Geographically Weighted Beta Regression

Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are based on the assumption that the error (or, in some cases, the response variable) is normally distributed with constant variance and that th...

Full description

Saved in:
Bibliographic Details
Published inSpatial statistics Vol. 21; pp. 279 - 303
Main Authors da Silva, Alan Ricardo, de Oliveira Lima, Andreza
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are based on the assumption that the error (or, in some cases, the response variable) is normally distributed with constant variance and that the relations are equal throughout space. Thus, these models may not be the most appropriate to adjust spatially varying rates and proportions. The Beta Regression model deals with rates and proportions and has been shown to be a good approach to model this type of data, since it naturally adapts to variables constrained to an interval of the real line and exhibiting heteroscedasticity, which is a common characteristic in this type of data. In addition, to deal with spatial non-stationarity, Geographically Weighted Regression (GWR) allows for variability in the parameters by an extension of the linear regression model, providing a better understanding of the spatial phenomenon. Therefore, we propose the Geographically Weighted Beta Regression (GWBR) model which combines the features of the above models such that a better fit is provided in the study of spatially varying continuous variables restricted to an interval of the real line. We applied this model to analyze the proportion of households that have telephones in the state of Sao Paulo, Brazil. The results were more appropriate than those obtained by the global models and the Geographically Weighted Regression model, following statistics such as AICc, pseudo-R2, log-likelihood and by the reduction of spatial dependence computed by Moran’s I.
AbstractList Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are based on the assumption that the error (or, in some cases, the response variable) is normally distributed with constant variance and that the relations are equal throughout space. Thus, these models may not be the most appropriate to adjust spatially varying rates and proportions. The Beta Regression model deals with rates and proportions and has been shown to be a good approach to model this type of data, since it naturally adapts to variables constrained to an interval of the real line and exhibiting heteroscedasticity, which is a common characteristic in this type of data. In addition, to deal with spatial non-stationarity, Geographically Weighted Regression (GWR) allows for variability in the parameters by an extension of the linear regression model, providing a better understanding of the spatial phenomenon. Therefore, we propose the Geographically Weighted Beta Regression (GWBR) model which combines the features of the above models such that a better fit is provided in the study of spatially varying continuous variables restricted to an interval of the real line. We applied this model to analyze the proportion of households that have telephones in the state of Sao Paulo, Brazil. The results were more appropriate than those obtained by the global models and the Geographically Weighted Regression model, following statistics such as AICc, pseudo-R2, log-likelihood and by the reduction of spatial dependence computed by Moran’s I.
Author de Oliveira Lima, Andreza
da Silva, Alan Ricardo
Author_xml – sequence: 1
  givenname: Alan Ricardo
  surname: da Silva
  fullname: da Silva, Alan Ricardo
  email: alansilva@unb.br
– sequence: 2
  givenname: Andreza
  surname: de Oliveira Lima
  fullname: de Oliveira Lima, Andreza
BookMark eNp9j0FLw0AQhRepYK39Bx5685Q4k91mk4ugRatQEETxuEx3J-2GmJTdIPTfmxIPnhwezLu8x_suxaTtWhbiGiFFwPy2TuOBYk9pBqhTGIR4JqZZhpjkeiknf_yFmMdYw3BagVxmU3Gz5m4X6LD3lprmuPhkv9v37BYP3NPijXeBY_RdeyXOK2oiz3__THw8Pb6vnpPN6_pldb9JrIS8T7hSViOAlYi2dJli0EW1tQqRqHQOpJJQ2qUklRWOhx22oAJ4qx2pgrScCTX22tDFGLgyh-C_KBwNgjnxmtqMvObEa2AQ4hC7G2M8bPv2HEy0nlvLzge2vXGd_7_gBwZ_YSc
CitedBy_id crossref_primary_10_1016_j_asej_2019_08_002
crossref_primary_10_1080_00031305_2021_1965657
crossref_primary_10_30897_ijegeo_1399172
crossref_primary_10_17341_gazimmfd_757131
crossref_primary_10_1177_1044389418768523
crossref_primary_10_3390_infrastructures9060089
crossref_primary_10_1214_22_BA1357
crossref_primary_10_3390_land9010007
crossref_primary_10_1016_j_neucom_2020_02_058
crossref_primary_10_1111_area_12757
crossref_primary_10_3390_sym13020197
crossref_primary_10_1214_22_BJPS543
crossref_primary_10_1002_cjs_11563
crossref_primary_10_5638_thagis_29_11
Cites_doi 10.14214/sf.1405
10.1016/0304-4076(94)01612-4
10.1093/forestscience/57.3.212
10.1002/sim.2129
10.1016/S0960-1481(99)00002-6
10.1158/1055-9965.EPI-12-0005
10.1029/JC079i009p01261
10.2307/2111384
10.1353/geo.2002.0028
10.1111/j.1538-4632.1996.tb00936.x
10.18637/jss.v034.i02
10.1111/1467-9884.00145
10.2307/3001521
10.1080/0266476042000214501
10.17811/ebl.1.3.2012.16-22
10.1007/s10109-016-0239-5
10.1080/026937996137909
10.1111/gean.12084
10.1068/a44111
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.spasta.2017.07.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2211-6753
EndPage 303
ExternalDocumentID 10_1016_j_spasta_2017_07_011
S2211675317300179
GroupedDBID --M
.~1
0R~
1~.
1~5
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABAOU
ABFYP
ABLST
ABMAC
ABMMH
ABQEM
ABQYD
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ARUGR
ATOGT
AVARZ
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IMUCA
KCYFY
KOM
M41
MHUIS
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
PRBVW
Q38
RIG
ROL
SDF
SPC
SPCBC
SSB
SSD
SSE
SSJ
SSO
SSW
SSZ
T5K
~G-
AAQFI
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c306t-ef4c7100c311c9d24e078fbc411aa9dd034309c53a428de007c8a80eb7da48a73
IEDL.DBID AIKHN
ISSN 2211-6753
IngestDate Thu Sep 26 21:33:42 EDT 2024
Fri Feb 23 02:26:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatial analysis
Generalized Linear Models
Geographically Weighted Regression
Beta regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-ef4c7100c311c9d24e078fbc411aa9dd034309c53a428de007c8a80eb7da48a73
PageCount 25
ParticipantIDs crossref_primary_10_1016_j_spasta_2017_07_011
elsevier_sciencedirect_doi_10_1016_j_spasta_2017_07_011
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationTitle Spatial statistics
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eskelson, Madsen, Hagar, Temesgen (b8) 2011; 57
Castellani, Pattitoni, Scorcu (b5) 2012; 1
Silva, Rodrigues (b28) 2014; 24
Nakaya, Fotheringham, Brunsdon, Charlton (b21) 2005; 24
(Accessed 02 September 2015).
Korhonen, Ali-Sisto, Tokola (b17) 2015; 49
PNUD, IPEA, FJP, 2010. Atlas do desenvolvimento humano no Brasil. Available at
Brehm, Gates (b2) 1993; 37
IBGE, 2010. Censo demografico 2010. Available at
Brunsdon, Fotheringham, Charlton (b4) 1998; 47
