Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries

Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance and a major challenge. In this work, we pioneer a time- and cost-efficient strategy for the preparation of large-area flexible CNF films with u...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 87; p. 106147
Main Authors Wang, Yiyan, Li, Zongge, Zhang, Peng, Pan, Yuan, Zhang, Ying, Cai, Qiong, Silva, S. Ravi P., Liu, Jian, Zhang, Guoxin, Sun, Xiaoming, Yan, Zifeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance and a major challenge. In this work, we pioneer a time- and cost-efficient strategy for the preparation of large-area flexible CNF films with uniformly distributed diatomic FeN3-CoN3 sites (Fe1Co1-CNF). Due to the excellent compatibility and similar functionality of the pre-designed ZnFeCo-NC precursors (ZnFeCo-pre) with the electrospun polymer polyacrylonitrile (PAN), the mixture of ZnFeCo-pre and PAN can be co-electrospun and subject to a standard CNF fabrication process. The resulting Fe1Co1-CNF exhibits excellent bifunctional catalytic performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), attributing to the abundant dual catalytic FeN3-CoN3 sites which are mutually beneficial for attaining optimal electronic properties for the adsorption/desorption of reaction intermediates. The assembled liquid-electrolyte ZAB provides a high specific power of 201.7 mW cm−2 and excellent cycling stability. More importantly, due to the good mechanical strength and flexibility of Fe1Co1-CNF, portable ZAB with exceptional shape deformability and stability can be demonstrated, in which Fe1Co1-CNF utility as an integrated free-standing membrane electrode. These findings provide a facile strategy for manufacturing flexible multi-functional catalytic electrodes with high production. [Display omitted] •Large-area self-standing flexible CNF film with diatomic Fe-Co sites was developed.•The diatomic Fe-Co sites render optimized adsorption of O-containing intermediates.•The Fe1Co1-CNF exhibits superior bifunctional ORR/OER performance.•The Fe1Co1-CNF shows great potential in liquid/flexible Zn-air battery.
AbstractList Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance and a major challenge. In this work, we pioneer a time- and cost-efficient strategy for the preparation of large-area flexible CNF films with uniformly distributed diatomic FeN3-CoN3 sites (Fe1Co1-CNF). Due to the excellent compatibility and similar functionality of the pre-designed ZnFeCo-NC precursors (ZnFeCo-pre) with the electrospun polymer polyacrylonitrile (PAN), the mixture of ZnFeCo-pre and PAN can be co-electrospun and subject to a standard CNF fabrication process. The resulting Fe1Co1-CNF exhibits excellent bifunctional catalytic performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), attributing to the abundant dual catalytic FeN3-CoN3 sites which are mutually beneficial for attaining optimal electronic properties for the adsorption/desorption of reaction intermediates. The assembled liquid-electrolyte ZAB provides a high specific power of 201.7 mW cm−2 and excellent cycling stability. More importantly, due to the good mechanical strength and flexibility of Fe1Co1-CNF, portable ZAB with exceptional shape deformability and stability can be demonstrated, in which Fe1Co1-CNF utility as an integrated free-standing membrane electrode. These findings provide a facile strategy for manufacturing flexible multi-functional catalytic electrodes with high production. [Display omitted] •Large-area self-standing flexible CNF film with diatomic Fe-Co sites was developed.•The diatomic Fe-Co sites render optimized adsorption of O-containing intermediates.•The Fe1Co1-CNF exhibits superior bifunctional ORR/OER performance.•The Fe1Co1-CNF shows great potential in liquid/flexible Zn-air battery.
ArticleNumber 106147
Author Silva, S. Ravi P.
Zhang, Peng
Li, Zongge
Yan, Zifeng
Cai, Qiong
Liu, Jian
Zhang, Ying
Sun, Xiaoming
Wang, Yiyan
Pan, Yuan
Zhang, Guoxin
Author_xml – sequence: 1
  givenname: Yiyan
  surname: Wang
  fullname: Wang, Yiyan
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
– sequence: 2
  givenname: Zongge
  surname: Li
  fullname: Li, Zongge
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
– sequence: 3
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
– sequence: 4
  givenname: Yuan
  surname: Pan
  fullname: Pan, Yuan
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
– sequence: 5
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
– sequence: 6
  givenname: Qiong
  surname: Cai
  fullname: Cai, Qiong
  organization: DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, UK
– sequence: 7
  givenname: S. Ravi P.
  surname: Silva
  fullname: Silva, S. Ravi P.
  organization: DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, UK
– sequence: 8
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  email: jian.liu@surrey.ac.uk
  organization: DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, UK
– sequence: 9
  givenname: Guoxin
  surname: Zhang
  fullname: Zhang, Guoxin
  email: zhanggx@sdust.edu.cn
  organization: Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, PR China
– sequence: 10
  givenname: Xiaoming
  surname: Sun
  fullname: Sun, Xiaoming
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
– sequence: 11
  givenname: Zifeng
  surname: Yan
  fullname: Yan, Zifeng
  email: zfyancat@upc.edu.cn
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
BookMark eNqFkE1OAzEMhbMAid8bsMgFpiQzbaZlgYQqCkiV2MA6chIHXE0TlKT8HYIzM9OyYgHeWH7Se7a_I7YXYkDGzqQYSSHV-WoUIEQMo1rUspeUHLd77LCupazq6WRywE5zXom-1ES2sj5kX4sO38l0yC0kEwMfAjwZTNxTt-ZvVJ65IyhxTZYvsJpHnqlg5j4mjt6TJQyFx_ePJww8odvYQn0OBMfxNXab7ZQQtnLmFPgbQoJh5ScFWwElbqAUTIT5hO176DKe_vRj9ri4fpjfVsv7m7v51bKyjVCl8mMhwRjZCuVbM3POCgu-Vd44j65VOBZTROOUmjRSQNO0swaccVjPjJ2Cb47ZxS7XpphzQq8tFRguLAmo01LoAahe6R1QPQDVO6C9efzL_JJoDenjP9vlzob9Y6-ESeeBnUVHCW3RLtLfAd95k5q-
CitedBy_id crossref_primary_10_1021_acs_iecr_3c03149
crossref_primary_10_1002_adma_202107421
crossref_primary_10_1039_D2TA08566F
crossref_primary_10_1016_j_cej_2024_151425
crossref_primary_10_1016_j_cej_2022_137080
crossref_primary_10_1021_acssuschemeng_2c04453
crossref_primary_10_1002_advs_202407631
crossref_primary_10_1002_eom2_12431
crossref_primary_10_1016_j_cej_2023_141868
crossref_primary_10_1002_EXP_20220164
crossref_primary_10_1002_smm2_1076
crossref_primary_10_1016_j_ijhydene_2025_01_022
crossref_primary_10_1016_j_cej_2021_132199
crossref_primary_10_1016_j_cej_2022_138699
crossref_primary_10_1016_j_esci_2022_05_004
crossref_primary_10_1039_D2NR04741A
crossref_primary_10_2139_ssrn_4201013
crossref_primary_10_1016_j_ijhydene_2022_08_011
crossref_primary_10_1002_anie_202201007
crossref_primary_10_1002_adma_202407974
crossref_primary_10_1039_D4NR00389F
crossref_primary_10_1016_j_ensm_2023_102890
crossref_primary_10_1039_D3NR00888F
crossref_primary_10_1016_j_est_2024_110660
crossref_primary_10_1007_s12274_021_3787_z
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_1021_acsmaterialslett_2c00694
crossref_primary_10_1016_j_jcis_2022_11_144
crossref_primary_10_1039_D4SC01220H
crossref_primary_10_1039_D1NR05209H
crossref_primary_10_1007_s12274_022_4929_7
crossref_primary_10_1002_adfm_202404787
crossref_primary_10_1016_j_apsusc_2022_154590
crossref_primary_10_1021_acscatal_2c01861
crossref_primary_10_1016_j_inoche_2024_113288
crossref_primary_10_1007_s12274_022_5261_y
crossref_primary_10_1016_j_est_2024_113668
crossref_primary_10_1039_D2TA09626A
crossref_primary_10_1002_ange_202201007
crossref_primary_10_1016_j_enrev_2024_100076
crossref_primary_10_1038_s41467_024_55630_y
crossref_primary_10_1002_adma_202309231
crossref_primary_10_1016_j_nanoen_2023_108854
crossref_primary_10_1039_D2TA03744K
crossref_primary_10_1016_j_cej_2022_140031
crossref_primary_10_1039_D1TA10874C
crossref_primary_10_1021_acscatal_2c05654
crossref_primary_10_12677_japc_2024_132028
crossref_primary_10_1016_j_diamond_2023_110095
crossref_primary_10_1016_j_mtener_2021_100935
crossref_primary_10_1016_j_cej_2024_157182
crossref_primary_10_1016_j_apsusc_2022_153891
crossref_primary_10_1016_j_electacta_2024_143857
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1016_j_cej_2021_131320
crossref_primary_10_1021_acs_energyfuels_4c02613
crossref_primary_10_1016_j_apcata_2024_119712
crossref_primary_10_1016_j_ijhydene_2022_04_222
crossref_primary_10_1007_s12598_023_02360_7
crossref_primary_10_1002_smll_202302739
crossref_primary_10_1039_D2TA09788E
crossref_primary_10_1016_j_jechem_2023_03_054
crossref_primary_10_1007_s11426_023_1863_8
crossref_primary_10_2139_ssrn_4183135
crossref_primary_10_1002_aenm_202301378
crossref_primary_10_1016_j_ensm_2024_103410
crossref_primary_10_1002_smll_202202394
crossref_primary_10_1016_j_mtsust_2022_100288
crossref_primary_10_1039_D3EE03383J
crossref_primary_10_1039_D3EY00050H
crossref_primary_10_1016_j_jpowsour_2024_234063
crossref_primary_10_1007_s12274_021_4068_6
crossref_primary_10_1039_D1TA09306A
crossref_primary_10_1021_acsnano_4c01342
crossref_primary_10_1016_j_apcatb_2023_123438
crossref_primary_10_1016_j_nanoen_2022_107941
crossref_primary_10_1016_j_apsusc_2022_155779
crossref_primary_10_1016_j_colsurfa_2024_133629
crossref_primary_10_1002_smll_202406659
crossref_primary_10_1016_j_jcis_2023_12_168
crossref_primary_10_1360_SSC_2023_0199
crossref_primary_10_1016_j_cej_2022_137210
crossref_primary_10_1016_j_apcatb_2024_123942
crossref_primary_10_1039_D3QM00732D
crossref_primary_10_1039_D1CY01414E
crossref_primary_10_1016_j_ensm_2025_104109
crossref_primary_10_1021_acsami_1c21396
crossref_primary_10_1002_aenm_202201509
crossref_primary_10_1007_s12274_024_6753_8
crossref_primary_10_1016_j_jssc_2022_123033
crossref_primary_10_1002_cjoc_202200217
crossref_primary_10_1021_acsanm_3c05050
crossref_primary_10_1002_ange_202306261
crossref_primary_10_1016_j_cej_2023_144515
crossref_primary_10_1016_j_jcis_2024_12_139
crossref_primary_10_1039_D2CS00233G
crossref_primary_10_1039_D1TA09154A
crossref_primary_10_1007_s12274_023_5533_1
crossref_primary_10_1016_j_apmate_2023_100138
crossref_primary_10_1002_smtd_202100947
crossref_primary_10_1039_D1NR05681F
crossref_primary_10_1002_smtd_202301645
crossref_primary_10_1016_j_jallcom_2025_179887
crossref_primary_10_1016_j_seppur_2024_129934
crossref_primary_10_1016_j_nanoen_2024_109268
crossref_primary_10_1016_j_carbon_2023_118365
crossref_primary_10_1002_anie_202306261
crossref_primary_10_1016_j_surfin_2024_105532
crossref_primary_10_1016_j_jcis_2024_10_085
crossref_primary_10_1002_smll_202106260
crossref_primary_10_1007_s42765_022_00215_x
crossref_primary_10_1016_j_cej_2023_141911
crossref_primary_10_1002_cssc_202300637
crossref_primary_10_1021_acscatal_2c00164
crossref_primary_10_1002_celc_202200888
crossref_primary_10_1016_j_cej_2024_155487
crossref_primary_10_1039_D1QM01256H
crossref_primary_10_1002_cey2_341
crossref_primary_10_1016_j_ijhydene_2023_04_286
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_26599_NRE_2023_9120082
crossref_primary_10_1016_j_scib_2023_10_013
crossref_primary_10_1021_acsami_2c13425
crossref_primary_10_1007_s40843_022_2059_x
crossref_primary_10_1016_j_nanoen_2023_109236
crossref_primary_10_1016_j_jpowsour_2023_232988
crossref_primary_10_1002_cssc_202201518
crossref_primary_10_1016_j_apcatb_2022_121464
Cites_doi 10.1002/adma.201808267
10.1016/j.matt.2019.11.014
10.1016/j.nanoen.2018.11.054
10.1103/PhysRevB.54.11169
10.1016/j.nanoen.2020.104597
10.1002/anie.201908736
10.1016/j.apcatb.2020.119091
10.1063/1.472933
10.1016/j.apcatb.2020.118594
10.1021/jacs.7b10385
10.1021/jacs.6b05046
10.1002/anie.202003917
10.1016/j.jechem.2019.03.004
10.1039/C8EE00901E
10.1002/adma.201203448
10.1021/acs.chemrev.9b00818
10.1002/anie.201604802
10.1021/acscatal.7b02326
10.1021/ar300361m
10.1021/acsanm.8b01410
10.1016/j.nanoen.2018.10.029
10.1002/advs.201900628
10.1002/celc.201800373
10.1557/mrs2008.47
10.1016/j.carbon.2018.12.099
10.1039/D0CS00415D
10.1126/science.1115311
10.1002/aenm.201200013
10.1002/smtd.202000751
10.1038/s41570-018-0010-1
10.1039/C8CC00988K
10.1002/adfm.201705094
10.1038/s41467-019-11992-2
10.1016/j.nanoen.2020.105534
10.1021/acs.chemmater.6b05056
10.1002/anie.201804349
10.1038/s41467-019-12362-8
10.1016/j.nanoen.2019.104293
10.1039/C6SC02105K
10.1002/adma.201506112
10.1002/smll.201804201
10.1016/j.apcatb.2019.118437
10.1103/PhysRevLett.77.3865
10.1039/C5TA09327A
10.1021/ja407552k
10.1002/adma.202003577
10.1016/j.carbon.2014.11.061
10.1039/C7TA08166A
10.1021/acssuschemeng.8b06624
10.1002/jcc.20495
10.1016/j.carbon.2005.03.031
10.1126/science.1104276
10.1081/CR-100101954
10.1016/j.pmatsci.2015.08.002
10.1039/c3cp55431g
10.1002/smll.201903760
10.1016/j.electacta.2019.01.170
10.1002/adfm.201910568
10.1038/ncomms9668
10.1002/adma.201104940
10.1002/anie.201702473
10.1039/b809074m
10.1016/j.nanoen.2016.02.001
10.1080/01614940903510496
10.1038/s41929-019-0364-x
10.1557/JMR.1993.3233
10.1039/C9EE00162J
10.1016/j.reactfunctpolym.2017.10.017
10.1007/s12274-020-2751-7
10.1039/C8EE02656D
10.1016/0927-0256(96)00008-0
10.1007/s12274-020-3151-8
10.1007/s40820-019-0238-4
10.1039/C8CS00671G
10.1039/C8TA02416B
10.1063/1.363927
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2021.106147
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2021_106147
S2211285521004031
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-f401abb1706f7b9ddc0caf76fbdfed76e408eebd665310a33793adbde29bc8af3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:46 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Fri Feb 23 02:41:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon nanofiber
Electrospinning
Bifunctional electro-catalyst
Zn-air battery
Dual-site catalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f401abb1706f7b9ddc0caf76fbdfed76e408eebd665310a33793adbde29bc8af3
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2021_106147
crossref_primary_10_1016_j_nanoen_2021_106147
elsevier_sciencedirect_doi_10_1016_j_nanoen_2021_106147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shi, Zhu, Du, Lin (bib29) 2019; 48
Jiang, Li, Fang, Wang (bib56) 2019; 17
Xiang, Duan, Tong, Peng, Wang, Shah, Najam, Huang, Wei (bib66) 2019; 302
Tian, Zhang, Su, Shen, Liu, Wang, Liu, Liu (bib34) 2020; 40
Wang, Kumar, Ma, Jia, Wang, Zhang, Zhang, Sun, Yan (bib63) 2020; 13
Grimme (bib82) 2006; 27
Pan, Liu, Sun, Chen, Wang, Wu, Cao, Cheong, Shen, Han, Chen, Zheng, Luo, Lin, Liu, Wang, Peng, Zhang, Chen, Li (bib64) 2018; 57
Inagaki, Yang, Kang (bib10) 2012; 24
Perdew, Burke, Ernzerhof (bib76) 1996; 77
Chao, Zhu, Zhang, Wang, Fan (bib13) 2016; 76
Liu, Zhang, Yan, Liu, Yang, Miao, Wang, Wang, Zhang (bib44) 2016; 7
Li, Sasikala, Kim, Bak, Kim, Cho, Kim (bib55) 2019; 56
Zhao, Li, Liu, Zhang (bib49) 2021; 60
Kresse, Furthmüller (bib79) 1996; 54
Fu, Tang, Lee (bib36) 2018; 5
Jiang, Back, Akey, Xia, Hu, Liang, Schaak, Stavitski, Nørskov, Siahrostami, Wang (bib46) 2019; 10
Yin, Yao, Wu, Zheng, Lin, Liu, Ju, Zhu, Hong, Deng, Zhou, Wei, Li (bib73) 2016; 55
Cheng, Yang, Zou, Zou, Chen, Hu, Yang (bib22) 2017; 7
Hu, Chen, Zhang, Fu, Sun, Lee, Tang (bib37) 2019; 144
Ji, Peng, Safanama, Yu, Li, Yang, Qin, Srinivasan, Adams, Ramakrishna (bib57) 2017; 29
He, Guo, Hwang, Yang, He, Braaten, Karakalos, Shan, Wang, Zhou, Feng, More, Wang, Su, Cullen, Fei, Litster, Wu (bib23) 2020; 32
Fei, Dong, Arellano-Jiménez, Ye, Dong Kim, Samuel, Peng, Zhu, Qin, Bao, Yacaman, Ajayan, Chen, Tour (bib71) 2015; 6
Zhang, Fang, Zakhidov, Lee, Aliev, Williams, Atkinson, Baughman (bib5) 2005; 309
Xu, Sun, Zhao, Gao (bib7) 2013; 25
Ji, Fan, Tao, Sun, Li, Yang, Tran, Ramakrishna, Guo (bib14) 2019; 58
Wang, Li, Zhang (bib43) 2018; 2
Fu, Yu, Jiang, Zhang, Zhan, Li, Li, Tian, Yang (bib58) 2018; 28
Perdew, Ernzerhof, Burke (bib81) 1996; 105
Ji, Fan, Li, Peng, Yu, Song, Ramakrishna, Guo (bib24) 2019; 31
Chen, Ji, Wang, Dong, Chen, Li, Shen, Zheng, Zhuang, Wang, Li (bib72) 2017; 56
Zhang, Lu, Cao, Wu, Zhang, Cong, Yu (bib28) 2019; 55
Cheng, Zhang, Wu, Tang, Yang, Su, Thomsen, Zhao, Lu, Liu, Jiang (bib53) 2021; 80
De Jong, Geus (bib1) 2000; 42
Ji, Peng, Fan, Li, Qin, Ramakrishna (bib17) 2017; 5
Pan, Chen, Wu, Chen, Liu, Cao, Cheong, Meng, Luo, Zheng, Liu, Wang, Peng, Li, Chen (bib47) 2019; 10
Cao, Lee, Liu, Cho (bib31) 2012; 2
Uzio, Berhault (bib39) 2010; 52
Zhang, Atkinson, Baughman (bib4) 2004; 306
Peng, Li, Kong Yoong Lee, Tian, Srinivasan, Adams, Ramakrishna (bib12) 2016; 22
Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib50) 2017; 139
Yang, Feng, Xu, Wei, Zhang (bib59) 2019; 7
Ji, Chen, Wang, Zhang, Wang, Li (bib42) 2020; 120
Zhu, Zhang, Chen, Zhang, Liu, Xia, Dai, Amal, Lu (bib78) 2020; 71
King, Castaldelli, McCaffterty, Silva, Stolojan (bib21) 2018; 1
Qu, Peng, Dai, Spinks, Wallace, Baughman (bib6) 2008; 33
Ma, Kumar, Wang, Wang, Jia, Zhang, Zhang, Yan, Sun (bib65) 2020; 274
van Deelen, Hernández Mejía, de Jong (bib38) 2019; 2
Ying, Luo, Qiao, Huang (bib45) 2021; 31
Jiang, Li, Fang, Wang (bib61) 2021; 17
Peng, Lu, Chen (bib48) 2018; 30
Lyu, Wang, Choi, Yin (bib33) 2019; 15
Pan, Chen, Yang, Ma, Zhang, Kou, Ding, Pang, Zhang, Gu, Yan, Wang (bib15) 2019; 6
Zhang, Jia, Zhang, Xiong, Sun, Chen, Chen, Kuang, Zheng, Tang, Liu, Liu, Sun, Lin, Dai (bib62) 2019; 12
Liu, Zhao, Duan, Huang (bib30) 2019; 31
Zhang, Zhou, Chen, Guan, Li, Lou (bib51) 2018; 11
Wang, Tang, Zhang (bib32) 2018; 28
Jose, Hu, Edison, Manalastas, Ren, Kidkhunthod, Sreejith, Jayakumar, Nsanzimana, Srinivasan, Choi, Lee (bib54) 2021; 5
Peng, Wang, Yang, Mao, Jin, Yang, Fu, Li (bib18) 2020; 268
Wang, Liu, Luo, Li, Zhao, Zhang, Zhu, Xu, Wang, Zhao, Qu, Yang, Yao, Li, Lin, Wu, Li (bib70) 2018; 11
Ji, Sun, Tian, Chinnappan, Zhang, Jayathilaka, Gosh, Baskar, Zhang, Ramakrishna (bib26) 2020; 30
Wang, Li, Li, Lin, Chen, Gao, Nicolosi, Xiao, Lee (bib35) 2021; 50
Thavasi, Singh, Ramakrishna (bib9) 2008; 1
Kresse, Furthmüller (bib80) 1996; 6
Zussman, Chen, Ding, Calabri, Dikin, Quintana, Ruoff (bib2) 2005; 43
Wang, Tang, Zhu, Zhang (bib74) 2016; 4
Yang, Wang, Qiao, Li, Liu, Zhang (bib41) 2013; 46
Niu, Chen, Guo, Nie, Guo, Ma (bib60) 2019; 11
Silva, Robertson, Amaratunga, Rafferty, Brown, Schwan, Franceschini, Mariotto (bib68) 1997; 81
Pan, Zhang, Liu, Chen, Li (bib40) 2020; 2
Ishihara, Labuta, Van Rossom, Ishikawa, Minami, Hill, Ariga (bib77) 2014; 16
He, Zai, Liu, Zhu, Iqbal, Tadesse Tsega, Zhang, Ali, Qian (bib19) 2020; 265
Sun, Wei, Gu, Zhang, Jiang, Wan, Chen, Huang, Xu, Fang, Li, Han, Huang (bib20) 2020; 16
Rodriguez (bib3) 1993; 8
Liang, Wei, Wu, Feng, Müllen (bib69) 2013; 135
Su, Huang, Zhang, Guharoy, Du, Sun, Jiang, Cheng, Yang, Zhang, Liu, Jiang, Liu (bib52) 2021; 14
Liu, Wang, Dai, Yao (bib8) 2016; 28
Wu, Wang, Wei, Wang, Zhuo, Zhang, Han, Ma (bib27) 2018; 6
Zhang, Chen, Li, Chen, Zheng, Gong, Li, Shen, Han, Cheong, Gu, Li (bib67) 2018; 54
Lei, Wang, Yang, Huang, Liu, Liang, Xie, Javed, Lu, Tan, Mai (bib16) 2020; 68
King, Stolojan, Silva (bib11) 2018; 129
Meng, Zhong, Bao, Yan, Zhang (bib75) 2016; 138
King, McCafferty, Stolojan, Silva (bib25) 2015; 84
Ji (10.1016/j.nanoen.2021.106147_bib17) 2017; 5
Fu (10.1016/j.nanoen.2021.106147_bib36) 2018; 5
Meng (10.1016/j.nanoen.2021.106147_bib75) 2016; 138
Niu (10.1016/j.nanoen.2021.106147_bib60) 2019; 11
Wang (10.1016/j.nanoen.2021.106147_bib70) 2018; 11
De Jong (10.1016/j.nanoen.2021.106147_bib1) 2000; 42
Qu (10.1016/j.nanoen.2021.106147_bib6) 2008; 33
Cao (10.1016/j.nanoen.2021.106147_bib31) 2012; 2
Peng (10.1016/j.nanoen.2021.106147_bib12) 2016; 22
Ishihara (10.1016/j.nanoen.2021.106147_bib77) 2014; 16
Uzio (10.1016/j.nanoen.2021.106147_bib39) 2010; 52
Wang (10.1016/j.nanoen.2021.106147_bib43) 2018; 2
Fei (10.1016/j.nanoen.2021.106147_bib71) 2015; 6
Zussman (10.1016/j.nanoen.2021.106147_bib2) 2005; 43
Ying (10.1016/j.nanoen.2021.106147_bib45) 2021; 31
Rodriguez (10.1016/j.nanoen.2021.106147_bib3) 1993; 8
He (10.1016/j.nanoen.2021.106147_bib23) 2020; 32
Ji (10.1016/j.nanoen.2021.106147_bib14) 2019; 58
Ji (10.1016/j.nanoen.2021.106147_bib42) 2020; 120
Cheng (10.1016/j.nanoen.2021.106147_bib22) 2017; 7
Ji (10.1016/j.nanoen.2021.106147_bib57) 2017; 29
Pan (10.1016/j.nanoen.2021.106147_bib64) 2018; 57
Yin (10.1016/j.nanoen.2021.106147_bib73) 2016; 55
Jiang (10.1016/j.nanoen.2021.106147_bib56) 2019; 17
Yang (10.1016/j.nanoen.2021.106147_bib41) 2013; 46
Cheng (10.1016/j.nanoen.2021.106147_bib53) 2021; 80
Pan (10.1016/j.nanoen.2021.106147_bib40) 2020; 2
He (10.1016/j.nanoen.2021.106147_bib19) 2020; 265
Ji (10.1016/j.nanoen.2021.106147_bib24) 2019; 31
Tian (10.1016/j.nanoen.2021.106147_bib34) 2020; 40
Liu (10.1016/j.nanoen.2021.106147_bib44) 2016; 7
Zhu (10.1016/j.nanoen.2021.106147_bib78) 2020; 71
Sun (10.1016/j.nanoen.2021.106147_bib20) 2020; 16
Zhang (10.1016/j.nanoen.2021.106147_bib28) 2019; 55
Ji (10.1016/j.nanoen.2021.106147_bib26) 2020; 30
Chao (10.1016/j.nanoen.2021.106147_bib13) 2016; 76
Zhang (10.1016/j.nanoen.2021.106147_bib67) 2018; 54
Pan (10.1016/j.nanoen.2021.106147_bib47) 2019; 10
Chen (10.1016/j.nanoen.2021.106147_bib72) 2017; 56
King (10.1016/j.nanoen.2021.106147_bib25) 2015; 84
Thavasi (10.1016/j.nanoen.2021.106147_bib9) 2008; 1
King (10.1016/j.nanoen.2021.106147_bib21) 2018; 1
Xiang (10.1016/j.nanoen.2021.106147_bib66) 2019; 302
Liang (10.1016/j.nanoen.2021.106147_bib69) 2013; 135
Zhao (10.1016/j.nanoen.2021.106147_bib49) 2021; 60
Inagaki (10.1016/j.nanoen.2021.106147_bib10) 2012; 24
Fu (10.1016/j.nanoen.2021.106147_bib58) 2018; 28
Zhang (10.1016/j.nanoen.2021.106147_bib62) 2019; 12
Zhang (10.1016/j.nanoen.2021.106147_bib51) 2018; 11
Jose (10.1016/j.nanoen.2021.106147_bib54) 2021; 5
Su (10.1016/j.nanoen.2021.106147_bib52) 2021; 14
Ma (10.1016/j.nanoen.2021.106147_bib65) 2020; 274
Lei (10.1016/j.nanoen.2021.106147_bib16) 2020; 68
van Deelen (10.1016/j.nanoen.2021.106147_bib38) 2019; 2
Wang (10.1016/j.nanoen.2021.106147_bib63) 2020; 13
Perdew (10.1016/j.nanoen.2021.106147_bib76) 1996; 77
Grimme (10.1016/j.nanoen.2021.106147_bib82) 2006; 27
Wang (10.1016/j.nanoen.2021.106147_bib74) 2016; 4
Kresse (10.1016/j.nanoen.2021.106147_bib80) 1996; 6
Zhang (10.1016/j.nanoen.2021.106147_bib4) 2004; 306
Jiang (10.1016/j.nanoen.2021.106147_bib61) 2021; 17
Wang (10.1016/j.nanoen.2021.106147_bib32) 2018; 28
Peng (10.1016/j.nanoen.2021.106147_bib18) 2020; 268
Xu (10.1016/j.nanoen.2021.106147_bib7) 2013; 25
Wang (10.1016/j.nanoen.2021.106147_bib50) 2017; 139
Liu (10.1016/j.nanoen.2021.106147_bib30) 2019; 31
Yang (10.1016/j.nanoen.2021.106147_bib59) 2019; 7
Peng (10.1016/j.nanoen.2021.106147_bib48) 2018; 30
Li (10.1016/j.nanoen.2021.106147_bib55) 2019; 56
Shi (10.1016/j.nanoen.2021.106147_bib29) 2019; 48
Wang (10.1016/j.nanoen.2021.106147_bib35) 2021; 50
Hu (10.1016/j.nanoen.2021.106147_bib37) 2019; 144
Perdew (10.1016/j.nanoen.2021.106147_bib81) 1996; 105
Jiang (10.1016/j.nanoen.2021.106147_bib46) 2019; 10
Lyu (10.1016/j.nanoen.2021.106147_bib33) 2019; 15
Pan (10.1016/j.nanoen.2021.106147_bib15) 2019; 6
Kresse (10.1016/j.nanoen.2021.106147_bib79) 1996; 54
Wu (10.1016/j.nanoen.2021.106147_bib27) 2018; 6
Liu (10.1016/j.nanoen.2021.106147_bib8) 2016; 28
Silva (10.1016/j.nanoen.2021.106147_bib68) 1997; 81
King (10.1016/j.nanoen.2021.106147_bib11) 2018; 129
Zhang (10.1016/j.nanoen.2021.106147_bib5) 2005; 309
References_xml – volume: 17
  year: 2021
  ident: bib61
  article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis
  publication-title: Small
– volume: 302
  start-page: 45
  year: 2019
  end-page: 55
  ident: bib66
  article-title: Self-standing FeCo Prussian Blue Analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting
  publication-title: Electrochim. Acta
– volume: 58
  start-page: 13840
  year: 2019
  end-page: 13844
  ident: bib14
  article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  year: 2019
  ident: bib56
  article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis
  publication-title: Small
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: bib82
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib79
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B Condens. Matter
– volume: 28
  year: 2018
  ident: bib32
  article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 215
  year: 2008
  end-page: 224
  ident: bib6
  article-title: Carbon nanotube electroactive polymer materials: opportunities and challenges
  publication-title: MRS Bull.
– volume: 14
  start-page: 1069
  year: 2021
  end-page: 1077
  ident: bib52
  article-title: Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction
  publication-title: Nano Res.
– volume: 2
  start-page: 816
  year: 2012
  end-page: 829
  ident: bib31
  article-title: Recent progress in non-precious catalysts for metal-air batteries
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 8614
  year: 2018
  end-page: 8618
  ident: bib64
  article-title: A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 1665
  year: 2017
  end-page: 1675
  ident: bib57
  article-title: Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium-air batteries
  publication-title: Chem. Mater.
– volume: 16
  year: 2020
  ident: bib20
  article-title: Atomic-level Fe-N-C coupled with Fe
  publication-title: Small
– volume: 11
  start-page: 1980
  year: 2018
  end-page: 1984
  ident: bib51
  article-title: A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 3233
  year: 1993
  end-page: 3250
  ident: bib3
  article-title: A review of catalytically grown carbon nanofibers
  publication-title: J. Mater. Res.
– volume: 71
  year: 2020
  ident: bib78
  article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis
  publication-title: Nano Energy
– volume: 22
  start-page: 361
  year: 2016
  end-page: 395
  ident: bib12
  article-title: Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage
  publication-title: Nano Energy
– volume: 6
  year: 2019
  ident: bib15
  article-title: CuCo
  publication-title: Adv. Sci.
– volume: 42
  start-page: 481
  year: 2000
  end-page: 510
  ident: bib1
  article-title: Carbon nanofibers: catalytic synthesis and applications
  publication-title: Catal. Rev.
– volume: 129
  start-page: 89
  year: 2018
  end-page: 94
  ident: bib11
  article-title: Large area uniform electrospun polymer nanofibres by balancing of the electrostatic field
  publication-title: React. Funct. Polym.
– volume: 60
  start-page: 4448
  year: 2021
  end-page: 4463
  ident: bib49
  article-title: Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 5462
  year: 2019
  end-page: 5475
  ident: bib59
  article-title: Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 11
  start-page: 3375
  year: 2018
  end-page: 3379
  ident: bib70
  article-title: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 10800
  year: 2016
  end-page: 10805
  ident: bib73
  article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 955
  year: 2019
  end-page: 970
  ident: bib38
  article-title: Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity
  publication-title: Nat. Catal.
– volume: 10
  start-page: 4290
  year: 2019
  ident: bib47
  article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation
  publication-title: Nat. Commun.
– volume: 5
  year: 2021
  ident: bib54
  article-title: Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries
  publication-title: Small Methods
– volume: 309
  start-page: 1215
  year: 2005
  end-page: 1219
  ident: bib5
  article-title: Strong, transparent, multifunctional, carbon nanotube sheets
  publication-title: Science
– volume: 274
  year: 2020
  ident: bib65
  article-title: Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring
  publication-title: Appl. Catal. B Environ.
– volume: 28
  start-page: 3000
  year: 2016
  end-page: 3006
  ident: bib8
  article-title: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries
  publication-title: Adv. Mater.
– volume: 15
  year: 2019
  ident: bib33
  article-title: Noble-metal-free electrocatalysts for oxygen evolution
  publication-title: Small
– volume: 10
  start-page: 3997
  year: 2019
  ident: bib46
  article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination
  publication-title: Nat. Commun.
– volume: 80
  year: 2021
  ident: bib53
  article-title: A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells
  publication-title: Nano Energy
– volume: 68
  year: 2020
  ident: bib16
  article-title: NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries
  publication-title: Nano Energy
– volume: 84
  start-page: 130
  year: 2015
  end-page: 137
  ident: bib25
  article-title: Highly aligned arrays of super resilient carbon nanotubes by steam purification
  publication-title: Carbon
– volume: 54
  start-page: 4274
  year: 2018
  end-page: 4277
  ident: bib67
  article-title: Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction
  publication-title: Chem. Commun.
– volume: 120
  start-page: 11900
  year: 2020
  end-page: 11955
  ident: bib42
  article-title: Chemical synthesis of single atomic site catalysts
  publication-title: Chem. Rev.
– volume: 12
  start-page: 1317
  year: 2019
  end-page: 1325
  ident: bib62
  article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 226
  year: 2019
  end-page: 233
  ident: bib28
  article-title: Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction
  publication-title: Nano Energy
– volume: 31
  year: 2021
  ident: bib45
  article-title: More is different:” synergistic effect and structural engineering in double‐atom catalysts
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  ident: bib41
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
– volume: 56
  start-page: 6937
  year: 2017
  end-page: 6941
  ident: bib72
  article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 81
  start-page: 2626
  year: 1997
  end-page: 2634
  ident: bib68
  article-title: Nitrogen modification of hydrogenated amorphous carbon films
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 5758
  year: 2016
  end-page: 5764
  ident: bib44
  article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes
  publication-title: Chem. Sci.
– volume: 43
  start-page: 2175
  year: 2005
  end-page: 2185
  ident: bib2
  article-title: Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers
  publication-title: Carbon
– volume: 306
  start-page: 1358
  year: 2004
  end-page: 1361
  ident: bib4
  article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology
  publication-title: Science
– volume: 31
  year: 2019
  ident: bib24
  article-title: Atomically transition metals on self‐supported porous carbon flake arrays as binder‐free air cathode for wearable zinc−air batteries
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  ident: bib26
  article-title: Engineering of the heterointerface of porous carbon nanofiber-supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 524
  year: 2019
  end-page: 530
  ident: bib55
  article-title: Fe-N
  publication-title: Nano Energy
– volume: 6
  start-page: 8668
  year: 2015
  ident: bib71
  article-title: Atomic cobalt on nitrogen-doped graphene for hydrogen generation
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1090
  year: 2020
  end-page: 1099
  ident: bib63
  article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery
  publication-title: Nano Res.
– volume: 76
  start-page: 319
  year: 2016
  end-page: 380
  ident: bib13
  article-title: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage
  publication-title: Prog. Mater. Sci.
– volume: 40
  start-page: 137
  year: 2020
  end-page: 143
  ident: bib34
  article-title: Metal-organic-framework-derived formation of CoN-doped carbon materials for efficient oxygen reduction reaction
  publication-title: J. Energy Chem.
– volume: 268
  year: 2020
  ident: bib18
  article-title: Co
  publication-title: Appl. Catal. B Environ.
– volume: 1
  start-page: 6217
  year: 2018
  end-page: 6225
  ident: bib21
  article-title: Micro-centrifugal technique for improved assessment and optimization of nanomaterial dispersions: the case for carbon nanotubes
  publication-title: ACS Appl. Nano Mater.
– volume: 25
  start-page: 188
  year: 2013
  end-page: 193
  ident: bib7
  article-title: Ultrastrong fibers assembled from giant graphene oxide sheets
  publication-title: Adv. Mater.
– volume: 24
  start-page: 2547
  year: 2012
  end-page: 2566
  ident: bib10
  article-title: Carbon nanofibers prepared via electrospinning
  publication-title: Adv. Mater.
– volume: 1
  start-page: 205
  year: 2008
  end-page: 221
  ident: bib9
  article-title: Electrospun nanofibers in energy and environmental applications
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 106
  year: 2010
  end-page: 131
  ident: bib39
  article-title: Factors governing the catalytic reactivity of metallic nanoparticles
  publication-title: Catal. Rev.
– volume: 50
  start-page: 1354
  year: 2021
  end-page: 1390
  ident: bib35
  article-title: Transition metal nitrides for electrochemical energy applications
  publication-title: Chem. Soc. Rev.
– volume: 31
  year: 2019
  ident: bib30
  article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts
  publication-title: Adv. Mater.
– volume: 2
  start-page: 78
  year: 2020
  end-page: 110
  ident: bib40
  article-title: Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis
  publication-title: Matter
– volume: 144
  start-page: 557
  year: 2019
  end-page: 566
  ident: bib37
  article-title: Alveolate porous carbon aerogels supported Co
  publication-title: Carbon
– volume: 11
  start-page: 8
  year: 2019
  ident: bib60
  article-title: Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery
  publication-title: Nano Micro Lett.
– volume: 5
  start-page: 23898
  year: 2017
  end-page: 23908
  ident: bib17
  article-title: Thin MoS
  publication-title: J. Mater. Chem. A
– volume: 105
  start-page: 9982
  year: 1996
  end-page: 9985
  ident: bib81
  article-title: Rationale for mixing exact exchange with density functional approximations
  publication-title: J. Chem. Phys.
– volume: 30
  year: 2018
  ident: bib48
  article-title: Carbon-supported single atom catalysts for electrochemical energy conversion and storage
  publication-title: Adv. Mater.
– volume: 6
  start-page: 10918
  year: 2018
  end-page: 10925
  ident: bib27
  article-title: Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 3181
  year: 2019
  end-page: 3192
  ident: bib29
  article-title: Robust noble metal-based electrocatalysts for oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1424
  year: 2018
  end-page: 1434
  ident: bib36
  article-title: Recent advances in carbon-based bifunctional oxygen electrocatalysts for ZnAir batteries
  publication-title: ChemElectroChem
– volume: 7
  start-page: 6864
  year: 2017
  end-page: 6871
  ident: bib22
  article-title: Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: bib43
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
– volume: 4
  start-page: 3379
  year: 2016
  end-page: 3385
  ident: bib74
  article-title: A ‘point-line-point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions
  publication-title: J. Mater. Chem. A
– volume: 265
  year: 2020
  ident: bib19
  article-title: One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries
  publication-title: Appl. Catal. B Environ.
– volume: 32
  year: 2020
  ident: bib23
  article-title: Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells
  publication-title: Adv. Mater.
– volume: 138
  start-page: 10226
  year: 2016
  end-page: 10231
  ident: bib75
  article-title: In situ coupling of strung Co
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16002
  year: 2013
  end-page: 16005
  ident: bib69
  article-title: Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  ident: bib58
  article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 9713
  year: 2014
  end-page: 9746
  ident: bib77
  article-title: Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: bib80
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib76
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 139
  start-page: 17281
  year: 2017
  end-page: 17284
  ident: bib50
  article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib24
  article-title: Atomically transition metals on self‐supported porous carbon flake arrays as binder‐free air cathode for wearable zinc−air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808267
– volume: 2
  start-page: 78
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib40
  article-title: Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis
  publication-title: Matter
  doi: 10.1016/j.matt.2019.11.014
– volume: 56
  start-page: 524
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib55
  article-title: Fe-N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & acidic media
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.054
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.nanoen.2021.106147_bib79
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.54.11169
– volume: 71
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib78
  article-title: Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104597
– volume: 58
  start-page: 13840
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib14
  article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908736
– volume: 274
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib65
  article-title: Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119091
– volume: 105
  start-page: 9982
  year: 1996
  ident: 10.1016/j.nanoen.2021.106147_bib81
  article-title: Rationale for mixing exact exchange with density functional approximations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472933
– volume: 265
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib19
  article-title: One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118594
– volume: 139
  start-page: 17281
  year: 2017
  ident: 10.1016/j.nanoen.2021.106147_bib50
  article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10385
– volume: 138
  start-page: 10226
  year: 2016
  ident: 10.1016/j.nanoen.2021.106147_bib75
  article-title: In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05046
– volume: 60
  start-page: 4448
  year: 2021
  ident: 10.1016/j.nanoen.2021.106147_bib49
  article-title: Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003917
– volume: 40
  start-page: 137
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib34
  article-title: Metal-organic-framework-derived formation of CoN-doped carbon materials for efficient oxygen reduction reaction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.03.004
– volume: 11
  start-page: 1980
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib51
  article-title: A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00901E
– volume: 25
  start-page: 188
  year: 2013
  ident: 10.1016/j.nanoen.2021.106147_bib7
  article-title: Ultrastrong fibers assembled from giant graphene oxide sheets
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203448
– volume: 120
  start-page: 11900
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib42
  article-title: Chemical synthesis of single atomic site catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00818
– volume: 55
  start-page: 10800
  year: 2016
  ident: 10.1016/j.nanoen.2021.106147_bib73
  article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 7
  start-page: 6864
  year: 2017
  ident: 10.1016/j.nanoen.2021.106147_bib22
  article-title: Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02326
– volume: 46
  start-page: 1740
  year: 2013
  ident: 10.1016/j.nanoen.2021.106147_bib41
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 1
  start-page: 6217
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib21
  article-title: Micro-centrifugal technique for improved assessment and optimization of nanomaterial dispersions: the case for carbon nanotubes
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01410
– volume: 55
  start-page: 226
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib28
  article-title: Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.029
– volume: 6
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib15
  article-title: CuCo2S4 nanosheets@N-doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi-solid-state Zn-air batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900628
– volume: 5
  start-page: 1424
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib36
  article-title: Recent advances in carbon-based bifunctional oxygen electrocatalysts for ZnAir batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800373
– volume: 33
  start-page: 215
  year: 2008
  ident: 10.1016/j.nanoen.2021.106147_bib6
  article-title: Carbon nanotube electroactive polymer materials: opportunities and challenges
  publication-title: MRS Bull.
  doi: 10.1557/mrs2008.47
– volume: 144
  start-page: 557
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib37
  article-title: Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.12.099
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2021.106147_bib45
  article-title: More is different:” synergistic effect and structural engineering in double‐atom catalysts
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 1354
  year: 2021
  ident: 10.1016/j.nanoen.2021.106147_bib35
  article-title: Transition metal nitrides for electrochemical energy applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00415D
– volume: 309
  start-page: 1215
  year: 2005
  ident: 10.1016/j.nanoen.2021.106147_bib5
  article-title: Strong, transparent, multifunctional, carbon nanotube sheets
  publication-title: Science
  doi: 10.1126/science.1115311
– volume: 2
  start-page: 816
  year: 2012
  ident: 10.1016/j.nanoen.2021.106147_bib31
  article-title: Recent progress in non-precious catalysts for metal-air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200013
– volume: 5
  year: 2021
  ident: 10.1016/j.nanoen.2021.106147_bib54
  article-title: Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries
  publication-title: Small Methods
  doi: 10.1002/smtd.202000751
– volume: 2
  start-page: 65
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib43
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 54
  start-page: 4274
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib67
  article-title: Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00988K
– volume: 28
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib58
  article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705094
– volume: 10
  start-page: 3997
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib46
  article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11992-2
– volume: 80
  year: 2021
  ident: 10.1016/j.nanoen.2021.106147_bib53
  article-title: A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105534
– volume: 29
  start-page: 1665
  year: 2017
  ident: 10.1016/j.nanoen.2021.106147_bib57
  article-title: Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium-air batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b05056
– volume: 57
  start-page: 8614
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib64
  article-title: A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn-air batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804349
– volume: 10
  start-page: 4290
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib47
  article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12362-8
– volume: 68
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib16
  article-title: NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104293
– volume: 7
  start-page: 5758
  year: 2016
  ident: 10.1016/j.nanoen.2021.106147_bib44
  article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02105K
– volume: 28
  start-page: 3000
  year: 2016
  ident: 10.1016/j.nanoen.2021.106147_bib8
  article-title: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506112
– volume: 15
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib33
  article-title: Noble-metal-free electrocatalysts for oxygen evolution
  publication-title: Small
  doi: 10.1002/smll.201804201
– volume: 268
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib18
  article-title: Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118437
– volume: 30
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib48
  article-title: Carbon-supported single atom catalysts for electrochemical energy conversion and storage
  publication-title: Adv. Mater.
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.nanoen.2021.106147_bib76
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 4
  start-page: 3379
  year: 2016
  ident: 10.1016/j.nanoen.2021.106147_bib74
  article-title: A ‘point-line-point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09327A
– volume: 135
  start-page: 16002
  year: 2013
  ident: 10.1016/j.nanoen.2021.106147_bib69
  article-title: Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407552k
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib23
  article-title: Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003577
– volume: 84
  start-page: 130
  year: 2015
  ident: 10.1016/j.nanoen.2021.106147_bib25
  article-title: Highly aligned arrays of super resilient carbon nanotubes by steam purification
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.11.061
– volume: 5
  start-page: 23898
  year: 2017
  ident: 10.1016/j.nanoen.2021.106147_bib17
  article-title: Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08166A
– volume: 7
  start-page: 5462
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib59
  article-title: Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06624
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.nanoen.2021.106147_bib82
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 43
  start-page: 2175
  year: 2005
  ident: 10.1016/j.nanoen.2021.106147_bib2
  article-title: Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.03.031
– volume: 306
  start-page: 1358
  year: 2004
  ident: 10.1016/j.nanoen.2021.106147_bib4
  article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology
  publication-title: Science
  doi: 10.1126/science.1104276
– volume: 42
  start-page: 481
  year: 2000
  ident: 10.1016/j.nanoen.2021.106147_bib1
  article-title: Carbon nanofibers: catalytic synthesis and applications
  publication-title: Catal. Rev.
  doi: 10.1081/CR-100101954
– volume: 76
  start-page: 319
  year: 2016
  ident: 10.1016/j.nanoen.2021.106147_bib13
  article-title: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2015.08.002
– volume: 16
  start-page: 9713
  year: 2014
  ident: 10.1016/j.nanoen.2021.106147_bib77
  article-title: Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp55431g
– volume: 17
  year: 2021
  ident: 10.1016/j.nanoen.2021.106147_bib61
  article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis
  publication-title: Small
  doi: 10.1002/smll.201903760
– volume: 302
  start-page: 45
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib66
  article-title: Self-standing FeCo Prussian Blue Analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.01.170
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib26
  article-title: Engineering of the heterointerface of porous carbon nanofiber-supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910568
– volume: 6
  start-page: 8668
  year: 2015
  ident: 10.1016/j.nanoen.2021.106147_bib71
  article-title: Atomic cobalt on nitrogen-doped graphene for hydrogen generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9668
– volume: 24
  start-page: 2547
  year: 2012
  ident: 10.1016/j.nanoen.2021.106147_bib10
  article-title: Carbon nanofibers prepared via electrospinning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104940
– volume: 56
  start-page: 6937
  year: 2017
  ident: 10.1016/j.nanoen.2021.106147_bib72
  article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201702473
– volume: 17
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib56
  article-title: Fibrous-structured freestanding electrodes for oxygen electrocatalysis
  publication-title: Small
– volume: 1
  start-page: 205
  year: 2008
  ident: 10.1016/j.nanoen.2021.106147_bib9
  article-title: Electrospun nanofibers in energy and environmental applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b809074m
– volume: 22
  start-page: 361
  year: 2016
  ident: 10.1016/j.nanoen.2021.106147_bib12
  article-title: Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.001
– volume: 52
  start-page: 106
  year: 2010
  ident: 10.1016/j.nanoen.2021.106147_bib39
  article-title: Factors governing the catalytic reactivity of metallic nanoparticles
  publication-title: Catal. Rev.
  doi: 10.1080/01614940903510496
– volume: 2
  start-page: 955
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib38
  article-title: Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0364-x
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib30
  article-title: Nanoscale structure design for high-performance Pt-based ORR catalysts
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3233
  year: 1993
  ident: 10.1016/j.nanoen.2021.106147_bib3
  article-title: A review of catalytically grown carbon nanofibers
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1993.3233
– volume: 12
  start-page: 1317
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib62
  article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00162J
– volume: 129
  start-page: 89
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib11
  article-title: Large area uniform electrospun polymer nanofibres by balancing of the electrostatic field
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2017.10.017
– volume: 13
  start-page: 1090
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib63
  article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2751-7
– volume: 11
  start-page: 3375
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib70
  article-title: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02656D
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.nanoen.2021.106147_bib80
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 16
  year: 2020
  ident: 10.1016/j.nanoen.2021.106147_bib20
  article-title: Atomic-level Fe-N-C coupled with Fe3C-Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts
  publication-title: Small
– volume: 14
  start-page: 1069
  year: 2021
  ident: 10.1016/j.nanoen.2021.106147_bib52
  article-title: Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3151-8
– volume: 11
  start-page: 8
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib60
  article-title: Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-019-0238-4
– volume: 48
  start-page: 3181
  year: 2019
  ident: 10.1016/j.nanoen.2021.106147_bib29
  article-title: Robust noble metal-based electrocatalysts for oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00671G
– volume: 28
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib32
  article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 10918
  year: 2018
  ident: 10.1016/j.nanoen.2021.106147_bib27
  article-title: Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02416B
– volume: 81
  start-page: 2626
  year: 1997
  ident: 10.1016/j.nanoen.2021.106147_bib68
  article-title: Nitrogen modification of hydrogenated amorphous carbon films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363927
SSID ssj0000651712
Score 2.6222007
Snippet Carbon nanofiber (CNF) papers have been widely used in many renewable energy systems, and the development of its catalytic function is of great significance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106147
SubjectTerms Bifunctional electro-catalyst
Carbon nanofiber
Dual-site catalyst
Electrospinning
Zn-air battery
Title Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries
URI https://dx.doi.org/10.1016/j.nanoen.2021.106147
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wzB69xu9226R5lcVkVvajgrUwehcqayro-D_4Ef7MzfYiCKHhsyJCSeSczX4TYtyqKUcVaIsahjCggkJr1SifoQmVCGztucD47T0ZX0cl1fD0jBm0vDJdVNra_tumVtW5GOs1udu6KonMRUu4SpjH5H5bEqpc6ihRL-cFb9_OchVxsV1WXnjxfMkHbQVeVeXn0pWMg1LB7UKVH6mcP9cXrDJfEYhMuwmH9R8tixvkVsfAFRHBVvA8Z01KPHRic6NIDr5VzIQjkxfgW-KQV-D0O7j-GoZODEvjK-B4oXgVXQUiQ54Hy-YWECSaM5crcAvQW3GMjmjRet0DcQ-HhifSDe67gtfBGYjEBXeF0Utq9Jq6GR5eDkWxeWZCG0oWpzCnDQq0ZRidXum-tCQzmKsm1zZ1ViYuC1Dltk4TUNcBejzQarbYu7GuTYt5bF7O-9G5DgLVJkKKLQ4NBRKqtreliQtYUU2Vj7G-KXruzmWkgyPkljHHW1prdZDU_MuZHVvNjU8hPqrsaguOP-aplWvZNlDLyEr9Sbv2bclvM81ddfLYjZqeTB7dL0cpU71XiuCfmDo9PR-cfN5_ttA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcGh7QFBalQJlDr0ucRyv1zmiiCi8cilI3KzZhyWjdI1CKI8fwW9mxg9EpYpKXNce2dp57858I8RPpxOFWhmJqGKZUEAgDeuVSdHH2sZOeW5wPpul04vk-FJdrohx1wvDZZWt7W9sem2t25V-u5v967Ls_4opd4kzRf6HJZF7qVcZnUr1xOrB0cl09nLUQl52oOt7TyaRTNM10dWVXgFD5RkLNR7s1xmS_reTeuV4JutirY0Y4aD5qQ2x4sNn8ekVjuCmeJowrKWZe7C4MFUA_lbBtSBQlPPfwIetwCM5uAUZJl6OK-Bb4xugkBV8jSJBzgeq-weSJ1gwnCszDDA48H9a6aT1pgviBsoAd6Qi3HYFj2WwEssFmBqqkzLvL-Jicng-nsp20IK0lDEsZUFJFhrDSDqFNiPnbGSx0GlhXOGdTn0SZd4bl6aksREOh6TU6Izz8cjYDIvhV9ELVfDfBDiXRhl6FVuMEtJu4-wAUzKomGmncLQlht3O5rZFIedhGPO8Kze7yht-5MyPvOHHlpAvVNcNCsd_3tcd0_K_pCknR_Em5fd3U-6JD9Pzs9P89Gh2si0-8pOmFm1H9JaLW79LwcvS_GiF8xlWwfBl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+carbon+nanofiber+film+with+diatomic+Fe-Co+sites+for+efficient+oxygen+reduction+and+evolution+reactions+in+wearable+zinc-air+batteries&rft.jtitle=Nano+energy&rft.au=Wang%2C+Yiyan&rft.au=Li%2C+Zongge&rft.au=Zhang%2C+Peng&rft.au=Pan%2C+Yuan&rft.date=2021-09-01&rft.issn=2211-2855&rft.volume=87&rft.spage=106147&rft_id=info:doi/10.1016%2Fj.nanoen.2021.106147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2021_106147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon