Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries
Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance and a major challenge. In this work, we pioneer a time- and cost-efficient strategy for the preparation of large-area flexible CNF films with u...
Saved in:
Published in | Nano energy Vol. 87; p. 106147 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance and a major challenge. In this work, we pioneer a time- and cost-efficient strategy for the preparation of large-area flexible CNF films with uniformly distributed diatomic FeN3-CoN3 sites (Fe1Co1-CNF). Due to the excellent compatibility and similar functionality of the pre-designed ZnFeCo-NC precursors (ZnFeCo-pre) with the electrospun polymer polyacrylonitrile (PAN), the mixture of ZnFeCo-pre and PAN can be co-electrospun and subject to a standard CNF fabrication process. The resulting Fe1Co1-CNF exhibits excellent bifunctional catalytic performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), attributing to the abundant dual catalytic FeN3-CoN3 sites which are mutually beneficial for attaining optimal electronic properties for the adsorption/desorption of reaction intermediates. The assembled liquid-electrolyte ZAB provides a high specific power of 201.7 mW cm−2 and excellent cycling stability. More importantly, due to the good mechanical strength and flexibility of Fe1Co1-CNF, portable ZAB with exceptional shape deformability and stability can be demonstrated, in which Fe1Co1-CNF utility as an integrated free-standing membrane electrode. These findings provide a facile strategy for manufacturing flexible multi-functional catalytic electrodes with high production.
[Display omitted]
•Large-area self-standing flexible CNF film with diatomic Fe-Co sites was developed.•The diatomic Fe-Co sites render optimized adsorption of O-containing intermediates.•The Fe1Co1-CNF exhibits superior bifunctional ORR/OER performance.•The Fe1Co1-CNF shows great potential in liquid/flexible Zn-air battery. |
---|---|
AbstractList | Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance and a major challenge. In this work, we pioneer a time- and cost-efficient strategy for the preparation of large-area flexible CNF films with uniformly distributed diatomic FeN3-CoN3 sites (Fe1Co1-CNF). Due to the excellent compatibility and similar functionality of the pre-designed ZnFeCo-NC precursors (ZnFeCo-pre) with the electrospun polymer polyacrylonitrile (PAN), the mixture of ZnFeCo-pre and PAN can be co-electrospun and subject to a standard CNF fabrication process. The resulting Fe1Co1-CNF exhibits excellent bifunctional catalytic performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), attributing to the abundant dual catalytic FeN3-CoN3 sites which are mutually beneficial for attaining optimal electronic properties for the adsorption/desorption of reaction intermediates. The assembled liquid-electrolyte ZAB provides a high specific power of 201.7 mW cm−2 and excellent cycling stability. More importantly, due to the good mechanical strength and flexibility of Fe1Co1-CNF, portable ZAB with exceptional shape deformability and stability can be demonstrated, in which Fe1Co1-CNF utility as an integrated free-standing membrane electrode. These findings provide a facile strategy for manufacturing flexible multi-functional catalytic electrodes with high production.
[Display omitted]
•Large-area self-standing flexible CNF film with diatomic Fe-Co sites was developed.•The diatomic Fe-Co sites render optimized adsorption of O-containing intermediates.•The Fe1Co1-CNF exhibits superior bifunctional ORR/OER performance.•The Fe1Co1-CNF shows great potential in liquid/flexible Zn-air battery. |
ArticleNumber | 106147 |
Author | Silva, S. Ravi P. Zhang, Peng Li, Zongge Yan, Zifeng Cai, Qiong Liu, Jian Zhang, Ying Sun, Xiaoming Wang, Yiyan Pan, Yuan Zhang, Guoxin |
Author_xml | – sequence: 1 givenname: Yiyan surname: Wang fullname: Wang, Yiyan organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China – sequence: 2 givenname: Zongge surname: Li fullname: Li, Zongge organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China – sequence: 3 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China – sequence: 4 givenname: Yuan surname: Pan fullname: Pan, Yuan organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China – sequence: 5 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China – sequence: 6 givenname: Qiong surname: Cai fullname: Cai, Qiong organization: DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, UK – sequence: 7 givenname: S. Ravi P. surname: Silva fullname: Silva, S. Ravi P. organization: DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, UK – sequence: 8 givenname: Jian surname: Liu fullname: Liu, Jian email: jian.liu@surrey.ac.uk organization: DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, UK – sequence: 9 givenname: Guoxin surname: Zhang fullname: Zhang, Guoxin email: zhanggx@sdust.edu.cn organization: Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, PR China – sequence: 10 givenname: Xiaoming surname: Sun fullname: Sun, Xiaoming organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China – sequence: 11 givenname: Zifeng surname: Yan fullname: Yan, Zifeng email: zfyancat@upc.edu.cn organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China |
BookMark | eNqFkE1OAzEMhbMAid8bsMgFpiQzbaZlgYQqCkiV2MA6chIHXE0TlKT8HYIzM9OyYgHeWH7Se7a_I7YXYkDGzqQYSSHV-WoUIEQMo1rUspeUHLd77LCupazq6WRywE5zXom-1ES2sj5kX4sO38l0yC0kEwMfAjwZTNxTt-ZvVJ65IyhxTZYvsJpHnqlg5j4mjt6TJQyFx_ePJww8odvYQn0OBMfxNXab7ZQQtnLmFPgbQoJh5ScFWwElbqAUTIT5hO176DKe_vRj9ri4fpjfVsv7m7v51bKyjVCl8mMhwRjZCuVbM3POCgu-Vd44j65VOBZTROOUmjRSQNO0swaccVjPjJ2Cb47ZxS7XpphzQq8tFRguLAmo01LoAahe6R1QPQDVO6C9efzL_JJoDenjP9vlzob9Y6-ESeeBnUVHCW3RLtLfAd95k5q- |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c03149 crossref_primary_10_1002_adma_202107421 crossref_primary_10_1039_D2TA08566F crossref_primary_10_1016_j_cej_2024_151425 crossref_primary_10_1016_j_cej_2022_137080 crossref_primary_10_1021_acssuschemeng_2c04453 crossref_primary_10_1002_advs_202407631 crossref_primary_10_1002_eom2_12431 crossref_primary_10_1016_j_cej_2023_141868 crossref_primary_10_1002_EXP_20220164 crossref_primary_10_1002_smm2_1076 crossref_primary_10_1016_j_ijhydene_2025_01_022 crossref_primary_10_1016_j_cej_2021_132199 crossref_primary_10_1016_j_cej_2022_138699 crossref_primary_10_1016_j_esci_2022_05_004 crossref_primary_10_1039_D2NR04741A crossref_primary_10_2139_ssrn_4201013 crossref_primary_10_1016_j_ijhydene_2022_08_011 crossref_primary_10_1002_anie_202201007 crossref_primary_10_1002_adma_202407974 crossref_primary_10_1039_D4NR00389F crossref_primary_10_1016_j_ensm_2023_102890 crossref_primary_10_1039_D3NR00888F crossref_primary_10_1016_j_est_2024_110660 crossref_primary_10_1007_s12274_021_3787_z crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_1021_acsmaterialslett_2c00694 crossref_primary_10_1016_j_jcis_2022_11_144 crossref_primary_10_1039_D4SC01220H crossref_primary_10_1039_D1NR05209H crossref_primary_10_1007_s12274_022_4929_7 crossref_primary_10_1002_adfm_202404787 crossref_primary_10_1016_j_apsusc_2022_154590 crossref_primary_10_1021_acscatal_2c01861 crossref_primary_10_1016_j_inoche_2024_113288 crossref_primary_10_1007_s12274_022_5261_y crossref_primary_10_1016_j_est_2024_113668 crossref_primary_10_1039_D2TA09626A crossref_primary_10_1002_ange_202201007 crossref_primary_10_1016_j_enrev_2024_100076 crossref_primary_10_1038_s41467_024_55630_y crossref_primary_10_1002_adma_202309231 crossref_primary_10_1016_j_nanoen_2023_108854 crossref_primary_10_1039_D2TA03744K crossref_primary_10_1016_j_cej_2022_140031 crossref_primary_10_1039_D1TA10874C crossref_primary_10_1021_acscatal_2c05654 crossref_primary_10_12677_japc_2024_132028 crossref_primary_10_1016_j_diamond_2023_110095 crossref_primary_10_1016_j_mtener_2021_100935 crossref_primary_10_1016_j_cej_2024_157182 crossref_primary_10_1016_j_apsusc_2022_153891 crossref_primary_10_1016_j_electacta_2024_143857 crossref_primary_10_1016_j_ccr_2023_215493 crossref_primary_10_1016_j_cej_2021_131320 crossref_primary_10_1021_acs_energyfuels_4c02613 crossref_primary_10_1016_j_apcata_2024_119712 crossref_primary_10_1016_j_ijhydene_2022_04_222 crossref_primary_10_1007_s12598_023_02360_7 crossref_primary_10_1002_smll_202302739 crossref_primary_10_1039_D2TA09788E crossref_primary_10_1016_j_jechem_2023_03_054 crossref_primary_10_1007_s11426_023_1863_8 crossref_primary_10_2139_ssrn_4183135 crossref_primary_10_1002_aenm_202301378 crossref_primary_10_1016_j_ensm_2024_103410 crossref_primary_10_1002_smll_202202394 crossref_primary_10_1016_j_mtsust_2022_100288 crossref_primary_10_1039_D3EE03383J crossref_primary_10_1039_D3EY00050H crossref_primary_10_1016_j_jpowsour_2024_234063 crossref_primary_10_1007_s12274_021_4068_6 crossref_primary_10_1039_D1TA09306A crossref_primary_10_1021_acsnano_4c01342 crossref_primary_10_1016_j_apcatb_2023_123438 crossref_primary_10_1016_j_nanoen_2022_107941 crossref_primary_10_1016_j_apsusc_2022_155779 crossref_primary_10_1016_j_colsurfa_2024_133629 crossref_primary_10_1002_smll_202406659 crossref_primary_10_1016_j_jcis_2023_12_168 crossref_primary_10_1360_SSC_2023_0199 crossref_primary_10_1016_j_cej_2022_137210 crossref_primary_10_1016_j_apcatb_2024_123942 crossref_primary_10_1039_D3QM00732D crossref_primary_10_1039_D1CY01414E crossref_primary_10_1016_j_ensm_2025_104109 crossref_primary_10_1021_acsami_1c21396 crossref_primary_10_1002_aenm_202201509 crossref_primary_10_1007_s12274_024_6753_8 crossref_primary_10_1016_j_jssc_2022_123033 crossref_primary_10_1002_cjoc_202200217 crossref_primary_10_1021_acsanm_3c05050 crossref_primary_10_1002_ange_202306261 crossref_primary_10_1016_j_cej_2023_144515 crossref_primary_10_1016_j_jcis_2024_12_139 crossref_primary_10_1039_D2CS00233G crossref_primary_10_1039_D1TA09154A crossref_primary_10_1007_s12274_023_5533_1 crossref_primary_10_1016_j_apmate_2023_100138 crossref_primary_10_1002_smtd_202100947 crossref_primary_10_1039_D1NR05681F crossref_primary_10_1002_smtd_202301645 crossref_primary_10_1016_j_jallcom_2025_179887 crossref_primary_10_1016_j_seppur_2024_129934 crossref_primary_10_1016_j_nanoen_2024_109268 crossref_primary_10_1016_j_carbon_2023_118365 crossref_primary_10_1002_anie_202306261 crossref_primary_10_1016_j_surfin_2024_105532 crossref_primary_10_1016_j_jcis_2024_10_085 crossref_primary_10_1002_smll_202106260 crossref_primary_10_1007_s42765_022_00215_x crossref_primary_10_1016_j_cej_2023_141911 crossref_primary_10_1002_cssc_202300637 crossref_primary_10_1021_acscatal_2c00164 crossref_primary_10_1002_celc_202200888 crossref_primary_10_1016_j_cej_2024_155487 crossref_primary_10_1039_D1QM01256H crossref_primary_10_1002_cey2_341 crossref_primary_10_1016_j_ijhydene_2023_04_286 crossref_primary_10_1039_D4EY00014E crossref_primary_10_26599_NRE_2023_9120082 crossref_primary_10_1016_j_scib_2023_10_013 crossref_primary_10_1021_acsami_2c13425 crossref_primary_10_1007_s40843_022_2059_x crossref_primary_10_1016_j_nanoen_2023_109236 crossref_primary_10_1016_j_jpowsour_2023_232988 crossref_primary_10_1002_cssc_202201518 crossref_primary_10_1016_j_apcatb_2022_121464 |
Cites_doi | 10.1002/adma.201808267 10.1016/j.matt.2019.11.014 10.1016/j.nanoen.2018.11.054 10.1103/PhysRevB.54.11169 10.1016/j.nanoen.2020.104597 10.1002/anie.201908736 10.1016/j.apcatb.2020.119091 10.1063/1.472933 10.1016/j.apcatb.2020.118594 10.1021/jacs.7b10385 10.1021/jacs.6b05046 10.1002/anie.202003917 10.1016/j.jechem.2019.03.004 10.1039/C8EE00901E 10.1002/adma.201203448 10.1021/acs.chemrev.9b00818 10.1002/anie.201604802 10.1021/acscatal.7b02326 10.1021/ar300361m 10.1021/acsanm.8b01410 10.1016/j.nanoen.2018.10.029 10.1002/advs.201900628 10.1002/celc.201800373 10.1557/mrs2008.47 10.1016/j.carbon.2018.12.099 10.1039/D0CS00415D 10.1126/science.1115311 10.1002/aenm.201200013 10.1002/smtd.202000751 10.1038/s41570-018-0010-1 10.1039/C8CC00988K 10.1002/adfm.201705094 10.1038/s41467-019-11992-2 10.1016/j.nanoen.2020.105534 10.1021/acs.chemmater.6b05056 10.1002/anie.201804349 10.1038/s41467-019-12362-8 10.1016/j.nanoen.2019.104293 10.1039/C6SC02105K 10.1002/adma.201506112 10.1002/smll.201804201 10.1016/j.apcatb.2019.118437 10.1103/PhysRevLett.77.3865 10.1039/C5TA09327A 10.1021/ja407552k 10.1002/adma.202003577 10.1016/j.carbon.2014.11.061 10.1039/C7TA08166A 10.1021/acssuschemeng.8b06624 10.1002/jcc.20495 10.1016/j.carbon.2005.03.031 10.1126/science.1104276 10.1081/CR-100101954 10.1016/j.pmatsci.2015.08.002 10.1039/c3cp55431g 10.1002/smll.201903760 10.1016/j.electacta.2019.01.170 10.1002/adfm.201910568 10.1038/ncomms9668 10.1002/adma.201104940 10.1002/anie.201702473 10.1039/b809074m 10.1016/j.nanoen.2016.02.001 10.1080/01614940903510496 10.1038/s41929-019-0364-x 10.1557/JMR.1993.3233 10.1039/C9EE00162J 10.1016/j.reactfunctpolym.2017.10.017 10.1007/s12274-020-2751-7 10.1039/C8EE02656D 10.1016/0927-0256(96)00008-0 10.1007/s12274-020-3151-8 10.1007/s40820-019-0238-4 10.1039/C8CS00671G 10.1039/C8TA02416B 10.1063/1.363927 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2021.106147 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2021_106147 S2211285521004031 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-f401abb1706f7b9ddc0caf76fbdfed76e408eebd665310a33793adbde29bc8af3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:46 