Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance

As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the structure of marine mammal whiskers, we designed a bio-inspired whisker sensor (BWS) based on triboelectric nanogenerators to assist underwater robot...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 101; p. 107633
Main Authors Liu, Jianhua, Xu, Peng, Zheng, Jiaxi, Liu, Xiangyu, Wang, Xinyu, Wang, Siyuan, Guan, Tangzhen, Xie, Guangming, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the structure of marine mammal whiskers, we designed a bio-inspired whisker sensor (BWS) based on triboelectric nanogenerators to assist underwater robots in sensing underwater environments. The proposed device generated electrical signals through triboelectric and electrostatic induction between a fluorinated ethylene propylene film and ink. With the assistance of a structural design inspired by biology, the artificial BWS could estimate the external stimulation area. We demonstrated specific functions of the sensor, such as LED lights control and real-time external load monitoring to demonstrate its utility. Moreover, the BWS installed in underwater robots identify the direction, position, and frequency of external loads by extracting the characteristics of electrical signals, particularly in cases when optical and acoustic devices cannot be used, such as in turbid water. The results showed that the BWS can serve as an underwater whisker sensor for underwater robots for perceiving underwater environment and avoiding reactive obstacles. [Display omitted]
AbstractList As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the structure of marine mammal whiskers, we designed a bio-inspired whisker sensor (BWS) based on triboelectric nanogenerators to assist underwater robots in sensing underwater environments. The proposed device generated electrical signals through triboelectric and electrostatic induction between a fluorinated ethylene propylene film and ink. With the assistance of a structural design inspired by biology, the artificial BWS could estimate the external stimulation area. We demonstrated specific functions of the sensor, such as LED lights control and real-time external load monitoring to demonstrate its utility. Moreover, the BWS installed in underwater robots identify the direction, position, and frequency of external loads by extracting the characteristics of electrical signals, particularly in cases when optical and acoustic devices cannot be used, such as in turbid water. The results showed that the BWS can serve as an underwater whisker sensor for underwater robots for perceiving underwater environment and avoiding reactive obstacles. [Display omitted]
ArticleNumber 107633
Author Xu, Peng
Guan, Tangzhen
Liu, Jianhua
Liu, Xiangyu
Wang, Xinyu
Zheng, Jiaxi
Xu, Minyi
Xie, Guangming
Wang, Siyuan
Author_xml – sequence: 1
  givenname: Jianhua
  surname: Liu
  fullname: Liu, Jianhua
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 2
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  email: pengxu@dlmu.edu.cn
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 3
  givenname: Jiaxi
  surname: Zheng
  fullname: Zheng, Jiaxi
  organization: Transportation Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 4
  givenname: Xiangyu
  surname: Liu
  fullname: Liu, Xiangyu
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 5
  givenname: Xinyu
  surname: Wang
  fullname: Wang, Xinyu
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 6
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 7
  givenname: Tangzhen
  surname: Guan
  fullname: Guan, Tangzhen
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 8
  givenname: Guangming
  surname: Xie
  fullname: Xie, Guangming
  email: xiegming@pku.edu.cn
  organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China
– sequence: 9
  givenname: Minyi
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
BookMark eNqFkMtKAzEUhrOoYK19AxfzAlNzmUymLgQp3qDgRnEZMskZTB2TIYktvr2ZjisXGjgk5_L_5HxnaOa8A4QuCF4RTOrL3cop58GtKKY0l0TN2AzNKSWkpA3np2gZ4w7nU3MiCJ2j4fXNxncIpXVxsAFMoZwpIvRdOfgDjIUUbOuhB50fOrdc9KHocnw6A-GgEoTCtzEp3UNhIOVB693RR_u-t_GY7b01ymk4Ryed6iMsf-4Ferm7fd48lNun-8fNzbbUDNep7NiaGCy47jSruK6bpgLOCF0LpWpFMQfDGQhRqVZ10GLcMNJwrUUlGOO5t0BXk68OPsYAndQ2qfFnKSjbS4LliEzu5IRMjsjkhCyLq1_iIdgPFb7-k11PMsiL7S0EGbWFvLTJZHWSxtu_Db4BZ5-OgA
CitedBy_id crossref_primary_10_1002_aenm_202300387
crossref_primary_10_1063_5_0218794
crossref_primary_10_1109_TIM_2025_3541696
crossref_primary_10_1002_admt_202500072
crossref_primary_10_1002_adfm_202306381
crossref_primary_10_1016_j_nanoen_2024_110011
crossref_primary_10_1002_inf2_12534
crossref_primary_10_1038_s41467_024_47299_0
crossref_primary_10_1016_j_nanoen_2023_108950
crossref_primary_10_1002_aenm_202302699
crossref_primary_10_1016_j_nanoen_2023_109034
crossref_primary_10_1002_admt_202400451
crossref_primary_10_1109_TIM_2024_3451580
crossref_primary_10_1039_D4TC00332B
crossref_primary_10_1016_j_matdes_2024_113109
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1016_j_ifacol_2024_08_232
crossref_primary_10_3390_jmse11112108
crossref_primary_10_1002_smll_202308491
crossref_primary_10_1007_s12274_024_6537_1
crossref_primary_10_1002_marc_202300462
crossref_primary_10_1016_j_ymssp_2025_112459
crossref_primary_10_1016_j_nanoen_2023_109018
crossref_primary_10_1088_1361_6439_ad6778
crossref_primary_10_1557_s43577_025_00875_1
Cites_doi 10.1002/aenm.201902460
10.1007/s11771-017-3464-2
10.1007/s10846-011-9546-8
10.1002/ar.24739
10.1016/j.nanoen.2021.105836
10.1117/1.OE.59.8.083102
10.1038/s41467-019-10433-4
10.1002/aenm.201902824
10.1016/j.nanoen.2012.01.004
10.1002/aenm.201702432
10.1002/(SICI)1096-9861(19990906)411:4<550::AID-CNE2>3.0.CO;2-G
10.1002/eom2.12058
10.1242/jeb.181347
10.1002/aenm.201701300
10.1002/adfm.201900327
10.1016/j.nanoen.2021.106503
10.1002/eom2.12059
10.1016/j.nanoen.2021.105920
10.1016/j.sna.2020.112459
10.1016/j.nantod.2020.101016
10.1002/aenm.202000426
10.1021/acsnano.1c04464
10.1002/adma.202101891
10.1002/adma.202001466
10.1016/j.nanoen.2017.06.035
10.1038/s41528-022-00160-0
10.3390/s22072705
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2022.107633
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2022_107633
S221128552200711X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-f391d075cfc345c6884e531297aa6a205ed53e774abafeb0083185cc747335d53
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:57 EDT 2025
Thu Apr 24 22:54:09 EDT 2025
Fri Feb 23 02:40:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Triboelectric nanogenerator
Bio-inspired whisker sensor
Self-powered
Tactile perception
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f391d075cfc345c6884e531297aa6a205ed53e774abafeb0083185cc747335d53
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2022_107633
crossref_primary_10_1016_j_nanoen_2022_107633
elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_107633
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stopforth, Holtzhausen, Bright (bib3) 2008
Wang, Liu, Wang (bib45) 2021
Jiang, Wan, Sun (bib7) 2017; 24
Sayegh, Daraghma, Mekid (bib35) 2022; 22
Listak, Martin, Pugal (bib4) 2005
Lee (bib13) 2013
Wang, Ji, Woo (bib6) 2019
Fan, Tian, Wang (bib20) 2012; 1
Birk, Wiggerich, Bülow (bib11) 2011; 64
Zhu, Zhu, Shi (bib22) 2020; 2
Li, Rong, Cao (bib15) 2020; 59
Liu, Zheng, Xu (bib5) 2021
Luo, Wang (bib21) 2020; 2
Wang, Fan, Zhao (bib46) 2021; 84
Wang, Liu, Chen (bib25) 2021; 90
Xu, Wang, Wang (bib28) 2021
Zhu, Zhu, Shi (bib37) 2020; 2
Guo, He, Zhang (bib29) 2021; 15
Liang, Liu, Feng (bib26) 2021; 83
Zou, Tan, Shi (bib31) 2019; 10
Xie, Gao, Wu (bib24) 2021
Xu, Wang, Wang (bib33) 2018; 8
Xu, Liu, Liu (bib34) 2022; 6
Shi, Wu, Wang (bib36) 2017; 7
Strobel, Miller, Murray (bib19) 2022; 305
Zhao, Liu, Wang (bib32) 2022
Holtzhausen, Matsebe, Tlale (bib10) 2008
Fattah, Abedin, Ansary (bib9) 2016
Strobel, Sills, Tinker (bib18) 2018; 221
Wang, Li, Cui (bib8) 2013; 561
Zhang, Yu, Ma (bib40) 2019; 29
Xia, Fu, Xu (bib27) 2020; 10
Yu, Zhang, Li (bib2) 2004
An, Chen, Wang (bib39) 2021; 33
Muscolo, Cannata (bib14) 2015
Zhu, Yi, Yang (bib38) 2021; 36
Wang, Wang, Liu (bib41) 2021; 317
Zhao, Xiao, Xu (bib43) 2019; 9
Wang, Jiang, Xu (bib23) 2017; 39
Frey, Wood (bib1) 2003
Dehnhardt, Hyvärinen, Palviainen (bib16) 1999; 411
Matos, Martins, Dias (bib12) 2016
Xu, Zhao, Wang (bib44) 2019; 13
Wang, Xu, Wang (bib17) 2022
Wang, An, Nie (bib30) 2020; 32
Xiao, Zhang, Wang (bib42) 2019; 9
Lee (10.1016/j.nanoen.2022.107633_bib13) 2013
Sayegh (10.1016/j.nanoen.2022.107633_bib35) 2022; 22
Fattah (10.1016/j.nanoen.2022.107633_bib9) 2016
Xie (10.1016/j.nanoen.2022.107633_bib24) 2021
Wang (10.1016/j.nanoen.2022.107633_bib41) 2021; 317
Holtzhausen (10.1016/j.nanoen.2022.107633_bib10) 2008
Jiang (10.1016/j.nanoen.2022.107633_bib7) 2017; 24
Zhang (10.1016/j.nanoen.2022.107633_bib40) 2019; 29
Zhu (10.1016/j.nanoen.2022.107633_bib22) 2020; 2
Fan (10.1016/j.nanoen.2022.107633_bib20) 2012; 1
Wang (10.1016/j.nanoen.2022.107633_bib30) 2020; 32
An (10.1016/j.nanoen.2022.107633_bib39) 2021; 33
Stopforth (10.1016/j.nanoen.2022.107633_bib3) 2008
Wang (10.1016/j.nanoen.2022.107633_bib6) 2019
Matos (10.1016/j.nanoen.2022.107633_bib12) 2016
Xu (10.1016/j.nanoen.2022.107633_bib33) 2018; 8
Yu (10.1016/j.nanoen.2022.107633_bib2) 2004
Xia (10.1016/j.nanoen.2022.107633_bib27) 2020; 10
Wang (10.1016/j.nanoen.2022.107633_bib25) 2021; 90
Liang (10.1016/j.nanoen.2022.107633_bib26) 2021; 83
Liu (10.1016/j.nanoen.2022.107633_bib5) 2021
Wang (10.1016/j.nanoen.2022.107633_bib17) 2022
Zhu (10.1016/j.nanoen.2022.107633_bib37) 2020; 2
Wang (10.1016/j.nanoen.2022.107633_bib45) 2021
Zhu (10.1016/j.nanoen.2022.107633_bib38) 2021; 36
Xu (10.1016/j.nanoen.2022.107633_bib34) 2022; 6
Wang (10.1016/j.nanoen.2022.107633_bib46) 2021; 84
Shi (10.1016/j.nanoen.2022.107633_bib36) 2017; 7
Wang (10.1016/j.nanoen.2022.107633_bib23) 2017; 39
Zhao (10.1016/j.nanoen.2022.107633_bib32) 2022
Zhao (10.1016/j.nanoen.2022.107633_bib43) 2019; 9
Luo (10.1016/j.nanoen.2022.107633_bib21) 2020; 2
Wang (10.1016/j.nanoen.2022.107633_bib8) 2013; 561
Muscolo (10.1016/j.nanoen.2022.107633_bib14) 2015
Zou (10.1016/j.nanoen.2022.107633_bib31) 2019; 10
Li (10.1016/j.nanoen.2022.107633_bib15) 2020; 59
Strobel (10.1016/j.nanoen.2022.107633_bib19) 2022; 305
Frey (10.1016/j.nanoen.2022.107633_bib1) 2003
Strobel (10.1016/j.nanoen.2022.107633_bib18) 2018; 221
Xu (10.1016/j.nanoen.2022.107633_bib28) 2021
Xiao (10.1016/j.nanoen.2022.107633_bib42) 2019; 9
Xu (10.1016/j.nanoen.2022.107633_bib44) 2019; 13
Listak (10.1016/j.nanoen.2022.107633_bib4) 2005
Birk (10.1016/j.nanoen.2022.107633_bib11) 2011; 64
Guo (10.1016/j.nanoen.2022.107633_bib29) 2021; 15
Dehnhardt (10.1016/j.nanoen.2022.107633_bib16) 1999; 411
References_xml – start-page: 9
  year: 2005
  end-page: 14
  ident: bib4
  article-title: Design of a Semiautonomous Biomimetic Underwater Vehicle for Environmental Monitoring[C]//2005 International Symposium on Computational Intelligence in Robotics and Automation
– start-page: 1
  year: 2015
  end-page: 7
  ident: bib14
  article-title: A novel tactile sensor for underwater applications: Limits and perspectives[C]//OCEANS 2015-Genova
– volume: 32
  year: 2020
  ident: bib30
  article-title: A Self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare[J]
  publication-title: Adv. Mater.
– volume: 2
  year: 2020
  ident: bib37
  article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J]
  publication-title: EcoMat
– volume: 33
  year: 2021
  ident: bib39
  article-title: Biomimetic hairy whiskers for robotic skin tactility[J]
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  ident: bib33
  article-title: A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing[J]
  publication-title: Adv. Energy Mater.
– volume: 221
  year: 2018
  ident: bib18
  article-title: Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae[J]
  publication-title: J. Exp. Biol.
– volume: 9
  year: 2019
  ident: bib42
  article-title: Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self‐powered engine condition monitoring[J]
  publication-title: Adv. Energy Mater.
– start-page: 476
  year: 2008
  end-page: 480
  ident: bib3
  article-title: Robots for Search and Rescue Purposes in Urban and Underwater Environments-a survey and comparison[C]//2008 15th International Conference on Mechatronics and Machine Vision in Practice
– volume: 83
  year: 2021
  ident: bib26
  article-title: Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting[J]
  publication-title: Nano Energy
– start-page: 322
  year: 2021
  end-page: 326
  ident: bib5
  article-title: Development of AUV Mechatronics Integration for Underwater Intervention Tasks[C]//2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE)
– volume: 84
  year: 2021
  ident: bib46
  article-title: Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety[J]
  publication-title: Nano Energy
– year: 2003
  ident: bib1
  article-title: Development of an autonomous underwater vehicle for sub-ice environmental monitoring in Prudhoe Bay, Alaska
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  ident: bib23
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks[J]
  publication-title: Nano Energy
– start-page: 103
  year: 2008
  end-page: 108
  ident: bib10
  article-title: Autonomous Underwater Vehicle Motion Tracking Using a Kalman Filter for Sensor Fusion[C]//2008 15th International Conference on Mechatronics and Machine Vision in Practice
– volume: 13
  start-page: 1932
  year: 2019
  end-page: 1939
  ident: bib44
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy[J]
  publication-title: ACS Nano
– start-page: 3280
  year: 2016
  end-page: 3283
  ident: bib9
  article-title: R3Diver: Remote Robotic Rescue Diver for Rapid Underwater Search and Rescue Operation[C]//2016 IEEE Region 10 Conference (TENCON)
– start-page: 2021
  year: 2021
  ident: bib24
  article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting[J]
  publication-title: Research
– volume: 29
  year: 2019
  ident: bib40
  article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting[J]
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2020
  ident: bib22
  article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J]
  publication-title: EcoMat
– volume: 22
  start-page: 2705
  year: 2022
  ident: bib35
  article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors[J]
  publication-title: Sensors
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bib20
  article-title: Flexible triboelectric generator[J]
  publication-title: Nano Energy
– volume: 36
  year: 2021
  ident: bib38
  article-title: Making use of nanoenergy from human-Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems[J]
  publication-title: Nano Today
– start-page: 1
  year: 2013
  end-page: 3
  ident: bib13
  article-title: “MEMS/NEMS based enabling technologies for self-sustained wireless sensor nodes,”
  publication-title: 2013 IEEE MTT-S Int. Microw. Workshop Ser. RF Wirel. Technol. Biomed. Healthc. Appl. (IMWS-BIO)
– volume: 9
  year: 2019
  ident: bib43
  article-title: Dual‐tube helmholtz resonator‐based triboelectric nanogenerator for highly efficient harvesting of acoustic energy[J]
  publication-title: Adv. Energy Mater.
– start-page: 28
  year: 2019
  end-page: 33
  ident: bib6
  article-title: Three-dimensional underwater environment reconstruction with graph optimization using acoustic camera[C]//2019 IEEE/SICE International Symposium on System Integration (SII)
– volume: 317
  year: 2021
  ident: bib41
  article-title: A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing[J]
  publication-title: Sens. Actuators A: Phys.
– volume: 7
  year: 2017
  ident: bib36
  article-title: Self-powered gyroscope ball using a triboelectric mechanism[J]
  publication-title: Adv. Energy Mater.
– year: 2022
  ident: bib17
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception[J]
  publication-title: Nano Energy
– start-page: 95
  year: 2004
  end-page: 99
  ident: bib2
  article-title: The Development and the Challenges of Underwater Vehicles for Polar Expedition[C]//Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No. 04EX869)
– volume: 411
  start-page: 550
  year: 1999
  end-page: 562
  ident: bib16
  article-title: Structure and innervation of the vibrissal follicle‐sinus complex in the Australian water rat, Hydromys chrysogaster[J]
  publication-title: J. Comp. Neurol.
– volume: 2
  year: 2020
  ident: bib21
  article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications[J]
  publication-title: EcoMat
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib31
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting[J]
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib34
  article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J]
  publication-title: npj Flex. Electron.
– volume: 24
  start-page: 637
  year: 2017
  end-page: 646
  ident: bib7
  article-title: Design of motion control system of pipeline detection AUV[J]
  publication-title: J. Cent. South Univ.
– volume: 561
  start-page: 591
  year: 2013
  end-page: 596
  ident: bib8
  article-title: Detection and Location of Underwater Pipeline based on Mathematical Morphology for an AUV[C]//Key Engineering Materials
  publication-title: Trans. Tech. Publ. Ltd
– volume: 90
  year: 2021
  ident: bib25
  article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition[J]
  publication-title: Nano Energy
– start-page: 2021
  year: 2021
  ident: bib28
  article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping[J]
  publication-title: Research
– volume: 15
  start-page: 19054
  year: 2021
  end-page: 19069
  ident: bib29
  article-title: Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion[J]
  publication-title: ACS nano
– volume: 64
  start-page: 57
  year: 2011
  end-page: 76
  ident: bib11
  article-title: Safety, security, and rescue missions with an unmanned aerial vehicle (UAV)[J]
  publication-title: J. Intell. Robot. Syst.
– volume: 10
  year: 2020
  ident: bib27
  article-title: Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting[J]
  publication-title: Adv. Energy Mater.
– volume: 305
  start-page: 535
  year: 2022
  end-page: 555
  ident: bib19
  article-title: Anatomy of the sense of touch in sea otters: Cutaneous mechanoreceptors and structural features of glabrous skin[J]
  publication-title: Anat. Rec.
– volume: 59
  year: 2020
  ident: bib15
  article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform[J]
  publication-title: Opt. Eng.
– start-page: 1
  year: 2016
  end-page: 7
  ident: bib12
  article-title: Multiple robot operations for maritime search and rescue in euRathlon 2015 competition[C]//OCEANS 2016-Shanghai
– year: 2022
  ident: bib32
  article-title: Highly-Stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures[J]
  publication-title: Nano Energy
– year: 2021
  ident: bib45
  article-title: A self‐powered triboelectric coral‐like sensor integrated buoy for irregular and ultra‐low frequency ocean wave monitoring[J]
  publication-title: Adv. Mater. Technol.
– start-page: 322
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib5
– volume: 9
  issue: 40
  year: 2019
  ident: 10.1016/j.nanoen.2022.107633_bib42
  article-title: Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self‐powered engine condition monitoring[J]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902460
– start-page: 2021
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib28
  article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping[J]
  publication-title: Research
– volume: 24
  start-page: 637
  issue: 3
  year: 2017
  ident: 10.1016/j.nanoen.2022.107633_bib7
  article-title: Design of motion control system of pipeline detection AUV[J]
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-017-3464-2
– volume: 64
  start-page: 57
  issue: 1
  year: 2011
  ident: 10.1016/j.nanoen.2022.107633_bib11
  article-title: Safety, security, and rescue missions with an unmanned aerial vehicle (UAV)[J]
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-011-9546-8
– volume: 305
  start-page: 535
  issue: 3
  year: 2022
  ident: 10.1016/j.nanoen.2022.107633_bib19
  article-title: Anatomy of the sense of touch in sea otters: Cutaneous mechanoreceptors and structural features of glabrous skin[J]
  publication-title: Anat. Rec.
  doi: 10.1002/ar.24739
– volume: 83
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib26
  article-title: Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting[J]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105836
– volume: 13
  start-page: 1932
  issue: 2
  year: 2019
  ident: 10.1016/j.nanoen.2022.107633_bib44
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy[J]
  publication-title: ACS Nano
– volume: 59
  issue: 8
  year: 2020
  ident: 10.1016/j.nanoen.2022.107633_bib15
  article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform[J]
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.59.8.083102
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.nanoen.2022.107633_bib31
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting[J]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10433-4
– volume: 9
  issue: 46
  year: 2019
  ident: 10.1016/j.nanoen.2022.107633_bib43
  article-title: Dual‐tube helmholtz resonator‐based triboelectric nanogenerator for highly efficient harvesting of acoustic energy[J]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902824
– volume: 1
  start-page: 328
  issue: 2
  year: 2012
  ident: 10.1016/j.nanoen.2022.107633_bib20
  article-title: Flexible triboelectric generator[J]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– start-page: 103
  year: 2008
  ident: 10.1016/j.nanoen.2022.107633_bib10
– start-page: 3280
  year: 2016
  ident: 10.1016/j.nanoen.2022.107633_bib9
– volume: 8
  issue: 9
  year: 2018
  ident: 10.1016/j.nanoen.2022.107633_bib33
  article-title: A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing[J]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702432
– volume: 411
  start-page: 550
  issue: 4
  year: 1999
  ident: 10.1016/j.nanoen.2022.107633_bib16
  article-title: Structure and innervation of the vibrissal follicle‐sinus complex in the Australian water rat, Hydromys chrysogaster[J]
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19990906)411:4<550::AID-CNE2>3.0.CO;2-G
– start-page: 1
  year: 2015
  ident: 10.1016/j.nanoen.2022.107633_bib14
– start-page: 9
  year: 2005
  ident: 10.1016/j.nanoen.2022.107633_bib4
– year: 2022
  ident: 10.1016/j.nanoen.2022.107633_bib32
  article-title: Highly-Stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures[J]
  publication-title: Nano Energy
– start-page: 2021
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib24
  article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting[J]
  publication-title: Research
– volume: 2
  issue: 4
  year: 2020
  ident: 10.1016/j.nanoen.2022.107633_bib22
  article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J]
  publication-title: EcoMat
  doi: 10.1002/eom2.12058
– volume: 221
  issue: 18
  year: 2018
  ident: 10.1016/j.nanoen.2022.107633_bib18
  article-title: Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae[J]
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.181347
– volume: 7
  issue: 22
  year: 2017
  ident: 10.1016/j.nanoen.2022.107633_bib36
  article-title: Self-powered gyroscope ball using a triboelectric mechanism[J]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701300
– volume: 29
  issue: 41
  year: 2019
  ident: 10.1016/j.nanoen.2022.107633_bib40
  article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting[J]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900327
– volume: 90
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib25
  article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition[J]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106503
– start-page: 1
  year: 2016
  ident: 10.1016/j.nanoen.2022.107633_bib12
– start-page: 476
  year: 2008
  ident: 10.1016/j.nanoen.2022.107633_bib3
– start-page: 1
  year: 2013
  ident: 10.1016/j.nanoen.2022.107633_bib13
  article-title: “MEMS/NEMS based enabling technologies for self-sustained wireless sensor nodes,”
  publication-title: 2013 IEEE MTT-S Int. Microw. Workshop Ser. RF Wirel. Technol. Biomed. Healthc. Appl. (IMWS-BIO)
– year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib45
  article-title: A self‐powered triboelectric coral‐like sensor integrated buoy for irregular and ultra‐low frequency ocean wave monitoring[J]
  publication-title: Adv. Mater. Technol.
– start-page: 95
  year: 2004
  ident: 10.1016/j.nanoen.2022.107633_bib2
– volume: 2
  issue: 4
  year: 2020
  ident: 10.1016/j.nanoen.2022.107633_bib21
  article-title: Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications[J]
  publication-title: EcoMat
  doi: 10.1002/eom2.12059
– start-page: 28
  year: 2019
  ident: 10.1016/j.nanoen.2022.107633_bib6
– year: 2022
  ident: 10.1016/j.nanoen.2022.107633_bib17
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception[J]
  publication-title: Nano Energy
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib46
  article-title: Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety[J]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105920
– year: 2003
  ident: 10.1016/j.nanoen.2022.107633_bib1
– volume: 317
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib41
  article-title: A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing[J]
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2020.112459
– volume: 36
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib38
  article-title: Making use of nanoenergy from human-Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems[J]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.101016
– volume: 10
  issue: 28
  year: 2020
  ident: 10.1016/j.nanoen.2022.107633_bib27
  article-title: Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting[J]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000426
– volume: 2
  issue: 4
  year: 2020
  ident: 10.1016/j.nanoen.2022.107633_bib37
  article-title: Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem[J]
  publication-title: EcoMat
  doi: 10.1002/eom2.12058
– volume: 15
  start-page: 19054
  issue: 12
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib29
  article-title: Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion[J]
  publication-title: ACS nano
  doi: 10.1021/acsnano.1c04464
– volume: 33
  issue: 24
  year: 2021
  ident: 10.1016/j.nanoen.2022.107633_bib39
  article-title: Biomimetic hairy whiskers for robotic skin tactility[J]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101891
– volume: 561
  start-page: 591
  year: 2013
  ident: 10.1016/j.nanoen.2022.107633_bib8
  article-title: Detection and Location of Underwater Pipeline based on Mathematical Morphology for an AUV[C]//Key Engineering Materials
  publication-title: Trans. Tech. Publ. Ltd
– volume: 32
  issue: 32
  year: 2020
  ident: 10.1016/j.nanoen.2022.107633_bib30
  article-title: A Self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare[J]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001466
– volume: 39
  start-page: 9
  year: 2017
  ident: 10.1016/j.nanoen.2022.107633_bib23
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks[J]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 6
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.nanoen.2022.107633_bib34
  article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J]
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-022-00160-0
– volume: 22
  start-page: 2705
  issue: 7
  year: 2022
  ident: 10.1016/j.nanoen.2022.107633_bib35
  article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors[J]
  publication-title: Sensors
  doi: 10.3390/s22072705
SSID ssj0000651712
Score 2.4992485
Snippet As key devices for underwater robot to perceive underwater environments, tactile sensors play an important role in seabed exploration. Inspired by the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107633
SubjectTerms Bio-inspired whisker sensor
Self-powered
Tactile perception
Triboelectric nanogenerator
Title Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance
URI https://dx.doi.org/10.1016/j.nanoen.2022.107633
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXOCAeIrnlAPXMJqmr-M0MQ0QXGBitypNXVFA6dQNuPHbsdMWgYRA4prEbeU69ufED8ZOCpmj1cwyRG6FEsoYEJmJIhGaRAdgAH0SOu-4vgnHE3U5DaZLbNjlwlBYZav7G53utHU70m-52Z-VZf9Wou8i4wABBNlJb0oZ7CoiKT999z7PWdDEepG79KT1ggi6DDoX5mW1rYAKoUqJQ7jb_J8t1BerM9pg6y1c5IPmizbZEtgttvaliOA2m90_lPMnqEVp6dYccq5tzufwXIgZtUDDAepqVTUNb0qDU3Ze1RzRKqcMsvoN4WbNqwxxIr6D57Bw4VnWPYfkxKWfc_1alTnJyA6bjM7vhmPR9lEQBh2ChSj8xMsRGpjC-CowYRwrwK0nk0jrUMuzAPLAB8SBOtMF9RKKKaXaGPQ0fD_AuV22bCsLe4xDnniFBI-K1Ks4CbPEj1UWI0Uhz7SCfeZ3vEtNW2Scel08p1002WPacDwljqcNx_eZ-KSaNUU2_lgfdb8l_SYsKdqBXykP_k15yFZdlJiL4ztiy4v6BY4RjyyynhO4HlsZXFyNbz4Aqnvhcg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHIADogXEFkp9gKO7xHFeBw6oZbWUx6Wg7i049kSEImeVXUBc-FP8wc7kgbZSVSQkrnacWOPJzGd7Zj7GdnNp0WtmGSK3XAllDIjMRJEITaIDMIB7EjrvODsPh5fqxygYzbHnLheGwipb29_Y9Npaty39Vpr9cVH0f0rcu8g4QABBftIbtZGVJ_D4gPu2ycHxd1zkPSkHRxffhqKlFhAGMfJU5H7iWfSWJje-CkwYxwpQG2USaR1quR-ADXxAaKQznRO9TkxZxsYg-Pb9wBJVBNr9BYXmgmgTvj55Lwc76NO9qL5lpQkKmmGXslfHlTntSqDKq1JiE_7e_r9d4oybG6yylRaf8sNGBB_YHLiPbHmmauEaG_-6Lia_oRKFo2t6sFw7yydwm4sxca5hA9FolQ3DTmGwy03KiiM85pSyVj0gvq14mSEwxW9wC9M6HszV7yHFrPPdub4vC0tKuc4u30W6G2zelQ42GQebeLkEj6riqzgJs8SPVRbjiFzuawU95neyS01b1ZzINW7TLnztJm0knpLE00biPSZeRo2bqh6vPB91y5L-pZ0pOp7_jvz05pFf2OLw4uw0PT0-P9liS9TTBBFus_lpdQefEQxNs51a-Ti7em9t_wOdVBwV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whisker-inspired+and+self-powered+triboelectric+sensor+for+underwater+obstacle+detection+and+collision+avoidance&rft.jtitle=Nano+energy&rft.au=Liu%2C+Jianhua&rft.au=Xu%2C+Peng&rft.au=Zheng%2C+Jiaxi&rft.au=Liu%2C+Xiangyu&rft.date=2022-10-01&rft.issn=2211-2855&rft.volume=101&rft.spage=107633&rft_id=info:doi/10.1016%2Fj.nanoen.2022.107633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_107633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon