Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance
As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the structure of marine mammal whiskers, we designed a bio-inspired whisker sensor (BWS) based on triboelectric nanogenerators to assist underwater robot...
Saved in:
Published in | Nano energy Vol. 101; p. 107633 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the structure of marine mammal whiskers, we designed a bio-inspired whisker sensor (BWS) based on triboelectric nanogenerators to assist underwater robots in sensing underwater environments. The proposed device generated electrical signals through triboelectric and electrostatic induction between a fluorinated ethylene propylene film and ink. With the assistance of a structural design inspired by biology, the artificial BWS could estimate the external stimulation area. We demonstrated specific functions of the sensor, such as LED lights control and real-time external load monitoring to demonstrate its utility. Moreover, the BWS installed in underwater robots identify the direction, position, and frequency of external loads by extracting the characteristics of electrical signals, particularly in cases when optical and acoustic devices cannot be used, such as in turbid water. The results showed that the BWS can serve as an underwater whisker sensor for underwater robots for perceiving underwater environment and avoiding reactive obstacles.
[Display omitted] |
---|---|
AbstractList | As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the structure of marine mammal whiskers, we designed a bio-inspired whisker sensor (BWS) based on triboelectric nanogenerators to assist underwater robots in sensing underwater environments. The proposed device generated electrical signals through triboelectric and electrostatic induction between a fluorinated ethylene propylene film and ink. With the assistance of a structural design inspired by biology, the artificial BWS could estimate the external stimulation area. We demonstrated specific functions of the sensor, such as LED lights control and real-time external load monitoring to demonstrate its utility. Moreover, the BWS installed in underwater robots identify the direction, position, and frequency of external loads by extracting the characteristics of electrical signals, particularly in cases when optical and acoustic devices cannot be used, such as in turbid water. The results showed that the BWS can serve as an underwater whisker sensor for underwater robots for perceiving underwater environment and avoiding reactive obstacles.
[Display omitted] |
ArticleNumber | 107633 |
Author | Xu, Peng Guan, Tangzhen Liu, Jianhua Liu, Xiangyu Wang, Xinyu Zheng, Jiaxi Xu, Minyi Xie, Guangming Wang, Siyuan |
Author_xml | – sequence: 1 givenname: Jianhua surname: Liu fullname: Liu, Jianhua organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 2 givenname: Peng surname: Xu fullname: Xu, Peng email: pengxu@dlmu.edu.cn organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 3 givenname: Jiaxi surname: Zheng fullname: Zheng, Jiaxi organization: Transportation Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 4 givenname: Xiangyu surname: Liu fullname: Liu, Xiangyu organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 5 givenname: Xinyu surname: Wang fullname: Wang, Xinyu organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 6 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 7 givenname: Tangzhen surname: Guan fullname: Guan, Tangzhen organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 8 givenname: Guangming surname: Xie fullname: Xie, Guangming email: xiegming@pku.edu.cn organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China – sequence: 9 givenname: Minyi surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China |
BookMark | eNqFkMtKAzEUhrOoYK19AxfzAlNzmUymLgQp3qDgRnEZMskZTB2TIYktvr2ZjisXGjgk5_L_5HxnaOa8A4QuCF4RTOrL3cop58GtKKY0l0TN2AzNKSWkpA3np2gZ4w7nU3MiCJ2j4fXNxncIpXVxsAFMoZwpIvRdOfgDjIUUbOuhB50fOrdc9KHocnw6A-GgEoTCtzEp3UNhIOVB693RR_u-t_GY7b01ymk4Ryed6iMsf-4Ferm7fd48lNun-8fNzbbUDNep7NiaGCy47jSruK6bpgLOCF0LpWpFMQfDGQhRqVZ10GLcMNJwrUUlGOO5t0BXk68OPsYAndQ2qfFnKSjbS4LliEzu5IRMjsjkhCyLq1_iIdgPFb7-k11PMsiL7S0EGbWFvLTJZHWSxtu_Db4BZ5-OgA |
CitedBy_id | crossref_primary_10_1002_aenm_202300387 crossref_primary_10_1063_5_0218794 crossref_primary_10_1109_TIM_2025_3541696 crossref_primary_10_1002_admt_202500072 crossref_primary_10_1002_adfm_202306381 crossref_primary_10_1016_j_nanoen_2024_110011 crossref_primary_10_1002_inf2_12534 crossref_primary_10_1038_s41467_024_47299_0 crossref_primary_10_1016_j_nanoen_2023_108950 crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1016_j_nanoen_2023_109034 crossref_primary_10_1002_admt_202400451 crossref_primary_10_1109_TIM_2024_3451580 crossref_primary_10_1039_D4TC00332B crossref_primary_10_1016_j_matdes_2024_113109 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1016_j_ifacol_2024_08_232 crossref_primary_10_3390_jmse11112108 crossref_primary_10_1002_smll_202308491 crossref_primary_10_1007_s12274_024_6537_1 crossref_primary_10_1002_marc_202300462 crossref_primary_10_1016_j_ymssp_2025_112459 crossref_primary_10_1016_j_nanoen_2023_109018 crossref_primary_10_1088_1361_6439_ad6778 crossref_primary_10_1557_s43577_025_00875_1 |
Cites_doi | 10.1002/aenm.201902460 10.1007/s11771-017-3464-2 10.1007/s10846-011-9546-8 10.1002/ar.24739 10.1016/j.nanoen.2021.105836 10.1117/1.OE.59.8.083102 10.1038/s41467-019-10433-4 10.1002/aenm.201902824 10.1016/j.nanoen.2012.01.004 10.1002/aenm.201702432 10.1002/(SICI)1096-9861(19990906)411:4<550::AID-CNE2>3.0.CO;2-G 10.1002/eom2.12058 10.1242/jeb.181347 10.1002/aenm.201701300 10.1002/adfm.201900327 10.1016/j.nanoen.2021.106503 10.1002/eom2.12059 10.1016/j.nanoen.2021.105920 10.1016/j.sna.2020.112459 10.1016/j.nantod.2020.101016 10.1002/aenm.202000426 10.1021/acsnano.1c04464 10.1002/adma.202101891 10.1002/adma.202001466 10.1016/j.nanoen.2017.06.035 10.1038/s41528-022-00160-0 10.3390/s22072705 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2022.107633 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2022_107633 S221128552200711X |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-f391d075cfc345c6884e531297aa6a205ed53e774abafeb0083185cc747335d53 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:57 EDT 2025 Thu Apr 24 22:54:09 EDT 2025 Fri Feb 23 02:40:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Triboelectric nanogenerator Bio-inspired whisker sensor Self-powered Tactile perception |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-f391d075cfc345c6884e531297aa6a205ed53e774abafeb0083185cc747335d53 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2022_107633 crossref_primary_10_1016_j_nanoen_2022_107633 elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_107633 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Stopforth, Holtzhausen, Bright (bib3) 2008 Wang, Liu, Wang (bib45) 2021 Jiang, Wan, Sun (bib7) 2017; 24 Sayegh, Daraghma, Mekid (bib35) 2022; 22 Listak, Martin, Pugal (bib4) 2005 Lee (bib13) 2013 Wang, Ji, Woo (bib6) 2019 Fan, Tian, Wang (bib20) 2012; 1 Birk, Wiggerich, Bülow (bib11) 2011; 64 Zhu, Zhu, Shi (bib22) 2020; 2 Li, Rong, Cao (bib15) 2020; 59 Liu, Zheng, Xu (bib5) 2021 Luo, Wang (bib21) 2020; 2 Wang, Fan, Zhao (bib46) 2021; 84 Wang, Liu, Chen (bib25) 2021; 90 Xu, Wang, Wang (bib28) 2021 Zhu, Zhu, Shi (bib37) 2020; 2 Guo, He, Zhang (bib29) 2021; 15 Liang, Liu, Feng (bib26) 2021; 83 Zou, Tan, Shi (bib31) 2019; 10 Xie, Gao, Wu (bib24) 2021 Xu, Wang, Wang (bib33) 2018; 8 Xu, Liu, Liu (bib34) 2022; 6 Shi, Wu, Wang (bib36) 2017; 7 Strobel, Miller, Murray (bib19) 2022; 305 Zhao, Liu, Wang (bib32) 2022 Holtzhausen, Matsebe, Tlale (bib10) 2008 Fattah, Abedin, Ansary (bib9) 2016 Strobel, Sills, Tinker (bib18) 2018; 221 Wang, Li, Cui (bib8) 2013; 561 Zhang, Yu, Ma (bib40) 2019; 29 Xia, Fu, Xu (bib27) 2020; 10 Yu, Zhang, Li (bib2) 2004 An, Chen, Wang (bib39) 2021; 33 Muscolo, Cannata (bib14) 2015 Zhu, Yi, Yang (bib38) 2021; 36 Wang, Wang, Liu (bib41) 2021; 317 Zhao, Xiao, Xu (bib43) 2019; 9 Wang, Jiang, Xu (bib23) 2017; 39 Frey, Wood (bib1) 2003 Dehnhardt, Hyvärinen, Palviainen (bib16) 1999; 411 Matos, Martins, Dias (bib12) 2016 Xu, Zhao, Wang (bib44) 2019; 13 Wang, Xu, Wang (bib17) 2022 Wang, An, Nie (bib30) 2020; 32 Xiao, Zhang, Wang (bib42) 2019; 9 Lee (10.1016/j.nanoen.2022.107633_bib13) 2013 Sayegh (10.1016/j.nanoen.2022.107633_bib35) 2022; 22 Fattah (10.1016/j.nanoen.2022.107633_bib9) 2016 Xie (10.1016/j.nanoen.2022.107633_bib24) 2021 Wang (10.1016/j.nanoen.2022.107633_bib41) 2021; 317 Holtzhausen (10.1016/j.nanoen.2022.107633_bib10) 2008 Jiang (10.1016/j.nanoen.2022.107633_bib7) 2017; 24 Zhang (10.1016/j.nanoen.2022.107633_bib40) 2019; 29 Zhu (10.1016/j.nanoen.2022.107633_bib22) 2020; 2 Fan (10.1016/j.nanoen.2022.107633_bib20) 2012; 1 Wang (10.1016/j.nanoen.2022.107633_bib30) 2020; 32 An (10.1016/j.nanoen.2022.107633_bib39) 2021; 33 Stopforth (10.1016/j.nanoen.2022.107633_bib3) 2008 Wang (10.1016/j.nanoen.2022.107633_bib6) 2019 Matos (10.1016/j.nanoen.2022.107633_bib12) 2016 Xu (10.1016/j.nanoen.2022.107633_bib33) 2018; 8 Yu (10.1016/j.nanoen.2022.107633_bib2) 2004 Xia (10.1016/j.nanoen.2022.107633_bib27) 2020; 10 Wang (10.1016/j.nanoen.2022.107633_bib25) 2021; 90 Liang (10.1016/j.nanoen.2022.107633_bib26) 2021; 83 Liu (10.1016/j.nanoen.2022.107633_bib5) 2021 Wang (10.1016/j.nanoen.2022.107633_bib17) 2022 Zhu (10.1016/j.nanoen.2022.107633_bib37) 2020; 2 Wang (10.1016/j.nanoen.2022.107633_bib45) 2021 Zhu (10.1016/j.nanoen.2022.107633_bib38) 2021; 36 Xu (10.1016/j.nanoen.2022.107633_bib34) 2022; 6 Wang (10.1016/j.nanoen.2022.107633_bib46) 2021; 84 Shi (10.1016/j.nanoen.2022.107633_bib36) 2017; 7 Wang (10.1016/j.nanoen.2022.107633_bib23) 2017; 39 Zhao (10.1016/j.nanoen.2022.107633_bib32) 2022 Zhao (10.1016/j.nanoen.2022.107633_bib43) 2019; 9 Luo (10.1016/j.nanoen.2022.107633_bib21) 2020; 2 Wang (10.1016/j.nanoen.2022.107633_bib8) 2013; 561 Muscolo (10.1016/j.nanoen.2022.107633_bib14) 2015 Zou (10.1016/j.nanoen.2022.107633_bib31) 2019; 10 Li (10.1016/j.nanoen.2022.107633_bib15) 2020; 59 Strobel (10.1016/j.nanoen.2022.107633_bib19) 2022; 305 Frey (10.1016/j.nanoen.2022.107633_bib1) 2003 Strobel (10.1016/j.nanoen.2022.107633_bib18) 2018; 221 Xu (10.1016/j.nanoen.2022.107633_bib28) 2021 Xiao (10.1016/j.nanoen.2022.107633_bib42) 2019; 9 Xu (10.1016/j.nanoen.2022.107633_bib44) 2019; 13 Listak (10.1016/j.nanoen.2022.107633_bib4) 2005 Birk (10.1016/j.nanoen.2022.107633_bib11) 2011; 64 Guo (10.1016/j.nanoen.2022.107633_bib29) 2021; 15 Dehnhardt (10.1016/j.nanoen.2022.107633_bib16) 1999; 411 |
References_xml | – start-page: 9 year: 2005 end-page: 14 ident: bib4 article-title: Design of a Semiautonomous Biomimetic Underwater Vehicle for Environmental Monitoring[C]//2005 International Symposium on Computational Intelligence in Robotics and Automation – start-page: 1 year: 2015 end-page: 7 ident: bib14 article-title: A novel tactile sensor for underwater applications: Limits and perspectives[C]//OCEANS 2015-Genova – volume: 32 year: 2020 ident: bib30 article-title: A Self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare[J] publication-title: Adv. Mater. – volume: 2 year: 2020 ident: bib37 article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J] publication-title: EcoMat – volume: 33 year: 2021 ident: bib39 article-title: Biomimetic hairy whiskers for robotic skin tactility[J] publication-title: Adv. Mater. – volume: 8 year: 2018 ident: bib33 article-title: A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing[J] publication-title: Adv. Energy Mater. – volume: 221 year: 2018 ident: bib18 article-title: Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae[J] publication-title: J. Exp. Biol. – volume: 9 year: 2019 ident: bib42 article-title: Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self‐powered engine condition monitoring[J] publication-title: Adv. Energy Mater. – start-page: 476 year: 2008 end-page: 480 ident: bib3 article-title: Robots for Search and Rescue Purposes in Urban and Underwater Environments-a survey and comparison[C]//2008 15th International Conference on Mechatronics and Machine Vision in Practice – volume: 83 year: 2021 ident: bib26 article-title: Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting[J] publication-title: Nano Energy – start-page: 322 year: 2021 end-page: 326 ident: bib5 article-title: Development of AUV Mechatronics Integration for Underwater Intervention Tasks[C]//2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE) – volume: 84 year: 2021 ident: bib46 article-title: Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety[J] publication-title: Nano Energy – year: 2003 ident: bib1 article-title: Development of an autonomous underwater vehicle for sub-ice environmental monitoring in Prudhoe Bay, Alaska – volume: 39 start-page: 9 year: 2017 end-page: 23 ident: bib23 article-title: Toward the blue energy dream by triboelectric nanogenerator networks[J] publication-title: Nano Energy – start-page: 103 year: 2008 end-page: 108 ident: bib10 article-title: Autonomous Underwater Vehicle Motion Tracking Using a Kalman Filter for Sensor Fusion[C]//2008 15th International Conference on Mechatronics and Machine Vision in Practice – volume: 13 start-page: 1932 year: 2019 end-page: 1939 ident: bib44 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy[J] publication-title: ACS Nano – start-page: 3280 year: 2016 end-page: 3283 ident: bib9 article-title: R3Diver: Remote Robotic Rescue Diver for Rapid Underwater Search and Rescue Operation[C]//2016 IEEE Region 10 Conference (TENCON) – start-page: 2021 year: 2021 ident: bib24 article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting[J] publication-title: Research – volume: 29 year: 2019 ident: bib40 article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting[J] publication-title: Adv. Funct. Mater. – volume: 2 year: 2020 ident: bib22 article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J] publication-title: EcoMat – volume: 22 start-page: 2705 year: 2022 ident: bib35 article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors[J] publication-title: Sensors – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bib20 article-title: Flexible triboelectric generator[J] publication-title: Nano Energy – volume: 36 year: 2021 ident: bib38 article-title: Making use of nanoenergy from human-Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems[J] publication-title: Nano Today – start-page: 1 year: 2013 end-page: 3 ident: bib13 article-title: “MEMS/NEMS based enabling technologies for self-sustained wireless sensor nodes,” publication-title: 2013 IEEE MTT-S Int. Microw. Workshop Ser. RF Wirel. Technol. Biomed. Healthc. Appl. (IMWS-BIO) – volume: 9 year: 2019 ident: bib43 article-title: Dual‐tube helmholtz resonator‐based triboelectric nanogenerator for highly efficient harvesting of acoustic energy[J] publication-title: Adv. Energy Mater. – start-page: 28 year: 2019 end-page: 33 ident: bib6 article-title: Three-dimensional underwater environment reconstruction with graph optimization using acoustic camera[C]//2019 IEEE/SICE International Symposium on System Integration (SII) – volume: 317 year: 2021 ident: bib41 article-title: A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing[J] publication-title: Sens. Actuators A: Phys. – volume: 7 year: 2017 ident: bib36 article-title: Self-powered gyroscope ball using a triboelectric mechanism[J] publication-title: Adv. Energy Mater. – year: 2022 ident: bib17 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception[J] publication-title: Nano Energy – start-page: 95 year: 2004 end-page: 99 ident: bib2 article-title: The Development and the Challenges of Underwater Vehicles for Polar Expedition[C]//Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No. 04EX869) – volume: 411 start-page: 550 year: 1999 end-page: 562 ident: bib16 article-title: Structure and innervation of the vibrissal follicle‐sinus complex in the Australian water rat, Hydromys chrysogaster[J] publication-title: J. Comp. Neurol. – volume: 2 year: 2020 ident: bib21 article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications[J] publication-title: EcoMat – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bib31 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting[J] publication-title: Nat. Commun. – volume: 6 start-page: 1 year: 2022 end-page: 10 ident: bib34 article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J] publication-title: npj Flex. Electron. – volume: 24 start-page: 637 year: 2017 end-page: 646 ident: bib7 article-title: Design of motion control system of pipeline detection AUV[J] publication-title: J. Cent. South Univ. – volume: 561 start-page: 591 year: 2013 end-page: 596 ident: bib8 article-title: Detection and Location of Underwater Pipeline based on Mathematical Morphology for an AUV[C]//Key Engineering Materials publication-title: Trans. Tech. Publ. Ltd – volume: 90 year: 2021 ident: bib25 article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition[J] publication-title: Nano Energy – start-page: 2021 year: 2021 ident: bib28 article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping[J] publication-title: Research – volume: 15 start-page: 19054 year: 2021 end-page: 19069 ident: bib29 article-title: Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion[J] publication-title: ACS nano – volume: 64 start-page: 57 year: 2011 end-page: 76 ident: bib11 article-title: Safety, security, and rescue missions with an unmanned aerial vehicle (UAV)[J] publication-title: J. Intell. Robot. Syst. – volume: 10 year: 2020 ident: bib27 article-title: Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting[J] publication-title: Adv. Energy Mater. – volume: 305 start-page: 535 year: 2022 end-page: 555 ident: bib19 article-title: Anatomy of the sense of touch in sea otters: Cutaneous mechanoreceptors and structural features of glabrous skin[J] publication-title: Anat. Rec. – volume: 59 year: 2020 ident: bib15 article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform[J] publication-title: Opt. Eng. – start-page: 1 year: 2016 end-page: 7 ident: bib12 article-title: Multiple robot operations for maritime search and rescue in euRathlon 2015 competition[C]//OCEANS 2016-Shanghai – year: 2022 ident: bib32 article-title: Highly-Stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures[J] publication-title: Nano Energy – year: 2021 ident: bib45 article-title: A self‐powered triboelectric coral‐like sensor integrated buoy for irregular and ultra‐low frequency ocean wave monitoring[J] publication-title: Adv. Mater. Technol. – start-page: 322 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib5 – volume: 9 issue: 40 year: 2019 ident: 10.1016/j.nanoen.2022.107633_bib42 article-title: Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self‐powered engine condition monitoring[J] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902460 – start-page: 2021 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib28 article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping[J] publication-title: Research – volume: 24 start-page: 637 issue: 3 year: 2017 ident: 10.1016/j.nanoen.2022.107633_bib7 article-title: Design of motion control system of pipeline detection AUV[J] publication-title: J. Cent. South Univ. doi: 10.1007/s11771-017-3464-2 – volume: 64 start-page: 57 issue: 1 year: 2011 ident: 10.1016/j.nanoen.2022.107633_bib11 article-title: Safety, security, and rescue missions with an unmanned aerial vehicle (UAV)[J] publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-011-9546-8 – volume: 305 start-page: 535 issue: 3 year: 2022 ident: 10.1016/j.nanoen.2022.107633_bib19 article-title: Anatomy of the sense of touch in sea otters: Cutaneous mechanoreceptors and structural features of glabrous skin[J] publication-title: Anat. Rec. doi: 10.1002/ar.24739 – volume: 83 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib26 article-title: Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting[J] publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105836 – volume: 13 start-page: 1932 issue: 2 year: 2019 ident: 10.1016/j.nanoen.2022.107633_bib44 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy[J] publication-title: ACS Nano – volume: 59 issue: 8 year: 2020 ident: 10.1016/j.nanoen.2022.107633_bib15 article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform[J] publication-title: Opt. Eng. doi: 10.1117/1.OE.59.8.083102 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.nanoen.2022.107633_bib31 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting[J] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10433-4 – volume: 9 issue: 46 year: 2019 ident: 10.1016/j.nanoen.2022.107633_bib43 article-title: Dual‐tube helmholtz resonator‐based triboelectric nanogenerator for highly efficient harvesting of acoustic energy[J] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902824 – volume: 1 start-page: 328 issue: 2 year: 2012 ident: 10.1016/j.nanoen.2022.107633_bib20 article-title: Flexible triboelectric generator[J] publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – start-page: 103 year: 2008 ident: 10.1016/j.nanoen.2022.107633_bib10 – start-page: 3280 year: 2016 ident: 10.1016/j.nanoen.2022.107633_bib9 – volume: 8 issue: 9 year: 2018 ident: 10.1016/j.nanoen.2022.107633_bib33 article-title: A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing[J] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702432 – volume: 411 start-page: 550 issue: 4 year: 1999 ident: 10.1016/j.nanoen.2022.107633_bib16 article-title: Structure and innervation of the vibrissal follicle‐sinus complex in the Australian water rat, Hydromys chrysogaster[J] publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19990906)411:4<550::AID-CNE2>3.0.CO;2-G – start-page: 1 year: 2015 ident: 10.1016/j.nanoen.2022.107633_bib14 – start-page: 9 year: 2005 ident: 10.1016/j.nanoen.2022.107633_bib4 – year: 2022 ident: 10.1016/j.nanoen.2022.107633_bib32 article-title: Highly-Stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures[J] publication-title: Nano Energy – start-page: 2021 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib24 article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting[J] publication-title: Research – volume: 2 issue: 4 year: 2020 ident: 10.1016/j.nanoen.2022.107633_bib22 article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J] publication-title: EcoMat doi: 10.1002/eom2.12058 – volume: 221 issue: 18 year: 2018 ident: 10.1016/j.nanoen.2022.107633_bib18 article-title: Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae[J] publication-title: J. Exp. Biol. doi: 10.1242/jeb.181347 – volume: 7 issue: 22 year: 2017 ident: 10.1016/j.nanoen.2022.107633_bib36 article-title: Self-powered gyroscope ball using a triboelectric mechanism[J] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701300 – volume: 29 issue: 41 year: 2019 ident: 10.1016/j.nanoen.2022.107633_bib40 article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting[J] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900327 – volume: 90 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib25 article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition[J] publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106503 – start-page: 1 year: 2016 ident: 10.1016/j.nanoen.2022.107633_bib12 – start-page: 476 year: 2008 ident: 10.1016/j.nanoen.2022.107633_bib3 – start-page: 1 year: 2013 ident: 10.1016/j.nanoen.2022.107633_bib13 article-title: “MEMS/NEMS based enabling technologies for self-sustained wireless sensor nodes,” publication-title: 2013 IEEE MTT-S Int. Microw. Workshop Ser. RF Wirel. Technol. Biomed. Healthc. Appl. (IMWS-BIO) – year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib45 article-title: A self‐powered triboelectric coral‐like sensor integrated buoy for irregular and ultra‐low frequency ocean wave monitoring[J] publication-title: Adv. Mater. Technol. – start-page: 95 year: 2004 ident: 10.1016/j.nanoen.2022.107633_bib2 – volume: 2 issue: 4 year: 2020 ident: 10.1016/j.nanoen.2022.107633_bib21 article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications[J] publication-title: EcoMat doi: 10.1002/eom2.12059 – start-page: 28 year: 2019 ident: 10.1016/j.nanoen.2022.107633_bib6 – year: 2022 ident: 10.1016/j.nanoen.2022.107633_bib17 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception[J] publication-title: Nano Energy – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib46 article-title: Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety[J] publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105920 – year: 2003 ident: 10.1016/j.nanoen.2022.107633_bib1 – volume: 317 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib41 article-title: A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing[J] publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2020.112459 – volume: 36 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib38 article-title: Making use of nanoenergy from human-Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems[J] publication-title: Nano Today doi: 10.1016/j.nantod.2020.101016 – volume: 10 issue: 28 year: 2020 ident: 10.1016/j.nanoen.2022.107633_bib27 article-title: Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting[J] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000426 – volume: 2 issue: 4 year: 2020 ident: 10.1016/j.nanoen.2022.107633_bib37 article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J] publication-title: EcoMat doi: 10.1002/eom2.12058 – volume: 15 start-page: 19054 issue: 12 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib29 article-title: Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion[J] publication-title: ACS nano doi: 10.1021/acsnano.1c04464 – volume: 33 issue: 24 year: 2021 ident: 10.1016/j.nanoen.2022.107633_bib39 article-title: Biomimetic hairy whiskers for robotic skin tactility[J] publication-title: Adv. Mater. doi: 10.1002/adma.202101891 – volume: 561 start-page: 591 year: 2013 ident: 10.1016/j.nanoen.2022.107633_bib8 article-title: Detection and Location of Underwater Pipeline based on Mathematical Morphology for an AUV[C]//Key Engineering Materials publication-title: Trans. Tech. Publ. Ltd – volume: 32 issue: 32 year: 2020 ident: 10.1016/j.nanoen.2022.107633_bib30 article-title: A Self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare[J] publication-title: Adv. Mater. doi: 10.1002/adma.202001466 – volume: 39 start-page: 9 year: 2017 ident: 10.1016/j.nanoen.2022.107633_bib23 article-title: Toward the blue energy dream by triboelectric nanogenerator networks[J] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 6 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.nanoen.2022.107633_bib34 article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J] publication-title: npj Flex. Electron. doi: 10.1038/s41528-022-00160-0 – volume: 22 start-page: 2705 issue: 7 year: 2022 ident: 10.1016/j.nanoen.2022.107633_bib35 article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors[J] publication-title: Sensors doi: 10.3390/s22072705 |
SSID | ssj0000651712 |
Score | 2.4992485 |
Snippet | As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107633 |
SubjectTerms | Bio-inspired whisker sensor Self-powered Tactile perception Triboelectric nanogenerator |
Title | Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance |
URI | https://dx.doi.org/10.1016/j.nanoen.2022.107633 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXOCAeIrnlAPXMJqmr-M0MQ0QXGBitypNXVFA6dQNuPHbsdMWgYRA4prEbeU69ufED8ZOCpmj1cwyRG6FEsoYEJmJIhGaRAdgAH0SOu-4vgnHE3U5DaZLbNjlwlBYZav7G53utHU70m-52Z-VZf9Wou8i4wABBNlJb0oZ7CoiKT999z7PWdDEepG79KT1ggi6DDoX5mW1rYAKoUqJQ7jb_J8t1BerM9pg6y1c5IPmizbZEtgttvaliOA2m90_lPMnqEVp6dYccq5tzufwXIgZtUDDAepqVTUNb0qDU3Ze1RzRKqcMsvoN4WbNqwxxIr6D57Bw4VnWPYfkxKWfc_1alTnJyA6bjM7vhmPR9lEQBh2ChSj8xMsRGpjC-CowYRwrwK0nk0jrUMuzAPLAB8SBOtMF9RKKKaXaGPQ0fD_AuV22bCsLe4xDnniFBI-K1Ks4CbPEj1UWI0Uhz7SCfeZ3vEtNW2Scel08p1002WPacDwljqcNx_eZ-KSaNUU2_lgfdb8l_SYsKdqBXykP_k15yFZdlJiL4ztiy4v6BY4RjyyynhO4HlsZXFyNbz4Aqnvhcg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHIADogXEFkp9gKO7xHFeBw6oZbWUx6Wg7i049kSEImeVXUBc-FP8wc7kgbZSVSQkrnacWOPJzGd7Zj7GdnNp0WtmGSK3XAllDIjMRJEITaIDMIB7EjrvODsPh5fqxygYzbHnLheGwipb29_Y9Npaty39Vpr9cVH0f0rcu8g4QABBftIbtZGVJ_D4gPu2ycHxd1zkPSkHRxffhqKlFhAGMfJU5H7iWfSWJje-CkwYxwpQG2USaR1quR-ADXxAaKQznRO9TkxZxsYg-Pb9wBJVBNr9BYXmgmgTvj55Lwc76NO9qL5lpQkKmmGXslfHlTntSqDKq1JiE_7e_r9d4oybG6yylRaf8sNGBB_YHLiPbHmmauEaG_-6Lia_oRKFo2t6sFw7yydwm4sxca5hA9FolQ3DTmGwy03KiiM85pSyVj0gvq14mSEwxW9wC9M6HszV7yHFrPPdub4vC0tKuc4u30W6G2zelQ42GQebeLkEj6riqzgJs8SPVRbjiFzuawU95neyS01b1ZzINW7TLnztJm0knpLE00biPSZeRo2bqh6vPB91y5L-pZ0pOp7_jvz05pFf2OLw4uw0PT0-P9liS9TTBBFus_lpdQefEQxNs51a-Ti7em9t_wOdVBwV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whisker-inspired+and+self-powered+triboelectric+sensor+for+underwater+obstacle+detection+and+collision+avoidance&rft.jtitle=Nano+energy&rft.au=Liu%2C+Jianhua&rft.au=Xu%2C+Peng&rft.au=Zheng%2C+Jiaxi&rft.au=Liu%2C+Xiangyu&rft.date=2022-10-01&rft.issn=2211-2855&rft.volume=101&rft.spage=107633&rft_id=info:doi/10.1016%2Fj.nanoen.2022.107633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_107633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |