A cascaded enzyme system based on the catalase-like activity of Ti3C2Tx MXene nanosheets for the efficient combination cancer therapy
Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone treatment. This work presents the catalase (CAT)-like activity of Ti3C2Tx MXene, a kind of two-dimensional (2D) material with photothermal capabilit...
Saved in:
Published in | Nano today Vol. 54; p. 102059 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone treatment. This work presents the catalase (CAT)-like activity of Ti3C2Tx MXene, a kind of two-dimensional (2D) material with photothermal capability. Ti3C2Tx nanosheets were then used to load glucose oxidase (GOx) and the anticancer drug doxorubicin hydrochloride (DOX), and modified with polyethylene glycol (PEG) to obtain an enzyme cascade system, named Ti3C2Tx-GOx/DOX-PEG, for anticancer purposes. Ti3C2Tx-GOx/DOX-PEG exhibited a photothermal conversion efficiency of ∼28.7% at 808 nm, enabling its use for near-infrared light-based photothermal therapy (PTT). In addition, Ti3C2Tx could decompose H2O2 to O2 in cancer cells, thereby enhancing starvation therapy by sensitizing GOx. Furthermore, alleviation of hypoxia could sensitize the chemotherapy of DOX. The decomposition of glucose by GOx could also generate H2O2 for the production of O2 by Ti3C2Tx. Ultimately, the cycling of the enzyme cascade reaction could alleviate tumor hypoxia and enable enhanced chemo/starvation/photothermal combination therapy. The CAT-like behavior of Ti3C2Tx as well as various enzymatic reactions catalyzed by Ti3C2Tx-GOx/DOX-PEG were systematically investigated by intra- and extracellular experiments. Results from both in vitro and in vivo studies demonstrated the effective anticancer capability of Ti3C2Tx-GOx/DOX-PEG. This enzyme cascade system has the potential to enhance material utilization and reduce side effects, thus opening up new opportunities for designing efficient and safe anticancer systems.
[Display omitted]
•The CAT-like activity of Ti3C2Tx MXene is reported and well-studied.•The enzyme cascade system Ti3C2Tx-GOx/DOX-PEG is prepared with Ti3C2Tx, GOx, and DOX.•The cycling of the enzyme cascade reaction can enable enhanced combination therapy.•Ti3C2Tx-GOx/DOX-PEG shows a good anticancer effect with low side effects. |
---|---|
AbstractList | Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone treatment. This work presents the catalase (CAT)-like activity of Ti3C2Tx MXene, a kind of two-dimensional (2D) material with photothermal capability. Ti3C2Tx nanosheets were then used to load glucose oxidase (GOx) and the anticancer drug doxorubicin hydrochloride (DOX), and modified with polyethylene glycol (PEG) to obtain an enzyme cascade system, named Ti3C2Tx-GOx/DOX-PEG, for anticancer purposes. Ti3C2Tx-GOx/DOX-PEG exhibited a photothermal conversion efficiency of ∼28.7% at 808 nm, enabling its use for near-infrared light-based photothermal therapy (PTT). In addition, Ti3C2Tx could decompose H2O2 to O2 in cancer cells, thereby enhancing starvation therapy by sensitizing GOx. Furthermore, alleviation of hypoxia could sensitize the chemotherapy of DOX. The decomposition of glucose by GOx could also generate H2O2 for the production of O2 by Ti3C2Tx. Ultimately, the cycling of the enzyme cascade reaction could alleviate tumor hypoxia and enable enhanced chemo/starvation/photothermal combination therapy. The CAT-like behavior of Ti3C2Tx as well as various enzymatic reactions catalyzed by Ti3C2Tx-GOx/DOX-PEG were systematically investigated by intra- and extracellular experiments. Results from both in vitro and in vivo studies demonstrated the effective anticancer capability of Ti3C2Tx-GOx/DOX-PEG. This enzyme cascade system has the potential to enhance material utilization and reduce side effects, thus opening up new opportunities for designing efficient and safe anticancer systems.
[Display omitted]
•The CAT-like activity of Ti3C2Tx MXene is reported and well-studied.•The enzyme cascade system Ti3C2Tx-GOx/DOX-PEG is prepared with Ti3C2Tx, GOx, and DOX.•The cycling of the enzyme cascade reaction can enable enhanced combination therapy.•Ti3C2Tx-GOx/DOX-PEG shows a good anticancer effect with low side effects. |
ArticleNumber | 102059 |
Author | Li, Cao Qiao, Qianqian Guo, Yuhao Chen, Jiahao Kuang, Ying Ji, Tianjiao Wang, Jinyu Long, Kai Xu, Ziqiang Li, Linwei |
Author_xml | – sequence: 1 givenname: Qianqian surname: Qiao fullname: Qiao, Qianqian organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China – sequence: 2 givenname: Jinyu surname: Wang fullname: Wang, Jinyu organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China – sequence: 3 givenname: Kai surname: Long fullname: Long, Kai organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China – sequence: 4 givenname: Linwei surname: Li fullname: Li, Linwei organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China – sequence: 5 givenname: Jiahao surname: Chen fullname: Chen, Jiahao organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China – sequence: 6 givenname: Yuhao surname: Guo fullname: Guo, Yuhao organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China – sequence: 7 givenname: Ziqiang surname: Xu fullname: Xu, Ziqiang email: ziqiang.xu@hubu.edu.cn organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China – sequence: 8 givenname: Ying surname: Kuang fullname: Kuang, Ying email: lazywawa@163.com organization: Hubei Key Laboratory of Industry Microbiology, National “111″ Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, Hubei University of Technology, Wuhan 430068 PR China – sequence: 9 givenname: Tianjiao surname: Ji fullname: Ji, Tianjiao email: jitj@nanoctr.cn organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 PR China – sequence: 10 givenname: Cao surname: Li fullname: Li, Cao email: licao0415@163.com organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China |
BookMark | eNqFkM9KAzEQxoNUUKtv4CEvsDXZzXZXD0Ip_oOKlwq9hWR2QlPbpCRBXO--t2nryYNeZoaP-T5mfmdk4LxDQi45G3HGx1erkVMu-W5UsrLKUsnq6yNyytumLZgQi0GeG5FnXpUn5CzGFWOibkR9Sr4mFFQE1WFH0X32G6Sxjwk3VKuYNe9oWmLeSWqdhWJt35AqSPbdpp56Q-e2mpbzD_q8QIc03-HjEjFFanzYW9EYCxZdouA32jqVbA4F5QD3C0Ft-3NybNQ64sVPH5LX-7v59LGYvTw8TSezAio2ToWpuWl11WKHTGvgTWuMqjt9bURXa55r2RihG20Axm3FjECjocYxKNWWFVRDcnPIheBjDGgk2LQ_KAVl15IzuQMqV_IAVO6AygPQbBa_zNtgNyr0_9luDzbMj71bDDLucAB2NiAk2Xn7d8A3L4SYSA |
CitedBy_id | crossref_primary_10_1021_acsami_4c18641 crossref_primary_10_1002_smll_202401655 crossref_primary_10_1016_j_cellin_2024_100149 crossref_primary_10_1002_adfm_202417415 crossref_primary_10_1021_acs_molpharmaceut_4c00433 crossref_primary_10_1016_j_abb_2024_110256 crossref_primary_10_1002_chem_202400195 crossref_primary_10_1016_j_colsurfb_2025_114530 crossref_primary_10_1021_acsnano_4c12348 crossref_primary_10_1016_j_jconrel_2025_02_076 crossref_primary_10_1016_j_ijpharm_2025_125492 crossref_primary_10_1016_j_aca_2024_343565 crossref_primary_10_1063_5_0226665 crossref_primary_10_1016_j_ijbiomac_2024_134535 crossref_primary_10_1016_j_mtchem_2024_102171 crossref_primary_10_1039_D4TA05972G crossref_primary_10_1021_acsbiomaterials_4c01936 crossref_primary_10_1016_j_ijbiomac_2024_137543 crossref_primary_10_1016_j_jcis_2024_04_036 crossref_primary_10_1016_j_jiec_2024_09_057 crossref_primary_10_1016_j_flatc_2025_100849 crossref_primary_10_1039_D4NR04260C crossref_primary_10_1016_j_mtcomm_2024_110774 crossref_primary_10_1039_D5NR00066A crossref_primary_10_1016_j_cej_2025_160430 crossref_primary_10_1016_j_apmt_2024_102215 crossref_primary_10_1016_j_inoche_2025_114128 crossref_primary_10_1002_adma_202415550 crossref_primary_10_1002_adfm_202414837 |
Cites_doi | 10.1021/acs.nanolett.6b04339 10.1016/j.biomaterials.2022.121369 10.1002/smll.202203031 10.1021/acsnano.1c09925 10.1038/s41568-022-00496-9 10.1002/smll.201903895 10.1002/adma.202002439 10.1002/EXP.20220049 10.1038/s41573-020-0090-8 10.1016/j.addr.2022.114178 10.1016/j.cclet.2022.107820 10.1002/adma.202100556 10.1021/acsami.1c13055 10.1002/VIW.20200147 10.1016/j.ccr.2022.214440 10.1002/EXP.20210005 10.1007/s11426-022-1271-0 10.1016/j.cclet.2023.108463 10.1002/adfm.202209927 10.1016/j.nantod.2021.101076 10.1007/s40820-021-00761-w 10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-# 10.1002/adfm.202204629 10.1016/j.actbio.2022.10.005 10.1002/adma.201102306 10.1016/j.actbio.2023.01.049 10.1038/s41570-022-00384-8 10.1021/acs.nanolett.9b00934 10.1016/j.ccr.2022.214685 10.1002/advs.202101498 10.1016/j.freeradbiomed.2006.03.003 10.1002/adfm.202208404 10.1007/s12274-021-3751-y 10.1002/adma.202001093 10.1016/j.nantod.2021.101162 10.1002/adhm.202001207 10.1007/s11426-018-9397-5 10.1021/jacs.7b07818 10.1016/j.mattod.2023.06.015 10.1038/nnano.2007.260 10.1038/s41551-021-00793-y |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nantod.2023.102059 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-044X |
ExternalDocumentID | 10_1016_j_nantod_2023_102059 S1748013223003080 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEFWE AEHWI AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSG SSK SSM SST SSU SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-f51f8b38ede0bbc178ffa5db9f4d5b1f4d27f4b7bfcc6830f4efbc5e6caa823c3 |
IEDL.DBID | .~1 |
ISSN | 1748-0132 |
IngestDate | Tue Jul 01 00:16:02 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Sat Feb 17 16:07:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Combination cancer therapy Enzyme cascade system Nanozyme Catalase-like activity MXene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-f51f8b38ede0bbc178ffa5db9f4d5b1f4d27f4b7bfcc6830f4efbc5e6caa823c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nantod_2023_102059 crossref_primary_10_1016_j_nantod_2023_102059 elsevier_sciencedirect_doi_10_1016_j_nantod_2023_102059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Nano today |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Xu, Xing, Yan, Yu, Sun, Liu (bib6) 2022; 3 Chen, Gu, An, Chen, Chen, Cui, Chen, Chen, Chen, Chen, Chen, Ding, Dong, Fan, Fu, Hou, Jiang, Ke, Jiang, Liu, Li, Li, Liu, Nie, Ovais, Pang, Qiu, Shen, Tian, Wang, Wang, Wang, Xu, Xu, Yang, Zhu, Zheng, Zhang, Zhao, Tan, Zhang, Zhao (bib14) 2018; 61 Fan, Gao, Wei, Jiang, Wang, Zhang, He, Meng, Wang, Fan, Wen, Duan, Chen, Jiang, Lu, Jiang, Wei, Li, Yuan, Dong, Zhang, Hong, Zhang, Cheng, Geng, Hou, Hou, Li, Tang, Zhao, Zhao, Zhang, Xie, Zhou, Ren, Huang, Gao, Liang, Zhang, Xu, Qu, Yan (bib3) 2023; 35 Wheeler, Cao, Ghouri, Ji, Nie, Zhao (bib13) 2022; 65 Wang, Wang, Chen, Li, Li, Lin (bib7) 2019; 15 Liu, Chen, Xue, Fan, Shen, Hossain, Amin, Pan, Xu, Yamauchi (bib24) 2022; 459 Lin, Gao, Dai, Chen, Shi (bib28) 2017; 139 Gao, Zhao, Zhu, Xu, Ling, Zhang (bib29) 2022; 154 Zhao, Wang, Li, Peng, Tang, Zha, Ke, Yang, Su, Yang (bib43) 2021; 8 Liu, Shi, Nie, Wang, Liu, Cai (bib21) 2021; 10 Ye, Xia, Yang, Xu, Liu, Wang, Zhang, Chen, Du, Feng (bib42) 2023; 68 Du, Feng, Dai, Wang, Geng, Li, Chen, Zhang (bib37) 2022; 18 Liu, Liu, Liu, Zhang, Cheng, Li, Zhang, Wang, Zhou, Liu, Wang (bib32) 2022; 448 Rafiq, Rather, Wani, Rather, Khan, Khan, Hamid, Khan, Alhomida, Sheikh (bib31) 2023; 34 Chong, Liu, Ge (bib8) 2021; 37 Meiners, Ludwig, Lorenz, Dreger, Baumann, Stangl, Stangl (bib45) 2006; 40 Chen, Liu, Guo, Yin, Xie, Fan (bib20) 2023; 33 Liu, Lu, Lu, Zhang, Dong, Li (bib36) 2022; 15 Cavaliere, Ciocatto, Giovanella, Heidelberger, Johnson, Margottini, Mondovi, Moricca, Rossi-Fanelli (bib44) 1967; 20 Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett, Yan (bib1) 2007; 2 Haddadi, Hu, Ghaderi, Ghanbari, Ahmadipour, Pung, Li, Feilizadeh, Arjmand (bib40) 2021; 13 Tian, Xue, Wang, Cheng, An, Yang, Chen, Huang (bib17) 2021; 39 Liao, Chen, Kuang, Ren, Yu, Rao, Li, Liu, Xu, Jiang, Li (bib35) 2023; 159 Zhang, Du, Li, Qian, Chen, Liu, Yu, Gan (bib16) 2022; 32 Yang, Yang, Gao, Wei, Qian, Sun (bib18) 2019; 19 Zhou, You, Wang, Wang, Gao, Jing, Liu, Guo, Li, Luo, Liu, Liu, Chen (bib15) 2021; 33 Chang, Hou, Wang, Wen, Li, Liu, Zhao, Lin (bib38) 2022; 61 Wang, Yue, Cheng, Cheng, Ge, Liu, Gao (bib26) 2022; 16 Lin, Wang, Yu, Chen, Shi (bib27) 2017; 17 Bhatia, Chen, Dobrovolskaia, Lammers (bib10) 2022; 22 Ding, Liu, Cheng, Guo, Niu, Huang, Zeng, Zhang (bib19) 2022; 281 Zhu, Wang, Zhao, Zhou, Feng, Gai, Yang, Nano (bib34) 2022; 16 Lopez-Cantu, González-González, Sharma, Bilal, Parra-Saldívar, Iqbal (bib5) 2022; 469 Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib22) 2011; 23 Li, Huang, Shuck, Liang, Gogotsi, Zhi (bib23) 2022; 6 Zhang, Cheng, Lu, Tang, Lv, Chen, Chen, Liu (bib33) 2022; 14 Li, Cheng (bib25) 2022; 2 Tang, He, Liu, Yan, Fan (bib4) 2021; 1 Huang, Dong, Feng, Wang, Huang, Chen (bib30) 2022; 184 Zhang, Li, Wang, Chen, Zu, Li, Wan, Yao, Lou, Shi, Sheng, Wang, Yang, Wang, Qin, Ji (bib12) 2022; 32 Dong, Dong, Jia, Liu, Liu, Yang, He, Gai, Yang, Lin (bib41) 2020; 32 Ju, Chen, Liu, Huang, Li, Kong, Shen, Tang (bib2) 2023; 34 Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bib9) 2021; 20 Zhang, Kong, Uzun, Levitt, Seyedin, Lynch, Qin, Han, Yang, Liu, Wang, Gogotsi (bib39) 2020; 32 Ji, Li, Deng, Rwei, Offen, Hall, Zhang, Zhao, Mehta, Kohane (bib11) 2021; 5 Chen (10.1016/j.nantod.2023.102059_bib14) 2018; 61 Zhang (10.1016/j.nantod.2023.102059_bib16) 2022; 32 Ji (10.1016/j.nantod.2023.102059_bib11) 2021; 5 Liu (10.1016/j.nantod.2023.102059_bib21) 2021; 10 Liu (10.1016/j.nantod.2023.102059_bib6) 2022; 3 Cavaliere (10.1016/j.nantod.2023.102059_bib44) 1967; 20 Naguib (10.1016/j.nantod.2023.102059_bib22) 2011; 23 Zhang (10.1016/j.nantod.2023.102059_bib33) 2022; 14 Zhang (10.1016/j.nantod.2023.102059_bib39) 2020; 32 Zhang (10.1016/j.nantod.2023.102059_bib12) 2022; 32 Liu (10.1016/j.nantod.2023.102059_bib36) 2022; 15 Gao (10.1016/j.nantod.2023.102059_bib1) 2007; 2 Lopez-Cantu (10.1016/j.nantod.2023.102059_bib5) 2022; 469 Li (10.1016/j.nantod.2023.102059_bib23) 2022; 6 Ju (10.1016/j.nantod.2023.102059_bib2) 2023; 34 Chen (10.1016/j.nantod.2023.102059_bib20) 2023; 33 Liu (10.1016/j.nantod.2023.102059_bib24) 2022; 459 Zhao (10.1016/j.nantod.2023.102059_bib43) 2021; 8 Mitchell (10.1016/j.nantod.2023.102059_bib9) 2021; 20 Ding (10.1016/j.nantod.2023.102059_bib19) 2022; 281 Liu (10.1016/j.nantod.2023.102059_bib32) 2022; 448 Fan (10.1016/j.nantod.2023.102059_bib3) 2023; 35 Chong (10.1016/j.nantod.2023.102059_bib8) 2021; 37 Du (10.1016/j.nantod.2023.102059_bib37) 2022; 18 Lin (10.1016/j.nantod.2023.102059_bib27) 2017; 17 Ye (10.1016/j.nantod.2023.102059_bib42) 2023; 68 Yang (10.1016/j.nantod.2023.102059_bib18) 2019; 19 Meiners (10.1016/j.nantod.2023.102059_bib45) 2006; 40 Wang (10.1016/j.nantod.2023.102059_bib7) 2019; 15 Gao (10.1016/j.nantod.2023.102059_bib29) 2022; 154 Lin (10.1016/j.nantod.2023.102059_bib28) 2017; 139 Chang (10.1016/j.nantod.2023.102059_bib38) 2022; 61 Bhatia (10.1016/j.nantod.2023.102059_bib10) 2022; 22 Dong (10.1016/j.nantod.2023.102059_bib41) 2020; 32 Li (10.1016/j.nantod.2023.102059_bib25) 2022; 2 Wheeler (10.1016/j.nantod.2023.102059_bib13) 2022; 65 Zhou (10.1016/j.nantod.2023.102059_bib15) 2021; 33 Zhu (10.1016/j.nantod.2023.102059_bib34) 2022; 16 Rafiq (10.1016/j.nantod.2023.102059_bib31) 2023; 34 Haddadi (10.1016/j.nantod.2023.102059_bib40) 2021; 13 Wang (10.1016/j.nantod.2023.102059_bib26) 2022; 16 Huang (10.1016/j.nantod.2023.102059_bib30) 2022; 184 Liao (10.1016/j.nantod.2023.102059_bib35) 2023; 159 Tang (10.1016/j.nantod.2023.102059_bib4) 2021; 1 Tian (10.1016/j.nantod.2023.102059_bib17) 2021; 39 |
References_xml | – volume: 65 start-page: 1498 year: 2022 end-page: 1514 ident: bib13 publication-title: Sci. China Chem. – volume: 22 start-page: 550 year: 2022 end-page: 556 ident: bib10 publication-title: Nat. Rev. Cancer – volume: 68 start-page: 148 year: 2023 end-page: 163 ident: bib42 publication-title: Mater. Today – volume: 18 start-page: 2203031 year: 2022 ident: bib37 publication-title: Small – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: bib1 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 20220049 year: 2022 ident: bib25 publication-title: Exploration – volume: 37 year: 2021 ident: bib8 publication-title: Nano Today – volume: 6 start-page: 389 year: 2022 end-page: 404 ident: bib23 publication-title: Nat. Rev. Chem. – volume: 281 year: 2022 ident: bib19 publication-title: Biomaterials – volume: 139 start-page: 16235 year: 2017 end-page: 16247 ident: bib28 publication-title: J. Am. Chem. Soc. – volume: 469 year: 2022 ident: bib5 publication-title: Coord. Chem. Rev. – volume: 39 year: 2021 ident: bib17 publication-title: Nano Today – volume: 184 year: 2022 ident: bib30 publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 1099 year: 2021 end-page: 1109 ident: bib11 publication-title: Nat. Biomed. Eng. – volume: 32 start-page: 2204629 year: 2022 ident: bib16 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1734 year: 2022 end-page: 1758 ident: bib26 publication-title: ACS Nano – volume: 32 start-page: 2002439 year: 2020 ident: bib41 publication-title: Adv. Mater. – volume: 32 start-page: 2001093 year: 2020 ident: bib39 publication-title: Adv. Mater. – volume: 34 year: 2023 ident: bib31 publication-title: Chin. Chem. Lett. – volume: 34 year: 2023 ident: bib2 publication-title: Chin. Chem. Lett. – volume: 33 start-page: 2100556 year: 2021 ident: bib15 publication-title: Adv. Mater. – volume: 19 start-page: 4334 year: 2019 end-page: 4342 ident: bib18 publication-title: Nano Lett. – volume: 448 year: 2022 ident: bib32 publication-title: Chem. Eng. J. – volume: 3 start-page: 20200147 year: 2022 ident: bib6 publication-title: VIEW – volume: 13 start-page: 42074 year: 2021 end-page: 42093 ident: bib40 publication-title: ACS Appl. Mater. Inter. – volume: 61 year: 2022 ident: bib38 publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 2223 year: 2006 end-page: 2231 ident: bib45 publication-title: Free Radic. Bio. Med – volume: 61 start-page: 1503 year: 2018 end-page: 1552 ident: bib14 publication-title: Sci. China Chem. – volume: 33 start-page: 2209927 year: 2023 ident: bib20 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 101 year: 2021 end-page: 124 ident: bib9 publication-title: Nat. Rev. Drug Discov. – volume: 459 year: 2022 ident: bib24 publication-title: Coord. Chem. Rev. – volume: 10 start-page: 2001207 year: 2021 ident: bib21 publication-title: Adv. Healthc. Mater. – volume: 154 start-page: 1 year: 2022 end-page: 22 ident: bib29 publication-title: Acta Biomater. – volume: 16 start-page: 3105 year: 2022 end-page: 3118 ident: bib34 – volume: 15 start-page: 2558 year: 2022 end-page: 2566 ident: bib36 publication-title: Nano Res – volume: 159 start-page: 312 year: 2023 end-page: 323 ident: bib35 publication-title: Acta Biomater. – volume: 35 start-page: 1 year: 2023 end-page: 87 ident: bib3 publication-title: Prog. Chem. – volume: 15 start-page: 1903895 year: 2019 ident: bib7 publication-title: Small – volume: 32 start-page: 2208404 year: 2022 ident: bib12 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 384 year: 2017 end-page: 391 ident: bib27 publication-title: Nano Lett. – volume: 8 start-page: 2101498 year: 2021 ident: bib43 publication-title: Adv. Sci. – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: bib22 publication-title: Adv. Mater. – volume: 20 start-page: 1351 year: 1967 end-page: 1381 ident: bib44 publication-title: Cancer – volume: 1 start-page: 75 year: 2021 end-page: 89 ident: bib4 publication-title: Exploration – volume: 14 start-page: 22 year: 2022 ident: bib33 publication-title: Nano-Micro Lett. – volume: 17 start-page: 384 year: 2017 ident: 10.1016/j.nantod.2023.102059_bib27 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04339 – volume: 281 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib19 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121369 – volume: 18 start-page: 2203031 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib37 publication-title: Small doi: 10.1002/smll.202203031 – volume: 16 start-page: 1734 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib26 publication-title: ACS Nano doi: 10.1021/acsnano.1c09925 – volume: 22 start-page: 550 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib10 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-022-00496-9 – volume: 15 start-page: 1903895 year: 2019 ident: 10.1016/j.nantod.2023.102059_bib7 publication-title: Small doi: 10.1002/smll.201903895 – volume: 32 start-page: 2002439 year: 2020 ident: 10.1016/j.nantod.2023.102059_bib41 publication-title: Adv. Mater. doi: 10.1002/adma.202002439 – volume: 35 start-page: 1 year: 2023 ident: 10.1016/j.nantod.2023.102059_bib3 publication-title: Prog. Chem. – volume: 2 start-page: 20220049 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib25 publication-title: Exploration doi: 10.1002/EXP.20220049 – volume: 20 start-page: 101 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib9 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-020-0090-8 – volume: 184 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib30 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2022.114178 – volume: 34 year: 2023 ident: 10.1016/j.nantod.2023.102059_bib2 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.107820 – volume: 33 start-page: 2100556 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib15 publication-title: Adv. Mater. doi: 10.1002/adma.202100556 – volume: 16 start-page: 3105 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib34 – volume: 13 start-page: 42074 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib40 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.1c13055 – volume: 3 start-page: 20200147 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib6 publication-title: VIEW doi: 10.1002/VIW.20200147 – volume: 459 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib24 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214440 – volume: 1 start-page: 75 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib4 publication-title: Exploration doi: 10.1002/EXP.20210005 – volume: 65 start-page: 1498 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib13 publication-title: Sci. China Chem. doi: 10.1007/s11426-022-1271-0 – volume: 34 year: 2023 ident: 10.1016/j.nantod.2023.102059_bib31 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2023.108463 – volume: 33 start-page: 2209927 year: 2023 ident: 10.1016/j.nantod.2023.102059_bib20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209927 – volume: 37 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib8 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101076 – volume: 14 start-page: 22 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib33 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00761-w – volume: 20 start-page: 1351 year: 1967 ident: 10.1016/j.nantod.2023.102059_bib44 publication-title: Cancer doi: 10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-# – volume: 448 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib32 publication-title: Chem. Eng. J. – volume: 32 start-page: 2204629 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204629 – volume: 154 start-page: 1 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib29 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.10.005 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.nantod.2023.102059_bib22 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 159 start-page: 312 year: 2023 ident: 10.1016/j.nantod.2023.102059_bib35 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2023.01.049 – volume: 6 start-page: 389 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib23 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00384-8 – volume: 19 start-page: 4334 year: 2019 ident: 10.1016/j.nantod.2023.102059_bib18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00934 – volume: 469 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib5 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214685 – volume: 61 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib38 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 2101498 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib43 publication-title: Adv. Sci. doi: 10.1002/advs.202101498 – volume: 40 start-page: 2223 year: 2006 ident: 10.1016/j.nantod.2023.102059_bib45 publication-title: Free Radic. Bio. Med doi: 10.1016/j.freeradbiomed.2006.03.003 – volume: 32 start-page: 2208404 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib12 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202208404 – volume: 15 start-page: 2558 year: 2022 ident: 10.1016/j.nantod.2023.102059_bib36 publication-title: Nano Res doi: 10.1007/s12274-021-3751-y – volume: 32 start-page: 2001093 year: 2020 ident: 10.1016/j.nantod.2023.102059_bib39 publication-title: Adv. Mater. doi: 10.1002/adma.202001093 – volume: 39 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib17 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101162 – volume: 10 start-page: 2001207 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib21 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001207 – volume: 61 start-page: 1503 year: 2018 ident: 10.1016/j.nantod.2023.102059_bib14 publication-title: Sci. China Chem. doi: 10.1007/s11426-018-9397-5 – volume: 139 start-page: 16235 year: 2017 ident: 10.1016/j.nantod.2023.102059_bib28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07818 – volume: 68 start-page: 148 year: 2023 ident: 10.1016/j.nantod.2023.102059_bib42 publication-title: Mater. Today doi: 10.1016/j.mattod.2023.06.015 – volume: 2 start-page: 577 year: 2007 ident: 10.1016/j.nantod.2023.102059_bib1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 5 start-page: 1099 year: 2021 ident: 10.1016/j.nantod.2023.102059_bib11 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00793-y |
SSID | ssj0045745 |
Score | 2.563427 |
Snippet | Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102059 |
SubjectTerms | Catalase-like activity Combination cancer therapy Enzyme cascade system MXene Nanozyme |
Title | A cascaded enzyme system based on the catalase-like activity of Ti3C2Tx MXene nanosheets for the efficient combination cancer therapy |
URI | https://dx.doi.org/10.1016/j.nantod.2023.102059 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yL3oQP_GbHLzGrU2yZMcxlKm4ixN2K036gtPZDjdBPXjz__YlbYeCKHgpNLxXwnvp-2jf-z1CTlSqnTDAmbNxhwkHkmkXCWY6zlodZ2k7tEdfD9r9W3E5kqMl0qt7YXxZZWX7S5serHW10qyk2ZyOx80bjKV1-FPAA-iKz9uFUP6Un74vyjyEVGFQsSdmnrpunws1Xr7WpPB4oTH3GAYBsfQn9_TF5Zyvk7UqVqTdcjsbZAnyTbL6BUFwi3x0qU1nvsY9o5C_vT4CLbGZqXdPGS1yihEeDR9pcIFNxg9AfS-DHxlBC0eHY96Lhy_0eoRGj-JOi9kdwHxGMZgNrBAwJtA1URQRptFBk_hAFFQg8JgE2-T2_GzY67NqsgKzmCLMmZOR04ZryKBljI2Udi6VGSpIZNJEeI0VqlAZVFhb85YT4IyV0LZpqmNu-Q5p5EUOu4RalSmlwWKemCKbxBfatARwExmJ7lHvEV4LNLEV7LiffjFJ6vqy-6RUQ-LVkJRq2CNswTUtYTf-oFe1rpJvxydBz_Ar5_6_OQ_ICt6JsoT7kDTmT89whBHK3ByHI3hMlrsXV_3BJ6696Tk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIo3HlhNm9iuzYgqqvIoC0XqFsXOWRRKgmiRgIGN_83ZSSqQEEgsGZy7KLqz75HcfUfIoUq1EwY4czY-ZsKBZNpFgpljZ62Os7QV2qN7V63ujTgfyMEMade9ML6ssrL9pU0P1rpaaVTSbDwOh41rjKV1-FPAA-gK5u1zAo-vH2Nw9D6t8xBShUnFnpp58rp_LhR5-WKTwgOGxtyDGATI0p_80xef01kmS1WwSE_K91khM5CvksUvEIJr5OOE2nTsi9wzCvnb6wPQEpyZev-U0SKnGOLR8JUGF9hoeA_UNzP4mRG0cLQ_5O24_0J7A7R6FN-0GN8CTMYUo9nACgFkAn0TRRlhHh1UiQ9ESQUCD0qwTm46p_12l1WjFZjFHGHCnIycNlxDBk1jbKS0c6nMUEMikybCa6xQh8qgxlqaN50AZ6yElk1THXPLN8hsXuSwSahVmVIaLCaKKbJJPNGmKYCbyEj0j3qL8Fqgia1wx_34i1FSF5jdJaUaEq-GpFTDFmFTrscSd-MPelXrKvm2fxJ0Db9ybv-b84DMd_u9y-Ty7OpihyzgHVHWc--S2cnTM-xhuDIx-2E7fgIPZurH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cascaded+enzyme+system+based+on+the+catalase-like+activity+of+Ti3C2Tx+MXene+nanosheets+for+the+efficient+combination+cancer+therapy&rft.jtitle=Nano+today&rft.au=Qiao%2C+Qianqian&rft.au=Wang%2C+Jinyu&rft.au=Long%2C+Kai&rft.au=Li%2C+Linwei&rft.date=2024-02-01&rft.issn=1748-0132&rft.volume=54&rft.spage=102059&rft_id=info:doi/10.1016%2Fj.nantod.2023.102059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nantod_2023_102059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0132&client=summon |