (b0205) 1977; 16 Sarvaramini, Larachi, Hart (b0255) 2016; 367 Monkhorst, Pack (b0195) 1976; 13 Cui, Chen, Li, Chen, Zhao (b0070) 2020; 159 Rao, Finch (b0240) 2003; 69 Hounfodji, J.W., Kanhounnon, W.G., Kpotin, G., Atohoun, G.S., Lainé, J., Foucaud, Y., Badawi, M., 2020. Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem. Eng. J. (Lausanne, Switzerland: 1996), 407. Payne, Teter, Allan, Arias, Joannopoulos (b0210) 1992; 64 Gaudin, A.M., Martin, J.S., 1928. Flotation fundamentals. Part 3. The flotation of the carbonates of copper: Malachite and Azurite. Univ. Utah US Bur. Mines, Tech. Pap. no. 5. Foucaud, Badawi, Filippov, Filippova, Lebègue (b0090) 2019; 143 Perdew (10.1016/j.mineng.2021.107067_b0215) 1996; 77 Mellgren (10.1016/j.mineng.2021.107067_b0190) 1966; 235 Pack (10.1016/j.mineng.2021.107067_b0205) 1977; 16 Fuerstenau (10.1016/j.mineng.2021.107067_b0105) 1962 Taggart (10.1016/j.mineng.2021.107067_b0290) 1934; 112 Li (10.1016/j.mineng.2021.107067_b0180) 2011; 511 10.1016/j.mineng.2021.107067_b0130 Foucaud (10.1016/j.mineng.2021.107067_b0100) 2021; 562 Wang (10.1016/j.mineng.2021.107067_b0305) 2008 Reich (10.1016/j.mineng.2021.107067_b0245) 2006; 225 Gao (10.1016/j.mineng.2021.107067_b0115) 2017; 520 Cui (10.1016/j.mineng.2021.107067_b0070) 2020; 159 Pilipenko (10.1016/j.mineng.2021.107067_b0225) 1988 Woods (10.1016/j.mineng.2021.107067_b0325) 1971; 63 Chena (10.1016/j.mineng.2021.107067_b0030) 2021; 163 Glembotskii (10.1016/j.mineng.2021.107067_b0135) 1981 Gaudin (10.1016/j.mineng.2021.107067_b0120) 1957 Goh (10.1016/j.mineng.2021.107067_b0140) 2006; 70 Gaudin (10.1016/j.mineng.2021.107067_b0125) 1928; 79 10.1016/j.mineng.2021.107067_b0145 Salamy (10.1016/j.mineng.2021.107067_b0250) 1954; 7 Chen (10.1016/j.mineng.2021.107067_b0035) 2011; 98 Allison (10.1016/j.mineng.2021.107067_b0005) 1972; 3 Payne (10.1016/j.mineng.2021.107067_b0210) 1992; 64 Chen (10.1016/j.mineng.2021.107067_b0050) 2010; 23 Wark (10.1016/j.mineng.2021.107067_b0310) 1934; 112 Foucaud (10.1016/j.mineng.2021.107067_b0095) 2018; 122 Liu (10.1016/j.mineng.2021.107067_b0185) 2013; 47 Monkhorst (10.1016/j.mineng.2021.107067_b0195) 1976; 13 Rao (10.1016/j.mineng.2021.107067_b0240) 2003; 69 Kakovsky (10.1016/j.mineng.2021.107067_b0160) 1959; 5 Harada (10.1016/j.mineng.2021.107067_b0150) 1964; 80 Souvi (10.1016/j.mineng.2021.107067_b0265) 2017; 666 10.1016/j.mineng.2021.107067_b0155 Chen (10.1016/j.mineng.2021.107067_b0025) 2014; 118 Sun (10.1016/j.mineng.2021.107067_b0280) 2020 Chen (10.1016/j.mineng.2021.107067_b0040) 2020 Vacassy (10.1016/j.mineng.2021.107067_b0295) 2010; 81 10.1016/j.mineng.2021.107067_b0275 Wark (10.1016/j.mineng.2021.107067_b0315) 1934; 112 Delley (10.1016/j.mineng.2021.107067_b0075) 1990; 92 Vanderbilt (10.1016/j.mineng.2021.107067_b0300) 1990; 41 Perdew (10.1016/j.mineng.2021.107067_b0220) 1992; 46 Buckley (10.1016/j.mineng.2021.107067_b0010) 1984; 37 Ogwuegbu (10.1016/j.mineng.2021.107067_b0200) 2000; 21 Pradip (10.1016/j.mineng.2021.107067_b0235) 2003; 72 Cook (10.1016/j.mineng.2021.107067_b0065) 1950; 54 Delley (10.1016/j.mineng.2021.107067_b0080) 2000; 113 10.1016/j.mineng.2021.107067_b0045 10.1016/j.mineng.2021.107067_b0320 Chenb (10.1016/j.mineng.2021.107067_b0060) 2021; 165 Poling (10.1016/j.mineng.2021.107067_b0230) 1963; 67 Sarvaramini (10.1016/j.mineng.2021.107067_b0255) 2016; 367 Fuerstenau (10.1016/j.mineng.2021.107067_b0110) 1957; 208 Bulatovic (10.1016/j.mineng.2021.107067_b0020) 2007 10.1016/j.mineng.2021.107067_b0085 10.1016/j.mineng.2021.107067_b0285 10.1016/j.mineng.2021.107067_b0165 Foucaud (10.1016/j.mineng.2021.107067_b0090) 2019; 143 |
References_xml | – volume: 80 start-page: 669 year: 1964 end-page: 674 ident: b0150 article-title: Effects of oxidation of pyrrhotite, pyrite and marcasite on their flotation properties: fundamental studies on flotation of iron sulphide minerals (2nd Report) publication-title: J. Min. Inst. Japan. – volume: 235 start-page: 46 year: 1966 end-page: 59 ident: b0190 article-title: Heat of adsorption and surface reactions of potassium ethyl xanthate on galena publication-title: Trans. AIME – volume: 562 year: 2021 ident: b0100 article-title: Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations publication-title: Appl. Surf. Sci. – volume: 5 start-page: 6 year: 1959 end-page: 10 ident: b0160 article-title: The concepts of flotation critical pH publication-title: Ore Dressing – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0215 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 63 start-page: 68 year: 1971 ident: b0325 article-title: Electrochemistry of sulphide flotation publication-title: Australian Mining – volume: 118 start-page: 11657 year: 2014 end-page: 11665 ident: b0025 article-title: Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS publication-title: J. Phys. Chem. C – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: b0195 article-title: Special points for Brillouin-zone integrations publication-title: Physical Review B – volume: 122 start-page: 6829 year: 2018 end-page: 6836 ident: b0095 article-title: Surface properties of fluorite in presence of water: an atomistic investigation publication-title: J. Phys. Chem. B – volume: 79 start-page: 50 year: 1928 end-page: 76 ident: b0125 article-title: Flotation mechanism, a discussion of the functions of floatation reagents publication-title: Trans. Am. Inst. Min. Metall. Eng. – reference: Hounfodji, J.W., Kanhounnon, W.G., Kpotin, G., Atohoun, G.S., Lainé, J., Foucaud, Y., Badawi, M., 2020. Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem. Eng. J. (Lausanne, Switzerland: 1996), 407. – volume: 3 start-page: 2613 year: 1972 end-page: 2618 ident: b0005 article-title: A determination of the products of reaction between various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials publication-title: Metall. Mater. Trans. B. – volume: 208 start-page: 1365 year: 1957 end-page: 1367 ident: b0110 article-title: Correlation of contact angles, adsorption density, zeta potentials, and flotation rate publication-title: Trans. AIME – year: 1988 ident: b0225 article-title: Hetero-ligand and hetero-metal complexes and their applications in analytical chemistry – volume: 70 start-page: 2210 year: 2006 end-page: 2228 ident: b0140 article-title: The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air publication-title: Geochim. Cosmochim. Acta – volume: 16 start-page: 1748 year: 1977 end-page: 1749 ident: b0205 article-title: Special points for Brillouin-zone integrations - A reply publication-title: Physical Review B – year: 1962 ident: b0105 article-title: Froth flotation 50th anniversary volume. American Institute of Mining, Metallurgical – volume: 511 start-page: 389 year: 2011 end-page: 392 ident: b0180 article-title: DFT study of influences of As, Co and Ni impurities on pyrite (1 0 0) surface oxidation by O publication-title: Chem. Phys. Lett. – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: b0220 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B – volume: 69 start-page: 251 year: 2003 end-page: 258 ident: b0240 article-title: Base metal oxide flotation using long chain xanthates publication-title: Int. J. Miner. Process. – volume: 112 start-page: 189 year: 1934 end-page: 232 ident: b0310 article-title: Principles of flotation. I. an experimental study of the effect of xanthates on contact angles at mineral surfaces publication-title: Trans. AIME – volume: 7 start-page: 146 year: 1954 end-page: 156 ident: b0250 article-title: Reaction between a mercury surface and some flotation reagents: and electrochemical study publication-title: I. Polarization curves. Aust. J. Chem. – year: 2020 ident: b0280 article-title: Electron and Phonon Spectrometrics – year: 1957 ident: b0120 article-title: Flotation – year: 2008 ident: b0305 article-title: Fundamental research of flotation on typical sulphides/carbonates/oxides of Cu, Pb, Zn and Fe, A Dissertation in Mineral Processing publication-title: North East University. (in Chinese) – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: b0080 article-title: From molecules to solids with the DMol publication-title: J. Chem. Phys. – volume: 23 start-page: 1120 year: 2010 end-page: 1130 ident: b0050 article-title: A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite publication-title: Miner. Eng. – volume: 520 start-page: 53 year: 2017 end-page: 61 ident: b0115 article-title: Anisotropic surface properties of calcite: a consideration of surface broken bonds publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 165 year: 2021 ident: b0060 article-title: Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study publication-title: Miner. Eng. – reference: Keller, C.H., Lewis, C.P., U.S. Pat., 1554216 and 1554220, 1925. – volume: 666 start-page: 44 year: 2017 ident: b0265 article-title: Influence of water, dihydrogen and dioxygen on the stability of the Cr publication-title: Surf. Sci. – year: 2007 ident: b0020 article-title: Handbook of Flotation Reagents: Chemistry – reference: Sun, C.Q., 2014. Compounds and nanocomposites: hetero-coordination. In: – reference: Kakovsky, I.A., 1957. Physicochemical properties of some flotation reagents and their salts with ions of heavy non-ferrous metals, in: Proceedings of the Second International Congress of Surface Activity, London. IV: 225-237. – volume: 21 start-page: 497 year: 2000 end-page: 525 ident: b0200 article-title: Coordination chemistry in mineral processing publication-title: Miner. Process. Extr. Metall. Rev. – reference: (Springer Series in Chemical Physics, pp. 621-646). Singapore: Springer Singapore. – reference: Gaudin, A.M., Martin, J.S., 1928. Flotation fundamentals. Part 3. The flotation of the carbonates of copper: Malachite and Azurite. Univ. Utah US Bur. Mines, Tech. Pap. no. 5. – volume: 37 start-page: 2403 year: 1984 end-page: 2413 ident: b0010 article-title: An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite publication-title: Aust. J. Chem. – volume: 64 start-page: 1045 year: 1992 end-page: 1097 ident: b0210 article-title: Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients publication-title: Rev. Mod. Phys. – volume: 143 year: 2019 ident: b0090 article-title: A review of atomistic simulation methods for surface physical-chemistry phenomena applied to froth flotation publication-title: Miner. Eng. – volume: 159 year: 2020 ident: b0070 article-title: Interactions of xanthate molecule with different mineral surfaces: a comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry publication-title: Miner. Eng. – reference: Chen, J.H., Zhu, Y.G., 2021. Study of semi-constrained properties of metal ions on mineral surface of flotation system. Journal of China University of Mining & Technology, 50(6), 1-8. (In Chinese) https://doi.org/10.13247/j.cnki.jcumt.001271. – year: 2020 ident: b0040 article-title: Electronic Structure and Surfaces of Sulfide Minerals: Density Functional Theory and Applications – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: b0300 article-title: Soft self-consistent pseudopotentials in generalized eigenvalue formalism publication-title: Physical Review B – volume: 67 start-page: 2121 year: 1963 end-page: 2126 ident: b0230 article-title: Infrared study of xanthate adsorption on vacuum deposited films of lead sulfide and metallic copper under conditions of controlled oxidation publication-title: J. Phys. Chem. – reference: Sutherland, K.L., Wark, I.W., 1955. Principles of flotation. Australasian Institute of Mining and Metallurgy. – volume: 225 start-page: 278 year: 2006 end-page: 290 ident: b0245 article-title: First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite publication-title: Chem. Geol. – reference: Ewans, L.E., Ewers, W.E., 1953. Recent developments in mineral dressing. (London), Ind. Eng. Chem. Inst. Min. Metall. 46, 2420. – volume: 72 start-page: 95 year: 2003 end-page: 110 ident: b0235 article-title: Molecular modeling and rational design of flotation reagents publication-title: Int. J. Miner. Process. – volume: 112 start-page: 245 year: 1934 end-page: 266 ident: b0315 article-title: Principles of flotation, II-an experimental study of the influence of cyanide, alkalis and copper sulphate on the effect of potassium ethyl xanthate at mineral surfaces publication-title: Trans. AIME – reference: Wark, I.W., 1994. The chemical basis of flotation, in: Proceedings of the Australasian Institute of Mining and Metallurgy. Parkville, Vic.: The Institute, 90, 61-72. – volume: 92 start-page: 508 year: 1990 end-page: 517 ident: b0075 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. – reference: Relaxation of the Chemical Bond – year: 1981 ident: b0135 article-title: Foundation of Physical Chemistry in the Process of Flotation – volume: 81 start-page: 2699 year: 2010 end-page: 2705 ident: b0295 article-title: Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions publication-title: J. Am. Ceram. Soc. – reference: . – volume: 54 start-page: 445 year: 1950 end-page: 459 ident: b0065 article-title: The theory of water-repellent films on solids formed by adsorption from aqueous solutions of heteropolar compounds publication-title: J. Phys. Colloid Chem. – volume: 47 start-page: 1 year: 2013 end-page: 5 ident: b0185 article-title: DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface publication-title: Miner. Eng. – volume: 112 start-page: 32 year: 1934 ident: b0290 article-title: The case for the chemical theory of flotation publication-title: Trans. AIME – volume: 163 year: 2021 ident: b0030 article-title: Effects of surface spatial structures and electronic properties of chalcopyrite and pyrite on Z-200 selectivity publication-title: Miner. Eng. – volume: 98 start-page: 132 year: 2011 end-page: 136 ident: b0035 article-title: A DFT study of the effect of natural impurities on the electronic structure of galena publication-title: Int. J. Miner. Process. – volume: 367 start-page: 459 year: 2016 end-page: 472 ident: b0255 article-title: Collector attachment to lead-activated sphalerite - experiments and DFT study on pH and solvent effects publication-title: Appl. Surf. Sci. – ident: 10.1016/j.mineng.2021.107067_b0145 doi: 10.1016/j.cej.2020.127176 – volume: 63 start-page: 68 year: 1971 ident: 10.1016/j.mineng.2021.107067_b0325 article-title: Electrochemistry of sulphide flotation publication-title: Australian Mining – year: 1962 ident: 10.1016/j.mineng.2021.107067_b0105 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 10.1016/j.mineng.2021.107067_b0215 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 98 start-page: 132 issue: 3–4 year: 2011 ident: 10.1016/j.mineng.2021.107067_b0035 article-title: A DFT study of the effect of natural impurities on the electronic structure of galena publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2010.11.001 – volume: 67 start-page: 2121 year: 1963 ident: 10.1016/j.mineng.2021.107067_b0230 article-title: Infrared study of xanthate adsorption on vacuum deposited films of lead sulfide and metallic copper under conditions of controlled oxidation publication-title: J. Phys. Chem. doi: 10.1021/j100804a036 – volume: 112 start-page: 245 year: 1934 ident: 10.1016/j.mineng.2021.107067_b0315 article-title: Principles of flotation, II-an experimental study of the influence of cyanide, alkalis and copper sulphate on the effect of potassium ethyl xanthate at mineral surfaces publication-title: Trans. AIME – year: 2007 ident: 10.1016/j.mineng.2021.107067_b0020 – volume: 165 year: 2021 ident: 10.1016/j.mineng.2021.107067_b0060 article-title: Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study publication-title: Miner. Eng. – volume: 208 start-page: 1365 year: 1957 ident: 10.1016/j.mineng.2021.107067_b0110 article-title: Correlation of contact angles, adsorption density, zeta potentials, and flotation rate publication-title: Trans. AIME – volume: 47 start-page: 1 year: 2013 ident: 10.1016/j.mineng.2021.107067_b0185 article-title: DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.03.026 – volume: 113 start-page: 7756 issue: 18 year: 2000 ident: 10.1016/j.mineng.2021.107067_b0080 article-title: From molecules to solids with the DMol3 approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 80 start-page: 669 year: 1964 ident: 10.1016/j.mineng.2021.107067_b0150 article-title: Effects of oxidation of pyrrhotite, pyrite and marcasite on their flotation properties: fundamental studies on flotation of iron sulphide minerals (2nd Report) publication-title: J. Min. Inst. Japan. – ident: 10.1016/j.mineng.2021.107067_b0085 doi: 10.1021/ie50539a056 – year: 2020 ident: 10.1016/j.mineng.2021.107067_b0040 – volume: 64 start-page: 1045 issue: 4 year: 1992 ident: 10.1016/j.mineng.2021.107067_b0210 article-title: Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.1045 – ident: 10.1016/j.mineng.2021.107067_b0155 – volume: 79 start-page: 50 year: 1928 ident: 10.1016/j.mineng.2021.107067_b0125 article-title: Flotation mechanism, a discussion of the functions of floatation reagents publication-title: Trans. Am. Inst. Min. Metall. Eng. – volume: 46 start-page: 6671 issue: 11 year: 1992 ident: 10.1016/j.mineng.2021.107067_b0220 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – ident: 10.1016/j.mineng.2021.107067_b0285 – volume: 520 start-page: 53 year: 2017 ident: 10.1016/j.mineng.2021.107067_b0115 article-title: Anisotropic surface properties of calcite: a consideration of surface broken bonds publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2017.01.061 – ident: 10.1016/j.mineng.2021.107067_b0130 – volume: 163 year: 2021 ident: 10.1016/j.mineng.2021.107067_b0030 article-title: Effects of surface spatial structures and electronic properties of chalcopyrite and pyrite on Z-200 selectivity publication-title: Miner. Eng. – volume: 235 start-page: 46 year: 1966 ident: 10.1016/j.mineng.2021.107067_b0190 article-title: Heat of adsorption and surface reactions of potassium ethyl xanthate on galena publication-title: Trans. AIME – ident: 10.1016/j.mineng.2021.107067_b0165 – volume: 21 start-page: 497 year: 2000 ident: 10.1016/j.mineng.2021.107067_b0200 article-title: Coordination chemistry in mineral processing publication-title: Miner. Process. Extr. Metall. Rev. doi: 10.1080/08827500008914176 – volume: 511 start-page: 389 issue: 4–6 year: 2011 ident: 10.1016/j.mineng.2021.107067_b0180 article-title: DFT study of influences of As, Co and Ni impurities on pyrite (1 0 0) surface oxidation by O2 molecule publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.06.078 – volume: 72 start-page: 95 year: 2003 ident: 10.1016/j.mineng.2021.107067_b0235 article-title: Molecular modeling and rational design of flotation reagents publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(03)00090-5 – volume: 92 start-page: 508 issue: 1 year: 1990 ident: 10.1016/j.mineng.2021.107067_b0075 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 112 start-page: 189 year: 1934 ident: 10.1016/j.mineng.2021.107067_b0310 article-title: Principles of flotation. I. an experimental study of the effect of xanthates on contact angles at mineral surfaces publication-title: Trans. AIME – volume: 54 start-page: 445 year: 1950 ident: 10.1016/j.mineng.2021.107067_b0065 article-title: The theory of water-repellent films on solids formed by adsorption from aqueous solutions of heteropolar compounds publication-title: J. Phys. Colloid Chem. doi: 10.1021/j150478a002 – ident: 10.1016/j.mineng.2021.107067_b0045 – volume: 5 start-page: 6 year: 1959 ident: 10.1016/j.mineng.2021.107067_b0160 article-title: The concepts of flotation critical pH publication-title: Ore Dressing – ident: 10.1016/j.mineng.2021.107067_b0320 – year: 1981 ident: 10.1016/j.mineng.2021.107067_b0135 – volume: 562 year: 2021 ident: 10.1016/j.mineng.2021.107067_b0100 article-title: Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150137 – volume: 367 start-page: 459 year: 2016 ident: 10.1016/j.mineng.2021.107067_b0255 article-title: Collector attachment to lead-activated sphalerite - experiments and DFT study on pH and solvent effects publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.213 – volume: 37 start-page: 2403 year: 1984 ident: 10.1016/j.mineng.2021.107067_b0010 article-title: An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite publication-title: Aust. J. Chem. doi: 10.1071/CH9842403 – volume: 159 year: 2020 ident: 10.1016/j.mineng.2021.107067_b0070 article-title: Interactions of xanthate molecule with different mineral surfaces: a comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry publication-title: Miner. Eng. – volume: 3 start-page: 2613 year: 1972 ident: 10.1016/j.mineng.2021.107067_b0005 article-title: A determination of the products of reaction between various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials publication-title: Metall. Mater. Trans. B. doi: 10.1007/BF02644237 – volume: 225 start-page: 278 issue: 3–4 year: 2006 ident: 10.1016/j.mineng.2021.107067_b0245 article-title: First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2005.08.021 – volume: 7 start-page: 146 year: 1954 ident: 10.1016/j.mineng.2021.107067_b0250 article-title: Reaction between a mercury surface and some flotation reagents: and electrochemical study publication-title: I. Polarization curves. Aust. J. Chem. doi: 10.1071/CH9540146 – volume: 23 start-page: 1120 issue: 14 year: 2010 ident: 10.1016/j.mineng.2021.107067_b0050 article-title: A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2010.07.005 – volume: 70 start-page: 2210 year: 2006 ident: 10.1016/j.mineng.2021.107067_b0140 article-title: The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.02.007 – volume: 69 start-page: 251 issue: 1 year: 2003 ident: 10.1016/j.mineng.2021.107067_b0240 article-title: Base metal oxide flotation using long chain xanthates publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(02)00130-8 – volume: 122 start-page: 6829 issue: 26 year: 2018 ident: 10.1016/j.mineng.2021.107067_b0095 article-title: Surface properties of fluorite in presence of water: an atomistic investigation publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b02717 – volume: 118 start-page: 11657 issue: 22 year: 2014 ident: 10.1016/j.mineng.2021.107067_b0025 article-title: Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: a DFT study publication-title: J. Phys. Chem. C doi: 10.1021/jp5000478 – ident: 10.1016/j.mineng.2021.107067_b0275 doi: 10.1007/978-981-4585-21-7_30 – year: 1957 ident: 10.1016/j.mineng.2021.107067_b0120 – year: 2008 ident: 10.1016/j.mineng.2021.107067_b0305 article-title: Fundamental research of flotation on typical sulphides/carbonates/oxides of Cu, Pb, Zn and Fe, A Dissertation in Mineral Processing publication-title: North East University. (in Chinese) – volume: 81 start-page: 2699 year: 2010 ident: 10.1016/j.mineng.2021.107067_b0295 article-title: Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1998.tb02679.x – volume: 16 start-page: 1748 issue: 4 year: 1977 ident: 10.1016/j.mineng.2021.107067_b0205 article-title: Special points for Brillouin-zone integrations - A reply publication-title: Physical Review B doi: 10.1103/PhysRevB.16.1748 – volume: 13 start-page: 5188 issue: 12 year: 1976 ident: 10.1016/j.mineng.2021.107067_b0195 article-title: Special points for Brillouin-zone integrations publication-title: Physical Review B doi: 10.1103/PhysRevB.13.5188 – volume: 666 start-page: 44 year: 2017 ident: 10.1016/j.mineng.2021.107067_b0265 article-title: Influence of water, dihydrogen and dioxygen on the stability of the Cr2O3 surface: A first-principles investigation publication-title: Surf. Sci. doi: 10.1016/j.susc.2017.08.005 – volume: 143 year: 2019 ident: 10.1016/j.mineng.2021.107067_b0090 article-title: A review of atomistic simulation methods for surface physical-chemistry phenomena applied to froth flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.106020 – year: 1988 ident: 10.1016/j.mineng.2021.107067_b0225 – volume: 41 start-page: 7892 issue: 11 year: 1990 ident: 10.1016/j.mineng.2021.107067_b0300 article-title: Soft self-consistent pseudopotentials in generalized eigenvalue formalism publication-title: Physical Review B doi: 10.1103/PhysRevB.41.7892 – volume: 112 start-page: 32 year: 1934 ident: 10.1016/j.mineng.2021.107067_b0290 article-title: The case for the chemical theory of flotation publication-title: Trans. AIME – year: 2020 ident: 10.1016/j.mineng.2021.107067_b0280 |
SSID | ssj0005789 |
Score | 2.6228752 |
Snippet | [Display omitted]
•Metal ions semi-constrained in surface show very different properties from solution metal ions.•The interaction of regent molecules with... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107067 |
SubjectTerms | Coordination chemistry Mineral surface Reagent π-backbonding |
Title | The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry |
URI | https://dx.doi.org/10.1016/j.mineng.2021.107067 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qBa1ibpO3KbZqYBohdYNJuVZsmaGhrp6678tuxmxaGhEDi2CiWIseyP6f-bEKuUxGEXuoIFohEMemFIYuNUgzDU2IAkcsEyclPE388lQ8zb9Yiw4YLg2WVte-3Pr3y1vVKr9ZmbzWf956dfsh9gNscu4iG_gwZ7DLA_vk371tlHkE1Bg83M9zd0OeqGq8lILnsFbJE7sJS4FTT5n8IT1shZ3RA9musSAf2OIekpbMjsrfVQfCYlHDNFFs-FJagQHNDzSK3_9cpAEJkTq0pvrbSpQagTdHMQILioQr4Xm8Kg2VZt3RAV1_MS4q8E6pyyE3n9sGQqmY23AmZju5ehmNWD1JgCjKCkpm-0EIKXzo6NWnMIZsGv8K9WAjfwyJD6SWQqAIa6iuhje_qNAjiOAaoAwiLS3FK2lme6TNCPRxqozkHAzTSlTzWaepK7SpX8zAOZYeIRn-RqruM47CLRdSUk71FVusRaj2yWu8Q9im1sl02_tgfNFcTfbOWCALBr5Ln_5a8ILv4ZevLLkm7LDb6CgBJmXQri-uSncH943jyAXiF4Wk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDI4YHLYdpj019sxh1wiapC3dDaEhGI_LQOJWtWkyMfESlP8_u2kHk6ZN2rFpLEWOZX9u_dmEPCXCD9ykLpgvYsWkGwQsMkoxDE-xAUQuYyQnD4ZeZyxfJ-6kRFoFFwbLKnPfb3165q3zlVquzdpqOq291RsB9wBuc-wiGniTA1LB7lRg7JVmt9cZ7io9_GwSHu5nKFAw6LIyrzmAucU7JIrcgSW_ng2c_yFC7UWd9ik5yeEibdoTnZGSXpyT470mghckhZum2PVhbTkKdGmomS3tL3YKmBDJUxuKH1zpXAPWpmhpIEHxUGt43mzXBiuznmmTrnbkS4rUE6qWkJ5O7TdDqorxcJdk3H4ZtTosn6XAFCQFKTMNoYUUnqzrxCQRh4QaXAt3IyE8F-sMpRtDrgqAqKGENp6jE9-PogjQDoAsLsUVKS-WC31NqItzbTTnYINGOpJHOkkcqR3laB5EgawSUegvVHmjcZx3MQuLirKP0Go9RK2HVutVwr6kVrbRxh_7_eJqwm8GE0Is-FXy5t-Sj-SwMxr0w3532LslR_jGlpvdkXK63up7wCdp_JDb3yc33uQa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+interaction+of+flotation+reagents+with+metal+ions+in+mineral+surfaces%3A+A+perspective+from+coordination+chemistry&rft.jtitle=Minerals+engineering&rft.au=Chen%2C+Jianhua&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=171&rft_id=info:doi/10.1016%2Fj.mineng.2021.107067&rft.externalDocID=S089268752100296X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |