A hybrid quantum ensemble learning model for malicious code detection
Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from researchers. Ensemble learning is an effective strategy often used in machine learning to improve the performance of weak classifiers. Currently...
Saved in:
Published in | Quantum science and technology Vol. 9; no. 3; pp. 35021 - 35034 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2058-9565 2058-9565 |
DOI | 10.1088/2058-9565/ad40cb |
Cover
Abstract | Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from researchers. Ensemble learning is an effective strategy often used in machine learning to improve the performance of weak classifiers. Currently, the classification performance of quantum classifiers is not satisfactory enough due to factors such as the depth of quantum circuit, quantum noise, and quantum coding method, etc. For this reason, this paper combined the ensemble learning idea and quantum classifiers to design a novel hybrid quantum machine learning model. Firstly, we run the Stacking method in classical machine learning to realize the dimensionality reduction of high-latitude data while ensuring the validity of data features. Secondly, we used the Bagging method and Bayesian hyperparameter optimization method applied to quantum support vector machine (QSVM), quantum K nearest neighbors (QKNN), variational quantum classifier (VQC). Thirdly, the voting method is used to ensemble the predict results of QSVM, QKNN, VQC as the final result. We applied the hybrid quantum ensemble machine learning model to malicious code detection. The experimental results show that the classification precision (accuracy, F1-score) of this model has been improved to 98.9% (94.5%, 94.24%). Combined with the acceleration of quantum computing and the higher precision rate, it can effectively deal with the growing trend of malicious codes, which is of great significance to cyberspace security. |
---|---|
AbstractList | Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from researchers. Ensemble learning is an effective strategy often used in machine learning to improve the performance of weak classifiers. Currently, the classification performance of quantum classifiers is not satisfactory enough due to factors such as the depth of quantum circuit, quantum noise, and quantum coding method, etc. For this reason, this paper combined the ensemble learning idea and quantum classifiers to design a novel hybrid quantum machine learning model. Firstly, we run the Stacking method in classical machine learning to realize the dimensionality reduction of high-latitude data while ensuring the validity of data features. Secondly, we used the Bagging method and Bayesian hyperparameter optimization method applied to quantum support vector machine (QSVM), quantum K nearest neighbors (QKNN), variational quantum classifier (VQC). Thirdly, the voting method is used to ensemble the predict results of QSVM, QKNN, VQC as the final result. We applied the hybrid quantum ensemble machine learning model to malicious code detection. The experimental results show that the classification precision (accuracy, F1-score) of this model has been improved to 98.9% (94.5%, 94.24%). Combined with the acceleration of quantum computing and the higher precision rate, it can effectively deal with the growing trend of malicious codes, which is of great significance to cyberspace security. |
Author | Ding, Xiaodong Xiong, Qibing Fei, Yangyang Du, Qiming Shan, Zheng Feng, Congcong Zhou, Xin |
Author_xml | – sequence: 1 givenname: Qibing orcidid: 0009-0003-9602-0988 surname: Xiong fullname: Xiong, Qibing organization: Henan Police College , Zhengzhou 450000, People’s Republic of China – sequence: 2 givenname: Xiaodong orcidid: 0000-0001-9947-4035 surname: Ding fullname: Ding, Xiaodong organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China – sequence: 3 givenname: Yangyang surname: Fei fullname: Fei, Yangyang organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China – sequence: 4 givenname: Xin surname: Zhou fullname: Zhou, Xin organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China – sequence: 5 givenname: Qiming surname: Du fullname: Du, Qiming organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China – sequence: 6 givenname: Congcong surname: Feng fullname: Feng, Congcong organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China – sequence: 7 givenname: Zheng surname: Shan fullname: Shan, Zheng organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China |
BookMark | eNp9ULFOwzAUtFCRKKU7oycmQp_jJjhjVZWCVIkFZst5foZUid3aydC_p1URYkBM73S6O727azbywRNjtwIeBCg1y6FQWVWUxczYOWB9wcY_1OgXvmLTlLYAIHMhKijHbLXgn4c6NpbvB-P7oePkE3V1S7wlE33jP3gXLLXchcg70zbYhCFxPHLcUk_YN8HfsEtn2kTT7zth70-rt-VztnldvywXmwwllH3mihxlrlA6VE4gKnCKLFR5beWjMcpaMKjmVBLUJAlkKXNEtKIgCVBIOWFwzsUYUork9C42nYkHLUCfltCnqvpUVZ-XOFruz5Ym7PQ2DNEfH_xPfveHfJ96XWmpQRaQC72zTn4BIaRviA |
Cites_doi | 10.1088/2058-9565/ab9f93 10.1007/s11433-020-1638-5 10.1088/2058-9565/ab5944 10.1038/npjqi.2015.23 10.7498/aps.70.20210985 10.1214/aos/1013203451 10.1209/0295-5075/119/60002 10.1038/s41534-018-0116-9 10.3390/e25010127 10.1007/s11433-021-1793-6 10.1103/PhysRevResearch.6.013027 10.1007/s11128-021-03361-0 10.1103/PhysRevA.105.052414 10.1007/s11432-022-3492-x 10.1016/j.eswa.2017.07.029 10.1103/PhysRevLett.110.230501 10.1038/s42254-021-00348-9 10.1007/s11433-023-2098-8 10.3166/ejc.7.311-327 10.1006/jcss.1997.1504 10.31449/inf.v46i5.3608 10.1145/2379776.2379786 10.1007/s11433-021-1734-3 10.1002/qute.201900070 10.1023/A:1010933404324 10.1007/s42484-020-00017-7 10.1007/s11704-019-8208-z 10.1007/BF02650179 10.1007/s42484-021-00046-w 10.1088/2058-9565/aa6fea 10.1038/s41598-023-29495-y 10.1038/s41586-019-0980-2 10.1038/s41467-023-39785-8 10.1007/s11128-021-03384-7 10.1038/s41598-018-20403-3 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-9565/ad40cb |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2058-9565 |
ExternalDocumentID | 10_1088_2058_9565_ad40cb qstad40cb |
GrantInformation_xml | – fundername: Major Science and Technology Projects in Henan Province, China grantid: N0.221100210600 |
GroupedDBID | AAGCD AATNI ABHWH ABJNI ABVAM ACGFS ACHIP ADEQX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT CJUJL CRLBU EBS IJHAN IOP IZVLO KOT N5L PJBAE RIN ROL RPA AAYXX CITATION |
ID | FETCH-LOGICAL-c306t-f52c328c3fc8f1cc80f8ed092bd37aa8dd0ac84e6e0be3e03632cccd15e300533 |
IEDL.DBID | IOP |
ISSN | 2058-9565 |
IngestDate | Thu Jul 03 08:44:23 EDT 2025 Tue Aug 20 22:16:36 EDT 2024 Tue Jun 17 22:16:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-f52c328c3fc8f1cc80f8ed092bd37aa8dd0ac84e6e0be3e03632cccd15e300533 |
Notes | QST-102682.R1 |
ORCID | 0000-0001-9947-4035 0009-0003-9602-0988 |
OpenAccessLink | https://doi.org/10.1088/2058-9565/ad40cb |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1088_2058_9565_ad40cb iop_journals_10_1088_2058_9565_ad40cb |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Quantum science and technology |
PublicationTitleAbbrev | QST |
PublicationTitleAlternate | Quantum Sci. Technol |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Li (qstad40cbbib13) 2024; 6 Zhao (qstad40cbbib20) 2021; 3 Liu (qstad40cbbib9) 2016; 2 Hou (qstad40cbbib16) 2023; 66 Li (qstad40cbbib22) 2022; 65 AV-TEST Institute (qstad40cbbib27) 2023 Liu (qstad40cbbib3) 2019 Li (qstad40cbbib12) 2020; 5 Sim (qstad40cbbib45) 2019; 2 DataCon Community (qstad40cbbib46) 2021 Nataraj (qstad40cbbib44) 2011 Chen (qstad40cbbib24) 2021; 70 Huang (qstad40cbbib25) 2022; 105 Hai (qstad40cbbib39) 2022; 46 Feynman (qstad40cbbib6) 1982; 21 Freund (qstad40cbbib28) 1997; 55 Yang (qstad40cbbib34) 2019 Pan (qstad40cbbib8) 2023; 14 Li (qstad40cbbib18) 2022; 65 Li (qstad40cbbib36) 2021; 21 Montanaro (qstad40cbbib7) 2016; 2 Benedetti (qstad40cbbib40) 2019; 5 Grant (qstad40cbbib26) 2018; 4 Friedman (qstad40cbbib29) 2001; 29 Wang (qstad40cbbib15) 2019; 64 Breiman (qstad40cbbib30) 2001; 45 Schuld (qstad40cbbib14) 2018; 8 Wu (qstad40cbbib37) 2021; 21 He (qstad40cbbib1) 2016 Al-Khshali (qstad40cbbib42) 2020 Zhao (qstad40cbbib43) 2018 Dong (qstad40cbbib4) 2020; 14 Macaluso (qstad40cbbib41) 2020 Havlicek (qstad40cbbib10) 2019; 567 Cerezo (qstad40cbbib23) 2020; 3 Suykens (qstad40cbbib31) 2001; 7 Park (qstad40cbbib33) 2023; 13 Cai (qstad40cbbib35) 2013; 110 Raghu (qstad40cbbib32) 2017; 89 Schuld (qstad40cbbib21) 2017; 119 Wu (qstad40cbbib17) 2020 Kathuria (qstad40cbbib38) 2020; 2 Zhang (qstad40cbbib2) 2021 Mendes-Moreira (qstad40cbbib5) 2012; 45 Feng (qstad40cbbib11) 2023; 25 Liu (qstad40cbbib19) 2021; 64 |
References_xml | – volume: 5 year: 2020 ident: qstad40cbbib12 article-title: A quantum deep convolutional neural network for image recognition publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ab9f93 – volume: 64 year: 2019 ident: qstad40cbbib15 article-title: Quantum speedup in adaptive boosting of binary classification publication-title: Sci. China doi: 10.1007/s11433-020-1638-5 – volume: 5 year: 2019 ident: qstad40cbbib40 article-title: Erratum: parameterized quantum circuits as machine learning models (2019. Quant. Sci. Tech. 4 043001) publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ab5944 – volume: 2 year: 2016 ident: qstad40cbbib7 article-title: Quantum algorithms: an overview publication-title: npj Quantum Inf. doi: 10.1038/npjqi.2015.23 – year: 2021 ident: qstad40cbbib2 article-title: Frequency-aware contrastive learning for neural machine translation – volume: 70 year: 2021 ident: qstad40cbbib24 article-title: Hybrid quantum-classical algorithms: foundation, design and applications publication-title: Acta Phys. Sin. doi: 10.7498/aps.70.20210985 – start-page: 1 year: 2018 ident: qstad40cbbib43 article-title: Malware detection using machine learning based on the combination of dynamic and static features – year: 2021 ident: qstad40cbbib46 article-title: DataCon open dataset—DataCon2020—malicious code dataset direction open dataset[DB/OL] – volume: 29 start-page: 1189 year: 2001 ident: qstad40cbbib29 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 119 year: 2017 ident: qstad40cbbib21 article-title: Implementing a distance-based classifier with a quantum interference circuit publication-title: EPL Europhys. Lett. doi: 10.1209/0295-5075/119/60002 – volume: 4 start-page: 65 year: 2018 ident: qstad40cbbib26 article-title: Hierarchical quantum classifiers publication-title: npj Quantum Inf. doi: 10.1038/s41534-018-0116-9 – year: 2020 ident: qstad40cbbib17 article-title: Quantum reinforcement learning in continuous action space – volume: 25 start-page: 127 year: 2023 ident: qstad40cbbib11 article-title: An enhanced quantum K-nearest neighbor classification algorithm based on polar distance publication-title: Entropy doi: 10.3390/e25010127 – volume: 65 year: 2022 ident: qstad40cbbib22 article-title: Recent advances for quantum classifiers publication-title: Sci. China doi: 10.1007/s11433-021-1793-6 – volume: 6 year: 2024 ident: qstad40cbbib13 article-title: Ensemble-learning error mitigation for variational quantum shallow-circuit classifiers publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.6.013027 – volume: 21 start-page: 18 year: 2021 ident: qstad40cbbib36 article-title: Quantum K-nearest neighbor classification algorithm based on Hamming distance publication-title: Quantum Inf. Process. doi: 10.1007/s11128-021-03361-0 – volume: 105 year: 2022 ident: qstad40cbbib25 article-title: Robust resource-efficient quantum variational ansatz through evolutionary algorithm publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.052414 – year: 2019 ident: qstad40cbbib3 article-title: Synchronous speech recognition and speech-to-text translation with interactive decoding – start-page: 1115 year: 2020 ident: qstad40cbbib42 article-title: Effect of PE file header features on accuracy – volume: 65 year: 2022 ident: qstad40cbbib18 article-title: Quantum spectral clustering algorithm for unsupervised learning publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-022-3492-x – volume: 89 start-page: 205 year: 2017 ident: qstad40cbbib32 article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.029 – year: 2020 ident: qstad40cbbib41 article-title: Quantum ensemble for classification – volume: 110 year: 2013 ident: qstad40cbbib35 article-title: Experimental quantum computing to solve systems of linear equations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.230501 – volume: 3 start-page: 625 year: 2020 ident: qstad40cbbib23 article-title: Variational quantum algorithms publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00348-9 – volume: 66 year: 2023 ident: qstad40cbbib16 article-title: A duplication-free quantum neural network for universal approximation publication-title: Sci. China doi: 10.1007/s11433-023-2098-8 – volume: 7 start-page: 311 year: 2001 ident: qstad40cbbib31 article-title: Support vector machines: a nonlinear modelling and control perspective publication-title: Eur. J. Control doi: 10.3166/ejc.7.311-327 – start-page: 1 year: 2011 ident: qstad40cbbib44 article-title: Malware images: visualization and automatic classification – volume: 55 start-page: 119 year: 1997 ident: qstad40cbbib28 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 46 start-page: 5 year: 2022 ident: qstad40cbbib39 article-title: New approach of KNN Algorithm in quantum computing based on new design of quantum circuits publication-title: Informatica doi: 10.31449/inf.v46i5.3608 – volume: 45 start-page: 1 year: 2012 ident: qstad40cbbib5 article-title: Ensemble approaches for regression: a survey publication-title: ACM Comput. Surv. doi: 10.1145/2379776.2379786 – volume: 64 year: 2021 ident: qstad40cbbib19 article-title: Hybrid quantum-classical convolutional neural networks publication-title: Sci. China doi: 10.1007/s11433-021-1734-3 – volume: 2 year: 2019 ident: qstad40cbbib45 article-title: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201900070 – volume: 45 start-page: 5 year: 2001 ident: qstad40cbbib30 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 2 start-page: 7 year: 2020 ident: qstad40cbbib38 article-title: Implementation of a Hamming distance–like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne publication-title: Quantum Mach. Intell. doi: 10.1007/s42484-020-00017-7 – volume: 14 start-page: 241 year: 2020 ident: qstad40cbbib4 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. doi: 10.1007/s11704-019-8208-z – volume: 21 start-page: 467 year: 1982 ident: qstad40cbbib6 article-title: Simulating physics with computers publication-title: Int. J. Theor. Phys. doi: 10.1007/BF02650179 – volume: 3 start-page: 15 year: 2021 ident: qstad40cbbib20 article-title: QDNN: deep neural networks with quantum layers publication-title: Quantum Mach. Intell. doi: 10.1007/s42484-021-00046-w – volume: 2 year: 2016 ident: qstad40cbbib9 article-title: Quantum-enhanced multi-parameter estimation for unitary photonic systems publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aa6fea – volume: 13 start-page: 3288 year: 2023 ident: qstad40cbbib33 article-title: Variational quantum approximate support vector machine with inference transfer publication-title: Sci. Rep. doi: 10.1038/s41598-023-29495-y – start-page: 770 year: 2016 ident: qstad40cbbib1 article-title: Deep residual learning for image recognition – volume: 567 start-page: 209 year: 2019 ident: qstad40cbbib10 article-title: Supervised learning with quantum enhanced feature spaces publication-title: Nature doi: 10.1038/s41586-019-0980-2 – year: 2023 ident: qstad40cbbib27 article-title: AV-test IT security institute website [OL] – volume: 14 start-page: 4006 year: 2023 ident: qstad40cbbib8 article-title: Deep quantum neural networks equipped with backpropagation on a superconducting processor publication-title: Nat. Commun. doi: 10.1038/s41467-023-39785-8 – volume: 21 start-page: 19 year: 2021 ident: qstad40cbbib37 article-title: Quantum k-means algorithm based on Manhattan distance publication-title: Quantum Inf. Process. doi: 10.1007/s11128-021-03384-7 – volume: 8 start-page: 2772 year: 2018 ident: qstad40cbbib14 article-title: Quantum ensembles of quantum classifiers publication-title: Sci. Rep. doi: 10.1038/s41598-018-20403-3 – year: 2019 ident: qstad40cbbib34 article-title: Support vector machines on noisy intermediate scale quantum computers |
SSID | ssj0003211906 |
Score | 2.268031 |
Snippet | Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from... |
SourceID | crossref iop |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 35021 |
SubjectTerms | hybrid quantum ensemble learning machine learning malicious code detection quantum computing |
Title | A hybrid quantum ensemble learning model for malicious code detection |
URI | https://iopscience.iop.org/article/10.1088/2058-9565/ad40cb |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61Xrz4QMX6zEEPHrZkk26bxVORlir4OFjoQQibSaKgfdndg_56J7vbYkVEvGVhshs-kp1vMi9CTlEJSWasDIBbNFBCHEk04AKnHRhUfy7OY3Nubpu9fuN6EA0q5GKRCzOelL_-Og6LQsEFhGVAnERzPcIzikTEF8BloFfIqm9c6bf31d394oJF-NplbO6a_Gnikipawc990SzdDfI4X1MRUPJSz1Jdh49v5Rr_uehNsl4yTtouRLdIxY62SadNn999shadZohtNqRoztqhfrW07CPxRPMmORRJLR0iWQcfLEt9Bjw1Ns0DuEY7pN_tPFz2grKjQgBoGqSBizgILkE4kC4EkMxJa1jMtRGtJJHGsARkwzYt01ZY7-TlAGDCyIo8a3eXVEfjkd0jlEELpEj8xRxaVDqJE87xSWpprAmhWSPnc3DVpCicoXKHt5TKg6E8GKoAo0bOEDdVnp7ZL3InS3LTWapiJZT3jvJQTYzb_-ObDsgaR3ZSxN0ekmr6ltkjZBepPs530SdPBssO |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7YkBAXHgLEeC0HOHDoaJN1S48TbBqvsQOTdguNk4IE6zbWHuDX47QdYgghJG6p5LbRpyS24882IceohISrjXCAGXRQPBwJdOCcSEWgUf1FQcbNue01uoP61dAfFn1Os1yY8aQ4-ms4zAsF5xAWhDiB7rqPexQNEVsA1wV1NtFRiSz7eBRbTtflXf_zkoXb-mXuPDz508sL6qiEv_yiXTrr5GE-r5xU8lxLE1WD928lG_8x8Q2yVlietJWLb5IlE2-Rdos-vdmkLTpNEeN0RNGtNSP1YmjRT-KRZs1yKBq3dIRGO1jSLLWZ8FSbJCNyxdtk0Gnfn3edorOCA-giJE7kM-BMAI9ARB6AcCNhtBswpXkzDIXWbgiibhrGVYYbG-xlAKA93_Ase3eHlONxbHYJdaEJgof2gg49KxUGIWP4JJTQRnvQqJDTOcBykhfQkFngWwhpAZEWEJkDUiEniJ0sdtHsF7nqgtx0lshAcmmjpMyTCOveH79UJSv9i468uexd75NVhgZLTsU9IOXkNTWHaHAk6ihbVB-j-NBy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+quantum+ensemble+learning+model+for+malicious+code+detection&rft.jtitle=Quantum+science+and+technology&rft.au=Xiong%2C+Qibing&rft.au=Ding%2C+Xiaodong&rft.au=Fei%2C+Yangyang&rft.au=Zhou%2C+Xin&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.eissn=2058-9565&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1088%2F2058-9565%2Fad40cb&rft.externalDocID=qstad40cb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-9565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-9565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-9565&client=summon |