Gollini, Lu, Charlton, Brunsdon, Harris (b14) 2015; 63
Falls (b9) 1974; 79
Brunsdon, Fotheringham, Charlton (b3) 1996; 28
Cribari-Neto, Zeileis (b6) 2010; 34
Sulaiman, Oo, Wahab, Zakaria (b29) 1999; 18
Ferrari, Cribari-Neto (b10) 2004; 31
Atkinson, German, Sear, Clark (b1) 2003; 35
Fotheringham, Brunsdon, Charlton (b11) 2002
Dyke, Patterson (b7) 1952; 8
Nocedal, Wright (b22) 2006
Paez, Farber, Wheeler (b23) 2011; 43
Fotheringham, Oshan (b13) 2016; 18
Fotheringham, Charlton, Brunsdon (b12) 1996; 10
Gupta, Nadarajah (b15) 2004
Luo, Kanala (b18) 2008; 7144
Pereira, Souza, Cribari-Neto (b25) 2014; 36
Montgomery, Runger (b20) 2010
Swearingen, Castro, Bursac (b30) 2011
Peplonska, Bukowska, Sobala, Reszka, Gromadzinska, Wasowicz, Lie, Kjuus, Ursin (b24) 2012; 21
McDonald, Xu (b19) 1995; 66
Silva, Fotheringham (b27) 2016; 48
Castellani (10.1016/j.spasta.2017.07.011_b5) 2012; 1
Atkinson (10.1016/j.spasta.2017.07.011_b1) 2003; 35
Fotheringham (10.1016/j.spasta.2017.07.011_b13) 2016; 18
Fotheringham (10.1016/j.spasta.2017.07.011_b12) 1996; 10
McDonald (10.1016/j.spasta.2017.07.011_b19) 1995; 66
Dyke (10.1016/j.spasta.2017.07.011_b7) 1952; 8
Nocedal (10.1016/j.spasta.2017.07.011_b22) 2006
10.1016/j.spasta.2017.07.011_b26
Eskelson (10.1016/j.spasta.2017.07.011_b8) 2011; 57
Paez (10.1016/j.spasta.2017.07.011_b23) 2011; 43
Montgomery (10.1016/j.spasta.2017.07.011_b20) 2010
Falls (10.1016/j.spasta.2017.07.011_b9) 1974; 79
Brunsdon (10.1016/j.spasta.2017.07.011_b4) 1998; 47
Gupta (10.1016/j.spasta.2017.07.011_b15) 2004
Silva (10.1016/j.spasta.2017.07.011_b28) 2014; 24
Cribari-Neto (10.1016/j.spasta.2017.07.011_b6) 2010; 34
Korhonen (10.1016/j.spasta.2017.07.011_b17) 2015; 49
Brunsdon (10.1016/j.spasta.2017.07.011_b3) 1996; 28
Fotheringham (10.1016/j.spasta.2017.07.011_b11) 2002
Ferrari (10.1016/j.spasta.2017.07.011_b10) 2004; 31
Luo (10.1016/j.spasta.2017.07.011_b18) 2008; 7144
Gollini (10.1016/j.spasta.2017.07.011_b14) 2015; 63
Brehm (10.1016/j.spasta.2017.07.011_b2) 1993; 37
Swearingen (10.1016/j.spasta.2017.07.011_b30) 2011
10.1016/j.spasta.2017.07.011_b16
Silva (10.1016/j.spasta.2017.07.011_b27) 2016; 48
Peplonska (10.1016/j.spasta.2017.07.011_b24) 2012; 21
Pereira (10.1016/j.spasta.2017.07.011_b25) 2014; 36
Sulaiman (10.1016/j.spasta.2017.07.011_b29) 1999; 18
Nakaya (10.1016/j.spasta.2017.07.011_b21) 2005; 24
References_xml – volume: 8
  start-page: 1
  year: 1952
  end-page: 12
  ident: b7
  article-title: Analysis of factorial arrangements when the data are proportions
  publication-title: Biometrics
  contributor:
    fullname: Patterson
– volume: 47
  start-page: 431
  year: 1998
  end-page: 443
  ident: b4
  article-title: Geographically weighted regression - Modelling Spatial Non-Stationarity
  publication-title: The Statistician
  contributor:
    fullname: Charlton
– volume: 66
  start-page: 133
  year: 1995
  end-page: 152
  ident: b19
  article-title: A generalization of the beta distribution with applications
  publication-title: J. Econometrics
  contributor:
    fullname: Xu
– volume: 35
  start-page: 58
  year: 2003
  end-page: 82
  ident: b1
  article-title: Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression
  publication-title: Geogr. Anal.
  contributor:
    fullname: Clark
– volume: 57
  start-page: 212
  year: 2011
  end-page: 221
  ident: b8
  article-title: Estimating riparian understory vegetation cover with beta regression and copula models
  publication-title: Forest Sci.
  contributor:
    fullname: Temesgen
– volume: 28
  start-page: 281
  year: 1996
  end-page: 298
  ident: b3
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geograph. Anal.
  contributor:
    fullname: Charlton
– volume: 37
  start-page: 555
  year: 1993
  end-page: 581
  ident: b2
  article-title: Donut shops and speed traps: Evaluating models of supervision on police behavior
  publication-title: Amer. J. Polit. Sci.
  contributor:
    fullname: Gates
– volume: 24
  start-page: 769
  year: 2014
  end-page: 783
  ident: b28
  article-title: Geographically weighted negative binomial regression - incorporating overdispersion
  publication-title: Stat. Comput.
  contributor:
    fullname: Rodrigues
– volume: 63
  start-page: 1
  year: 2015
  end-page: 50
  ident: b14
  article-title: Gwmodel: an r package for exploring spatial heterogeneity using geographically weighted models
  publication-title: J. J. Stat. Softw.
  contributor:
    fullname: Harris
– volume: 36
  start-page: 23
  year: 2014
  end-page: 36
  ident: b25
  article-title: UMA avaliacao da eficiencia do gasto publico nas regioes do brasil
  publication-title: Cienc. Natura
  contributor:
    fullname: Cribari-Neto
– volume: 24
  start-page: 2695
  year: 2005
  end-page: 2717
  ident: b21
  article-title: Geographically weighted Poisson regression for disease association mapping
  publication-title: Stat. Med.
  contributor:
    fullname: Charlton
– volume: 34
  start-page: 1
  year: 2010
  end-page: 24
  ident: b6
  article-title: Beta regression in R
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Zeileis
– volume: 10
  start-page: 605
  year: 1996
  end-page: 627
  ident: b12
  article-title: The geography of parameter space: an investigation of spatial non-stationarity
  publication-title: Int. J. Geogr. Inf. Syst.
  contributor:
    fullname: Brunsdon
– year: 2006
  ident: b22
  publication-title: Numerical Optimization
  contributor:
    fullname: Wright
– volume: 21
  start-page: 1028
  year: 2012
  end-page: 1037
  ident: b24
  article-title: Rotating night shift work and mammographic density
  publication-title: Cancer Epidemiol. Biomarkers Prevent.
  contributor:
    fullname: Ursin
– start-page: 1
  year: 2011
  end-page: 12
  ident: b30
  article-title: Modeling percentage outcomes: the% beta_regression macro
  publication-title: Proceedings of the SAS Global Forum, Las Vegas, NV
  contributor:
    fullname: Bursac
– volume: 49
  year: 2015
  ident: b17
  article-title: Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data
  publication-title: Silva Fennica
  contributor:
    fullname: Tokola
– year: 2002
  ident: b11
  publication-title: Geographically Weighted Regression
  contributor:
    fullname: Charlton
– volume: 7144
  start-page: 1
  year: 2008
  end-page: 11
  ident: b18
  article-title: Modelling urban growth with geographically weighted multinomial logistic regression
  publication-title: Proc. SPIE, Int. Soc. Opt. Eng.
  contributor:
    fullname: Kanala
– volume: 48
  start-page: 233
  year: 2016
  end-page: 247
  ident: b27
  article-title: The multiple testing issue in geographically weighted regression
  publication-title: Geograph. Anal.
  contributor:
    fullname: Fotheringham
– volume: 18
  start-page: 303
  year: 2016
  end-page: 329
  ident: b13
  article-title: Geographically weighted regression and multicollinearity: dispelling the myth
  publication-title: J. Geogr. Syst.
  contributor:
    fullname: Oshan
– year: 2004
  ident: b15
  publication-title: Handbook of Beta Distribution and Its Applications
  contributor:
    fullname: Nadarajah
– year: 2010
  ident: b20
  publication-title: Applied Statistics and Probability for Engineers
  contributor:
    fullname: Runger
– volume: 18
  start-page: 573
  year: 1999
  end-page: 579
  ident: b29
  article-title: Application of beta distribution model to Malaysian sunshine data
  publication-title: Renew. Energy
  contributor:
    fullname: Zakaria
– volume: 1
  start-page: 16
  year: 2012
  end-page: 22
  ident: b5
  article-title: Visual artist price heterogeneity
  publication-title: Econ. Bus. Lett.
  contributor:
    fullname: Scorcu
– volume: 79
  start-page: 1261
  year: 1974
  end-page: 1264
  ident: b9
  article-title: The beta distribution: a statistical model for world cloud cover
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Falls
– volume: 31
  start-page: 799
  year: 2004
  end-page: 815
  ident: b10
  article-title: Beta regression for modelling rates and proportions
  publication-title: J. Appl. Stat.
  contributor:
    fullname: Cribari-Neto
– volume: 43
  start-page: 2992
  year: 2011
  end-page: 3010
  ident: b23
  article-title: A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships
  publication-title: Environ. Plan. A
  contributor:
    fullname: Wheeler
– volume: 49
  issue: 5
  year: 2015
  ident: 10.1016/j.spasta.2017.07.011_b17
  article-title: Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data
  publication-title: Silva Fennica
  doi: 10.14214/sf.1405
  contributor:
    fullname: Korhonen
– volume: 66
  start-page: 133
  issue: 1
  year: 1995
  ident: 10.1016/j.spasta.2017.07.011_b19
  article-title: A generalization of the beta distribution with applications
  publication-title: J. Econometrics
  doi: 10.1016/0304-4076(94)01612-4
  contributor:
    fullname: McDonald
– start-page: 1
  year: 2011
  ident: 10.1016/j.spasta.2017.07.011_b30
  article-title: Modeling percentage outcomes: the% beta_regression macro
  contributor:
    fullname: Swearingen
– volume: 57
  start-page: 212
  issue: 3
  year: 2011
  ident: 10.1016/j.spasta.2017.07.011_b8
  article-title: Estimating riparian understory vegetation cover with beta regression and copula models
  publication-title: Forest Sci.
  doi: 10.1093/forestscience/57.3.212
  contributor:
    fullname: Eskelson
– year: 2006
  ident: 10.1016/j.spasta.2017.07.011_b22
  contributor:
    fullname: Nocedal
– volume: 24
  start-page: 2695
  issue: 17
  year: 2005
  ident: 10.1016/j.spasta.2017.07.011_b21
  article-title: Geographically weighted Poisson regression for disease association mapping
  publication-title: Stat. Med.
  doi: 10.1002/sim.2129
  contributor:
    fullname: Nakaya
– volume: 18
  start-page: 573
  issue: 4
  year: 1999
  ident: 10.1016/j.spasta.2017.07.011_b29
  article-title: Application of beta distribution model to Malaysian sunshine data
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(99)00002-6
  contributor:
    fullname: Sulaiman
– year: 2004
  ident: 10.1016/j.spasta.2017.07.011_b15
  contributor:
    fullname: Gupta
– volume: 21
  start-page: 1028
  issue: 7
  year: 2012
  ident: 10.1016/j.spasta.2017.07.011_b24
  article-title: Rotating night shift work and mammographic density
  publication-title: Cancer Epidemiol. Biomarkers Prevent.
  doi: 10.1158/1055-9965.EPI-12-0005
  contributor:
    fullname: Peplonska
– volume: 79
  start-page: 1261
  issue: 9
  year: 1974
  ident: 10.1016/j.spasta.2017.07.011_b9
  article-title: The beta distribution: a statistical model for world cloud cover
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC079i009p01261
  contributor:
    fullname: Falls
– volume: 37
  start-page: 555
  issue: 2
  year: 1993
  ident: 10.1016/j.spasta.2017.07.011_b2
  article-title: Donut shops and speed traps: Evaluating models of supervision on police behavior
  publication-title: Amer. J. Polit. Sci.
  doi: 10.2307/2111384
  contributor:
    fullname: Brehm
– volume: 7144
  start-page: 1
  year: 2008
  ident: 10.1016/j.spasta.2017.07.011_b18
  article-title: Modelling urban growth with geographically weighted multinomial logistic regression
  publication-title: Proc. SPIE, Int. Soc. Opt. Eng.
  contributor:
    fullname: Luo
– volume: 35
  start-page: 58
  issue: 1
  year: 2003
  ident: 10.1016/j.spasta.2017.07.011_b1
  article-title: Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression
  publication-title: Geogr. Anal.
  doi: 10.1353/geo.2002.0028
  contributor:
    fullname: Atkinson
– volume: 28
  start-page: 281
  issue: 4
  year: 1996
  ident: 10.1016/j.spasta.2017.07.011_b3
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geograph. Anal.
  doi: 10.1111/j.1538-4632.1996.tb00936.x
  contributor:
    fullname: Brunsdon
– volume: 34
  start-page: 1
  issue: 2
  year: 2010
  ident: 10.1016/j.spasta.2017.07.011_b6
  article-title: Beta regression in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v034.i02
  contributor:
    fullname: Cribari-Neto
– volume: 47
  start-page: 431
  issue: 3
  year: 1998
  ident: 10.1016/j.spasta.2017.07.011_b4
  article-title: Geographically weighted regression - Modelling Spatial Non-Stationarity
  publication-title: The Statistician
  doi: 10.1111/1467-9884.00145
  contributor:
    fullname: Brunsdon
– volume: 8
  start-page: 1
  issue: 1
  year: 1952
  ident: 10.1016/j.spasta.2017.07.011_b7
  article-title: Analysis of factorial arrangements when the data are proportions
  publication-title: Biometrics
  doi: 10.2307/3001521
  contributor:
    fullname: Dyke
– ident: 10.1016/j.spasta.2017.07.011_b16
– volume: 31
  start-page: 799
  issue: 7
  year: 2004
  ident: 10.1016/j.spasta.2017.07.011_b10
  article-title: Beta regression for modelling rates and proportions
  publication-title: J. Appl. Stat.
  doi: 10.1080/0266476042000214501
  contributor:
    fullname: Ferrari
– year: 2010
  ident: 10.1016/j.spasta.2017.07.011_b20
  contributor:
    fullname: Montgomery
– volume: 63
  start-page: 1
  issue: 17
  year: 2015
  ident: 10.1016/j.spasta.2017.07.011_b14
  article-title: Gwmodel: an r package for exploring spatial heterogeneity using geographically weighted models
  publication-title: J. J. Stat. Softw.
  contributor:
    fullname: Gollini
– volume: 1
  start-page: 16
  issue: 3
  year: 2012
  ident: 10.1016/j.spasta.2017.07.011_b5
  article-title: Visual artist price heterogeneity
  publication-title: Econ. Bus. Lett.
  doi: 10.17811/ebl.1.3.2012.16-22
  contributor:
    fullname: Castellani
– volume: 18
  start-page: 303
  issue: 4
  year: 2016
  ident: 10.1016/j.spasta.2017.07.011_b13
  article-title: Geographically weighted regression and multicollinearity: dispelling the myth
  publication-title: J. Geogr. Syst.
  doi: 10.1007/s10109-016-0239-5
  contributor:
    fullname: Fotheringham
– volume: 10
  start-page: 605
  issue: 5
  year: 1996
  ident: 10.1016/j.spasta.2017.07.011_b12
  article-title: The geography of parameter space: an investigation of spatial non-stationarity
  publication-title: Int. J. Geogr. Inf. Syst.
  doi: 10.1080/026937996137909
  contributor:
    fullname: Fotheringham
– ident: 10.1016/j.spasta.2017.07.011_b26
– volume: 48
  start-page: 233
  year: 2016
  ident: 10.1016/j.spasta.2017.07.011_b27
  article-title: The multiple testing issue in geographically weighted regression
  publication-title: Geograph. Anal.
  doi: 10.1111/gean.12084
  contributor:
    fullname: Silva
– volume: 24
  start-page: 769
  issue: 5
  year: 2014
  ident: 10.1016/j.spasta.2017.07.011_b28
  article-title: Geographically weighted negative binomial regression - incorporating overdispersion
  publication-title: Stat. Comput.
  contributor:
    fullname: Silva
– volume: 36
  start-page: 23
  issue: Ed. Especial
  year: 2014
  ident: 10.1016/j.spasta.2017.07.011_b25
  article-title: UMA avaliacao da eficiencia do gasto publico nas regioes do brasil
  publication-title: Cienc. Natura
  contributor:
    fullname: Pereira
– year: 2002
  ident: 10.1016/j.spasta.2017.07.011_b11
  contributor:
    fullname: Fotheringham
– volume: 43
  start-page: 2992
  issue: 12
  year: 2011
  ident: 10.1016/j.spasta.2017.07.011_b23
  article-title: A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships
  publication-title: Environ. Plan. A
  doi: 10.1068/a44111
  contributor:
    fullname: Paez
SSID ssj0000740352
Score 2.1658142
Snippet Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 279
SubjectTerms Beta regression
Generalized Linear Models
Geographically Weighted Regression
Spatial analysis
Title Geographically Weighted Beta Regression
URI https://dx.doi.org/10.1016/j.spasta.2017.07.011
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uPQiPvFZchA8rc1mN01yrMVSFXtQi70t-4pUSiwSD1787c5mE1EQD0IuCQxkZyYzk9lvvwE4jVlOc_QDkseRJNywiKhsiAYxmvFhziJlXB_ydjaczvn1Il60YNychXGwyjr2-5heRev6yaDW5mC9XA7uo8jtIaAPOcp19Ks2dDEdRWkHuqOrm-nsq9WCWdKxfroxcyhCnExziK5CeuGni5WYg3klFZEnpb8nqW-JZ7IJG3XFGIz8S21Byxbb0HNFoudY3oGzepK5Q1WsVu_BY9XutCa4sKUM7uyTx7oWuzCfXD6Mp6QegEA0VvIlsTnXjn1HM0p1ZiJuMaHnSnNKpcyMCRlnYaZjJvEnwlhcqE5lGlqVGMlTmbA96BQvhd2HIKNWSWUUd4R3VDMVx1pTw5VJmNYmOwDSrFisPc-FaABgz8JrSDgNiRAvSg8gadQifthLYCj-U_Lw35JH0HN3Hn53DJ3y9c2eYElQqj60zz9ovzb8J0hLtQs
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CL-MT6zEHwtDSb3TTNsRZLah8HbbG3ZV-RSolF4sF_72weoiAehJwSBrIzszOTybffAFyHLKUp-gFJw0ASblhAVNxFgxjNeDdlgTKuDzmddZMFv1-GywYM6rMwDlZZxf4yphfRurrTqbTZ2axWnccgcP8Q0Icc5Tr61Ra0sBqIcXe2-qNxMvtqtWCWdKyfbswcihAnUx-iK5BeuHWxEnMwr6gg8qT09yT1LfEM92C3qhi9fvlS-9Cw2QHsuCKx5Fg-hJtqkrlDVazXH95T0e60xru1ufQe7HOJdc2OYDG8mw8SUg1AIBor-ZzYlGvHvqMZpTo2AbeY0FOlOaVSxsb4jDM_1iGT-BFhLC5U92TPtyoykvdkxI6hmb1m9gS8mFollVHcEd5RzVQYak0NVyZiWpu4DaResdiUPBeiBoC9iFJDwmlI-HhR2oaoVov4YS-BofhPydN_S17BdjKfTsRkNBufwY57UkLxzqGZv73bCywPcnVZmf8Tr9S2_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geographically+Weighted+Beta+Regression&rft.jtitle=Spatial+statistics&rft.au=da+Silva%2C+Alan+Ricardo&rft.au=de+Oliveira+Lima%2C+Andreza&rft.date=2017-08-01&rft.issn=2211-6753&rft.eissn=2211-6753&rft.volume=21&rft.spage=279&rft.epage=303&rft_id=info:doi/10.1016%2Fj.spasta.2017.07.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spasta_2017_07_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-6753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-6753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-6753&client=summon