A cascaded enzyme system based on the catalase-like activity of Ti3C2Tx MXene nanosheets for the efficient combination cancer therapy

Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone treatment. This work presents the catalase (CAT)-like activity of Ti3C2Tx MXene, a kind of two-dimensional (2D) material with photothermal capabilit...

Full description

Saved in:
Bibliographic Details
Published inNano today Vol. 54; p. 102059
Main Authors Qiao, Qianqian, Wang, Jinyu, Long, Kai, Li, Linwei, Chen, Jiahao, Guo, Yuhao, Xu, Ziqiang, Kuang, Ying, Ji, Tianjiao, Li, Cao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone treatment. This work presents the catalase (CAT)-like activity of Ti3C2Tx MXene, a kind of two-dimensional (2D) material with photothermal capability. Ti3C2Tx nanosheets were then used to load glucose oxidase (GOx) and the anticancer drug doxorubicin hydrochloride (DOX), and modified with polyethylene glycol (PEG) to obtain an enzyme cascade system, named Ti3C2Tx-GOx/DOX-PEG, for anticancer purposes. Ti3C2Tx-GOx/DOX-PEG exhibited a photothermal conversion efficiency of ∼28.7% at 808 nm, enabling its use for near-infrared light-based photothermal therapy (PTT). In addition, Ti3C2Tx could decompose H2O2 to O2 in cancer cells, thereby enhancing starvation therapy by sensitizing GOx. Furthermore, alleviation of hypoxia could sensitize the chemotherapy of DOX. The decomposition of glucose by GOx could also generate H2O2 for the production of O2 by Ti3C2Tx. Ultimately, the cycling of the enzyme cascade reaction could alleviate tumor hypoxia and enable enhanced chemo/starvation/photothermal combination therapy. The CAT-like behavior of Ti3C2Tx as well as various enzymatic reactions catalyzed by Ti3C2Tx-GOx/DOX-PEG were systematically investigated by intra- and extracellular experiments. Results from both in vitro and in vivo studies demonstrated the effective anticancer capability of Ti3C2Tx-GOx/DOX-PEG. This enzyme cascade system has the potential to enhance material utilization and reduce side effects, thus opening up new opportunities for designing efficient and safe anticancer systems. [Display omitted] •The CAT-like activity of Ti3C2Tx MXene is reported and well-studied.•The enzyme cascade system Ti3C2Tx-GOx/DOX-PEG is prepared with Ti3C2Tx, GOx, and DOX.•The cycling of the enzyme cascade reaction can enable enhanced combination therapy.•Ti3C2Tx-GOx/DOX-PEG shows a good anticancer effect with low side effects.
AbstractList Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone treatment. This work presents the catalase (CAT)-like activity of Ti3C2Tx MXene, a kind of two-dimensional (2D) material with photothermal capability. Ti3C2Tx nanosheets were then used to load glucose oxidase (GOx) and the anticancer drug doxorubicin hydrochloride (DOX), and modified with polyethylene glycol (PEG) to obtain an enzyme cascade system, named Ti3C2Tx-GOx/DOX-PEG, for anticancer purposes. Ti3C2Tx-GOx/DOX-PEG exhibited a photothermal conversion efficiency of ∼28.7% at 808 nm, enabling its use for near-infrared light-based photothermal therapy (PTT). In addition, Ti3C2Tx could decompose H2O2 to O2 in cancer cells, thereby enhancing starvation therapy by sensitizing GOx. Furthermore, alleviation of hypoxia could sensitize the chemotherapy of DOX. The decomposition of glucose by GOx could also generate H2O2 for the production of O2 by Ti3C2Tx. Ultimately, the cycling of the enzyme cascade reaction could alleviate tumor hypoxia and enable enhanced chemo/starvation/photothermal combination therapy. The CAT-like behavior of Ti3C2Tx as well as various enzymatic reactions catalyzed by Ti3C2Tx-GOx/DOX-PEG were systematically investigated by intra- and extracellular experiments. Results from both in vitro and in vivo studies demonstrated the effective anticancer capability of Ti3C2Tx-GOx/DOX-PEG. This enzyme cascade system has the potential to enhance material utilization and reduce side effects, thus opening up new opportunities for designing efficient and safe anticancer systems. [Display omitted] •The CAT-like activity of Ti3C2Tx MXene is reported and well-studied.•The enzyme cascade system Ti3C2Tx-GOx/DOX-PEG is prepared with Ti3C2Tx, GOx, and DOX.•The cycling of the enzyme cascade reaction can enable enhanced combination therapy.•Ti3C2Tx-GOx/DOX-PEG shows a good anticancer effect with low side effects.
ArticleNumber 102059
Author Li, Cao
Qiao, Qianqian
Guo, Yuhao
Chen, Jiahao
Kuang, Ying
Ji, Tianjiao
Wang, Jinyu
Long, Kai
Xu, Ziqiang
Li, Linwei
Author_xml – sequence: 1
  givenname: Qianqian
  surname: Qiao
  fullname: Qiao, Qianqian
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
– sequence: 2
  givenname: Jinyu
  surname: Wang
  fullname: Wang, Jinyu
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
– sequence: 3
  givenname: Kai
  surname: Long
  fullname: Long, Kai
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
– sequence: 4
  givenname: Linwei
  surname: Li
  fullname: Li, Linwei
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
– sequence: 5
  givenname: Jiahao
  surname: Chen
  fullname: Chen, Jiahao
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
– sequence: 6
  givenname: Yuhao
  surname: Guo
  fullname: Guo, Yuhao
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
– sequence: 7
  givenname: Ziqiang
  surname: Xu
  fullname: Xu, Ziqiang
  email: ziqiang.xu@hubu.edu.cn
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
– sequence: 8
  givenname: Ying
  surname: Kuang
  fullname: Kuang, Ying
  email: lazywawa@163.com
  organization: Hubei Key Laboratory of Industry Microbiology, National “111″ Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, Hubei University of Technology, Wuhan 430068 PR China
– sequence: 9
  givenname: Tianjiao
  surname: Ji
  fullname: Ji, Tianjiao
  email: jitj@nanoctr.cn
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 PR China
– sequence: 10
  givenname: Cao
  surname: Li
  fullname: Li, Cao
  email: licao0415@163.com
  organization: National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062 PR China
BookMark eNqFkM9KAzEQxoNUUKtv4CEvsDXZzXZXD0Ip_oOKlwq9hWR2QlPbpCRBXO--t2nryYNeZoaP-T5mfmdk4LxDQi45G3HGx1erkVMu-W5UsrLKUsnq6yNyytumLZgQi0GeG5FnXpUn5CzGFWOibkR9Sr4mFFQE1WFH0X32G6Sxjwk3VKuYNe9oWmLeSWqdhWJt35AqSPbdpp56Q-e2mpbzD_q8QIc03-HjEjFFanzYW9EYCxZdouA32jqVbA4F5QD3C0Ft-3NybNQ64sVPH5LX-7v59LGYvTw8TSezAio2ToWpuWl11WKHTGvgTWuMqjt9bURXa55r2RihG20Axm3FjECjocYxKNWWFVRDcnPIheBjDGgk2LQ_KAVl15IzuQMqV_IAVO6AygPQbBa_zNtgNyr0_9luDzbMj71bDDLucAB2NiAk2Xn7d8A3L4SYSA
CitedBy_id crossref_primary_10_1021_acsami_4c18641
crossref_primary_10_1002_smll_202401655
crossref_primary_10_1016_j_cellin_2024_100149
crossref_primary_10_1002_adfm_202417415
crossref_primary_10_1021_acs_molpharmaceut_4c00433
crossref_primary_10_1016_j_abb_2024_110256
crossref_primary_10_1002_chem_202400195
crossref_primary_10_1016_j_colsurfb_2025_114530
crossref_primary_10_1021_acsnano_4c12348
crossref_primary_10_1016_j_jconrel_2025_02_076
crossref_primary_10_1016_j_ijpharm_2025_125492
crossref_primary_10_1016_j_aca_2024_343565
crossref_primary_10_1063_5_0226665
crossref_primary_10_1016_j_ijbiomac_2024_134535
crossref_primary_10_1016_j_mtchem_2024_102171
crossref_primary_10_1039_D4TA05972G
crossref_primary_10_1021_acsbiomaterials_4c01936
crossref_primary_10_1016_j_ijbiomac_2024_137543
crossref_primary_10_1016_j_jcis_2024_04_036
crossref_primary_10_1016_j_jiec_2024_09_057
crossref_primary_10_1016_j_flatc_2025_100849
crossref_primary_10_1039_D4NR04260C
crossref_primary_10_1016_j_mtcomm_2024_110774
crossref_primary_10_1039_D5NR00066A
crossref_primary_10_1016_j_cej_2025_160430
crossref_primary_10_1016_j_apmt_2024_102215
crossref_primary_10_1016_j_inoche_2025_114128
crossref_primary_10_1002_adma_202415550
crossref_primary_10_1002_adfm_202414837
Cites_doi 10.1021/acs.nanolett.6b04339
10.1016/j.biomaterials.2022.121369
10.1002/smll.202203031
10.1021/acsnano.1c09925
10.1038/s41568-022-00496-9
10.1002/smll.201903895
10.1002/adma.202002439
10.1002/EXP.20220049
10.1038/s41573-020-0090-8
10.1016/j.addr.2022.114178
10.1016/j.cclet.2022.107820
10.1002/adma.202100556
10.1021/acsami.1c13055
10.1002/VIW.20200147
10.1016/j.ccr.2022.214440
10.1002/EXP.20210005
10.1007/s11426-022-1271-0
10.1016/j.cclet.2023.108463
10.1002/adfm.202209927
10.1016/j.nantod.2021.101076
10.1007/s40820-021-00761-w
10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-#
10.1002/adfm.202204629
10.1016/j.actbio.2022.10.005
10.1002/adma.201102306
10.1016/j.actbio.2023.01.049
10.1038/s41570-022-00384-8
10.1021/acs.nanolett.9b00934
10.1016/j.ccr.2022.214685
10.1002/advs.202101498
10.1016/j.freeradbiomed.2006.03.003
10.1002/adfm.202208404
10.1007/s12274-021-3751-y
10.1002/adma.202001093
10.1016/j.nantod.2021.101162
10.1002/adhm.202001207
10.1007/s11426-018-9397-5
10.1021/jacs.7b07818
10.1016/j.mattod.2023.06.015
10.1038/nnano.2007.260
10.1038/s41551-021-00793-y
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nantod.2023.102059
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-044X
ExternalDocumentID 10_1016_j_nantod_2023_102059
S1748013223003080
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEFWE
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSG
SSK
SSM
SST
SSU
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-f51f8b38ede0bbc178ffa5db9f4d5b1f4d27f4b7bfcc6830f4efbc5e6caa823c3
IEDL.DBID .~1
ISSN 1748-0132
IngestDate Tue Jul 01 00:16:02 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Sat Feb 17 16:07:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combination cancer therapy
Enzyme cascade system
Nanozyme
Catalase-like activity
MXene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f51f8b38ede0bbc178ffa5db9f4d5b1f4d27f4b7bfcc6830f4efbc5e6caa823c3
ParticipantIDs crossref_citationtrail_10_1016_j_nantod_2023_102059
crossref_primary_10_1016_j_nantod_2023_102059
elsevier_sciencedirect_doi_10_1016_j_nantod_2023_102059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Nano today
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Xu, Xing, Yan, Yu, Sun, Liu (bib6) 2022; 3
Chen, Gu, An, Chen, Chen, Cui, Chen, Chen, Chen, Chen, Chen, Ding, Dong, Fan, Fu, Hou, Jiang, Ke, Jiang, Liu, Li, Li, Liu, Nie, Ovais, Pang, Qiu, Shen, Tian, Wang, Wang, Wang, Xu, Xu, Yang, Zhu, Zheng, Zhang, Zhao, Tan, Zhang, Zhao (bib14) 2018; 61
Fan, Gao, Wei, Jiang, Wang, Zhang, He, Meng, Wang, Fan, Wen, Duan, Chen, Jiang, Lu, Jiang, Wei, Li, Yuan, Dong, Zhang, Hong, Zhang, Cheng, Geng, Hou, Hou, Li, Tang, Zhao, Zhao, Zhang, Xie, Zhou, Ren, Huang, Gao, Liang, Zhang, Xu, Qu, Yan (bib3) 2023; 35
Wheeler, Cao, Ghouri, Ji, Nie, Zhao (bib13) 2022; 65
Wang, Wang, Chen, Li, Li, Lin (bib7) 2019; 15
Liu, Chen, Xue, Fan, Shen, Hossain, Amin, Pan, Xu, Yamauchi (bib24) 2022; 459
Lin, Gao, Dai, Chen, Shi (bib28) 2017; 139
Gao, Zhao, Zhu, Xu, Ling, Zhang (bib29) 2022; 154
Zhao, Wang, Li, Peng, Tang, Zha, Ke, Yang, Su, Yang (bib43) 2021; 8
Liu, Shi, Nie, Wang, Liu, Cai (bib21) 2021; 10
Ye, Xia, Yang, Xu, Liu, Wang, Zhang, Chen, Du, Feng (bib42) 2023; 68
Du, Feng, Dai, Wang, Geng, Li, Chen, Zhang (bib37) 2022; 18
Liu, Liu, Liu, Zhang, Cheng, Li, Zhang, Wang, Zhou, Liu, Wang (bib32) 2022; 448
Rafiq, Rather, Wani, Rather, Khan, Khan, Hamid, Khan, Alhomida, Sheikh (bib31) 2023; 34
Chong, Liu, Ge (bib8) 2021; 37
Meiners, Ludwig, Lorenz, Dreger, Baumann, Stangl, Stangl (bib45) 2006; 40
Chen, Liu, Guo, Yin, Xie, Fan (bib20) 2023; 33
Liu, Lu, Lu, Zhang, Dong, Li (bib36) 2022; 15
Cavaliere, Ciocatto, Giovanella, Heidelberger, Johnson, Margottini, Mondovi, Moricca, Rossi-Fanelli (bib44) 1967; 20
Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett, Yan (bib1) 2007; 2
Haddadi, Hu, Ghaderi, Ghanbari, Ahmadipour, Pung, Li, Feilizadeh, Arjmand (bib40) 2021; 13
Tian, Xue, Wang, Cheng, An, Yang, Chen, Huang (bib17) 2021; 39
Liao, Chen, Kuang, Ren, Yu, Rao, Li, Liu, Xu, Jiang, Li (bib35) 2023; 159
Zhang, Du, Li, Qian, Chen, Liu, Yu, Gan (bib16) 2022; 32
Yang, Yang, Gao, Wei, Qian, Sun (bib18) 2019; 19
Zhou, You, Wang, Wang, Gao, Jing, Liu, Guo, Li, Luo, Liu, Liu, Chen (bib15) 2021; 33
Chang, Hou, Wang, Wen, Li, Liu, Zhao, Lin (bib38) 2022; 61
Wang, Yue, Cheng, Cheng, Ge, Liu, Gao (bib26) 2022; 16
Lin, Wang, Yu, Chen, Shi (bib27) 2017; 17
Bhatia, Chen, Dobrovolskaia, Lammers (bib10) 2022; 22
Ding, Liu, Cheng, Guo, Niu, Huang, Zeng, Zhang (bib19) 2022; 281
Zhu, Wang, Zhao, Zhou, Feng, Gai, Yang, Nano (bib34) 2022; 16
Lopez-Cantu, González-González, Sharma, Bilal, Parra-Saldívar, Iqbal (bib5) 2022; 469
Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib22) 2011; 23
Li, Huang, Shuck, Liang, Gogotsi, Zhi (bib23) 2022; 6
Zhang, Cheng, Lu, Tang, Lv, Chen, Chen, Liu (bib33) 2022; 14
Li, Cheng (bib25) 2022; 2
Tang, He, Liu, Yan, Fan (bib4) 2021; 1
Huang, Dong, Feng, Wang, Huang, Chen (bib30) 2022; 184
Zhang, Li, Wang, Chen, Zu, Li, Wan, Yao, Lou, Shi, Sheng, Wang, Yang, Wang, Qin, Ji (bib12) 2022; 32
Dong, Dong, Jia, Liu, Liu, Yang, He, Gai, Yang, Lin (bib41) 2020; 32
Ju, Chen, Liu, Huang, Li, Kong, Shen, Tang (bib2) 2023; 34
Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bib9) 2021; 20
Zhang, Kong, Uzun, Levitt, Seyedin, Lynch, Qin, Han, Yang, Liu, Wang, Gogotsi (bib39) 2020; 32
Ji, Li, Deng, Rwei, Offen, Hall, Zhang, Zhao, Mehta, Kohane (bib11) 2021; 5
Chen (10.1016/j.nantod.2023.102059_bib14) 2018; 61
Zhang (10.1016/j.nantod.2023.102059_bib16) 2022; 32
Ji (10.1016/j.nantod.2023.102059_bib11) 2021; 5
Liu (10.1016/j.nantod.2023.102059_bib21) 2021; 10
Liu (10.1016/j.nantod.2023.102059_bib6) 2022; 3
Cavaliere (10.1016/j.nantod.2023.102059_bib44) 1967; 20
Naguib (10.1016/j.nantod.2023.102059_bib22) 2011; 23
Zhang (10.1016/j.nantod.2023.102059_bib33) 2022; 14
Zhang (10.1016/j.nantod.2023.102059_bib39) 2020; 32
Zhang (10.1016/j.nantod.2023.102059_bib12) 2022; 32
Liu (10.1016/j.nantod.2023.102059_bib36) 2022; 15
Gao (10.1016/j.nantod.2023.102059_bib1) 2007; 2
Lopez-Cantu (10.1016/j.nantod.2023.102059_bib5) 2022; 469
Li (10.1016/j.nantod.2023.102059_bib23) 2022; 6
Ju (10.1016/j.nantod.2023.102059_bib2) 2023; 34
Chen (10.1016/j.nantod.2023.102059_bib20) 2023; 33
Liu (10.1016/j.nantod.2023.102059_bib24) 2022; 459
Zhao (10.1016/j.nantod.2023.102059_bib43) 2021; 8
Mitchell (10.1016/j.nantod.2023.102059_bib9) 2021; 20
Ding (10.1016/j.nantod.2023.102059_bib19) 2022; 281
Liu (10.1016/j.nantod.2023.102059_bib32) 2022; 448
Fan (10.1016/j.nantod.2023.102059_bib3) 2023; 35
Chong (10.1016/j.nantod.2023.102059_bib8) 2021; 37
Du (10.1016/j.nantod.2023.102059_bib37) 2022; 18
Lin (10.1016/j.nantod.2023.102059_bib27) 2017; 17
Ye (10.1016/j.nantod.2023.102059_bib42) 2023; 68
Yang (10.1016/j.nantod.2023.102059_bib18) 2019; 19
Meiners (10.1016/j.nantod.2023.102059_bib45) 2006; 40
Wang (10.1016/j.nantod.2023.102059_bib7) 2019; 15
Gao (10.1016/j.nantod.2023.102059_bib29) 2022; 154
Lin (10.1016/j.nantod.2023.102059_bib28) 2017; 139
Chang (10.1016/j.nantod.2023.102059_bib38) 2022; 61
Bhatia (10.1016/j.nantod.2023.102059_bib10) 2022; 22
Dong (10.1016/j.nantod.2023.102059_bib41) 2020; 32
Li (10.1016/j.nantod.2023.102059_bib25) 2022; 2
Wheeler (10.1016/j.nantod.2023.102059_bib13) 2022; 65
Zhou (10.1016/j.nantod.2023.102059_bib15) 2021; 33
Zhu (10.1016/j.nantod.2023.102059_bib34) 2022; 16
Rafiq (10.1016/j.nantod.2023.102059_bib31) 2023; 34
Haddadi (10.1016/j.nantod.2023.102059_bib40) 2021; 13
Wang (10.1016/j.nantod.2023.102059_bib26) 2022; 16
Huang (10.1016/j.nantod.2023.102059_bib30) 2022; 184
Liao (10.1016/j.nantod.2023.102059_bib35) 2023; 159
Tang (10.1016/j.nantod.2023.102059_bib4) 2021; 1
Tian (10.1016/j.nantod.2023.102059_bib17) 2021; 39
References_xml – volume: 65
  start-page: 1498
  year: 2022
  end-page: 1514
  ident: bib13
  publication-title: Sci. China Chem.
– volume: 22
  start-page: 550
  year: 2022
  end-page: 556
  ident: bib10
  publication-title: Nat. Rev. Cancer
– volume: 68
  start-page: 148
  year: 2023
  end-page: 163
  ident: bib42
  publication-title: Mater. Today
– volume: 18
  start-page: 2203031
  year: 2022
  ident: bib37
  publication-title: Small
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: bib1
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 20220049
  year: 2022
  ident: bib25
  publication-title: Exploration
– volume: 37
  year: 2021
  ident: bib8
  publication-title: Nano Today
– volume: 6
  start-page: 389
  year: 2022
  end-page: 404
  ident: bib23
  publication-title: Nat. Rev. Chem.
– volume: 281
  year: 2022
  ident: bib19
  publication-title: Biomaterials
– volume: 139
  start-page: 16235
  year: 2017
  end-page: 16247
  ident: bib28
  publication-title: J. Am. Chem. Soc.
– volume: 469
  year: 2022
  ident: bib5
  publication-title: Coord. Chem. Rev.
– volume: 39
  year: 2021
  ident: bib17
  publication-title: Nano Today
– volume: 184
  year: 2022
  ident: bib30
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 1099
  year: 2021
  end-page: 1109
  ident: bib11
  publication-title: Nat. Biomed. Eng.
– volume: 32
  start-page: 2204629
  year: 2022
  ident: bib16
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 1734
  year: 2022
  end-page: 1758
  ident: bib26
  publication-title: ACS Nano
– volume: 32
  start-page: 2002439
  year: 2020
  ident: bib41
  publication-title: Adv. Mater.
– volume: 32
  start-page: 2001093
  year: 2020
  ident: bib39
  publication-title: Adv. Mater.
– volume: 34
  year: 2023
  ident: bib31
  publication-title: Chin. Chem. Lett.
– volume: 34
  year: 2023
  ident: bib2
  publication-title: Chin. Chem. Lett.
– volume: 33
  start-page: 2100556
  year: 2021
  ident: bib15
  publication-title: Adv. Mater.
– volume: 19
  start-page: 4334
  year: 2019
  end-page: 4342
  ident: bib18
  publication-title: Nano Lett.
– volume: 448
  year: 2022
  ident: bib32
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 20200147
  year: 2022
  ident: bib6
  publication-title: VIEW
– volume: 13
  start-page: 42074
  year: 2021
  end-page: 42093
  ident: bib40
  publication-title: ACS Appl. Mater. Inter.
– volume: 61
  year: 2022
  ident: bib38
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 2223
  year: 2006
  end-page: 2231
  ident: bib45
  publication-title: Free Radic. Bio. Med
– volume: 61
  start-page: 1503
  year: 2018
  end-page: 1552
  ident: bib14
  publication-title: Sci. China Chem.
– volume: 33
  start-page: 2209927
  year: 2023
  ident: bib20
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 101
  year: 2021
  end-page: 124
  ident: bib9
  publication-title: Nat. Rev. Drug Discov.
– volume: 459
  year: 2022
  ident: bib24
  publication-title: Coord. Chem. Rev.
– volume: 10
  start-page: 2001207
  year: 2021
  ident: bib21
  publication-title: Adv. Healthc. Mater.
– volume: 154
  start-page: 1
  year: 2022
  end-page: 22
  ident: bib29
  publication-title: Acta Biomater.
– volume: 16
  start-page: 3105
  year: 2022
  end-page: 3118
  ident: bib34
– volume: 15
  start-page: 2558
  year: 2022
  end-page: 2566
  ident: bib36
  publication-title: Nano Res
– volume: 159
  start-page: 312
  year: 2023
  end-page: 323
  ident: bib35
  publication-title: Acta Biomater.
– volume: 35
  start-page: 1
  year: 2023
  end-page: 87
  ident: bib3
  publication-title: Prog. Chem.
– volume: 15
  start-page: 1903895
  year: 2019
  ident: bib7
  publication-title: Small
– volume: 32
  start-page: 2208404
  year: 2022
  ident: bib12
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 384
  year: 2017
  end-page: 391
  ident: bib27
  publication-title: Nano Lett.
– volume: 8
  start-page: 2101498
  year: 2021
  ident: bib43
  publication-title: Adv. Sci.
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: bib22
  publication-title: Adv. Mater.
– volume: 20
  start-page: 1351
  year: 1967
  end-page: 1381
  ident: bib44
  publication-title: Cancer
– volume: 1
  start-page: 75
  year: 2021
  end-page: 89
  ident: bib4
  publication-title: Exploration
– volume: 14
  start-page: 22
  year: 2022
  ident: bib33
  publication-title: Nano-Micro Lett.
– volume: 17
  start-page: 384
  year: 2017
  ident: 10.1016/j.nantod.2023.102059_bib27
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04339
– volume: 281
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121369
– volume: 18
  start-page: 2203031
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib37
  publication-title: Small
  doi: 10.1002/smll.202203031
– volume: 16
  start-page: 1734
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09925
– volume: 22
  start-page: 550
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib10
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-022-00496-9
– volume: 15
  start-page: 1903895
  year: 2019
  ident: 10.1016/j.nantod.2023.102059_bib7
  publication-title: Small
  doi: 10.1002/smll.201903895
– volume: 32
  start-page: 2002439
  year: 2020
  ident: 10.1016/j.nantod.2023.102059_bib41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002439
– volume: 35
  start-page: 1
  year: 2023
  ident: 10.1016/j.nantod.2023.102059_bib3
  publication-title: Prog. Chem.
– volume: 2
  start-page: 20220049
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib25
  publication-title: Exploration
  doi: 10.1002/EXP.20220049
– volume: 20
  start-page: 101
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib9
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-020-0090-8
– volume: 184
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib30
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2022.114178
– volume: 34
  year: 2023
  ident: 10.1016/j.nantod.2023.102059_bib2
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.107820
– volume: 33
  start-page: 2100556
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100556
– volume: 16
  start-page: 3105
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib34
– volume: 13
  start-page: 42074
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib40
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.1c13055
– volume: 3
  start-page: 20200147
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib6
  publication-title: VIEW
  doi: 10.1002/VIW.20200147
– volume: 459
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib24
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214440
– volume: 1
  start-page: 75
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib4
  publication-title: Exploration
  doi: 10.1002/EXP.20210005
– volume: 65
  start-page: 1498
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib13
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-022-1271-0
– volume: 34
  year: 2023
  ident: 10.1016/j.nantod.2023.102059_bib31
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2023.108463
– volume: 33
  start-page: 2209927
  year: 2023
  ident: 10.1016/j.nantod.2023.102059_bib20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209927
– volume: 37
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib8
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101076
– volume: 14
  start-page: 22
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib33
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00761-w
– volume: 20
  start-page: 1351
  year: 1967
  ident: 10.1016/j.nantod.2023.102059_bib44
  publication-title: Cancer
  doi: 10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-#
– volume: 448
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib32
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 2204629
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204629
– volume: 154
  start-page: 1
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib29
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.10.005
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.nantod.2023.102059_bib22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 159
  start-page: 312
  year: 2023
  ident: 10.1016/j.nantod.2023.102059_bib35
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2023.01.049
– volume: 6
  start-page: 389
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib23
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00384-8
– volume: 19
  start-page: 4334
  year: 2019
  ident: 10.1016/j.nantod.2023.102059_bib18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00934
– volume: 469
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib5
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214685
– volume: 61
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib38
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 2101498
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib43
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101498
– volume: 40
  start-page: 2223
  year: 2006
  ident: 10.1016/j.nantod.2023.102059_bib45
  publication-title: Free Radic. Bio. Med
  doi: 10.1016/j.freeradbiomed.2006.03.003
– volume: 32
  start-page: 2208404
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib12
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202208404
– volume: 15
  start-page: 2558
  year: 2022
  ident: 10.1016/j.nantod.2023.102059_bib36
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3751-y
– volume: 32
  start-page: 2001093
  year: 2020
  ident: 10.1016/j.nantod.2023.102059_bib39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001093
– volume: 39
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib17
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101162
– volume: 10
  start-page: 2001207
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib21
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202001207
– volume: 61
  start-page: 1503
  year: 2018
  ident: 10.1016/j.nantod.2023.102059_bib14
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-018-9397-5
– volume: 139
  start-page: 16235
  year: 2017
  ident: 10.1016/j.nantod.2023.102059_bib28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07818
– volume: 68
  start-page: 148
  year: 2023
  ident: 10.1016/j.nantod.2023.102059_bib42
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.06.015
– volume: 2
  start-page: 577
  year: 2007
  ident: 10.1016/j.nantod.2023.102059_bib1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 5
  start-page: 1099
  year: 2021
  ident: 10.1016/j.nantod.2023.102059_bib11
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00793-y
SSID ssj0045745
Score 2.563427
Snippet Catalytic therapy with enzymes and nanozymes is a promising approach to cancer treatment. However, it often proves inadequate when used as a standalone...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102059
SubjectTerms Catalase-like activity
Combination cancer therapy
Enzyme cascade system
MXene
Nanozyme
Title A cascaded enzyme system based on the catalase-like activity of Ti3C2Tx MXene nanosheets for the efficient combination cancer therapy
URI https://dx.doi.org/10.1016/j.nantod.2023.102059
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yL3oQP_GbHLzGrU2yZMcxlKm4ixN2K036gtPZDjdBPXjz__YlbYeCKHgpNLxXwnvp-2jf-z1CTlSqnTDAmbNxhwkHkmkXCWY6zlodZ2k7tEdfD9r9W3E5kqMl0qt7YXxZZWX7S5serHW10qyk2ZyOx80bjKV1-FPAA-iKz9uFUP6Un74vyjyEVGFQsSdmnrpunws1Xr7WpPB4oTH3GAYBsfQn9_TF5Zyvk7UqVqTdcjsbZAnyTbL6BUFwi3x0qU1nvsY9o5C_vT4CLbGZqXdPGS1yihEeDR9pcIFNxg9AfS-DHxlBC0eHY96Lhy_0eoRGj-JOi9kdwHxGMZgNrBAwJtA1URQRptFBk_hAFFQg8JgE2-T2_GzY67NqsgKzmCLMmZOR04ZryKBljI2Udi6VGSpIZNJEeI0VqlAZVFhb85YT4IyV0LZpqmNu-Q5p5EUOu4RalSmlwWKemCKbxBfatARwExmJ7lHvEV4LNLEV7LiffjFJ6vqy-6RUQ-LVkJRq2CNswTUtYTf-oFe1rpJvxydBz_Ar5_6_OQ_ICt6JsoT7kDTmT89whBHK3ByHI3hMlrsXV_3BJ6696Tk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIo3HlhNm9iuzYgqqvIoC0XqFsXOWRRKgmiRgIGN_83ZSSqQEEgsGZy7KLqz75HcfUfIoUq1EwY4czY-ZsKBZNpFgpljZ62Os7QV2qN7V63ujTgfyMEMade9ML6ssrL9pU0P1rpaaVTSbDwOh41rjKV1-FPAA-gK5u1zAo-vH2Nw9D6t8xBShUnFnpp58rp_LhR5-WKTwgOGxtyDGATI0p_80xef01kmS1WwSE_K91khM5CvksUvEIJr5OOE2nTsi9wzCvnb6wPQEpyZev-U0SKnGOLR8JUGF9hoeA_UNzP4mRG0cLQ_5O24_0J7A7R6FN-0GN8CTMYUo9nACgFkAn0TRRlhHh1UiQ9ESQUCD0qwTm46p_12l1WjFZjFHGHCnIycNlxDBk1jbKS0c6nMUEMikybCa6xQh8qgxlqaN50AZ6yElk1THXPLN8hsXuSwSahVmVIaLCaKKbJJPNGmKYCbyEj0j3qL8Fqgia1wx_34i1FSF5jdJaUaEq-GpFTDFmFTrscSd-MPelXrKvm2fxJ0Db9ybv-b84DMd_u9y-Ty7OpihyzgHVHWc--S2cnTM-xhuDIx-2E7fgIPZurH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cascaded+enzyme+system+based+on+the+catalase-like+activity+of+Ti3C2Tx+MXene+nanosheets+for+the+efficient+combination+cancer+therapy&rft.jtitle=Nano+today&rft.au=Qiao%2C+Qianqian&rft.au=Wang%2C+Jinyu&rft.au=Long%2C+Kai&rft.au=Li%2C+Linwei&rft.date=2024-02-01&rft.issn=1748-0132&rft.volume=54&rft.spage=102059&rft_id=info:doi/10.1016%2Fj.nantod.2023.102059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nantod_2023_102059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0132&client=summon