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Fri Feb 23 02:41:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon nanofiber Electrospinning Bifunctional electro-catalyst Zn-air battery Dual-site catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-f401abb1706f7b9ddc0caf76fbdfed76e408eebd665310a33793adbde29bc8af3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2021_106147 crossref_primary_10_1016_j_nanoen_2021_106147 elsevier_sciencedirect_doi_10_1016_j_nanoen_2021_106147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shi, Zhu, Du, Lin (bib29) 2019; 48 Jiang, Li, Fang, Wang (bib56) 2019; 17 Xiang, Duan, Tong, Peng, Wang, Shah, Najam, Huang, Wei (bib66) 2019; 302 Tian, Zhang, Su, Shen, Liu, Wang, Liu, Liu (bib34) 2020; 40 Wang, Kumar, Ma, Jia, Wang, Zhang, Zhang, Sun, Yan (bib63) 2020; 13 Grimme (bib82) 2006; 27 Pan, Liu, Sun, Chen, Wang, Wu, Cao, Cheong, Shen, Han, Chen, Zheng, Luo, Lin, Liu, Wang, Peng, Zhang, Chen, Li (bib64) 2018; 57 Inagaki, Yang, Kang (bib10) 2012; 24 Perdew, Burke, Ernzerhof (bib76) 1996; 77 Chao, Zhu, Zhang, Wang, Fan (bib13) 2016; 76 Liu, Zhang, Yan, Liu, Yang, Miao, Wang, Wang, Zhang (bib44) 2016; 7 Li, Sasikala, Kim, Bak, Kim, Cho, Kim (bib55) 2019; 56 Zhao, Li, Liu, Zhang (bib49) 2021; 60 Kresse, Furthmüller (bib79) 1996; 54 Fu, Tang, Lee (bib36) 2018; 5 Jiang, Back, Akey, Xia, Hu, Liang, Schaak, Stavitski, Nørskov, Siahrostami, Wang (bib46) 2019; 10 Yin, Yao, Wu, Zheng, Lin, Liu, Ju, Zhu, Hong, Deng, Zhou, Wei, Li (bib73) 2016; 55 Cheng, Yang, Zou, Zou, Chen, Hu, Yang (bib22) 2017; 7 Hu, Chen, Zhang, Fu, Sun, Lee, Tang (bib37) 2019; 144 Ji, Peng, Safanama, Yu, Li, Yang, Qin, Srinivasan, Adams, Ramakrishna (bib57) 2017; 29 He, Guo, Hwang, Yang, He, Braaten, Karakalos, Shan, Wang, Zhou, Feng, More, Wang, Su, Cullen, Fei, Litster, Wu (bib23) 2020; 32 Fei, Dong, Arellano-Jiménez, Ye, Dong Kim, Samuel, Peng, Zhu, Qin, Bao, Yacaman, Ajayan, Chen, Tour (bib71) 2015; 6 Zhang, Fang, Zakhidov, Lee, Aliev, Williams, Atkinson, Baughman (bib5) 2005; 309 Xu, Sun, Zhao, Gao (bib7) 2013; 25 Ji, Fan, Tao, Sun, Li, Yang, Tran, Ramakrishna, Guo (bib14) 2019; 58 Wang, Li, Zhang (bib43) 2018; 2 Fu, Yu, Jiang, Zhang, Zhan, Li, Li, Tian, Yang (bib58) 2018; 28 Perdew, Ernzerhof, Burke (bib81) 1996; 105 Ji, Fan, Li, Peng, Yu, Song, Ramakrishna, Guo (bib24) 2019; 31 Chen, Ji, Wang, Dong, Chen, Li, Shen, Zheng, Zhuang, Wang, Li (bib72) 2017; 56 Zhang, Lu, Cao, Wu, Zhang, Cong, Yu (bib28) 2019; 55 Cheng, Zhang, Wu, Tang, Yang, Su, Thomsen, Zhao, Lu, Liu, Jiang (bib53) 2021; 80 De Jong, Geus (bib1) 2000; 42 Ji, Peng, Fan, Li, Qin, Ramakrishna (bib17) 2017; 5 Pan, Chen, Wu, Chen, Liu, Cao, Cheong, Meng, Luo, Zheng, Liu, Wang, Peng, Li, Chen (bib47) 2019; 10 Cao, Lee, Liu, Cho (bib31) 2012; 2 Uzio, Berhault (bib39) 2010; 52 Zhang, Atkinson, Baughman (bib4) 2004; 306 Peng, Li, Kong Yoong Lee, Tian, Srinivasan, Adams, Ramakrishna (bib12) 2016; 22 Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib50) 2017; 139 Yang, Feng, Xu, Wei, Zhang (bib59) 2019; 7 Ji, Chen, Wang, Zhang, Wang, Li (bib42) 2020; 120 Zhu, Zhang, Chen, Zhang, Liu, Xia, Dai, Amal, Lu (bib78) 2020; 71 King, Castaldelli, McCaffterty, Silva, Stolojan (bib21) 2018; 1 Qu, Peng, Dai, Spinks, Wallace, Baughman (bib6) 2008; 33 Ma, Kumar, Wang, Wang, Jia, Zhang, Zhang, Yan, Sun (bib65) 2020; 274 van Deelen, Hernández Mejía, de Jong (bib38) 2019; 2 Ying, Luo, Qiao, Huang (bib45) 2021; 31 Jiang, Li, Fang, Wang (bib61) 2021; 17 Peng, Lu, Chen (bib48) 2018; 30 Lyu, Wang, Choi, Yin (bib33) 2019; 15 Pan, Chen, Yang, Ma, Zhang, Kou, Ding, Pang, Zhang, Gu, Yan, Wang (bib15) 2019; 6 Zhang, Jia, Zhang, Xiong, Sun, Chen, Chen, Kuang, Zheng, Tang, Liu, Liu, Sun, Lin, Dai (bib62) 2019; 12 Liu, Zhao, Duan, Huang (bib30) 2019; 31 Zhang, Zhou, Chen, Guan, Li, Lou (bib51) 2018; 11 Wang, Tang, Zhang (bib32) 2018; 28 Jose, Hu, Edison, Manalastas, Ren, Kidkhunthod, Sreejith, Jayakumar, Nsanzimana, Srinivasan, Choi, Lee (bib54) 2021; 5 Peng, Wang, Yang, Mao, Jin, Yang, Fu, Li (bib18) 2020; 268 Wang, Liu, Luo, Li, Zhao, Zhang, Zhu, Xu, Wang, Zhao, Qu, Yang, Yao, Li, Lin, Wu, Li (bib70) 2018; 11 Ji, Sun, Tian, Chinnappan, Zhang, Jayathilaka, Gosh, Baskar, Zhang, Ramakrishna (bib26) 2020; 30 Wang, Li, Li, Lin, Chen, Gao, Nicolosi, Xiao, Lee (bib35) 2021; 50 Thavasi, Singh, Ramakrishna (bib9) 2008; 1 Kresse, Furthmüller (bib80) 1996; 6 Zussman, Chen, Ding, Calabri, Dikin, Quintana, Ruoff (bib2) 2005; 43 Wang, Tang, Zhu, Zhang (bib74) 2016; 4 Yang, Wang, Qiao, Li, Liu, Zhang (bib41) 2013; 46 Niu, Chen, Guo, Nie, Guo, Ma (bib60) 2019; 11 Silva, Robertson, Amaratunga, Rafferty, Brown, Schwan, Franceschini, Mariotto (bib68) 1997; 81 Pan, Zhang, Liu, Chen, Li (bib40) 2020; 2 Ishihara, Labuta, Van Rossom, Ishikawa, Minami, Hill, Ariga (bib77) 2014; 16 He, Zai, Liu, Zhu, Iqbal, Tadesse Tsega, Zhang, Ali, Qian (bib19) 2020; 265 Sun, Wei, Gu, Zhang, Jiang, Wan, Chen, Huang, Xu, Fang, Li, Han, Huang (bib20) 2020; 16 Rodriguez (bib3) 1993; 8 Liang, Wei, Wu, Feng, Müllen (bib69) 2013; 135 Su, Huang, Zhang, Guharoy, Du, Sun, Jiang, Cheng, Yang, Zhang, Liu, Jiang, Liu (bib52) 2021; 14 Liu, Wang, Dai, Yao (bib8) 2016; 28 Wu, Wang, Wei, Wang, Zhuo, Zhang, Han, Ma (bib27) 2018; 6 Zhang, Chen, Li, Chen, Zheng, Gong, Li, Shen, Han, Cheong, Gu, Li (bib67) 2018; 54 Lei, Wang, Yang, Huang, Liu, Liang, Xie, Javed, Lu, Tan, Mai (bib16) 2020; 68 King, Stolojan, Silva (bib11) 2018; 129 Meng, Zhong, Bao, Yan, Zhang (bib75) 2016; 138 King, McCafferty, Stolojan, Silva (bib25) 2015; 84 Ji (10.1016/j.nanoen.2021.106147_bib17) 2017; 5 Fu (10.1016/j.nanoen.2021.106147_bib36) 2018; 5 Meng (10.1016/j.nanoen.2021.106147_bib75) 2016; 138 Niu (10.1016/j.nanoen.2021.106147_bib60) 2019; 11 Wang (10.1016/j.nanoen.2021.106147_bib70) 2018; 11 De Jong (10.1016/j.nanoen.2021.106147_bib1) 2000; 42 Qu (10.1016/j.nanoen.2021.106147_bib6) 2008; 33 Cao (10.1016/j.nanoen.2021.106147_bib31) 2012; 2 Peng (10.1016/j.nanoen.2021.106147_bib12) 2016; 22 Ishihara (10.1016/j.nanoen.2021.106147_bib77) 2014; 16 Uzio (10.1016/j.nanoen.2021.106147_bib39) 2010; 52 Wang (10.1016/j.nanoen.2021.106147_bib43) 2018; 2 Fei (10.1016/j.nanoen.2021.106147_bib71) 2015; 6 Zussman (10.1016/j.nanoen.2021.106147_bib2) 2005; 43 Ying (10.1016/j.nanoen.2021.106147_bib45) 2021; 31 Rodriguez (10.1016/j.nanoen.2021.106147_bib3) 1993; 8 He (10.1016/j.nanoen.2021.106147_bib23) 2020; 32 Ji (10.1016/j.nanoen.2021.106147_bib14) 2019; 58 Ji (10.1016/j.nanoen.2021.106147_bib42) 2020; 120 Cheng (10.1016/j.nanoen.2021.106147_bib22) 2017; 7 Ji (10.1016/j.nanoen.2021.106147_bib57) 2017; 29 Pan (10.1016/j.nanoen.2021.106147_bib64) 2018; 57 Yin (10.1016/j.nanoen.2021.106147_bib73) 2016; 55 Jiang (10.1016/j.nanoen.2021.106147_bib56) 2019; 17 Yang (10.1016/j.nanoen.2021.106147_bib41) 2013; 46 Cheng (10.1016/j.nanoen.2021.106147_bib53) 2021; 80 Pan (10.1016/j.nanoen.2021.106147_bib40) 2020; 2 He (10.1016/j.nanoen.2021.106147_bib19) 2020; 265 Ji (10.1016/j.nanoen.2021.106147_bib24) 2019; 31 Tian (10.1016/j.nanoen.2021.106147_bib34) 2020; 40 Liu (10.1016/j.nanoen.2021.106147_bib44) 2016; 7 Zhu (10.1016/j.nanoen.2021.106147_bib78) 2020; 71 Sun (10.1016/j.nanoen.2021.106147_bib20) 2020; 16 Zhang (10.1016/j.nanoen.2021.106147_bib28) 2019; 55 Ji (10.1016/j.nanoen.2021.106147_bib26) 2020; 30 Chao (10.1016/j.nanoen.2021.106147_bib13) 2016; 76 Zhang (10.1016/j.nanoen.2021.106147_bib67) 2018; 54 Pan (10.1016/j.nanoen.2021.106147_bib47) 2019; 10 Chen (10.1016/j.nanoen.2021.106147_bib72) 2017; 56 King (10.1016/j.nanoen.2021.106147_bib25) 2015; 84 Thavasi (10.1016/j.nanoen.2021.106147_bib9) 2008; 1 King (10.1016/j.nanoen.2021.106147_bib21) 2018; 1 Xiang (10.1016/j.nanoen.2021.106147_bib66) 2019; 302 Liang (10.1016/j.nanoen.2021.106147_bib69) 2013; 135 Zhao (10.1016/j.nanoen.2021.106147_bib49) 2021; 60 Inagaki (10.1016/j.nanoen.2021.106147_bib10) 2012; 24 Fu (10.1016/j.nanoen.2021.106147_bib58) 2018; 28 Zhang (10.1016/j.nanoen.2021.106147_bib62) 2019; 12 Zhang (10.1016/j.nanoen.2021.106147_bib51) 2018; 11 Jose (10.1016/j.nanoen.2021.106147_bib54) 2021; 5 Su (10.1016/j.nanoen.2021.106147_bib52) 2021; 14 Ma (10.1016/j.nanoen.2021.106147_bib65) 2020; 274 Lei (10.1016/j.nanoen.2021.106147_bib16) 2020; 68 van Deelen (10.1016/j.nanoen.2021.106147_bib38) 2019; 2 Wang (10.1016/j.nanoen.2021.106147_bib63) 2020; 13 Perdew (10.1016/j.nanoen.2021.106147_bib76) 1996; 77 Grimme (10.1016/j.nanoen.2021.106147_bib82) 2006; 27 Wang (10.1016/j.nanoen.2021.106147_bib74) 2016; 4 Kresse (10.1016/j.nanoen.2021.106147_bib80) 1996; 6 Zhang (10.1016/j.nanoen.2021.106147_bib4) 2004; 306 Jiang (10.1016/j.nanoen.2021.106147_bib61) 2021; 17 Wang (10.1016/j.nanoen.2021.106147_bib32) 2018; 28 Peng (10.1016/j.nanoen.2021.106147_bib18) 2020; 268 Xu (10.1016/j.nanoen.2021.106147_bib7) 2013; 25 Wang (10.1016/j.nanoen.2021.106147_bib50) 2017; 139 Liu (10.1016/j.nanoen.2021.106147_bib30) 2019; 31 Yang (10.1016/j.nanoen.2021.106147_bib59) 2019; 7 Peng (10.1016/j.nanoen.2021.106147_bib48) 2018; 30 Li (10.1016/j.nanoen.2021.106147_bib55) 2019; 56 Shi (10.1016/j.nanoen.2021.106147_bib29) 2019; 48 Wang (10.1016/j.nanoen.2021.106147_bib35) 2021; 50 Hu (10.1016/j.nanoen.2021.106147_bib37) 2019; 144 Perdew (10.1016/j.nanoen.2021.106147_bib81) 1996; 105 Jiang (10.1016/j.nanoen.2021.106147_bib46) 2019; 10 Lyu (10.1016/j.nanoen.2021.106147_bib33) 2019; 15 Pan (10.1016/j.nanoen.2021.106147_bib15) 2019; 6 Kresse (10.1016/j.nanoen.2021.106147_bib79) 1996; 54 Wu (10.1016/j.nanoen.2021.106147_bib27) 2018; 6 Liu (10.1016/j.nanoen.2021.106147_bib8) 2016; 28 Silva (10.1016/j.nanoen.2021.106147_bib68) 1997; 81 King (10.1016/j.nanoen.2021.106147_bib11) 2018; 129 Zhang (10.1016/j.nanoen.2021.106147_bib5) 2005; 309 |
References_xml | – volume: 17 year: 2021 ident: bib61 article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis publication-title: Small – volume: 302 start-page: 45 year: 2019 end-page: 55 ident: bib66 article-title: Self-standing FeCo Prussian Blue Analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting publication-title: Electrochim. Acta – volume: 58 start-page: 13840 year: 2019 end-page: 13844 ident: bib14 article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co publication-title: Angew. Chem. Int. Ed. – volume: 17 year: 2019 ident: bib56 article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis publication-title: Small – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib82 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib79 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B Condens. Matter – volume: 28 year: 2018 ident: bib32 article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries publication-title: Adv. Funct. Mater. – volume: 33 start-page: 215 year: 2008 end-page: 224 ident: bib6 article-title: Carbon nanotube electroactive polymer materials: opportunities and challenges publication-title: MRS Bull. – volume: 14 start-page: 1069 year: 2021 end-page: 1077 ident: bib52 article-title: Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction publication-title: Nano Res. – volume: 2 start-page: 816 year: 2012 end-page: 829 ident: bib31 article-title: Recent progress in non-precious catalysts for metal-air batteries publication-title: Adv. Energy Mater. – volume: 57 start-page: 8614 year: 2018 end-page: 8618 ident: bib64 article-title: A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 1665 year: 2017 end-page: 1675 ident: bib57 article-title: Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium-air batteries publication-title: Chem. Mater. – volume: 16 year: 2020 ident: bib20 article-title: Atomic-level Fe-N-C coupled with Fe publication-title: Small – volume: 11 start-page: 1980 year: 2018 end-page: 1984 ident: bib51 article-title: A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction publication-title: Energy Environ. Sci. – volume: 8 start-page: 3233 year: 1993 end-page: 3250 ident: bib3 article-title: A review of catalytically grown carbon nanofibers publication-title: J. Mater. Res. – volume: 71 year: 2020 ident: bib78 article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis publication-title: Nano Energy – volume: 22 start-page: 361 year: 2016 end-page: 395 ident: bib12 article-title: Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage publication-title: Nano Energy – volume: 6 year: 2019 ident: bib15 article-title: CuCo publication-title: Adv. Sci. – volume: 42 start-page: 481 year: 2000 end-page: 510 ident: bib1 article-title: Carbon nanofibers: catalytic synthesis and applications publication-title: Catal. Rev. – volume: 129 start-page: 89 year: 2018 end-page: 94 ident: bib11 article-title: Large area uniform electrospun polymer nanofibres by balancing of the electrostatic field publication-title: React. Funct. Polym. – volume: 60 start-page: 4448 year: 2021 end-page: 4463 ident: bib49 article-title: Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 5462 year: 2019 end-page: 5475 ident: bib59 article-title: Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries publication-title: ACS Sustain. Chem. Eng. – volume: 11 start-page: 3375 year: 2018 end-page: 3379 ident: bib70 article-title: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction publication-title: Energy Environ. Sci. – volume: 55 start-page: 10800 year: 2016 end-page: 10805 ident: bib73 article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 955 year: 2019 end-page: 970 ident: bib38 article-title: Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity publication-title: Nat. Catal. – volume: 10 start-page: 4290 year: 2019 ident: bib47 article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation publication-title: Nat. Commun. – volume: 5 year: 2021 ident: bib54 article-title: Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries publication-title: Small Methods – volume: 309 start-page: 1215 year: 2005 end-page: 1219 ident: bib5 article-title: Strong, transparent, multifunctional, carbon nanotube sheets publication-title: Science – volume: 274 year: 2020 ident: bib65 article-title: Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring publication-title: Appl. Catal. B Environ. – volume: 28 start-page: 3000 year: 2016 end-page: 3006 ident: bib8 article-title: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries publication-title: Adv. Mater. – volume: 15 year: 2019 ident: bib33 article-title: Noble-metal-free electrocatalysts for oxygen evolution publication-title: Small – volume: 10 start-page: 3997 year: 2019 ident: bib46 article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination publication-title: Nat. Commun. – volume: 80 year: 2021 ident: bib53 article-title: A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells publication-title: Nano Energy – volume: 68 year: 2020 ident: bib16 article-title: NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries publication-title: Nano Energy – volume: 84 start-page: 130 year: 2015 end-page: 137 ident: bib25 article-title: Highly aligned arrays of super resilient carbon nanotubes by steam purification publication-title: Carbon – volume: 54 start-page: 4274 year: 2018 end-page: 4277 ident: bib67 article-title: Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction publication-title: Chem. Commun. – volume: 120 start-page: 11900 year: 2020 end-page: 11955 ident: bib42 article-title: Chemical synthesis of single atomic site catalysts publication-title: Chem. Rev. – volume: 12 start-page: 1317 year: 2019 end-page: 1325 ident: bib62 article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies publication-title: Energy Environ. Sci. – volume: 55 start-page: 226 year: 2019 end-page: 233 ident: bib28 article-title: Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction publication-title: Nano Energy – volume: 31 year: 2021 ident: bib45 article-title: More is different:” synergistic effect and structural engineering in double‐atom catalysts publication-title: Adv. Funct. Mater. – volume: 46 start-page: 1740 year: 2013 end-page: 1748 ident: bib41 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. – volume: 56 start-page: 6937 year: 2017 end-page: 6941 ident: bib72 article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 81 start-page: 2626 year: 1997 end-page: 2634 ident: bib68 article-title: Nitrogen modification of hydrogenated amorphous carbon films publication-title: J. Appl. Phys. – volume: 7 start-page: 5758 year: 2016 end-page: 5764 ident: bib44 article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes publication-title: Chem. Sci. – volume: 43 start-page: 2175 year: 2005 end-page: 2185 ident: bib2 article-title: Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers publication-title: Carbon – volume: 306 start-page: 1358 year: 2004 end-page: 1361 ident: bib4 article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology publication-title: Science – volume: 31 year: 2019 ident: bib24 article-title: Atomically transition metals on self‐supported porous carbon flake arrays as binder‐free air cathode for wearable zinc−air batteries publication-title: Adv. Mater. – volume: 30 year: 2020 ident: bib26 article-title: Engineering of the heterointerface of porous carbon nanofiber-supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis publication-title: Adv. Funct. Mater. – volume: 56 start-page: 524 year: 2019 end-page: 530 ident: bib55 article-title: Fe-N publication-title: Nano Energy – volume: 6 start-page: 8668 year: 2015 ident: bib71 article-title: Atomic cobalt on nitrogen-doped graphene for hydrogen generation publication-title: Nat. Commun. – volume: 13 start-page: 1090 year: 2020 end-page: 1099 ident: bib63 article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery publication-title: Nano Res. – volume: 76 start-page: 319 year: 2016 end-page: 380 ident: bib13 article-title: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage publication-title: Prog. Mater. Sci. – volume: 40 start-page: 137 year: 2020 end-page: 143 ident: bib34 article-title: Metal-organic-framework-derived formation of CoN-doped carbon materials for efficient oxygen reduction reaction publication-title: J. Energy Chem. – volume: 268 year: 2020 ident: bib18 article-title: Co publication-title: Appl. Catal. B Environ. – volume: 1 start-page: 6217 year: 2018 end-page: 6225 ident: bib21 article-title: Micro-centrifugal technique for improved assessment and optimization of nanomaterial dispersions: the case for carbon nanotubes publication-title: ACS Appl. Nano Mater. – volume: 25 start-page: 188 year: 2013 end-page: 193 ident: bib7 article-title: Ultrastrong fibers assembled from giant graphene oxide sheets publication-title: Adv. Mater. – volume: 24 start-page: 2547 year: 2012 end-page: 2566 ident: bib10 article-title: Carbon nanofibers prepared via electrospinning publication-title: Adv. Mater. – volume: 1 start-page: 205 year: 2008 end-page: 221 ident: bib9 article-title: Electrospun nanofibers in energy and environmental applications publication-title: Energy Environ. Sci. – volume: 52 start-page: 106 year: 2010 end-page: 131 ident: bib39 article-title: Factors governing the catalytic reactivity of metallic nanoparticles publication-title: Catal. Rev. – volume: 50 start-page: 1354 year: 2021 end-page: 1390 ident: bib35 article-title: Transition metal nitrides for electrochemical energy applications publication-title: Chem. Soc. Rev. – volume: 31 year: 2019 ident: bib30 article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts publication-title: Adv. Mater. – volume: 2 start-page: 78 year: 2020 end-page: 110 ident: bib40 article-title: Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis publication-title: Matter – volume: 144 start-page: 557 year: 2019 end-page: 566 ident: bib37 article-title: Alveolate porous carbon aerogels supported Co publication-title: Carbon – volume: 11 start-page: 8 year: 2019 ident: bib60 article-title: Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery publication-title: Nano Micro Lett. – volume: 5 start-page: 23898 year: 2017 end-page: 23908 ident: bib17 article-title: Thin MoS publication-title: J. Mater. Chem. A – volume: 105 start-page: 9982 year: 1996 end-page: 9985 ident: bib81 article-title: Rationale for mixing exact exchange with density functional approximations publication-title: J. Chem. Phys. – volume: 30 year: 2018 ident: bib48 article-title: Carbon-supported single atom catalysts for electrochemical energy conversion and storage publication-title: Adv. Mater. – volume: 6 start-page: 10918 year: 2018 end-page: 10925 ident: bib27 article-title: Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries publication-title: J. Mater. Chem. A – volume: 48 start-page: 3181 year: 2019 end-page: 3192 ident: bib29 article-title: Robust noble metal-based electrocatalysts for oxygen evolution reaction publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1424 year: 2018 end-page: 1434 ident: bib36 article-title: Recent advances in carbon-based bifunctional oxygen electrocatalysts for ZnAir batteries publication-title: ChemElectroChem – volume: 7 start-page: 6864 year: 2017 end-page: 6871 ident: bib22 article-title: Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction publication-title: ACS Catal. – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: bib43 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. – volume: 4 start-page: 3379 year: 2016 end-page: 3385 ident: bib74 article-title: A ‘point-line-point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions publication-title: J. Mater. Chem. A – volume: 265 year: 2020 ident: bib19 article-title: One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries publication-title: Appl. Catal. B Environ. – volume: 32 year: 2020 ident: bib23 article-title: Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells publication-title: Adv. Mater. – volume: 138 start-page: 10226 year: 2016 end-page: 10231 ident: bib75 article-title: In situ coupling of strung Co publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16002 year: 2013 end-page: 16005 ident: bib69 article-title: Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 ident: bib58 article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst publication-title: Adv. Funct. Mater. – volume: 16 start-page: 9713 year: 2014 end-page: 9746 ident: bib77 article-title: Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: bib80 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib76 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 139 start-page: 17281 year: 2017 end-page: 17284 ident: bib50 article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib24 article-title: Atomically transition metals on self‐supported porous carbon flake arrays as binder‐free air cathode for wearable zinc−air batteries publication-title: Adv. Mater. doi: 10.1002/adma.201808267 – volume: 2 start-page: 78 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib40 article-title: Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis publication-title: Matter doi: 10.1016/j.matt.2019.11.014 – volume: 56 start-page: 524 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib55 article-title: Fe-N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & acidic media publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.054 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.nanoen.2021.106147_bib79 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.54.11169 – volume: 71 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib78 article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104597 – volume: 58 start-page: 13840 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib14 article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908736 – volume: 274 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib65 article-title: Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119091 – volume: 105 start-page: 9982 year: 1996 ident: 10.1016/j.nanoen.2021.106147_bib81 article-title: Rationale for mixing exact exchange with density functional approximations publication-title: J. Chem. Phys. doi: 10.1063/1.472933 – volume: 265 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib19 article-title: One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118594 – volume: 139 start-page: 17281 year: 2017 ident: 10.1016/j.nanoen.2021.106147_bib50 article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10385 – volume: 138 start-page: 10226 year: 2016 ident: 10.1016/j.nanoen.2021.106147_bib75 article-title: In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05046 – volume: 60 start-page: 4448 year: 2021 ident: 10.1016/j.nanoen.2021.106147_bib49 article-title: Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003917 – volume: 40 start-page: 137 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib34 article-title: Metal-organic-framework-derived formation of CoN-doped carbon materials for efficient oxygen reduction reaction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.03.004 – volume: 11 start-page: 1980 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib51 article-title: A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00901E – volume: 25 start-page: 188 year: 2013 ident: 10.1016/j.nanoen.2021.106147_bib7 article-title: Ultrastrong fibers assembled from giant graphene oxide sheets publication-title: Adv. Mater. doi: 10.1002/adma.201203448 – volume: 120 start-page: 11900 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib42 article-title: Chemical synthesis of single atomic site catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00818 – volume: 55 start-page: 10800 year: 2016 ident: 10.1016/j.nanoen.2021.106147_bib73 article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604802 – volume: 7 start-page: 6864 year: 2017 ident: 10.1016/j.nanoen.2021.106147_bib22 article-title: Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b02326 – volume: 46 start-page: 1740 year: 2013 ident: 10.1016/j.nanoen.2021.106147_bib41 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 1 start-page: 6217 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib21 article-title: Micro-centrifugal technique for improved assessment and optimization of nanomaterial dispersions: the case for carbon nanotubes publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b01410 – volume: 55 start-page: 226 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib28 article-title: Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.029 – volume: 6 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib15 article-title: CuCo2S4 nanosheets@N-doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi-solid-state Zn-air batteries publication-title: Adv. Sci. doi: 10.1002/advs.201900628 – volume: 5 start-page: 1424 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib36 article-title: Recent advances in carbon-based bifunctional oxygen electrocatalysts for ZnAir batteries publication-title: ChemElectroChem doi: 10.1002/celc.201800373 – volume: 33 start-page: 215 year: 2008 ident: 10.1016/j.nanoen.2021.106147_bib6 article-title: Carbon nanotube electroactive polymer materials: opportunities and challenges publication-title: MRS Bull. doi: 10.1557/mrs2008.47 – volume: 144 start-page: 557 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib37 article-title: Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis publication-title: Carbon doi: 10.1016/j.carbon.2018.12.099 – volume: 31 year: 2021 ident: 10.1016/j.nanoen.2021.106147_bib45 article-title: More is different:” synergistic effect and structural engineering in double‐atom catalysts publication-title: Adv. Funct. Mater. – volume: 50 start-page: 1354 year: 2021 ident: 10.1016/j.nanoen.2021.106147_bib35 article-title: Transition metal nitrides for electrochemical energy applications publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00415D – volume: 309 start-page: 1215 year: 2005 ident: 10.1016/j.nanoen.2021.106147_bib5 article-title: Strong, transparent, multifunctional, carbon nanotube sheets publication-title: Science doi: 10.1126/science.1115311 – volume: 2 start-page: 816 year: 2012 ident: 10.1016/j.nanoen.2021.106147_bib31 article-title: Recent progress in non-precious catalysts for metal-air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200013 – volume: 5 year: 2021 ident: 10.1016/j.nanoen.2021.106147_bib54 article-title: Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries publication-title: Small Methods doi: 10.1002/smtd.202000751 – volume: 2 start-page: 65 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib43 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 54 start-page: 4274 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib67 article-title: Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction publication-title: Chem. Commun. doi: 10.1039/C8CC00988K – volume: 28 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib58 article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705094 – volume: 10 start-page: 3997 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib46 article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination publication-title: Nat. Commun. doi: 10.1038/s41467-019-11992-2 – volume: 80 year: 2021 ident: 10.1016/j.nanoen.2021.106147_bib53 article-title: A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105534 – volume: 29 start-page: 1665 year: 2017 ident: 10.1016/j.nanoen.2021.106147_bib57 article-title: Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium-air batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b05056 – volume: 57 start-page: 8614 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib64 article-title: A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804349 – volume: 10 start-page: 4290 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib47 article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-12362-8 – volume: 68 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib16 article-title: NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104293 – volume: 7 start-page: 5758 year: 2016 ident: 10.1016/j.nanoen.2021.106147_bib44 article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes publication-title: Chem. Sci. doi: 10.1039/C6SC02105K – volume: 28 start-page: 3000 year: 2016 ident: 10.1016/j.nanoen.2021.106147_bib8 article-title: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries publication-title: Adv. Mater. doi: 10.1002/adma.201506112 – volume: 15 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib33 article-title: Noble-metal-free electrocatalysts for oxygen evolution publication-title: Small doi: 10.1002/smll.201804201 – volume: 268 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib18 article-title: Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118437 – volume: 30 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib48 article-title: Carbon-supported single atom catalysts for electrochemical energy conversion and storage publication-title: Adv. Mater. – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.nanoen.2021.106147_bib76 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 4 start-page: 3379 year: 2016 ident: 10.1016/j.nanoen.2021.106147_bib74 article-title: A ‘point-line-point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09327A – volume: 135 start-page: 16002 year: 2013 ident: 10.1016/j.nanoen.2021.106147_bib69 article-title: Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407552k – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib23 article-title: Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells publication-title: Adv. Mater. doi: 10.1002/adma.202003577 – volume: 84 start-page: 130 year: 2015 ident: 10.1016/j.nanoen.2021.106147_bib25 article-title: Highly aligned arrays of super resilient carbon nanotubes by steam purification publication-title: Carbon doi: 10.1016/j.carbon.2014.11.061 – volume: 5 start-page: 23898 year: 2017 ident: 10.1016/j.nanoen.2021.106147_bib17 article-title: Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08166A – volume: 7 start-page: 5462 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib59 article-title: Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06624 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.nanoen.2021.106147_bib82 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 43 start-page: 2175 year: 2005 ident: 10.1016/j.nanoen.2021.106147_bib2 article-title: Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers publication-title: Carbon doi: 10.1016/j.carbon.2005.03.031 – volume: 306 start-page: 1358 year: 2004 ident: 10.1016/j.nanoen.2021.106147_bib4 article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology publication-title: Science doi: 10.1126/science.1104276 – volume: 42 start-page: 481 year: 2000 ident: 10.1016/j.nanoen.2021.106147_bib1 article-title: Carbon nanofibers: catalytic synthesis and applications publication-title: Catal. Rev. doi: 10.1081/CR-100101954 – volume: 76 start-page: 319 year: 2016 ident: 10.1016/j.nanoen.2021.106147_bib13 article-title: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.08.002 – volume: 16 start-page: 9713 year: 2014 ident: 10.1016/j.nanoen.2021.106147_bib77 article-title: Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp55431g – volume: 17 year: 2021 ident: 10.1016/j.nanoen.2021.106147_bib61 article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis publication-title: Small doi: 10.1002/smll.201903760 – volume: 302 start-page: 45 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib66 article-title: Self-standing FeCo Prussian Blue Analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.01.170 – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib26 article-title: Engineering of the heterointerface of porous carbon nanofiber-supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910568 – volume: 6 start-page: 8668 year: 2015 ident: 10.1016/j.nanoen.2021.106147_bib71 article-title: Atomic cobalt on nitrogen-doped graphene for hydrogen generation publication-title: Nat. Commun. doi: 10.1038/ncomms9668 – volume: 24 start-page: 2547 year: 2012 ident: 10.1016/j.nanoen.2021.106147_bib10 article-title: Carbon nanofibers prepared via electrospinning publication-title: Adv. Mater. doi: 10.1002/adma.201104940 – volume: 56 start-page: 6937 year: 2017 ident: 10.1016/j.nanoen.2021.106147_bib72 article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201702473 – volume: 17 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib56 article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis publication-title: Small – volume: 1 start-page: 205 year: 2008 ident: 10.1016/j.nanoen.2021.106147_bib9 article-title: Electrospun nanofibers in energy and environmental applications publication-title: Energy Environ. Sci. doi: 10.1039/b809074m – volume: 22 start-page: 361 year: 2016 ident: 10.1016/j.nanoen.2021.106147_bib12 article-title: Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.001 – volume: 52 start-page: 106 year: 2010 ident: 10.1016/j.nanoen.2021.106147_bib39 article-title: Factors governing the catalytic reactivity of metallic nanoparticles publication-title: Catal. Rev. doi: 10.1080/01614940903510496 – volume: 2 start-page: 955 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib38 article-title: Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity publication-title: Nat. Catal. doi: 10.1038/s41929-019-0364-x – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib30 article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts publication-title: Adv. Mater. – volume: 8 start-page: 3233 year: 1993 ident: 10.1016/j.nanoen.2021.106147_bib3 article-title: A review of catalytically grown carbon nanofibers publication-title: J. Mater. Res. doi: 10.1557/JMR.1993.3233 – volume: 12 start-page: 1317 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib62 article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00162J – volume: 129 start-page: 89 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib11 article-title: Large area uniform electrospun polymer nanofibres by balancing of the electrostatic field publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2017.10.017 – volume: 13 start-page: 1090 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib63 article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery publication-title: Nano Res. doi: 10.1007/s12274-020-2751-7 – volume: 11 start-page: 3375 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib70 article-title: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02656D – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.nanoen.2021.106147_bib80 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 16 year: 2020 ident: 10.1016/j.nanoen.2021.106147_bib20 article-title: Atomic-level Fe-N-C coupled with Fe3C-Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts publication-title: Small – volume: 14 start-page: 1069 year: 2021 ident: 10.1016/j.nanoen.2021.106147_bib52 article-title: Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction publication-title: Nano Res. doi: 10.1007/s12274-020-3151-8 – volume: 11 start-page: 8 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib60 article-title: Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery publication-title: Nano Micro Lett. doi: 10.1007/s40820-019-0238-4 – volume: 48 start-page: 3181 year: 2019 ident: 10.1016/j.nanoen.2021.106147_bib29 article-title: Robust noble metal-based electrocatalysts for oxygen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00671G – volume: 28 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib32 article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries publication-title: Adv. Funct. Mater. – volume: 6 start-page: 10918 year: 2018 ident: 10.1016/j.nanoen.2021.106147_bib27 article-title: Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02416B – volume: 81 start-page: 2626 year: 1997 ident: 10.1016/j.nanoen.2021.106147_bib68 article-title: Nitrogen modification of hydrogenated amorphous carbon films publication-title: J. Appl. Phys. doi: 10.1063/1.363927 |
SSID | ssj0000651712 |
Score | 2.6222007 |
Snippet | Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106147 |
SubjectTerms | Bifunctional electro-catalyst Carbon nanofiber Dual-site catalyst Electrospinning Zn-air battery |
Title | Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries |
URI | https://dx.doi.org/10.1016/j.nanoen.2021.106147 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wzB69xu9226R5lcVkVvajgrUwehcqayro-D_4Ef7MzfYiCKHhsyJCSeSczX4TYtyqKUcVaIsahjCggkJr1SifoQmVCGztucD47T0ZX0cl1fD0jBm0vDJdVNra_tumVtW5GOs1udu6KonMRUu4SpjH5H5bEqpc6ihRL-cFb9_OchVxsV1WXnjxfMkHbQVeVeXn0pWMg1LB7UKVH6mcP9cXrDJfEYhMuwmH9R8tixvkVsfAFRHBVvA8Z01KPHRic6NIDr5VzIQjkxfgW-KQV-D0O7j-GoZODEvjK-B4oXgVXQUiQ54Hy-YWECSaM5crcAvQW3GMjmjRet0DcQ-HhifSDe67gtfBGYjEBXeF0Utq9Jq6GR5eDkWxeWZCG0oWpzCnDQq0ZRidXum-tCQzmKsm1zZ1ViYuC1Dltk4TUNcBejzQarbYu7GuTYt5bF7O-9G5DgLVJkKKLQ4NBRKqtreliQtYUU2Vj7G-KXruzmWkgyPkljHHW1prdZDU_MuZHVvNjU8hPqrsaguOP-aplWvZNlDLyEr9Sbv2bclvM81ddfLYjZqeTB7dL0cpU71XiuCfmDo9PR-cfN5_ttA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcGh7QFBalQJlDr0ucRyv1zmiiCi8cilI3KzZhyWjdI1CKI8fwW9mxg9EpYpKXNce2dp57858I8RPpxOFWhmJqGKZUEAgDeuVSdHH2sZOeW5wPpul04vk-FJdrohx1wvDZZWt7W9sem2t25V-u5v967Ls_4opd4kzRf6HJZF7qVcZnUr1xOrB0cl09nLUQl52oOt7TyaRTNM10dWVXgFD5RkLNR7s1xmS_reTeuV4JutirY0Y4aD5qQ2x4sNn8ekVjuCmeJowrKWZe7C4MFUA_lbBtSBQlPPfwIetwCM5uAUZJl6OK-Bb4xugkBV8jSJBzgeq-weSJ1gwnCszDDA48H9a6aT1pgviBsoAd6Qi3HYFj2WwEssFmBqqkzLvL-Jicng-nsp20IK0lDEsZUFJFhrDSDqFNiPnbGSx0GlhXOGdTn0SZd4bl6aksREOh6TU6Izz8cjYDIvhV9ELVfDfBDiXRhl6FVuMEtJu4-wAUzKomGmncLQlht3O5rZFIedhGPO8Kze7yht-5MyPvOHHlpAvVNcNCsd_3tcd0_K_pCknR_Em5fd3U-6JD9Pzs9P89Gh2si0-8pOmFm1H9JaLW79LwcvS_GiF8xlWwfBl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+carbon+nanofiber+film+with+diatomic+Fe-Co+sites+for+efficient+oxygen+reduction+and+evolution+reactions+in+wearable+zinc-air+batteries&rft.jtitle=Nano+energy&rft.au=Wang%2C+Yiyan&rft.au=Li%2C+Zongge&rft.au=Zhang%2C+Peng&rft.au=Pan%2C+Yuan&rft.date=2021-09-01&rft.issn=2211-2855&rft.volume=87&rft.spage=106147&rft_id=info:doi/10.1016%2Fj.nanoen.2021.106147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2021_106147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |