Appearance debiased gaze estimation via stochastic subject-wise adversarial learning

Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-s...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 152; p. 110441
Main Authors Kim, Suneung, Nam, Woo-Jeoung, Lee, Seong-Whan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-specific appearance factors. In this paper, we address these challenges and propose a novel framework: Stochastic subject-wise Adversarial gaZE learning (SAZE), which trains a network to generalize the appearance of subjects. We design a Face generalization Network (Fgen-Net) using a face-to-gaze encoder and face identity classifier and a proposed adversarial loss. The proposed loss generalizes face appearance factors so that the identity classifier inferences a uniform probability distribution. In addition, the Fgen-Net is trained by a learning mechanism that optimizes the network by reselecting a subset of subjects at every training step to avoid overfitting. Our experimental results verify the robustness of the method in that it yields state-of-the-art performance, achieving 3.89°and 4.42°on the MPIIFaceGaze and EyeDiap datasets, respectively. Furthermore, we demonstrate the positive generalization effect by conducting further experiments using face images involving different styles generated from the generative model. •We suggest adversarial training for gaze estimation to generalize facial appearances.•We propose a stochastic strategy for subject-wise training to improve generalization.•Our framework achieves state-of-the-art performance on the MPIIFaceGaze and Eyediap.
AbstractList Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-specific appearance factors. In this paper, we address these challenges and propose a novel framework: Stochastic subject-wise Adversarial gaZE learning (SAZE), which trains a network to generalize the appearance of subjects. We design a Face generalization Network (Fgen-Net) using a face-to-gaze encoder and face identity classifier and a proposed adversarial loss. The proposed loss generalizes face appearance factors so that the identity classifier inferences a uniform probability distribution. In addition, the Fgen-Net is trained by a learning mechanism that optimizes the network by reselecting a subset of subjects at every training step to avoid overfitting. Our experimental results verify the robustness of the method in that it yields state-of-the-art performance, achieving 3.89°and 4.42°on the MPIIFaceGaze and EyeDiap datasets, respectively. Furthermore, we demonstrate the positive generalization effect by conducting further experiments using face images involving different styles generated from the generative model. •We suggest adversarial training for gaze estimation to generalize facial appearances.•We propose a stochastic strategy for subject-wise training to improve generalization.•Our framework achieves state-of-the-art performance on the MPIIFaceGaze and Eyediap.
ArticleNumber 110441
Author Nam, Woo-Jeoung
Kim, Suneung
Lee, Seong-Whan
Author_xml – sequence: 1
  givenname: Suneung
  surname: Kim
  fullname: Kim, Suneung
  email: se_kim@korea.ac.kr
  organization: Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
– sequence: 2
  givenname: Woo-Jeoung
  surname: Nam
  fullname: Nam, Woo-Jeoung
  email: nwj0612@knu.ac.kr
  organization: Department of Computer Science and Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
– sequence: 3
  givenname: Seong-Whan
  surname: Lee
  fullname: Lee, Seong-Whan
  email: sw.lee@korea.ac.kr
  organization: Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyT4lbhlgVRVvKRKbMramtiT4igklR2K4OtxCSsWsBppRudq7pmRSdd3SMglZzlnvLxq8j0Mtt_lggmVc86U4idkyhdaZgVXYkKmjEmeScHkGZnF2DDGdTpMyXa13yME6CxSh5WHiI7u4BMpxsG_wuD7jh480Dj09gXSztL4VjVoh-zdR6TgDhgiBA8tbVNS57vdOTmtoY148TPn5Pnudrt-yDZP94_r1SazkpVDVhf1UrultE5rLRaoFrYopBSCVaIutRK1sKhVyZ2qoXJi6XghlZAWmARnhZyT6zHXhj7GgLWxfvh-eQjgW8OZOfoxjRn9mKMfM_pJsPoF70MqHD7-w25GDFOxg8dgovWY9DkfkhTjev93wBeaXITF
CitedBy_id crossref_primary_10_1016_j_patcog_2025_111536
Cites_doi 10.1007/978-3-030-58558-7_22
10.1007/978-3-030-01267-0_38
10.1016/S0031-3203(00)00007-8
10.1109/TASLP.2019.2960721
10.1109/TIP.2019.2946452
10.1016/j.patcog.2023.109750
10.1109/TIP.2017.2657880
10.1109/ICCV.2015.293
10.1145/2559636.2559666
10.1109/ICCV48922.2021.00381
10.1109/CVPR.2017.316
10.1016/j.patcog.2017.04.026
10.1109/FGR.2006.65
10.1145/2559636.2559656
10.1016/j.patcog.2021.107951
10.1109/TIP.2020.2982828
10.1609/aaai.v32i1.11596
10.1145/2578153.2578190
10.1016/j.patcog.2022.109182
10.1109/CVPR42600.2020.00926
10.1109/ICCV.2019.00701
10.1145/2929464.2929472
10.1016/j.patcog.2022.108944
10.1109/TPAMI.2017.2778103
10.1109/CVPR.2016.239
10.1109/CVPR.2019.01218
10.1609/aaai.v34i07.6636
10.1109/CVPR.2019.00793
10.1109/LSP.2023.3332569
10.1007/978-3-030-01249-6_21
10.1145/2818346.2820742
10.1109/CVPR.2018.00566
10.1007/978-3-030-11012-3_35
10.1109/CVPRW.2017.284
10.1007/978-3-030-01264-9_7
10.1109/ICCV.2019.00946
10.1109/TPAMI.2019.2957373
10.1109/TCE.2012.6227433
10.1109/CVPR.2019.01221
10.1016/j.neunet.2021.09.029
10.1007/978-3-030-20876-9_20
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.110441
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2024_110441
S0031320324001924
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-f5f97d93cd77728e48c5533220b2f6742f2ce7461d4fabd29d153423ca03adc23
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:46 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Sat Apr 27 15:44:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Stochastic subject selection
Adversarial loss
Generalization
Appearance-based gaze estimation
Meta-learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f5f97d93cd77728e48c5533220b2f6742f2ce7461d4fabd29d153423ca03adc23
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2024_110441
crossref_primary_10_1016_j_patcog_2024_110441
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References M. Ghifary, W.B. Kleijn, M. Zhang, D. Balduzzi, Domain generalization for object recognition with multi-task autoencoders, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015, pp. 2551–2559.
A. Moon, D.M. Troniak, B. Gleeson, M.K. Pan, M. Zheng, B.A. Blumer, K. MacLean, E.A. Croft, Meet me where i’m gazing: how shared attention gaze affects human-robot handover timing, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 334–341.
K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, A. Torralba, Eye tracking for everyone, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 2176–2184.
C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, ICML, 2017, pp. 1126–1135.
Liu, Chi, Yang, Yin (b9) 2022; 132
Lu, Chen, Sato (b7) 2017; 26
Y. Cheng, S. Huang, F. Wang, C. Qian, F. Lu, A coarse-to-fine adaptive network for appearance-based gaze estimation, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2020, pp. 10623–10630.
M. Ahmad, S.-W. Lee, Human action recognition using multi-view image sequences, in: International Conference on Automatic Face and Gesture Recognition, FGR06, 2006, pp. 523–528.
Nichol, Achiam, Schulman (b26) 2018
H. Li, S.J. Pan, S. Wang, A.C. Kot, Domain generalization with adversarial feature learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 5400–5409.
Shi, Wu, Han, Shao, Li, Wu (b34) 2023; 143
Guan, Chen, Zeng, Cao, Xiao (b50) 2023; 30
K. Wang, R. Zhao, H. Su, Q. Ji, Generalizing eye tracking with bayesian adversarial learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11907–11916.
Y. Liu, R. Liu, H. Wang, F. Lu, Generalizing gaze estimation with outlier-guided collaborative adaptation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2021, pp. 3835–3844.
P. Biswas, et al., Appearance-based gaze estimation using attention and difference mechanism, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2021, pp. 3143–3152.
K. Muandet, D. Balduzzi, B. Schölkopf, Domain generalization via invariant feature representation, in: International Conference on Machine Learning, ICML, 2013, pp. 10–18.
K.A. Funes Mora, F. Monay, J.-M. Odobez, Eyediap: A database for the development and evaluation of gaze estimation algorithms from rgb and rgb-d cameras, in: Proceedings of the Symposium on Eye Tracking Research and Applications, 2014, pp. 255–258.
Y. Shen, J. Gu, X. Tang, B. Zhou, Interpreting the latent space of gans for semantic face editing, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9243–9252.
T. Fischer, H.J. Chang, Y. Demiris, Rt-gene: Real-time eye gaze estimation in natural environments, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 334–352.
Murthy LR, Mukhopadhyay, Aggarwal, Anand, Biswas (b49) 2023
S. Park, S.D. Mello, P. Molchanov, U. Iqbal, O. Hilliges, J. Kautz, Few-shot adaptive gaze estimation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 9368–9377.
Corcoran, Nanu, Petrescu, Bigioi (b11) 2012; 58
X. Zhang, S. Park, T. Beeler, D. Bradley, S. Tang, O. Hilliges, Eth-xgaze: A large scale dataset for gaze estimation under extreme head pose and gaze variation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2020, pp. 365–381.
Z. Chen, B.E. Shi, Appearance-based gaze estimation using dilated-convolutions, in: Asian Conference on Computer Vision, ACCV, 2018, pp. 309–324.
Martinikorena, Larumbe-Bergera, Ariz, Porta, Cabeza, Villanueva (b8) 2019; 29
Wedel, Pieters (b12) 2017
Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, D. Tao, Deep domain generalization via conditional invariant adversarial networks, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 624–639.
E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 7167–7176.
S. Andrist, X.Z. Tan, M. Gleicher, B. Mutlu, Conversational gaze aversion for humanlike robots, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 25–32.
Cheng, Zhu, Zhang, Liu (b35) 2023; 136
P. Kellnhofer, A. Recasens, S. Stent, W. Matusik, A. Torralba, Gaze360: Physically unconstrained gaze estimation in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 6912–6921.
T. Pfeiffer, Towards gaze interaction in immersive virtual reality: Evaluation of a monocular eye tracking set-up, in: Virtuelle und Erweiterte Realität-Fünfter Workshop der GI-Fachgruppe VR/AR, 2008, pp. 81–92.
Ye, Wang, Cao (b41) 2021; 144
Y. Cheng, F. Lu, X. Zhang, Appearance-based gaze estimation via evaluation-guided asymmetric regression, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 100–115.
A. Patney, J. Kim, M. Salvi, A. Kaplanyan, C. Wyman, N. Benty, A. Lefohn, D. Luebke, Perceptually-based foveated virtual reality, in: ACM SIGGRAPH Emerging Technologies, 2016, pp. 1–2.
D. Li, Y. Yang, Y.-Z. Song, T.M. Hospedales, Learning to generalize: Meta-learning for domain generalization, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2018.
Lee, Yang, Lee (b6) 2001; 34
Liu, Yu, Mora, Odobez (b25) 2019; 43
Zhang, Sugano, Fritz, Bulling (b16) 2017; 41
Cheng, Liu, Fu, Ji, Yang, Zhao, Yang (b10) 2017; 71
Y. Yu, G. Liu, J.-M. Odobez, Deep multitask gaze estimation with a constrained landmark-gaze model, in: Proceedings of the European Conference on Computer Vision Workshops, ECCVW, 2018.
R. Bixler, N. Blanchard, L. Garrison, S. D’Mello, Automatic detection of mind wandering during reading using gaze and physiology, in: Proceedings of the ACM on International Conference on Multimodal Interaction, MI, 2015, pp. 299–306.
X. Zhang, Y. Sugano, A. Bulling, M. Fritz, It’s written all over your face: Full-face appearance-based gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2017, pp. 51–60.
Cheng, Zhang, Lu, Sato (b46) 2020; 29
Y. Yu, G. Liu, J.-M. Odobez, Improving few-shot user-specific gaze adaptation via gaze redirection synthesis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11937–11946.
Zhang, Ling, Dai (b37) 2019; 28
Maeng, Liao, Kang, Lee, Jain (b3) 2013
Balaji, Sankaranarayanan, Chellappa (b40) 2018; 31
Y. Xiong, H.J. Kim, V. Singh, Mixed effects neural networks (menets) with applications to gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 7743–7752.
Xu, Wang, Li, Ouyang, Shao (b42) 2021; 116
10.1016/j.patcog.2024.110441_b48
Nichol (10.1016/j.patcog.2024.110441_b26) 2018
Shi (10.1016/j.patcog.2024.110441_b34) 2023; 143
Cheng (10.1016/j.patcog.2024.110441_b46) 2020; 29
10.1016/j.patcog.2024.110441_b5
10.1016/j.patcog.2024.110441_b4
10.1016/j.patcog.2024.110441_b1
Cheng (10.1016/j.patcog.2024.110441_b35) 2023; 136
10.1016/j.patcog.2024.110441_b2
10.1016/j.patcog.2024.110441_b14
10.1016/j.patcog.2024.110441_b13
10.1016/j.patcog.2024.110441_b38
10.1016/j.patcog.2024.110441_b39
Murthy LR (10.1016/j.patcog.2024.110441_b49) 2023
Liu (10.1016/j.patcog.2024.110441_b9) 2022; 132
Wedel (10.1016/j.patcog.2024.110441_b12) 2017
Guan (10.1016/j.patcog.2024.110441_b50) 2023; 30
Corcoran (10.1016/j.patcog.2024.110441_b11) 2012; 58
10.1016/j.patcog.2024.110441_b43
Zhang (10.1016/j.patcog.2024.110441_b37) 2019; 28
10.1016/j.patcog.2024.110441_b45
10.1016/j.patcog.2024.110441_b44
10.1016/j.patcog.2024.110441_b47
Maeng (10.1016/j.patcog.2024.110441_b3) 2013
10.1016/j.patcog.2024.110441_b27
10.1016/j.patcog.2024.110441_b29
Liu (10.1016/j.patcog.2024.110441_b25) 2019; 43
10.1016/j.patcog.2024.110441_b28
Balaji (10.1016/j.patcog.2024.110441_b40) 2018; 31
Ye (10.1016/j.patcog.2024.110441_b41) 2021; 144
Xu (10.1016/j.patcog.2024.110441_b42) 2021; 116
Lu (10.1016/j.patcog.2024.110441_b7) 2017; 26
10.1016/j.patcog.2024.110441_b30
10.1016/j.patcog.2024.110441_b32
10.1016/j.patcog.2024.110441_b31
10.1016/j.patcog.2024.110441_b33
10.1016/j.patcog.2024.110441_b36
10.1016/j.patcog.2024.110441_b15
10.1016/j.patcog.2024.110441_b18
10.1016/j.patcog.2024.110441_b17
Martinikorena (10.1016/j.patcog.2024.110441_b8) 2019; 29
10.1016/j.patcog.2024.110441_b19
Zhang (10.1016/j.patcog.2024.110441_b16) 2017; 41
Lee (10.1016/j.patcog.2024.110441_b6) 2001; 34
10.1016/j.patcog.2024.110441_b21
10.1016/j.patcog.2024.110441_b20
10.1016/j.patcog.2024.110441_b23
Cheng (10.1016/j.patcog.2024.110441_b10) 2017; 71
10.1016/j.patcog.2024.110441_b22
10.1016/j.patcog.2024.110441_b24
References_xml – reference: M. Ghifary, W.B. Kleijn, M. Zhang, D. Balduzzi, Domain generalization for object recognition with multi-task autoencoders, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015, pp. 2551–2559.
– reference: X. Zhang, S. Park, T. Beeler, D. Bradley, S. Tang, O. Hilliges, Eth-xgaze: A large scale dataset for gaze estimation under extreme head pose and gaze variation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2020, pp. 365–381.
– volume: 71
  start-page: 36
  year: 2017
  end-page: 44
  ident: b10
  article-title: Gazing point dependent eye gaze estimation
  publication-title: Pattern Recognit.
– reference: K.A. Funes Mora, F. Monay, J.-M. Odobez, Eyediap: A database for the development and evaluation of gaze estimation algorithms from rgb and rgb-d cameras, in: Proceedings of the Symposium on Eye Tracking Research and Applications, 2014, pp. 255–258.
– reference: Y. Xiong, H.J. Kim, V. Singh, Mixed effects neural networks (menets) with applications to gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 7743–7752.
– reference: R. Bixler, N. Blanchard, L. Garrison, S. D’Mello, Automatic detection of mind wandering during reading using gaze and physiology, in: Proceedings of the ACM on International Conference on Multimodal Interaction, MI, 2015, pp. 299–306.
– volume: 41
  start-page: 162
  year: 2017
  end-page: 175
  ident: b16
  article-title: Mpiigaze: Real-world dataset and deep appearance-based gaze estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 30
  start-page: 1687
  year: 2023
  end-page: 1691
  ident: b50
  article-title: End-to-end video gaze estimation via capturing head-face-eye spatial-temporal interaction context
  publication-title: IEEE Signal Process. Lett.
– reference: E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 7167–7176.
– volume: 29
  start-page: 2328
  year: 2019
  end-page: 2343
  ident: b8
  article-title: Low cost gaze estimation: Knowledge-based solutions
  publication-title: IEEE Trans. Image Process.
– volume: 144
  start-page: 755
  year: 2021
  end-page: 765
  ident: b41
  article-title: A novel meta-learning framework: Multi-features adaptive aggregation method with information enhancer
  publication-title: Neural Netw.
– year: 2023
  ident: b49
  article-title: Towards precision in appearance-based gaze estimation in the wild
– reference: K. Muandet, D. Balduzzi, B. Schölkopf, Domain generalization via invariant feature representation, in: International Conference on Machine Learning, ICML, 2013, pp. 10–18.
– volume: 136
  year: 2023
  ident: b35
  article-title: Adversarial training with distribution normalization and margin balance
  publication-title: Pattern Recognit.
– volume: 31
  year: 2018
  ident: b40
  article-title: Metareg: Towards domain generalization using meta-regularization
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 708
  year: 2013
  end-page: 721
  ident: b3
  article-title: Nighttime face recognition at long distance: Cross-distance and cross-spectral matching
  publication-title: Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part II 11
– reference: T. Fischer, H.J. Chang, Y. Demiris, Rt-gene: Real-time eye gaze estimation in natural environments, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 334–352.
– volume: 26
  start-page: 1543
  year: 2017
  end-page: 1553
  ident: b7
  article-title: Appearance-based gaze estimation via uncalibrated gaze pattern recovery
  publication-title: IEEE Trans. Image Process.
– reference: Y. Yu, G. Liu, J.-M. Odobez, Deep multitask gaze estimation with a constrained landmark-gaze model, in: Proceedings of the European Conference on Computer Vision Workshops, ECCVW, 2018.
– volume: 43
  start-page: 1092
  year: 2019
  end-page: 1099
  ident: b25
  article-title: A differential approach for gaze estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: H. Li, S.J. Pan, S. Wang, A.C. Kot, Domain generalization with adversarial feature learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 5400–5409.
– volume: 34
  start-page: 711
  year: 2001
  end-page: 719
  ident: b6
  article-title: Automatic video parsing using shot boundary detection and camera operation analysis
  publication-title: Pattern Recognit.
– volume: 28
  start-page: 540
  year: 2019
  end-page: 552
  ident: b37
  article-title: Non-parallel sequence-to-sequence voice conversion with disentangled linguistic and speaker representations
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– reference: T. Pfeiffer, Towards gaze interaction in immersive virtual reality: Evaluation of a monocular eye tracking set-up, in: Virtuelle und Erweiterte Realität-Fünfter Workshop der GI-Fachgruppe VR/AR, 2008, pp. 81–92.
– reference: S. Andrist, X.Z. Tan, M. Gleicher, B. Mutlu, Conversational gaze aversion for humanlike robots, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 25–32.
– reference: Z. Chen, B.E. Shi, Appearance-based gaze estimation using dilated-convolutions, in: Asian Conference on Computer Vision, ACCV, 2018, pp. 309–324.
– reference: S. Park, S.D. Mello, P. Molchanov, U. Iqbal, O. Hilliges, J. Kautz, Few-shot adaptive gaze estimation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 9368–9377.
– volume: 116
  year: 2021
  ident: b42
  article-title: Unsupervised meta-learning for few-shot learning
  publication-title: Pattern Recognit.
– reference: K. Wang, R. Zhao, H. Su, Q. Ji, Generalizing eye tracking with bayesian adversarial learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11907–11916.
– volume: 143
  year: 2023
  ident: b34
  article-title: Source-free and black-box domain adaptation via distributionally adversarial training
  publication-title: Pattern Recognit.
– reference: A. Moon, D.M. Troniak, B. Gleeson, M.K. Pan, M. Zheng, B.A. Blumer, K. MacLean, E.A. Croft, Meet me where i’m gazing: how shared attention gaze affects human-robot handover timing, in: Proceedings of the IEEE Conference on Human-Robot Interaction, HRI, 2014, pp. 334–341.
– year: 2018
  ident: b26
  article-title: On first-order meta-learning algorithms
– reference: Y. Cheng, S. Huang, F. Wang, C. Qian, F. Lu, A coarse-to-fine adaptive network for appearance-based gaze estimation, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2020, pp. 10623–10630.
– start-page: 123
  year: 2017
  end-page: 147
  ident: b12
  article-title: A review of eye-tracking research in marketing
  publication-title: Review of Marketing Research
– reference: Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, D. Tao, Deep domain generalization via conditional invariant adversarial networks, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 624–639.
– reference: Y. Yu, G. Liu, J.-M. Odobez, Improving few-shot user-specific gaze adaptation via gaze redirection synthesis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11937–11946.
– reference: Y. Cheng, F. Lu, X. Zhang, Appearance-based gaze estimation via evaluation-guided asymmetric regression, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 100–115.
– reference: X. Zhang, Y. Sugano, A. Bulling, M. Fritz, It’s written all over your face: Full-face appearance-based gaze estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2017, pp. 51–60.
– reference: P. Biswas, et al., Appearance-based gaze estimation using attention and difference mechanism, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2021, pp. 3143–3152.
– reference: C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, ICML, 2017, pp. 1126–1135.
– reference: D. Li, Y. Yang, Y.-Z. Song, T.M. Hospedales, Learning to generalize: Meta-learning for domain generalization, in: Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2018.
– reference: K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, A. Torralba, Eye tracking for everyone, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 2176–2184.
– reference: M. Ahmad, S.-W. Lee, Human action recognition using multi-view image sequences, in: International Conference on Automatic Face and Gesture Recognition, FGR06, 2006, pp. 523–528.
– reference: Y. Shen, J. Gu, X. Tang, B. Zhou, Interpreting the latent space of gans for semantic face editing, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9243–9252.
– volume: 58
  start-page: 347
  year: 2012
  end-page: 355
  ident: b11
  article-title: Real-time eye gaze tracking for gaming design and consumer electronics systems
  publication-title: IEEE Trans. Consum. Electron.
– reference: P. Kellnhofer, A. Recasens, S. Stent, W. Matusik, A. Torralba, Gaze360: Physically unconstrained gaze estimation in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2019, pp. 6912–6921.
– reference: Y. Liu, R. Liu, H. Wang, F. Lu, Generalizing gaze estimation with outlier-guided collaborative adaptation, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2021, pp. 3835–3844.
– volume: 132
  year: 2022
  ident: b9
  article-title: In the eye of the beholder: A survey of gaze tracking techniques
  publication-title: Pattern Recognit.
– reference: A. Patney, J. Kim, M. Salvi, A. Kaplanyan, C. Wyman, N. Benty, A. Lefohn, D. Luebke, Perceptually-based foveated virtual reality, in: ACM SIGGRAPH Emerging Technologies, 2016, pp. 1–2.
– volume: 29
  start-page: 5259
  year: 2020
  end-page: 5272
  ident: b46
  article-title: Gaze estimation by exploring two-eye asymmetry
  publication-title: IEEE Trans. Image Process.
– ident: 10.1016/j.patcog.2024.110441_b18
  doi: 10.1007/978-3-030-58558-7_22
– ident: 10.1016/j.patcog.2024.110441_b30
  doi: 10.1007/978-3-030-01267-0_38
– volume: 34
  start-page: 711
  issue: 3
  year: 2001
  ident: 10.1016/j.patcog.2024.110441_b6
  article-title: Automatic video parsing using shot boundary detection and camera operation analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00007-8
– volume: 28
  start-page: 540
  year: 2019
  ident: 10.1016/j.patcog.2024.110441_b37
  article-title: Non-parallel sequence-to-sequence voice conversion with disentangled linguistic and speaker representations
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2019.2960721
– year: 2018
  ident: 10.1016/j.patcog.2024.110441_b26
– ident: 10.1016/j.patcog.2024.110441_b5
– volume: 29
  start-page: 2328
  year: 2019
  ident: 10.1016/j.patcog.2024.110441_b8
  article-title: Low cost gaze estimation: Knowledge-based solutions
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2946452
– ident: 10.1016/j.patcog.2024.110441_b33
– volume: 143
  year: 2023
  ident: 10.1016/j.patcog.2024.110441_b34
  article-title: Source-free and black-box domain adaptation via distributionally adversarial training
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109750
– volume: 26
  start-page: 1543
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2024.110441_b7
  article-title: Appearance-based gaze estimation via uncalibrated gaze pattern recovery
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2657880
– ident: 10.1016/j.patcog.2024.110441_b38
– ident: 10.1016/j.patcog.2024.110441_b32
  doi: 10.1109/ICCV.2015.293
– ident: 10.1016/j.patcog.2024.110441_b1
  doi: 10.1145/2559636.2559666
– ident: 10.1016/j.patcog.2024.110441_b48
  doi: 10.1109/ICCV48922.2021.00381
– ident: 10.1016/j.patcog.2024.110441_b36
  doi: 10.1109/CVPR.2017.316
– volume: 71
  start-page: 36
  year: 2017
  ident: 10.1016/j.patcog.2024.110441_b10
  article-title: Gazing point dependent eye gaze estimation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.04.026
– ident: 10.1016/j.patcog.2024.110441_b13
  doi: 10.1109/FGR.2006.65
– ident: 10.1016/j.patcog.2024.110441_b14
  doi: 10.1145/2559636.2559656
– start-page: 123
  year: 2017
  ident: 10.1016/j.patcog.2024.110441_b12
  article-title: A review of eye-tracking research in marketing
– volume: 116
  year: 2021
  ident: 10.1016/j.patcog.2024.110441_b42
  article-title: Unsupervised meta-learning for few-shot learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107951
– volume: 29
  start-page: 5259
  year: 2020
  ident: 10.1016/j.patcog.2024.110441_b46
  article-title: Gaze estimation by exploring two-eye asymmetry
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2982828
– ident: 10.1016/j.patcog.2024.110441_b39
  doi: 10.1609/aaai.v32i1.11596
– ident: 10.1016/j.patcog.2024.110441_b43
  doi: 10.1145/2578153.2578190
– volume: 136
  year: 2023
  ident: 10.1016/j.patcog.2024.110441_b35
  article-title: Adversarial training with distribution normalization and margin balance
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109182
– ident: 10.1016/j.patcog.2024.110441_b27
  doi: 10.1109/CVPR42600.2020.00926
– ident: 10.1016/j.patcog.2024.110441_b47
  doi: 10.1109/ICCV.2019.00701
– ident: 10.1016/j.patcog.2024.110441_b4
  doi: 10.1145/2929464.2929472
– start-page: 708
  year: 2013
  ident: 10.1016/j.patcog.2024.110441_b3
  article-title: Nighttime face recognition at long distance: Cross-distance and cross-spectral matching
– volume: 132
  year: 2022
  ident: 10.1016/j.patcog.2024.110441_b9
  article-title: In the eye of the beholder: A survey of gaze tracking techniques
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108944
– volume: 41
  start-page: 162
  issue: 1
  year: 2017
  ident: 10.1016/j.patcog.2024.110441_b16
  article-title: Mpiigaze: Real-world dataset and deep appearance-based gaze estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2778103
– ident: 10.1016/j.patcog.2024.110441_b15
  doi: 10.1109/CVPR.2016.239
– ident: 10.1016/j.patcog.2024.110441_b19
  doi: 10.1109/CVPR.2019.01218
– ident: 10.1016/j.patcog.2024.110441_b28
  doi: 10.1609/aaai.v34i07.6636
– ident: 10.1016/j.patcog.2024.110441_b23
  doi: 10.1109/CVPR.2019.00793
– volume: 31
  year: 2018
  ident: 10.1016/j.patcog.2024.110441_b40
  article-title: Metareg: Towards domain generalization using meta-regularization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 1687
  year: 2023
  ident: 10.1016/j.patcog.2024.110441_b50
  article-title: End-to-end video gaze estimation via capturing head-face-eye spatial-temporal interaction context
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2023.3332569
– ident: 10.1016/j.patcog.2024.110441_b44
  doi: 10.1007/978-3-030-01249-6_21
– ident: 10.1016/j.patcog.2024.110441_b2
  doi: 10.1145/2818346.2820742
– ident: 10.1016/j.patcog.2024.110441_b31
  doi: 10.1109/CVPR.2018.00566
– ident: 10.1016/j.patcog.2024.110441_b22
  doi: 10.1007/978-3-030-11012-3_35
– ident: 10.1016/j.patcog.2024.110441_b17
  doi: 10.1109/CVPRW.2017.284
– ident: 10.1016/j.patcog.2024.110441_b24
  doi: 10.1007/978-3-030-01264-9_7
– ident: 10.1016/j.patcog.2024.110441_b20
  doi: 10.1109/ICCV.2019.00946
– volume: 43
  start-page: 1092
  year: 2019
  ident: 10.1016/j.patcog.2024.110441_b25
  article-title: A differential approach for gaze estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2957373
– year: 2023
  ident: 10.1016/j.patcog.2024.110441_b49
– ident: 10.1016/j.patcog.2024.110441_b21
– volume: 58
  start-page: 347
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2024.110441_b11
  article-title: Real-time eye gaze tracking for gaming design and consumer electronics systems
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2012.6227433
– ident: 10.1016/j.patcog.2024.110441_b29
  doi: 10.1109/CVPR.2019.01221
– volume: 144
  start-page: 755
  year: 2021
  ident: 10.1016/j.patcog.2024.110441_b41
  article-title: A novel meta-learning framework: Multi-features adaptive aggregation method with information enhancer
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.09.029
– ident: 10.1016/j.patcog.2024.110441_b45
  doi: 10.1007/978-3-030-20876-9_20
SSID ssj0017142
Score 2.463323
Snippet Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110441
SubjectTerms Adversarial loss
Appearance-based gaze estimation
Generalization
Meta-learning
Stochastic subject selection
Title Appearance debiased gaze estimation via stochastic subject-wise adversarial learning
URI https://dx.doi.org/10.1016/j.patcog.2024.110441
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPX2GSzeeyxFEtV6KmF3sJmHzUibbGtggd_uzPdTVEQBU8hIQthMvn2m_DNN4RcpzKKAOQgeblJsSXHBrlMbRBLnguuBYNqDtUWw3Qw5veTZNIgvboXBmWVHvsdpm_Q2l_p-Gh2FlWFPb5oOxiioxzyFPQE5TzDLL_52Mo8cL63cwyPowDvrtvnNhqvBcDdfApVIuOoh-c8-nl7-rLl9A_InueKtOse55A0zOyI7NdzGKj_LI_JCKgkJCy-P6pNWcHGpOlUvhuKFhquN5G-VpIC0VOPEp2Z6XJd4h-Y4K1aGipxKvNSYi5SP0ZiekLG_dtRbxD4aQmBAtq_CmxiRaZFrHQGjDk3PFcJcDnGwpLZFCpgy5TJeBppbmWpmdAAdkCmlAxjqRWLT0lzNp-ZM0JVEhsmQig2gC0pZYXiWWmEAjiAgzAtEtdBKpS3EseJFs9FrRl7KlxoCwxt4ULbIsF21cJZafxxf1bHv_iWEgWg_a8rz_-98oLs4plT-F2S5uplba6AdazK9iat2mSne_cwGH4C8BHW4w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEN0QPejFbyN-7kGPFbpd2u7Bg1EJCHKChFvd7m6xxgARkOjBP-UfdIZuiSZGExNOTdpu0r5O3r5p3swQcupL1wWSg-DlxseSnMQJpZ84nuSh4FowyObQbdHyax1-2610C-Qjr4VBW6Xl_ozTZ2xtz5QsmqVhmmKNL7YdLGNHOdQp3DorG-Z1Cnnb6KJ-DR_5jLHqTfuq5tjRAo4CjTx2kkoiAi08pQOQl6HhoaqA8GGsHLPEh3QxYcoE3Hc1T2SsmdDADKA8lCx7UivsdgC8v8yBLnBswvn73FeCA8WzFuWe6-Dj5fV6M1PZEPh10IO0lHE04HPu_rwfftnjqhtkzYpTepm9_yYpmP4WWc8HP1DLA9ukDdoVUMCAodrEKeyEmvbkm6HYsyMrhqQvqaSgLNWDxFbQdDSJ8ZePM01HhkocAz2SGPzUzq3o7ZDOQjDcJUv9Qd_sEaoqnmGiDNkNyDOlEqF4EBuhgH_gIEyReDlIkbK9y3GExlOUm9QeowzaCKGNMmiLxJmvGma9O_64P8jxj77FYATby68r9_-98oSs1Np3zahZbzUOyCpeyeyFh2Rp_DwxRyB5xvHxLMQouV90TH8CXzoR8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Appearance+debiased+gaze+estimation+via+stochastic+subject-wise+adversarial+learning&rft.jtitle=Pattern+recognition&rft.au=Kim%2C+Suneung&rft.au=Nam%2C+Woo-Jeoung&rft.au=Lee%2C+Seong-Whan&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=152&rft_id=info:doi/10.1016%2Fj.patcog.2024.110441&rft.externalDocID=S0031320324001924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon