Breast cancer diagnosis through active learning in content-based image retrieval
One of the cornerstones of content-based image retrieval (CBIR) for medical image diagnosis is to select the images that present higher similarity with a given query image. Different from previous literature efforts, the present work aims to seamlessly fuse a powerful machine learning strategy based...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 357; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the cornerstones of content-based image retrieval (CBIR) for medical image diagnosis is to select the images that present higher similarity with a given query image. Different from previous literature efforts, the present work aims to seamlessly fuse a powerful machine learning strategy based on the active learning paradigm, in order to obtain greater efficacy regarding similarity queries in medical CBIR systems. To do so, we propose a new approach, named as Medical Active leaRning and Retrieval (MARRow) to aid the breast cancer diagnosis. It enables to deal with more feasible strategies, specifically for the medical context and its inherent constraints. We also proposed an active learning strategy to select a small set of more informative images, considering selection criteria based on not only similarity, but also on certain degrees of diversity and uncertainty. To validate our proposed approach, we performed experiments using public medical image datasets, different descriptors for each one and compared our approach against four widely applied and well-known literature approaches, such as: Traditional CBIR without relevance feedback strategies, Query Point Movement Strategy (QPM), Query Expansion (QEX) and SVM Active Learning (SVM-AL). From the experiments, we can observe that our approach presents a strong performance over state-of-the-art ones reaching a precision gain of up to 87.3%. MARRow also presented a well-suited and consistent increasing rate along the learning iterations. Moreover, our approach can significantly minimize the expert’s involvement in the analysis and annotation process (reducing up to 88%). The results testify that MARRow improves the precision of the similarity queries. It is capable to explore at the maximum the experts’ intentions, which are captured during the relevance feedback process, incrementally improving the learning model. Therefore, our approach can be suitable and applied in challenging processes, such as real and medical contexts, enhancing medical decision support systems (e.g. breast cancer diagnosis). |
---|---|
AbstractList | One of the cornerstones of content-based image retrieval (CBIR) for medical image diagnosis is to select the images that present higher similarity with a given query image. Different from previous literature efforts, the present work aims to seamlessly fuse a powerful machine learning strategy based on the active learning paradigm, in order to obtain greater efficacy regarding similarity queries in medical CBIR systems. To do so, we propose a new approach, named as Medical Active leaRning and Retrieval (MARRow) to aid the breast cancer diagnosis. It enables to deal with more feasible strategies, specifically for the medical context and its inherent constraints. We also proposed an active learning strategy to select a small set of more informative images, considering selection criteria based on not only similarity, but also on certain degrees of diversity and uncertainty. To validate our proposed approach, we performed experiments using public medical image datasets, different descriptors for each one and compared our approach against four widely applied and well-known literature approaches, such as: Traditional CBIR without relevance feedback strategies, Query Point Movement Strategy (QPM), Query Expansion (QEX) and SVM Active Learning (SVM-AL). From the experiments, we can observe that our approach presents a strong performance over state-of-the-art ones reaching a precision gain of up to 87.3%. MARRow also presented a well-suited and consistent increasing rate along the learning iterations. Moreover, our approach can significantly minimize the expert’s involvement in the analysis and annotation process (reducing up to 88%). The results testify that MARRow improves the precision of the similarity queries. It is capable to explore at the maximum the experts’ intentions, which are captured during the relevance feedback process, incrementally improving the learning model. Therefore, our approach can be suitable and applied in challenging processes, such as real and medical contexts, enhancing medical decision support systems (e.g. breast cancer diagnosis). |
Author | Bugatti, Pedro H. Saito, Priscila T.M. Bressan, Rafael S. |
Author_xml | – sequence: 1 givenname: Rafael S. orcidid: 0000-0003-2024-5198 surname: Bressan fullname: Bressan, Rafael S. email: rafaelbressan@alunos.utfpr.edu.br organization: Department of Computing, Federal University of Technology - Parana, PR, Brazil – sequence: 2 givenname: Pedro H. surname: Bugatti fullname: Bugatti, Pedro H. email: pbugatti@utfpr.edu.br organization: Department of Computing, Federal University of Technology - Parana, PR, Brazil – sequence: 3 givenname: Priscila T.M. orcidid: 0000-0002-4870-4766 surname: Saito fullname: Saito, Priscila T.M. email: psaito@utfpr.edu.br organization: Department of Computing, Federal University of Technology - Parana, PR, Brazil |
BookMark | eNp9kMtOwzAURC1UJNrCH7DwDyTYTmwnGySoeEmVYAFry7m-SV21DrLdSvw9qcqa1axmdOYsyCyMAQm55azkjKu7bRnwAOO-FIy3JZMlq_kFmfNGi6IRjZqROWuFLETFxRVZpLRljGsu2jn5eIxoU6ZgA2CkztshjMknmjdxPAwbaiH7I9Id2hh8GKgPFMaQMeSiswkd9Xs7II2Yo8ej3V2Ty97uEt785ZJ8PT99rl6L9fvL2-phXUDFVC56Lnhvu6pR2nYtQCOB1xZ7raW2ivdMaSatU7aDlgumGqlVDbJuK9EAOFctSX3ehTimFLE333FCiT-GM3OyYrbmbMWcrBgmzWRlqt2fazixHT1Gk8Dj9N35iJCNG_3_A78W0nAk |
CitedBy_id | crossref_primary_10_32628_CSEIT228147 crossref_primary_10_1007_s40031_022_00787_7 crossref_primary_10_1016_j_neucom_2021_03_047 crossref_primary_10_1155_2023_6257573 crossref_primary_10_2174_1573405618666220621123156 crossref_primary_10_1080_20476965_2021_1966324 crossref_primary_10_1016_j_bspc_2022_104236 crossref_primary_10_3390_cancers14143442 crossref_primary_10_1007_s00138_020_01058_5 crossref_primary_10_1016_j_knosys_2023_110907 crossref_primary_10_1007_s11042_019_08100_3 crossref_primary_10_1016_j_imu_2020_100408 crossref_primary_10_1016_j_neucom_2020_07_104 crossref_primary_10_1038_s41598_023_29875_4 crossref_primary_10_1007_s11831_022_09738_3 crossref_primary_10_1007_s00371_022_02446_w crossref_primary_10_1088_1742_6596_2267_1_012071 crossref_primary_10_1007_s12065_020_00563_w |
Cites_doi | 10.1016/j.compbiomed.2014.10.006 10.1145/2071389.2071390 10.1109/TMM.2018.2838320 10.1016/j.compbiomed.2017.11.014 10.1371/journal.pcbi.1006278 10.1109/TSMC.1973.4309314 10.1109/34.55109 10.1016/j.patcog.2009.08.017 10.1371/journal.pcbi.1006058 10.1109/TGRS.1990.572934 10.1016/j.compbiomed.2018.08.006 10.1016/j.neucom.2014.06.027 10.1109/TKDE.2008.188 10.1145/1899412.1899414 10.1016/j.ijmedinf.2011.08.001 10.1007/s007990050026 10.1016/j.neucom.2013.08.007 10.1016/j.compbiomed.2018.03.003 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2019.05.041 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 10 |
ExternalDocumentID | 10_1016_j_neucom_2019_05_041 S092523121930726X |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AAXKI AAYXX ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP |
ID | FETCH-LOGICAL-c306t-f121fab3867ab9cc85c14aef7757a61f06705ad6abc9120685764c549328ccdd3 |
IEDL.DBID | AIKHN |
ISSN | 0925-2312 |
IngestDate | Fri Dec 06 01:27:11 EST 2024 Fri Feb 23 02:27:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computer vision Image analysis Active learning Image retrieval Breast cancer diagnosis Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-f121fab3867ab9cc85c14aef7757a61f06705ad6abc9120685764c549328ccdd3 |
ORCID | 0000-0002-4870-4766 0000-0003-2024-5198 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2019_05_041 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_05_041 |
PublicationCentury | 2000 |
PublicationDate | 2019-09-10 |
PublicationDateYYYYMMDD | 2019-09-10 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Samet (bib0021) 2006 Feng, Liu, Xiao, Hong, Wu (bib0013) 2015; 147 Wang, Hua (bib0019) 2011; 2 Yan, Li, Zhang, Liu, Zhang, Dai (bib0001) 2019; PP Miranda, Felipe (bib0009) 2015; 64 Kihm, Kaestner, Wagner, Quint (bib0008) 2018; 14 Guo, Zhang, Zhang (bib0026) 2010; 43 Baeza-Yates, Ribeiro-Neto (bib0032) 2011 Yan, Tu, Wang, Zhang, Hao, Zhang, Dai (bib0002) 2019 Turki, Wei (bib0004) 2018; 101 Malode, Gumaste (bib0011) 2015; 20 Hoi, Lyu (bib0030) 2005; 2 Uluwitige, Geva, Zuccon, Chandran, Chappell (bib0012) 2016 He, Wang (bib0027) 1990; 28 Haralick, Shanmugam, Dinstein (bib0025) 1973; SMC-3 Stehling, Nascimento, Falcão (bib0022) 2002 Liu, Zeng, Gong, Yang, Zhai, Cao, Liu, Luo, Li, Maguire, Ding (bib0006) 2018; 92 Won, Park, Park (bib0023) 2002; 24 Carpineto, Romano (bib0015) 2012; 44 Liu, Hua, Vu, Yu (bib0016) 2009; 21 Tenório, Hummel, Cohrs, Sdepanian, Pisa, de Fátima Marin (bib0010) 2011; 80 Wang, Chan, Zhang (bib0031) 2003; 1 Fondón, Sarmiento, Garca, Silvestre, Eloy, Polnia, Aguiar (bib0005) 2018; 96 Nixon, Aguado (bib0024) 2012 Khotanzad, Hong (bib0029) 1990; 12 Yan, Xie, Chen, Zha, Hao, Zhang, Dai (bib0003) 2018; 20 Wang, Li, Yang, Chen (bib0014) 2014; 127 Chen, Scholz, Zhou, Lange (bib0007) 2018; 14 Settles (bib0017) 2009 Oliveira, Scabora, Cazzolato, Bedo, Traina, Traina-Jr. (bib0020) 2017 Wang, Wiederhold, Firschein, Wei (bib0028) 1998; 1 Kremer, Steenstrup Pedersen, Igel (bib0018) 2014; 4 Liu (10.1016/j.neucom.2019.05.041_bib0006) 2018; 92 He (10.1016/j.neucom.2019.05.041_bib0027) 1990; 28 Haralick (10.1016/j.neucom.2019.05.041_bib0025) 1973; SMC-3 Wang (10.1016/j.neucom.2019.05.041_bib0014) 2014; 127 Khotanzad (10.1016/j.neucom.2019.05.041_bib0029) 1990; 12 Turki (10.1016/j.neucom.2019.05.041_bib0004) 2018; 101 Carpineto (10.1016/j.neucom.2019.05.041_bib0015) 2012; 44 Tenório (10.1016/j.neucom.2019.05.041_bib0010) 2011; 80 Wang (10.1016/j.neucom.2019.05.041_bib0028) 1998; 1 Miranda (10.1016/j.neucom.2019.05.041_bib0009) 2015; 64 Uluwitige (10.1016/j.neucom.2019.05.041_bib0012) 2016 Settles (10.1016/j.neucom.2019.05.041_bib0017) 2009 Kihm (10.1016/j.neucom.2019.05.041_bib0008) 2018; 14 Hoi (10.1016/j.neucom.2019.05.041_bib0030) 2005; 2 Kremer (10.1016/j.neucom.2019.05.041_bib0018) 2014; 4 Fondón (10.1016/j.neucom.2019.05.041_bib0005) 2018; 96 Chen (10.1016/j.neucom.2019.05.041_bib0007) 2018; 14 Baeza-Yates (10.1016/j.neucom.2019.05.041_bib0032) 2011 Yan (10.1016/j.neucom.2019.05.041_bib0003) 2018; 20 Liu (10.1016/j.neucom.2019.05.041_bib0016) 2009; 21 Won (10.1016/j.neucom.2019.05.041_bib0023) 2002; 24 Oliveira (10.1016/j.neucom.2019.05.041_bib0020) 2017 Stehling (10.1016/j.neucom.2019.05.041_bib0022) 2002 Samet (10.1016/j.neucom.2019.05.041_bib0021) 2006 Wang (10.1016/j.neucom.2019.05.041_bib0019) 2011; 2 Yan (10.1016/j.neucom.2019.05.041_bib0002) 2019 Malode (10.1016/j.neucom.2019.05.041_bib0011) 2015; 20 Guo (10.1016/j.neucom.2019.05.041_bib0026) 2010; 43 Wang (10.1016/j.neucom.2019.05.041_sbref0031) 2003; 1 Nixon (10.1016/j.neucom.2019.05.041_bib0024) 2012 Yan (10.1016/j.neucom.2019.05.041_bib0001) 2019; PP Feng (10.1016/j.neucom.2019.05.041_bib0013) 2015; 147 |
References_xml | – volume: 20 start-page: 3389 year: 2018 end-page: 3398 ident: bib0003 article-title: A fast uyghur text detector for complex background images publication-title: IEEE Trans. Multimed. contributor: fullname: Dai – volume: 28 start-page: 509 year: 1990 end-page: 512 ident: bib0027 article-title: Texture unit, texture spectrum, and texture analysis publication-title: IEEE Trans. Geosci. Remote Sensing contributor: fullname: Wang – volume: 21 start-page: 729 year: 2009 end-page: 743 ident: bib0016 article-title: Fast query point movement techniques for large cbir systems publication-title: IEEE Trans. Knowl. Data Eng. contributor: fullname: Yu – start-page: 256 year: 2017 end-page: 266 ident: bib0020 article-title: MAMMOSET: An Enhanced Dataset of Mammograms publication-title: Satellite Events of the Brazilian Symposium on Databases contributor: fullname: Traina-Jr. – volume: 44 start-page: 1:1 year: 2012 end-page: 1:50 ident: bib0015 article-title: A survey of automatic query expansion in information retrieval publication-title: ACM Comput. Surv. contributor: fullname: Romano – volume: SMC-3 start-page: 610 year: 1973 end-page: 621 ident: bib0025 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. contributor: fullname: Dinstein – year: 2012 ident: bib0024 article-title: Feature Extraction & Image Processing for Computer Vision contributor: fullname: Aguado – year: 2011 ident: bib0032 article-title: Modern Information Retrieval: The Concepts and Technology Behind Search contributor: fullname: Ribeiro-Neto – volume: 12 start-page: 489 year: 1990 end-page: 497 ident: bib0029 article-title: Invariant image recognition by zernike moments publication-title: IEEE Trans. Pattern Anal. Mach.Intell. contributor: fullname: Hong – start-page: 102 year: 2002 end-page: 109 ident: bib0022 article-title: A compact and efficient image retrieval approach based on border/interior pixel classification publication-title: Intl. Conf. on Information and Knowledge Management contributor: fullname: Falcão – volume: 147 start-page: 509 year: 2015 end-page: 522 ident: bib0013 article-title: A novel CBIR system with WLLTSA and ULRGA publication-title: Neurocomputing contributor: fullname: Wu – volume: 14 start-page: 1 year: 2018 end-page: 10 ident: bib0007 article-title: Lailaps-qsm: a restful api and java library for semantic query suggestions publication-title: PLOS Comput. Biol. contributor: fullname: Lange – year: 2009 ident: bib0017 article-title: Active Learning Literature Survey publication-title: Technical Report contributor: fullname: Settles – volume: 92 start-page: 168 year: 2018 end-page: 175 ident: bib0006 article-title: Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach publication-title: Comput. Biol. Med. contributor: fullname: Ding – volume: PP start-page: 1 year: 2019 end-page: 10 ident: bib0001 article-title: Cross-modality bridging and knowledge transferring for image understanding publication-title: IEEE Trans. Multimed. contributor: fullname: Dai – volume: 20 start-page: 883 year: 2015 end-page: 885 ident: bib0011 article-title: A review paper on content based image retrieval publication-title: Intl. Res. J. Eng. Technol. contributor: fullname: Gumaste – volume: 80 start-page: 793 year: 2011 end-page: 802 ident: bib0010 article-title: Artificial intelligence techniques applied to the development of a decision support system for diagnosing celiac disease publication-title: Int. J. Med. Inf. contributor: fullname: de Fátima Marin – volume: 2 start-page: 302 year: 2005 end-page: 309 ident: bib0030 article-title: A semi-supervised active learning framework for image retrieval publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition contributor: fullname: Lyu – volume: 64 start-page: 334 year: 2015 end-page: 346 ident: bib0009 article-title: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization publication-title: Comput. Biol. Med. contributor: fullname: Felipe – volume: 4 start-page: 313 year: 2014 end-page: 326 ident: bib0018 article-title: Active Learning With Support Vector Machines contributor: fullname: Igel – volume: 1 year: 2003 ident: bib0031 article-title: Bootstrapping svm active learning by incorporating unlabelled images for image retrieval publication-title: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition contributor: fullname: Zhang – year: 2006 ident: bib0021 article-title: Foundations of Multidimensional and Metric Data Structures contributor: fullname: Samet – volume: 24 start-page: 23 year: 2002 end-page: 30 ident: bib0023 article-title: Efficient use of mpeg-7 edge histogram descriptor publication-title: Electron. Telecommun. Res.Instit. J. contributor: fullname: Park – volume: 96 start-page: 41 year: 2018 end-page: 51 ident: bib0005 article-title: Automatic classification of tissue malignancy for breast carcinoma diagnosis publication-title: Comput. Biol. Med. contributor: fullname: Aguiar – volume: 43 start-page: 706 year: 2010 end-page: 719 ident: bib0026 article-title: Rotation invariant texture classification using LBP variance (LBPV) with global matching publication-title: Pattern Recognit. contributor: fullname: Zhang – volume: 2 start-page: 10:1 year: 2011 end-page: 10:21 ident: bib0019 article-title: Active learning in multimedia annotation and retrieval: A survey publication-title: ACM Trans. Intell. Syst. Technol. contributor: fullname: Hua – volume: 127 start-page: 214 year: 2014 end-page: 230 ident: bib0014 article-title: An image retrieval scheme with relevance feedback using feature reconstruction and svm reclassification publication-title: Neurocomputing contributor: fullname: Chen – volume: 101 start-page: 236 year: 2018 end-page: 249 ident: bib0004 article-title: Boosting support vector machines for cancer discrimination tasks publication-title: Comput. Biol. Med. contributor: fullname: Wei – year: 2019 ident: bib0002 article-title: Stat: Spatial-temporal attention mechanism for video captioning publication-title: IEEE Trans. Multimed. contributor: fullname: Dai – volume: 14 start-page: 1 year: 2018 end-page: 15 ident: bib0008 article-title: Classification of red blood cell shapes in flow using outlier tolerant machine learning publication-title: PLOS Comput. Biol. contributor: fullname: Quint – volume: 1 start-page: 311 year: 1998 end-page: 328 ident: bib0028 article-title: Content-based image indexing and searching using daubechies’ wavelets publication-title: Int. J. Digit. Libr. contributor: fullname: Wei – start-page: 49 year: 2016 end-page: 56 ident: bib0012 article-title: Effective user relevance feedback for image retrieval with image signatures publication-title: Australasian Document Computing Symposium contributor: fullname: Chappell – volume: 64 start-page: 334 year: 2015 ident: 10.1016/j.neucom.2019.05.041_bib0009 article-title: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.10.006 contributor: fullname: Miranda – year: 2019 ident: 10.1016/j.neucom.2019.05.041_bib0002 article-title: Stat: Spatial-temporal attention mechanism for video captioning publication-title: IEEE Trans. Multimed. contributor: fullname: Yan – volume: 44 start-page: 1:1 issue: 1 year: 2012 ident: 10.1016/j.neucom.2019.05.041_bib0015 article-title: A survey of automatic query expansion in information retrieval publication-title: ACM Comput. Surv. doi: 10.1145/2071389.2071390 contributor: fullname: Carpineto – volume: 2 start-page: 302 year: 2005 ident: 10.1016/j.neucom.2019.05.041_bib0030 article-title: A semi-supervised active learning framework for image retrieval contributor: fullname: Hoi – year: 2011 ident: 10.1016/j.neucom.2019.05.041_bib0032 contributor: fullname: Baeza-Yates – volume: 20 start-page: 3389 issue: 12 year: 2018 ident: 10.1016/j.neucom.2019.05.041_bib0003 article-title: A fast uyghur text detector for complex background images publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2838320 contributor: fullname: Yan – volume: 92 start-page: 168 year: 2018 ident: 10.1016/j.neucom.2019.05.041_bib0006 article-title: Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.11.014 contributor: fullname: Liu – volume: 14 start-page: 1 issue: 6 year: 2018 ident: 10.1016/j.neucom.2019.05.041_bib0008 article-title: Classification of red blood cell shapes in flow using outlier tolerant machine learning publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1006278 contributor: fullname: Kihm – volume: SMC-3 start-page: 610 issue: 6 year: 1973 ident: 10.1016/j.neucom.2019.05.041_bib0025 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 contributor: fullname: Haralick – volume: 12 start-page: 489 issue: 5 year: 1990 ident: 10.1016/j.neucom.2019.05.041_bib0029 article-title: Invariant image recognition by zernike moments publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/34.55109 contributor: fullname: Khotanzad – volume: 43 start-page: 706 issue: 3 year: 2010 ident: 10.1016/j.neucom.2019.05.041_bib0026 article-title: Rotation invariant texture classification using LBP variance (LBPV) with global matching publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.08.017 contributor: fullname: Guo – volume: 14 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.neucom.2019.05.041_bib0007 article-title: Lailaps-qsm: a restful api and java library for semantic query suggestions publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1006058 contributor: fullname: Chen – volume: 28 start-page: 509 issue: 4 year: 1990 ident: 10.1016/j.neucom.2019.05.041_bib0027 article-title: Texture unit, texture spectrum, and texture analysis publication-title: IEEE Trans. Geosci. Remote Sensing doi: 10.1109/TGRS.1990.572934 contributor: fullname: He – volume: 24 start-page: 23 issue: 1 year: 2002 ident: 10.1016/j.neucom.2019.05.041_bib0023 article-title: Efficient use of mpeg-7 edge histogram descriptor publication-title: Electron. Telecommun. Res.Instit. J. contributor: fullname: Won – volume: PP start-page: 1 year: 2019 ident: 10.1016/j.neucom.2019.05.041_bib0001 article-title: Cross-modality bridging and knowledge transferring for image understanding publication-title: IEEE Trans. Multimed. contributor: fullname: Yan – year: 2009 ident: 10.1016/j.neucom.2019.05.041_bib0017 article-title: Active Learning Literature Survey contributor: fullname: Settles – start-page: 256 year: 2017 ident: 10.1016/j.neucom.2019.05.041_bib0020 article-title: MAMMOSET: An Enhanced Dataset of Mammograms contributor: fullname: Oliveira – volume: 101 start-page: 236 year: 2018 ident: 10.1016/j.neucom.2019.05.041_bib0004 article-title: Boosting support vector machines for cancer discrimination tasks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.08.006 contributor: fullname: Turki – volume: 147 start-page: 509 year: 2015 ident: 10.1016/j.neucom.2019.05.041_bib0013 article-title: A novel CBIR system with WLLTSA and ULRGA publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.027 contributor: fullname: Feng – volume: 21 start-page: 729 issue: 5 year: 2009 ident: 10.1016/j.neucom.2019.05.041_bib0016 article-title: Fast query point movement techniques for large cbir systems publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.188 contributor: fullname: Liu – volume: 2 start-page: 10:1 issue: 2 year: 2011 ident: 10.1016/j.neucom.2019.05.041_bib0019 article-title: Active learning in multimedia annotation and retrieval: A survey publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1899412.1899414 contributor: fullname: Wang – volume: 1 year: 2003 ident: 10.1016/j.neucom.2019.05.041_sbref0031 article-title: Bootstrapping svm active learning by incorporating unlabelled images for image retrieval contributor: fullname: Wang – volume: 20 start-page: 883 year: 2015 ident: 10.1016/j.neucom.2019.05.041_bib0011 article-title: A review paper on content based image retrieval publication-title: Intl. Res. J. Eng. Technol. contributor: fullname: Malode – start-page: 49 year: 2016 ident: 10.1016/j.neucom.2019.05.041_bib0012 article-title: Effective user relevance feedback for image retrieval with image signatures contributor: fullname: Uluwitige – year: 2012 ident: 10.1016/j.neucom.2019.05.041_bib0024 contributor: fullname: Nixon – volume: 80 start-page: 793 issue: 11 year: 2011 ident: 10.1016/j.neucom.2019.05.041_bib0010 article-title: Artificial intelligence techniques applied to the development of a decision support system for diagnosing celiac disease publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2011.08.001 contributor: fullname: Tenório – volume: 1 start-page: 311 issue: 4 year: 1998 ident: 10.1016/j.neucom.2019.05.041_bib0028 article-title: Content-based image indexing and searching using daubechies’ wavelets publication-title: Int. J. Digit. Libr. doi: 10.1007/s007990050026 contributor: fullname: Wang – year: 2006 ident: 10.1016/j.neucom.2019.05.041_bib0021 contributor: fullname: Samet – volume: 127 start-page: 214 year: 2014 ident: 10.1016/j.neucom.2019.05.041_bib0014 article-title: An image retrieval scheme with relevance feedback using feature reconstruction and svm reclassification publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.007 contributor: fullname: Wang – volume: 96 start-page: 41 year: 2018 ident: 10.1016/j.neucom.2019.05.041_bib0005 article-title: Automatic classification of tissue malignancy for breast carcinoma diagnosis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.003 contributor: fullname: Fondón – volume: 4 start-page: 313 year: 2014 ident: 10.1016/j.neucom.2019.05.041_bib0018 contributor: fullname: Kremer – start-page: 102 year: 2002 ident: 10.1016/j.neucom.2019.05.041_bib0022 article-title: A compact and efficient image retrieval approach based on border/interior pixel classification contributor: fullname: Stehling |
SSID | ssj0017129 |
Score | 2.4094074 |
Snippet | One of the cornerstones of content-based image retrieval (CBIR) for medical image diagnosis is to select the images that present higher similarity with a given... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Active learning Breast cancer diagnosis Computer vision Image analysis Image retrieval Machine learning |
Title | Breast cancer diagnosis through active learning in content-based image retrieval |
URI | https://dx.doi.org/10.1016/j.neucom.2019.05.041 |
Volume | 357 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA77uHjxLa6PJQevcdu0SdrjurisiougC3srSZpIBeuydq_-didtKgriwWMLKeXLZL4Z8s0MQhcyMipWaUyEq_2IOdckAdonnFpjdcoTVU9ruJ_z2SK-XbJlB03aWhgnq_S-v_Hptbf2b0YezdGqKEaPQUohiwrhyIGdUr7soj7Qkbur7Y9v7mbzr8sEEdKm5R5lxC1oK-hqmVdpNk42AjyY1i084_B3hvrGOtNdtO3DRTxu_mgPdUy5j3baUQzYn8wD9HDlxOUV1m4T1zhvBHTFO_ZzeLCs_Rr2QyKecVFip1IHyiGOyHJcvIJnwet6wBZY3yFaTK-fJjPihyUQDVF_RSwAYaWKEi6kSrVOmA5jaawQTEgeWlePw2TOpdJpSAOeQKIRa8gOI5ponefREeqVb6U5Rhg-qCIpUmGojSFES4VluaVMGZbLnOkBIi1A2arpiZG1YrGXrAE0c4BmAcsA0AESLYrZj73NwG3_ufLk3ytP0ZZ7csqOMDhDvWq9MecQPlRqiLqXH-HQG8knIzfFrg |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5VD3pxF3dz8BrbyWSZOaooVdsi2EJvIauM4Ci1Xv3tvswiCuLB68wkDF9e3gLfex9Cpzr1hpmcERl7P5gQlmQQ9omgwQebi8xUag3DkehP2O2UTzvosu2FibTKxvfXPr3y1s2TboNm97Uoug-9nEIVlcCVAzulYrqAlhiH7BeM-uzji-eRyITWA_coJ_Hztn-uInmV_j2SRiAK5tUAT5b8Hp--xZzrdbTaJIv4vP6fDdTx5SZaa4UYcHMvt9D9RaSWz7GNRzjDrqbPFW-4UeHBuvJquJGIeMRFiSNHHQIOiWHM4eIZ_AqeVfJaYHvbaHJ9Nb7sk0YqgVjI-eckAAxBmzQTUpvc2ozbhGkfpORSiyTEbhyundDG5gntiQzKDGahNkxpZq1z6Q5aLF9Kv4swbGhSLXPpaWCQoOUycBcoN5477bjdQ6QFSL3WEzFUSxV7UjWgKgKqelwBoHtItiiqHyerwGn_uXL_3ytP0HJ_PByowc3o7gCtxDeR45H0DtHifPbujyCRmJvjylA-AeoHxoc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+diagnosis+through+active+learning+in+content-based+image+retrieval&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Bressan%2C+Rafael+S.&rft.au=Bugatti%2C+Pedro+H.&rft.au=Saito%2C+Priscila+T.M.&rft.date=2019-09-10&rft.issn=0925-2312&rft.volume=357&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.neucom.2019.05.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2019_05_041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |