A hybrid quantum ensemble learning model for malicious code detection

Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from researchers. Ensemble learning is an effective strategy often used in machine learning to improve the performance of weak classifiers. Currently...

Full description

Saved in:
Bibliographic Details
Published inQuantum science and technology Vol. 9; no. 3; pp. 35021 - 35034
Main Authors Xiong, Qibing, Ding, Xiaodong, Fei, Yangyang, Zhou, Xin, Du, Qiming, Feng, Congcong, Shan, Zheng
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2024
Subjects
Online AccessGet full text
ISSN2058-9565
2058-9565
DOI10.1088/2058-9565/ad40cb

Cover

Abstract Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from researchers. Ensemble learning is an effective strategy often used in machine learning to improve the performance of weak classifiers. Currently, the classification performance of quantum classifiers is not satisfactory enough due to factors such as the depth of quantum circuit, quantum noise, and quantum coding method, etc. For this reason, this paper combined the ensemble learning idea and quantum classifiers to design a novel hybrid quantum machine learning model. Firstly, we run the Stacking method in classical machine learning to realize the dimensionality reduction of high-latitude data while ensuring the validity of data features. Secondly, we used the Bagging method and Bayesian hyperparameter optimization method applied to quantum support vector machine (QSVM), quantum K nearest neighbors (QKNN), variational quantum classifier (VQC). Thirdly, the voting method is used to ensemble the predict results of QSVM, QKNN, VQC as the final result. We applied the hybrid quantum ensemble machine learning model to malicious code detection. The experimental results show that the classification precision (accuracy, F1-score) of this model has been improved to 98.9% (94.5%, 94.24%). Combined with the acceleration of quantum computing and the higher precision rate, it can effectively deal with the growing trend of malicious codes, which is of great significance to cyberspace security.
AbstractList Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from researchers. Ensemble learning is an effective strategy often used in machine learning to improve the performance of weak classifiers. Currently, the classification performance of quantum classifiers is not satisfactory enough due to factors such as the depth of quantum circuit, quantum noise, and quantum coding method, etc. For this reason, this paper combined the ensemble learning idea and quantum classifiers to design a novel hybrid quantum machine learning model. Firstly, we run the Stacking method in classical machine learning to realize the dimensionality reduction of high-latitude data while ensuring the validity of data features. Secondly, we used the Bagging method and Bayesian hyperparameter optimization method applied to quantum support vector machine (QSVM), quantum K nearest neighbors (QKNN), variational quantum classifier (VQC). Thirdly, the voting method is used to ensemble the predict results of QSVM, QKNN, VQC as the final result. We applied the hybrid quantum ensemble machine learning model to malicious code detection. The experimental results show that the classification precision (accuracy, F1-score) of this model has been improved to 98.9% (94.5%, 94.24%). Combined with the acceleration of quantum computing and the higher precision rate, it can effectively deal with the growing trend of malicious codes, which is of great significance to cyberspace security.
Author Ding, Xiaodong
Xiong, Qibing
Fei, Yangyang
Du, Qiming
Shan, Zheng
Feng, Congcong
Zhou, Xin
Author_xml – sequence: 1
  givenname: Qibing
  orcidid: 0009-0003-9602-0988
  surname: Xiong
  fullname: Xiong, Qibing
  organization: Henan Police College , Zhengzhou 450000, People’s Republic of China
– sequence: 2
  givenname: Xiaodong
  orcidid: 0000-0001-9947-4035
  surname: Ding
  fullname: Ding, Xiaodong
  organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China
– sequence: 3
  givenname: Yangyang
  surname: Fei
  fullname: Fei, Yangyang
  organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China
– sequence: 4
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China
– sequence: 5
  givenname: Qiming
  surname: Du
  fullname: Du, Qiming
  organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China
– sequence: 6
  givenname: Congcong
  surname: Feng
  fullname: Feng, Congcong
  organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China
– sequence: 7
  givenname: Zheng
  surname: Shan
  fullname: Shan, Zheng
  organization: Information Engineering University , Zhengzhou 450000, People’s Republic of China
BookMark eNp9ULFOwzAUtFCRKKU7oycmQp_jJjhjVZWCVIkFZst5foZUid3aydC_p1URYkBM73S6O727azbywRNjtwIeBCg1y6FQWVWUxczYOWB9wcY_1OgXvmLTlLYAIHMhKijHbLXgn4c6NpbvB-P7oePkE3V1S7wlE33jP3gXLLXchcg70zbYhCFxPHLcUk_YN8HfsEtn2kTT7zth70-rt-VztnldvywXmwwllH3mihxlrlA6VE4gKnCKLFR5beWjMcpaMKjmVBLUJAlkKXNEtKIgCVBIOWFwzsUYUork9C42nYkHLUCfltCnqvpUVZ-XOFruz5Ym7PQ2DNEfH_xPfveHfJ96XWmpQRaQC72zTn4BIaRviA
Cites_doi 10.1088/2058-9565/ab9f93
10.1007/s11433-020-1638-5
10.1088/2058-9565/ab5944
10.1038/npjqi.2015.23
10.7498/aps.70.20210985
10.1214/aos/1013203451
10.1209/0295-5075/119/60002
10.1038/s41534-018-0116-9
10.3390/e25010127
10.1007/s11433-021-1793-6
10.1103/PhysRevResearch.6.013027
10.1007/s11128-021-03361-0
10.1103/PhysRevA.105.052414
10.1007/s11432-022-3492-x
10.1016/j.eswa.2017.07.029
10.1103/PhysRevLett.110.230501
10.1038/s42254-021-00348-9
10.1007/s11433-023-2098-8
10.3166/ejc.7.311-327
10.1006/jcss.1997.1504
10.31449/inf.v46i5.3608
10.1145/2379776.2379786
10.1007/s11433-021-1734-3
10.1002/qute.201900070
10.1023/A:1010933404324
10.1007/s42484-020-00017-7
10.1007/s11704-019-8208-z
10.1007/BF02650179
10.1007/s42484-021-00046-w
10.1088/2058-9565/aa6fea
10.1038/s41598-023-29495-y
10.1038/s41586-019-0980-2
10.1038/s41467-023-39785-8
10.1007/s11128-021-03384-7
10.1038/s41598-018-20403-3
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/2058-9565/ad40cb
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2058-9565
ExternalDocumentID 10_1088_2058_9565_ad40cb
qstad40cb
GrantInformation_xml – fundername: Major Science and Technology Projects in Henan Province, China
  grantid: N0.221100210600
GroupedDBID AAGCD
AATNI
ABHWH
ABJNI
ABVAM
ACGFS
ACHIP
ADEQX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CJUJL
CRLBU
EBS
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
ROL
RPA
AAYXX
CITATION
ID FETCH-LOGICAL-c306t-f52c328c3fc8f1cc80f8ed092bd37aa8dd0ac84e6e0be3e03632cccd15e300533
IEDL.DBID IOP
ISSN 2058-9565
IngestDate Thu Jul 03 08:44:23 EDT 2025
Tue Aug 20 22:16:36 EDT 2024
Tue Jun 17 22:16:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f52c328c3fc8f1cc80f8ed092bd37aa8dd0ac84e6e0be3e03632cccd15e300533
Notes QST-102682.R1
ORCID 0000-0001-9947-4035
0009-0003-9602-0988
OpenAccessLink https://doi.org/10.1088/2058-9565/ad40cb
PageCount 14
ParticipantIDs crossref_primary_10_1088_2058_9565_ad40cb
iop_journals_10_1088_2058_9565_ad40cb
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Quantum science and technology
PublicationTitleAbbrev QST
PublicationTitleAlternate Quantum Sci. Technol
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Li (qstad40cbbib13) 2024; 6
Zhao (qstad40cbbib20) 2021; 3
Liu (qstad40cbbib9) 2016; 2
Hou (qstad40cbbib16) 2023; 66
Li (qstad40cbbib22) 2022; 65
AV-TEST Institute (qstad40cbbib27) 2023
Liu (qstad40cbbib3) 2019
Li (qstad40cbbib12) 2020; 5
Sim (qstad40cbbib45) 2019; 2
DataCon Community (qstad40cbbib46) 2021
Nataraj (qstad40cbbib44) 2011
Chen (qstad40cbbib24) 2021; 70
Huang (qstad40cbbib25) 2022; 105
Hai (qstad40cbbib39) 2022; 46
Feynman (qstad40cbbib6) 1982; 21
Freund (qstad40cbbib28) 1997; 55
Yang (qstad40cbbib34) 2019
Pan (qstad40cbbib8) 2023; 14
Li (qstad40cbbib18) 2022; 65
Li (qstad40cbbib36) 2021; 21
Montanaro (qstad40cbbib7) 2016; 2
Benedetti (qstad40cbbib40) 2019; 5
Grant (qstad40cbbib26) 2018; 4
Friedman (qstad40cbbib29) 2001; 29
Wang (qstad40cbbib15) 2019; 64
Breiman (qstad40cbbib30) 2001; 45
Schuld (qstad40cbbib14) 2018; 8
Wu (qstad40cbbib37) 2021; 21
He (qstad40cbbib1) 2016
Al-Khshali (qstad40cbbib42) 2020
Zhao (qstad40cbbib43) 2018
Dong (qstad40cbbib4) 2020; 14
Macaluso (qstad40cbbib41) 2020
Havlicek (qstad40cbbib10) 2019; 567
Cerezo (qstad40cbbib23) 2020; 3
Suykens (qstad40cbbib31) 2001; 7
Park (qstad40cbbib33) 2023; 13
Cai (qstad40cbbib35) 2013; 110
Raghu (qstad40cbbib32) 2017; 89
Schuld (qstad40cbbib21) 2017; 119
Wu (qstad40cbbib17) 2020
Kathuria (qstad40cbbib38) 2020; 2
Zhang (qstad40cbbib2) 2021
Mendes-Moreira (qstad40cbbib5) 2012; 45
Feng (qstad40cbbib11) 2023; 25
Liu (qstad40cbbib19) 2021; 64
References_xml – volume: 5
  year: 2020
  ident: qstad40cbbib12
  article-title: A quantum deep convolutional neural network for image recognition
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab9f93
– volume: 64
  year: 2019
  ident: qstad40cbbib15
  article-title: Quantum speedup in adaptive boosting of binary classification
  publication-title: Sci. China
  doi: 10.1007/s11433-020-1638-5
– volume: 5
  year: 2019
  ident: qstad40cbbib40
  article-title: Erratum: parameterized quantum circuits as machine learning models (2019. Quant. Sci. Tech. 4 043001)
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab5944
– volume: 2
  year: 2016
  ident: qstad40cbbib7
  article-title: Quantum algorithms: an overview
  publication-title: npj Quantum Inf.
  doi: 10.1038/npjqi.2015.23
– year: 2021
  ident: qstad40cbbib2
  article-title: Frequency-aware contrastive learning for neural machine translation
– volume: 70
  year: 2021
  ident: qstad40cbbib24
  article-title: Hybrid quantum-classical algorithms: foundation, design and applications
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.70.20210985
– start-page: 1
  year: 2018
  ident: qstad40cbbib43
  article-title: Malware detection using machine learning based on the combination of dynamic and static features
– year: 2021
  ident: qstad40cbbib46
  article-title: DataCon open dataset—DataCon2020—malicious code dataset direction open dataset[DB/OL]
– volume: 29
  start-page: 1189
  year: 2001
  ident: qstad40cbbib29
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 119
  year: 2017
  ident: qstad40cbbib21
  article-title: Implementing a distance-based classifier with a quantum interference circuit
  publication-title: EPL Europhys. Lett.
  doi: 10.1209/0295-5075/119/60002
– volume: 4
  start-page: 65
  year: 2018
  ident: qstad40cbbib26
  article-title: Hierarchical quantum classifiers
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-018-0116-9
– year: 2020
  ident: qstad40cbbib17
  article-title: Quantum reinforcement learning in continuous action space
– volume: 25
  start-page: 127
  year: 2023
  ident: qstad40cbbib11
  article-title: An enhanced quantum K-nearest neighbor classification algorithm based on polar distance
  publication-title: Entropy
  doi: 10.3390/e25010127
– volume: 65
  year: 2022
  ident: qstad40cbbib22
  article-title: Recent advances for quantum classifiers
  publication-title: Sci. China
  doi: 10.1007/s11433-021-1793-6
– volume: 6
  year: 2024
  ident: qstad40cbbib13
  article-title: Ensemble-learning error mitigation for variational quantum shallow-circuit classifiers
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.6.013027
– volume: 21
  start-page: 18
  year: 2021
  ident: qstad40cbbib36
  article-title: Quantum K-nearest neighbor classification algorithm based on Hamming distance
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03361-0
– volume: 105
  year: 2022
  ident: qstad40cbbib25
  article-title: Robust resource-efficient quantum variational ansatz through evolutionary algorithm
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.052414
– year: 2019
  ident: qstad40cbbib3
  article-title: Synchronous speech recognition and speech-to-text translation with interactive decoding
– start-page: 1115
  year: 2020
  ident: qstad40cbbib42
  article-title: Effect of PE file header features on accuracy
– volume: 65
  year: 2022
  ident: qstad40cbbib18
  article-title: Quantum spectral clustering algorithm for unsupervised learning
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-022-3492-x
– volume: 89
  start-page: 205
  year: 2017
  ident: qstad40cbbib32
  article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.029
– year: 2020
  ident: qstad40cbbib41
  article-title: Quantum ensemble for classification
– volume: 110
  year: 2013
  ident: qstad40cbbib35
  article-title: Experimental quantum computing to solve systems of linear equations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.230501
– volume: 3
  start-page: 625
  year: 2020
  ident: qstad40cbbib23
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– volume: 66
  year: 2023
  ident: qstad40cbbib16
  article-title: A duplication-free quantum neural network for universal approximation
  publication-title: Sci. China
  doi: 10.1007/s11433-023-2098-8
– volume: 7
  start-page: 311
  year: 2001
  ident: qstad40cbbib31
  article-title: Support vector machines: a nonlinear modelling and control perspective
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.7.311-327
– start-page: 1
  year: 2011
  ident: qstad40cbbib44
  article-title: Malware images: visualization and automatic classification
– volume: 55
  start-page: 119
  year: 1997
  ident: qstad40cbbib28
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 46
  start-page: 5
  year: 2022
  ident: qstad40cbbib39
  article-title: New approach of KNN Algorithm in quantum computing based on new design of quantum circuits
  publication-title: Informatica
  doi: 10.31449/inf.v46i5.3608
– volume: 45
  start-page: 1
  year: 2012
  ident: qstad40cbbib5
  article-title: Ensemble approaches for regression: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2379776.2379786
– volume: 64
  year: 2021
  ident: qstad40cbbib19
  article-title: Hybrid quantum-classical convolutional neural networks
  publication-title: Sci. China
  doi: 10.1007/s11433-021-1734-3
– volume: 2
  year: 2019
  ident: qstad40cbbib45
  article-title: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201900070
– volume: 45
  start-page: 5
  year: 2001
  ident: qstad40cbbib30
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 2
  start-page: 7
  year: 2020
  ident: qstad40cbbib38
  article-title: Implementation of a Hamming distance–like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-020-00017-7
– volume: 14
  start-page: 241
  year: 2020
  ident: qstad40cbbib4
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 21
  start-page: 467
  year: 1982
  ident: qstad40cbbib6
  article-title: Simulating physics with computers
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF02650179
– volume: 3
  start-page: 15
  year: 2021
  ident: qstad40cbbib20
  article-title: QDNN: deep neural networks with quantum layers
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-021-00046-w
– volume: 2
  year: 2016
  ident: qstad40cbbib9
  article-title: Quantum-enhanced multi-parameter estimation for unitary photonic systems
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aa6fea
– volume: 13
  start-page: 3288
  year: 2023
  ident: qstad40cbbib33
  article-title: Variational quantum approximate support vector machine with inference transfer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29495-y
– start-page: 770
  year: 2016
  ident: qstad40cbbib1
  article-title: Deep residual learning for image recognition
– volume: 567
  start-page: 209
  year: 2019
  ident: qstad40cbbib10
  article-title: Supervised learning with quantum enhanced feature spaces
  publication-title: Nature
  doi: 10.1038/s41586-019-0980-2
– year: 2023
  ident: qstad40cbbib27
  article-title: AV-test IT security institute website [OL]
– volume: 14
  start-page: 4006
  year: 2023
  ident: qstad40cbbib8
  article-title: Deep quantum neural networks equipped with backpropagation on a superconducting processor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39785-8
– volume: 21
  start-page: 19
  year: 2021
  ident: qstad40cbbib37
  article-title: Quantum k-means algorithm based on Manhattan distance
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03384-7
– volume: 8
  start-page: 2772
  year: 2018
  ident: qstad40cbbib14
  article-title: Quantum ensembles of quantum classifiers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20403-3
– year: 2019
  ident: qstad40cbbib34
  article-title: Support vector machines on noisy intermediate scale quantum computers
SSID ssj0003211906
Score 2.268031
Snippet Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 35021
SubjectTerms hybrid quantum ensemble learning
machine learning
malicious code detection
quantum computing
Title A hybrid quantum ensemble learning model for malicious code detection
URI https://iopscience.iop.org/article/10.1088/2058-9565/ad40cb
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61Xrz4QMX6zEEPHrZkk26bxVORlir4OFjoQQibSaKgfdndg_56J7vbYkVEvGVhshs-kp1vMi9CTlEJSWasDIBbNFBCHEk04AKnHRhUfy7OY3Nubpu9fuN6EA0q5GKRCzOelL_-Og6LQsEFhGVAnERzPcIzikTEF8BloFfIqm9c6bf31d394oJF-NplbO6a_Gnikipawc990SzdDfI4X1MRUPJSz1Jdh49v5Rr_uehNsl4yTtouRLdIxY62SadNn999shadZohtNqRoztqhfrW07CPxRPMmORRJLR0iWQcfLEt9Bjw1Ns0DuEY7pN_tPFz2grKjQgBoGqSBizgILkE4kC4EkMxJa1jMtRGtJJHGsARkwzYt01ZY7-TlAGDCyIo8a3eXVEfjkd0jlEELpEj8xRxaVDqJE87xSWpprAmhWSPnc3DVpCicoXKHt5TKg6E8GKoAo0bOEDdVnp7ZL3InS3LTWapiJZT3jvJQTYzb_-ObDsgaR3ZSxN0ekmr6ltkjZBepPs530SdPBssO
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7YkBAXHgLEeC0HOHDoaJN1S48TbBqvsQOTdguNk4IE6zbWHuDX47QdYgghJG6p5LbRpyS24882IceohISrjXCAGXRQPBwJdOCcSEWgUf1FQcbNue01uoP61dAfFn1Os1yY8aQ4-ms4zAsF5xAWhDiB7rqPexQNEVsA1wV1NtFRiSz7eBRbTtflXf_zkoXb-mXuPDz508sL6qiEv_yiXTrr5GE-r5xU8lxLE1WD928lG_8x8Q2yVlietJWLb5IlE2-Rdos-vdmkLTpNEeN0RNGtNSP1YmjRT-KRZs1yKBq3dIRGO1jSLLWZ8FSbJCNyxdtk0Gnfn3edorOCA-giJE7kM-BMAI9ARB6AcCNhtBswpXkzDIXWbgiibhrGVYYbG-xlAKA93_Ase3eHlONxbHYJdaEJgof2gg49KxUGIWP4JJTQRnvQqJDTOcBykhfQkFngWwhpAZEWEJkDUiEniJ0sdtHsF7nqgtx0lshAcmmjpMyTCOveH79UJSv9i468uexd75NVhgZLTsU9IOXkNTWHaHAk6ihbVB-j-NBy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+quantum+ensemble+learning+model+for+malicious+code+detection&rft.jtitle=Quantum+science+and+technology&rft.au=Xiong%2C+Qibing&rft.au=Ding%2C+Xiaodong&rft.au=Fei%2C+Yangyang&rft.au=Zhou%2C+Xin&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.eissn=2058-9565&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1088%2F2058-9565%2Fad40cb&rft.externalDocID=qstad40cb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-9565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-9565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-9565&client=summon