Appearance debiased gaze estimation via stochastic subject-wise adversarial learning
Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-s...
Saved in:
Published in | Pattern recognition Vol. 152; p. 110441 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-specific appearance factors. In this paper, we address these challenges and propose a novel framework: Stochastic subject-wise Adversarial gaZE learning (SAZE), which trains a network to generalize the appearance of subjects. We design a Face generalization Network (Fgen-Net) using a face-to-gaze encoder and face identity classifier and a proposed adversarial loss. The proposed loss generalizes face appearance factors so that the identity classifier inferences a uniform probability distribution. In addition, the Fgen-Net is trained by a learning mechanism that optimizes the network by reselecting a subset of subjects at every training step to avoid overfitting. Our experimental results verify the robustness of the method in that it yields state-of-the-art performance, achieving 3.89°and 4.42°on the MPIIFaceGaze and EyeDiap datasets, respectively. Furthermore, we demonstrate the positive generalization effect by conducting further experiments using face images involving different styles generated from the generative model.
•We suggest adversarial training for gaze estimation to generalize facial appearances.•We propose a stochastic strategy for subject-wise training to improve generalization.•Our framework achieves state-of-the-art performance on the MPIIFaceGaze and Eyediap. |
---|---|
AbstractList | Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-specific appearance factors. In this paper, we address these challenges and propose a novel framework: Stochastic subject-wise Adversarial gaZE learning (SAZE), which trains a network to generalize the appearance of subjects. We design a Face generalization Network (Fgen-Net) using a face-to-gaze encoder and face identity classifier and a proposed adversarial loss. The proposed loss generalizes face appearance factors so that the identity classifier inferences a uniform probability distribution. In addition, the Fgen-Net is trained by a learning mechanism that optimizes the network by reselecting a subset of subjects at every training step to avoid overfitting. Our experimental results verify the robustness of the method in that it yields state-of-the-art performance, achieving 3.89°and 4.42°on the MPIIFaceGaze and EyeDiap datasets, respectively. Furthermore, we demonstrate the positive generalization effect by conducting further experiments using face images involving different styles generated from the generative model.
•We suggest adversarial training for gaze estimation to generalize facial appearances.•We propose a stochastic strategy for subject-wise training to improve generalization.•Our framework achieves state-of-the-art performance on the MPIIFaceGaze and Eyediap. |
ArticleNumber | 110441 |
Author | Nam, Woo-Jeoung Kim, Suneung Lee, Seong-Whan |
Author_xml | – sequence: 1 givenname: Suneung surname: Kim fullname: Kim, Suneung email: se_kim@korea.ac.kr organization: Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea – sequence: 2 givenname: Woo-Jeoung surname: Nam fullname: Nam, Woo-Jeoung email: nwj0612@knu.ac.kr organization: Department of Computer Science and Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea – sequence: 3 givenname: Seong-Whan surname: Lee fullname: Lee, Seong-Whan email: sw.lee@korea.ac.kr organization: Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwDyT4lbhlgVRVvKRKbMramtiT4igklR2K4OtxCSsWsBppRudq7pmRSdd3SMglZzlnvLxq8j0Mtt_lggmVc86U4idkyhdaZgVXYkKmjEmeScHkGZnF2DDGdTpMyXa13yME6CxSh5WHiI7u4BMpxsG_wuD7jh480Dj09gXSztL4VjVoh-zdR6TgDhgiBA8tbVNS57vdOTmtoY148TPn5Pnudrt-yDZP94_r1SazkpVDVhf1UrultE5rLRaoFrYopBSCVaIutRK1sKhVyZ2qoXJi6XghlZAWmARnhZyT6zHXhj7GgLWxfvh-eQjgW8OZOfoxjRn9mKMfM_pJsPoF70MqHD7-w25GDFOxg8dgovWY9DkfkhTjev93wBeaXITF |
CitedBy_id | crossref_primary_10_1016_j_patcog_2025_111536 |
Cites_doi | 10.1007/978-3-030-58558-7_22 10.1007/978-3-030-01267-0_38 10.1016/S0031-3203(00)00007-8 10.1109/TASLP.2019.2960721 10.1109/TIP.2019.2946452 10.1016/j.patcog.2023.109750 10.1109/TIP.2017.2657880 10.1109/ICCV.2015.293 10.1145/2559636.2559666 10.1109/ICCV48922.2021.00381 10.1109/CVPR.2017.316 10.1016/j.patcog.2017.04.026 10.1109/FGR.2006.65 10.1145/2559636.2559656 10.1016/j.patcog.2021.107951 10.1109/TIP.2020.2982828 10.1609/aaai.v32i1.11596 10.1145/2578153.2578190 10.1016/j.patcog.2022.109182 10.1109/CVPR42600.2020.00926 10.1109/ICCV.2019.00701 10.1145/2929464.2929472 10.1016/j.patcog.2022.108944 10.1109/TPAMI.2017.2778103 10.1109/CVPR.2016.239 10.1109/CVPR.2019.01218 10.1609/aaai.v34i07.6636 10.1109/CVPR.2019.00793 10.1109/LSP.2023.3332569 10.1007/978-3-030-01249-6_21 10.1145/2818346.2820742 10.1109/CVPR.2018.00566 10.1007/978-3-030-11012-3_35 10.1109/CVPRW.2017.284 10.1007/978-3-030-01264-9_7 10.1109/ICCV.2019.00946 10.1109/TPAMI.2019.2957373 10.1109/TCE.2012.6227433 10.1109/CVPR.2019.01221 10.1016/j.neunet.2021.09.029 10.1007/978-3-030-20876-9_20 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2024.110441 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2024_110441 S0031320324001924 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-f5f97d93cd77728e48c5533220b2f6742f2ce7461d4fabd29d153423ca03adc23 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:46 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Sat Apr 27 15:44:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stochastic subject selection Adversarial loss Generalization Appearance-based gaze estimation Meta-learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-f5f97d93cd77728e48c5533220b2f6742f2ce7461d4fabd29d153423ca03adc23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2024_110441 crossref_primary_10_1016_j_patcog_2024_110441 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | M. Ghifary, W.B. Kleijn, M. Zhang, D. Balduzzi, Domain generalization for object recognition with multi-task autoencoders, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015, pp. 2551–2559. A. Moon, D.M. Troniak, B. Gleeson, M.K. Pan, M. Zheng, B.A. Blumer, K. MacLean, E.A. Croft, Meet me where i’m gazing: how shared attention gaze affects human-robot handover timing, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 334–341. K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, A. Torralba, Eye tracking for everyone, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 2176–2184. C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, ICML, 2017, pp. 1126–1135. Liu, Chi, Yang, Yin (b9) 2022; 132 Lu, Chen, Sato (b7) 2017; 26 Y. Cheng, S. Huang, F. Wang, C. Qian, F. Lu, A coarse-to-fine adaptive network for appearance-based gaze estimation, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2020, pp. 10623–10630. M. Ahmad, S.-W. Lee, Human action recognition using multi-view image sequences, in: International Conference on Automatic Face and Gesture Recognition, FGR06, 2006, pp. 523–528. Nichol, Achiam, Schulman (b26) 2018 H. Li, S.J. Pan, S. Wang, A.C. Kot, Domain generalization with adversarial feature learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 5400–5409. Shi, Wu, Han, Shao, Li, Wu (b34) 2023; 143 Guan, Chen, Zeng, Cao, Xiao (b50) 2023; 30 K. Wang, R. Zhao, H. Su, Q. Ji, Generalizing eye tracking with bayesian adversarial learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11907–11916. Y. Liu, R. Liu, H. Wang, F. Lu, Generalizing gaze estimation with outlier-guided collaborative adaptation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2021, pp. 3835–3844. P. Biswas, et al., Appearance-based gaze estimation using attention and difference mechanism, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2021, pp. 3143–3152. K. Muandet, D. Balduzzi, B. Schölkopf, Domain generalization via invariant feature representation, in: International Conference on Machine Learning, ICML, 2013, pp. 10–18. K.A. Funes Mora, F. Monay, J.-M. Odobez, Eyediap: A database for the development and evaluation of gaze estimation algorithms from rgb and rgb-d cameras, in: Proceedings of the Symposium on Eye Tracking Research and Applications, 2014, pp. 255–258. Y. Shen, J. Gu, X. Tang, B. Zhou, Interpreting the latent space of gans for semantic face editing, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9243–9252. T. Fischer, H.J. Chang, Y. Demiris, Rt-gene: Real-time eye gaze estimation in natural environments, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 334–352. Murthy LR, Mukhopadhyay, Aggarwal, Anand, Biswas (b49) 2023 S. Park, S.D. Mello, P. Molchanov, U. Iqbal, O. Hilliges, J. Kautz, Few-shot adaptive gaze estimation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 9368–9377. Corcoran, Nanu, Petrescu, Bigioi (b11) 2012; 58 X. Zhang, S. Park, T. Beeler, D. Bradley, S. Tang, O. Hilliges, Eth-xgaze: A large scale dataset for gaze estimation under extreme head pose and gaze variation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2020, pp. 365–381. Z. Chen, B.E. Shi, Appearance-based gaze estimation using dilated-convolutions, in: Asian Conference on Computer Vision, ACCV, 2018, pp. 309–324. Martinikorena, Larumbe-Bergera, Ariz, Porta, Cabeza, Villanueva (b8) 2019; 29 Wedel, Pieters (b12) 2017 Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, D. Tao, Deep domain generalization via conditional invariant adversarial networks, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 624–639. E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 7167–7176. S. Andrist, X.Z. Tan, M. Gleicher, B. Mutlu, Conversational gaze aversion for humanlike robots, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 25–32. Cheng, Zhu, Zhang, Liu (b35) 2023; 136 P. Kellnhofer, A. Recasens, S. Stent, W. Matusik, A. Torralba, Gaze360: Physically unconstrained gaze estimation in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 6912–6921. T. Pfeiffer, Towards gaze interaction in immersive virtual reality: Evaluation of a monocular eye tracking set-up, in: Virtuelle und Erweiterte Realität-Fünfter Workshop der GI-Fachgruppe VR/AR, 2008, pp. 81–92. Ye, Wang, Cao (b41) 2021; 144 Y. Cheng, F. Lu, X. Zhang, Appearance-based gaze estimation via evaluation-guided asymmetric regression, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 100–115. A. Patney, J. Kim, M. Salvi, A. Kaplanyan, C. Wyman, N. Benty, A. Lefohn, D. Luebke, Perceptually-based foveated virtual reality, in: ACM SIGGRAPH Emerging Technologies, 2016, pp. 1–2. D. Li, Y. Yang, Y.-Z. Song, T.M. Hospedales, Learning to generalize: Meta-learning for domain generalization, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2018. Lee, Yang, Lee (b6) 2001; 34 Liu, Yu, Mora, Odobez (b25) 2019; 43 Zhang, Sugano, Fritz, Bulling (b16) 2017; 41 Cheng, Liu, Fu, Ji, Yang, Zhao, Yang (b10) 2017; 71 Y. Yu, G. Liu, J.-M. Odobez, Deep multitask gaze estimation with a constrained landmark-gaze model, in: Proceedings of the European Conference on Computer Vision Workshops, ECCVW, 2018. R. Bixler, N. Blanchard, L. Garrison, S. D’Mello, Automatic detection of mind wandering during reading using gaze and physiology, in: Proceedings of the ACM on International Conference on Multimodal Interaction, MI, 2015, pp. 299–306. X. Zhang, Y. Sugano, A. Bulling, M. Fritz, It’s written all over your face: Full-face appearance-based gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2017, pp. 51–60. Cheng, Zhang, Lu, Sato (b46) 2020; 29 Y. Yu, G. Liu, J.-M. Odobez, Improving few-shot user-specific gaze adaptation via gaze redirection synthesis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11937–11946. Zhang, Ling, Dai (b37) 2019; 28 Maeng, Liao, Kang, Lee, Jain (b3) 2013 Balaji, Sankaranarayanan, Chellappa (b40) 2018; 31 Y. Xiong, H.J. Kim, V. Singh, Mixed effects neural networks (menets) with applications to gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 7743–7752. Xu, Wang, Li, Ouyang, Shao (b42) 2021; 116 10.1016/j.patcog.2024.110441_b48 Nichol (10.1016/j.patcog.2024.110441_b26) 2018 Shi (10.1016/j.patcog.2024.110441_b34) 2023; 143 Cheng (10.1016/j.patcog.2024.110441_b46) 2020; 29 10.1016/j.patcog.2024.110441_b5 10.1016/j.patcog.2024.110441_b4 10.1016/j.patcog.2024.110441_b1 Cheng (10.1016/j.patcog.2024.110441_b35) 2023; 136 10.1016/j.patcog.2024.110441_b2 10.1016/j.patcog.2024.110441_b14 10.1016/j.patcog.2024.110441_b13 10.1016/j.patcog.2024.110441_b38 10.1016/j.patcog.2024.110441_b39 Murthy LR (10.1016/j.patcog.2024.110441_b49) 2023 Liu (10.1016/j.patcog.2024.110441_b9) 2022; 132 Wedel (10.1016/j.patcog.2024.110441_b12) 2017 Guan (10.1016/j.patcog.2024.110441_b50) 2023; 30 Corcoran (10.1016/j.patcog.2024.110441_b11) 2012; 58 10.1016/j.patcog.2024.110441_b43 Zhang (10.1016/j.patcog.2024.110441_b37) 2019; 28 10.1016/j.patcog.2024.110441_b45 10.1016/j.patcog.2024.110441_b44 10.1016/j.patcog.2024.110441_b47 Maeng (10.1016/j.patcog.2024.110441_b3) 2013 10.1016/j.patcog.2024.110441_b27 10.1016/j.patcog.2024.110441_b29 Liu (10.1016/j.patcog.2024.110441_b25) 2019; 43 10.1016/j.patcog.2024.110441_b28 Balaji (10.1016/j.patcog.2024.110441_b40) 2018; 31 Ye (10.1016/j.patcog.2024.110441_b41) 2021; 144 Xu (10.1016/j.patcog.2024.110441_b42) 2021; 116 Lu (10.1016/j.patcog.2024.110441_b7) 2017; 26 10.1016/j.patcog.2024.110441_b30 10.1016/j.patcog.2024.110441_b32 10.1016/j.patcog.2024.110441_b31 10.1016/j.patcog.2024.110441_b33 10.1016/j.patcog.2024.110441_b36 10.1016/j.patcog.2024.110441_b15 10.1016/j.patcog.2024.110441_b18 10.1016/j.patcog.2024.110441_b17 Martinikorena (10.1016/j.patcog.2024.110441_b8) 2019; 29 10.1016/j.patcog.2024.110441_b19 Zhang (10.1016/j.patcog.2024.110441_b16) 2017; 41 Lee (10.1016/j.patcog.2024.110441_b6) 2001; 34 10.1016/j.patcog.2024.110441_b21 10.1016/j.patcog.2024.110441_b20 10.1016/j.patcog.2024.110441_b23 Cheng (10.1016/j.patcog.2024.110441_b10) 2017; 71 10.1016/j.patcog.2024.110441_b22 10.1016/j.patcog.2024.110441_b24 |
References_xml | – reference: M. Ghifary, W.B. Kleijn, M. Zhang, D. Balduzzi, Domain generalization for object recognition with multi-task autoencoders, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015, pp. 2551–2559. – reference: X. Zhang, S. Park, T. Beeler, D. Bradley, S. Tang, O. Hilliges, Eth-xgaze: A large scale dataset for gaze estimation under extreme head pose and gaze variation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2020, pp. 365–381. – volume: 71 start-page: 36 year: 2017 end-page: 44 ident: b10 article-title: Gazing point dependent eye gaze estimation publication-title: Pattern Recognit. – reference: K.A. Funes Mora, F. Monay, J.-M. Odobez, Eyediap: A database for the development and evaluation of gaze estimation algorithms from rgb and rgb-d cameras, in: Proceedings of the Symposium on Eye Tracking Research and Applications, 2014, pp. 255–258. – reference: Y. Xiong, H.J. Kim, V. Singh, Mixed effects neural networks (menets) with applications to gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 7743–7752. – reference: R. Bixler, N. Blanchard, L. Garrison, S. D’Mello, Automatic detection of mind wandering during reading using gaze and physiology, in: Proceedings of the ACM on International Conference on Multimodal Interaction, MI, 2015, pp. 299–306. – volume: 41 start-page: 162 year: 2017 end-page: 175 ident: b16 article-title: Mpiigaze: Real-world dataset and deep appearance-based gaze estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 30 start-page: 1687 year: 2023 end-page: 1691 ident: b50 article-title: End-to-end video gaze estimation via capturing head-face-eye spatial-temporal interaction context publication-title: IEEE Signal Process. Lett. – reference: E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 7167–7176. – volume: 29 start-page: 2328 year: 2019 end-page: 2343 ident: b8 article-title: Low cost gaze estimation: Knowledge-based solutions publication-title: IEEE Trans. Image Process. – volume: 144 start-page: 755 year: 2021 end-page: 765 ident: b41 article-title: A novel meta-learning framework: Multi-features adaptive aggregation method with information enhancer publication-title: Neural Netw. – year: 2023 ident: b49 article-title: Towards precision in appearance-based gaze estimation in the wild – reference: K. Muandet, D. Balduzzi, B. Schölkopf, Domain generalization via invariant feature representation, in: International Conference on Machine Learning, ICML, 2013, pp. 10–18. – volume: 136 year: 2023 ident: b35 article-title: Adversarial training with distribution normalization and margin balance publication-title: Pattern Recognit. – volume: 31 year: 2018 ident: b40 article-title: Metareg: Towards domain generalization using meta-regularization publication-title: Adv. Neural Inf. Process. Syst. – start-page: 708 year: 2013 end-page: 721 ident: b3 article-title: Nighttime face recognition at long distance: Cross-distance and cross-spectral matching publication-title: Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part II 11 – reference: T. Fischer, H.J. Chang, Y. Demiris, Rt-gene: Real-time eye gaze estimation in natural environments, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 334–352. – volume: 26 start-page: 1543 year: 2017 end-page: 1553 ident: b7 article-title: Appearance-based gaze estimation via uncalibrated gaze pattern recovery publication-title: IEEE Trans. Image Process. – reference: Y. Yu, G. Liu, J.-M. Odobez, Deep multitask gaze estimation with a constrained landmark-gaze model, in: Proceedings of the European Conference on Computer Vision Workshops, ECCVW, 2018. – volume: 43 start-page: 1092 year: 2019 end-page: 1099 ident: b25 article-title: A differential approach for gaze estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: H. Li, S.J. Pan, S. Wang, A.C. Kot, Domain generalization with adversarial feature learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 5400–5409. – volume: 34 start-page: 711 year: 2001 end-page: 719 ident: b6 article-title: Automatic video parsing using shot boundary detection and camera operation analysis publication-title: Pattern Recognit. – volume: 28 start-page: 540 year: 2019 end-page: 552 ident: b37 article-title: Non-parallel sequence-to-sequence voice conversion with disentangled linguistic and speaker representations publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – reference: T. Pfeiffer, Towards gaze interaction in immersive virtual reality: Evaluation of a monocular eye tracking set-up, in: Virtuelle und Erweiterte Realität-Fünfter Workshop der GI-Fachgruppe VR/AR, 2008, pp. 81–92. – reference: S. Andrist, X.Z. Tan, M. Gleicher, B. Mutlu, Conversational gaze aversion for humanlike robots, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 25–32. – reference: Z. Chen, B.E. Shi, Appearance-based gaze estimation using dilated-convolutions, in: Asian Conference on Computer Vision, ACCV, 2018, pp. 309–324. – reference: S. Park, S.D. Mello, P. Molchanov, U. Iqbal, O. Hilliges, J. Kautz, Few-shot adaptive gaze estimation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 9368–9377. – volume: 116 year: 2021 ident: b42 article-title: Unsupervised meta-learning for few-shot learning publication-title: Pattern Recognit. – reference: K. Wang, R. Zhao, H. Su, Q. Ji, Generalizing eye tracking with bayesian adversarial learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11907–11916. – volume: 143 year: 2023 ident: b34 article-title: Source-free and black-box domain adaptation via distributionally adversarial training publication-title: Pattern Recognit. – reference: A. Moon, D.M. Troniak, B. Gleeson, M.K. Pan, M. Zheng, B.A. Blumer, K. MacLean, E.A. Croft, Meet me where i’m gazing: how shared attention gaze affects human-robot handover timing, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 334–341. – year: 2018 ident: b26 article-title: On first-order meta-learning algorithms – reference: Y. Cheng, S. Huang, F. Wang, C. Qian, F. Lu, A coarse-to-fine adaptive network for appearance-based gaze estimation, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2020, pp. 10623–10630. – start-page: 123 year: 2017 end-page: 147 ident: b12 article-title: A review of eye-tracking research in marketing publication-title: Review of Marketing Research – reference: Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, D. Tao, Deep domain generalization via conditional invariant adversarial networks, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 624–639. – reference: Y. Yu, G. Liu, J.-M. Odobez, Improving few-shot user-specific gaze adaptation via gaze redirection synthesis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11937–11946. – reference: Y. Cheng, F. Lu, X. Zhang, Appearance-based gaze estimation via evaluation-guided asymmetric regression, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 100–115. – reference: X. Zhang, Y. Sugano, A. Bulling, M. Fritz, It’s written all over your face: Full-face appearance-based gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2017, pp. 51–60. – reference: P. Biswas, et al., Appearance-based gaze estimation using attention and difference mechanism, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2021, pp. 3143–3152. – reference: C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, ICML, 2017, pp. 1126–1135. – reference: D. Li, Y. Yang, Y.-Z. Song, T.M. Hospedales, Learning to generalize: Meta-learning for domain generalization, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2018. – reference: K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, A. Torralba, Eye tracking for everyone, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 2176–2184. – reference: M. Ahmad, S.-W. Lee, Human action recognition using multi-view image sequences, in: International Conference on Automatic Face and Gesture Recognition, FGR06, 2006, pp. 523–528. – reference: Y. Shen, J. Gu, X. Tang, B. Zhou, Interpreting the latent space of gans for semantic face editing, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9243–9252. – volume: 58 start-page: 347 year: 2012 end-page: 355 ident: b11 article-title: Real-time eye gaze tracking for gaming design and consumer electronics systems publication-title: IEEE Trans. Consum. Electron. – reference: P. Kellnhofer, A. Recasens, S. Stent, W. Matusik, A. Torralba, Gaze360: Physically unconstrained gaze estimation in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 6912–6921. – reference: Y. Liu, R. Liu, H. Wang, F. Lu, Generalizing gaze estimation with outlier-guided collaborative adaptation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2021, pp. 3835–3844. – volume: 132 year: 2022 ident: b9 article-title: In the eye of the beholder: A survey of gaze tracking techniques publication-title: Pattern Recognit. – reference: A. Patney, J. Kim, M. Salvi, A. Kaplanyan, C. Wyman, N. Benty, A. Lefohn, D. Luebke, Perceptually-based foveated virtual reality, in: ACM SIGGRAPH Emerging Technologies, 2016, pp. 1–2. – volume: 29 start-page: 5259 year: 2020 end-page: 5272 ident: b46 article-title: Gaze estimation by exploring two-eye asymmetry publication-title: IEEE Trans. Image Process. – ident: 10.1016/j.patcog.2024.110441_b18 doi: 10.1007/978-3-030-58558-7_22 – ident: 10.1016/j.patcog.2024.110441_b30 doi: 10.1007/978-3-030-01267-0_38 – volume: 34 start-page: 711 issue: 3 year: 2001 ident: 10.1016/j.patcog.2024.110441_b6 article-title: Automatic video parsing using shot boundary detection and camera operation analysis publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00007-8 – volume: 28 start-page: 540 year: 2019 ident: 10.1016/j.patcog.2024.110441_b37 article-title: Non-parallel sequence-to-sequence voice conversion with disentangled linguistic and speaker representations publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2019.2960721 – year: 2018 ident: 10.1016/j.patcog.2024.110441_b26 – ident: 10.1016/j.patcog.2024.110441_b5 – volume: 29 start-page: 2328 year: 2019 ident: 10.1016/j.patcog.2024.110441_b8 article-title: Low cost gaze estimation: Knowledge-based solutions publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2946452 – ident: 10.1016/j.patcog.2024.110441_b33 – volume: 143 year: 2023 ident: 10.1016/j.patcog.2024.110441_b34 article-title: Source-free and black-box domain adaptation via distributionally adversarial training publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109750 – volume: 26 start-page: 1543 issue: 4 year: 2017 ident: 10.1016/j.patcog.2024.110441_b7 article-title: Appearance-based gaze estimation via uncalibrated gaze pattern recovery publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2657880 – ident: 10.1016/j.patcog.2024.110441_b38 – ident: 10.1016/j.patcog.2024.110441_b32 doi: 10.1109/ICCV.2015.293 – ident: 10.1016/j.patcog.2024.110441_b1 doi: 10.1145/2559636.2559666 – ident: 10.1016/j.patcog.2024.110441_b48 doi: 10.1109/ICCV48922.2021.00381 – ident: 10.1016/j.patcog.2024.110441_b36 doi: 10.1109/CVPR.2017.316 – volume: 71 start-page: 36 year: 2017 ident: 10.1016/j.patcog.2024.110441_b10 article-title: Gazing point dependent eye gaze estimation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.04.026 – ident: 10.1016/j.patcog.2024.110441_b13 doi: 10.1109/FGR.2006.65 – ident: 10.1016/j.patcog.2024.110441_b14 doi: 10.1145/2559636.2559656 – start-page: 123 year: 2017 ident: 10.1016/j.patcog.2024.110441_b12 article-title: A review of eye-tracking research in marketing – volume: 116 year: 2021 ident: 10.1016/j.patcog.2024.110441_b42 article-title: Unsupervised meta-learning for few-shot learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107951 – volume: 29 start-page: 5259 year: 2020 ident: 10.1016/j.patcog.2024.110441_b46 article-title: Gaze estimation by exploring two-eye asymmetry publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2982828 – ident: 10.1016/j.patcog.2024.110441_b39 doi: 10.1609/aaai.v32i1.11596 – ident: 10.1016/j.patcog.2024.110441_b43 doi: 10.1145/2578153.2578190 – volume: 136 year: 2023 ident: 10.1016/j.patcog.2024.110441_b35 article-title: Adversarial training with distribution normalization and margin balance publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109182 – ident: 10.1016/j.patcog.2024.110441_b27 doi: 10.1109/CVPR42600.2020.00926 – ident: 10.1016/j.patcog.2024.110441_b47 doi: 10.1109/ICCV.2019.00701 – ident: 10.1016/j.patcog.2024.110441_b4 doi: 10.1145/2929464.2929472 – start-page: 708 year: 2013 ident: 10.1016/j.patcog.2024.110441_b3 article-title: Nighttime face recognition at long distance: Cross-distance and cross-spectral matching – volume: 132 year: 2022 ident: 10.1016/j.patcog.2024.110441_b9 article-title: In the eye of the beholder: A survey of gaze tracking techniques publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108944 – volume: 41 start-page: 162 issue: 1 year: 2017 ident: 10.1016/j.patcog.2024.110441_b16 article-title: Mpiigaze: Real-world dataset and deep appearance-based gaze estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2778103 – ident: 10.1016/j.patcog.2024.110441_b15 doi: 10.1109/CVPR.2016.239 – ident: 10.1016/j.patcog.2024.110441_b19 doi: 10.1109/CVPR.2019.01218 – ident: 10.1016/j.patcog.2024.110441_b28 doi: 10.1609/aaai.v34i07.6636 – ident: 10.1016/j.patcog.2024.110441_b23 doi: 10.1109/CVPR.2019.00793 – volume: 31 year: 2018 ident: 10.1016/j.patcog.2024.110441_b40 article-title: Metareg: Towards domain generalization using meta-regularization publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 1687 year: 2023 ident: 10.1016/j.patcog.2024.110441_b50 article-title: End-to-end video gaze estimation via capturing head-face-eye spatial-temporal interaction context publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2023.3332569 – ident: 10.1016/j.patcog.2024.110441_b44 doi: 10.1007/978-3-030-01249-6_21 – ident: 10.1016/j.patcog.2024.110441_b2 doi: 10.1145/2818346.2820742 – ident: 10.1016/j.patcog.2024.110441_b31 doi: 10.1109/CVPR.2018.00566 – ident: 10.1016/j.patcog.2024.110441_b22 doi: 10.1007/978-3-030-11012-3_35 – ident: 10.1016/j.patcog.2024.110441_b17 doi: 10.1109/CVPRW.2017.284 – ident: 10.1016/j.patcog.2024.110441_b24 doi: 10.1007/978-3-030-01264-9_7 – ident: 10.1016/j.patcog.2024.110441_b20 doi: 10.1109/ICCV.2019.00946 – volume: 43 start-page: 1092 year: 2019 ident: 10.1016/j.patcog.2024.110441_b25 article-title: A differential approach for gaze estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2957373 – year: 2023 ident: 10.1016/j.patcog.2024.110441_b49 – ident: 10.1016/j.patcog.2024.110441_b21 – volume: 58 start-page: 347 issue: 2 year: 2012 ident: 10.1016/j.patcog.2024.110441_b11 article-title: Real-time eye gaze tracking for gaming design and consumer electronics systems publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2012.6227433 – ident: 10.1016/j.patcog.2024.110441_b29 doi: 10.1109/CVPR.2019.01221 – volume: 144 start-page: 755 year: 2021 ident: 10.1016/j.patcog.2024.110441_b41 article-title: A novel meta-learning framework: Multi-features adaptive aggregation method with information enhancer publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.09.029 – ident: 10.1016/j.patcog.2024.110441_b45 doi: 10.1007/978-3-030-20876-9_20 |
SSID | ssj0017142 |
Score | 2.463323 |
Snippet | Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110441 |
SubjectTerms | Adversarial loss Appearance-based gaze estimation Generalization Meta-learning Stochastic subject selection |
Title | Appearance debiased gaze estimation via stochastic subject-wise adversarial learning |
URI | https://dx.doi.org/10.1016/j.patcog.2024.110441 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPX2GSzeeyxFEtV6KmF3sJmHzUibbGtggd_uzPdTVEQBU8hIQthMvn2m_DNN4RcpzKKAOQgeblJsSXHBrlMbRBLnguuBYNqDtUWw3Qw5veTZNIgvboXBmWVHvsdpm_Q2l_p-Gh2FlWFPb5oOxiioxzyFPQE5TzDLL_52Mo8cL63cwyPowDvrtvnNhqvBcDdfApVIuOoh-c8-nl7-rLl9A_InueKtOse55A0zOyI7NdzGKj_LI_JCKgkJCy-P6pNWcHGpOlUvhuKFhquN5G-VpIC0VOPEp2Z6XJd4h-Y4K1aGipxKvNSYi5SP0ZiekLG_dtRbxD4aQmBAtq_CmxiRaZFrHQGjDk3PFcJcDnGwpLZFCpgy5TJeBppbmWpmdAAdkCmlAxjqRWLT0lzNp-ZM0JVEhsmQig2gC0pZYXiWWmEAjiAgzAtEtdBKpS3EseJFs9FrRl7KlxoCwxt4ULbIsF21cJZafxxf1bHv_iWEgWg_a8rz_-98oLs4plT-F2S5uplba6AdazK9iat2mSne_cwGH4C8BHW4w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEN0QPejFbyN-7kGPFbpd2u7Bg1EJCHKChFvd7m6xxgARkOjBP-UfdIZuiSZGExNOTdpu0r5O3r5p3swQcupL1wWSg-DlxseSnMQJpZ84nuSh4FowyObQbdHyax1-2610C-Qjr4VBW6Xl_ozTZ2xtz5QsmqVhmmKNL7YdLGNHOdQp3DorG-Z1Cnnb6KJ-DR_5jLHqTfuq5tjRAo4CjTx2kkoiAi08pQOQl6HhoaqA8GGsHLPEh3QxYcoE3Hc1T2SsmdDADKA8lCx7UivsdgC8v8yBLnBswvn73FeCA8WzFuWe6-Dj5fV6M1PZEPh10IO0lHE04HPu_rwfftnjqhtkzYpTepm9_yYpmP4WWc8HP1DLA9ukDdoVUMCAodrEKeyEmvbkm6HYsyMrhqQvqaSgLNWDxFbQdDSJ8ZePM01HhkocAz2SGPzUzq3o7ZDOQjDcJUv9Qd_sEaoqnmGiDNkNyDOlEqF4EBuhgH_gIEyReDlIkbK9y3GExlOUm9QeowzaCKGNMmiLxJmvGma9O_64P8jxj77FYATby68r9_-98oSs1Np3zahZbzUOyCpeyeyFh2Rp_DwxRyB5xvHxLMQouV90TH8CXzoR8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Appearance+debiased+gaze+estimation+via+stochastic+subject-wise+adversarial+learning&rft.jtitle=Pattern+recognition&rft.au=Kim%2C+Suneung&rft.au=Nam%2C+Woo-Jeoung&rft.au=Lee%2C+Seong-Whan&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=152&rft_id=info:doi/10.1016%2Fj.patcog.2024.110441&rft.externalDocID=S0031320324001924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |