Geographically Weighted Beta Regression
Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are based on the assumption that the error (or, in some cases, the response variable) is normally distributed with constant variance and that th...
Saved in:
Published in | Spatial statistics Vol. 21; pp. 279 - 303 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are based on the assumption that the error (or, in some cases, the response variable) is normally distributed with constant variance and that the relations are equal throughout space. Thus, these models may not be the most appropriate to adjust spatially varying rates and proportions. The Beta Regression model deals with rates and proportions and has been shown to be a good approach to model this type of data, since it naturally adapts to variables constrained to an interval of the real line and exhibiting heteroscedasticity, which is a common characteristic in this type of data. In addition, to deal with spatial non-stationarity, Geographically Weighted Regression (GWR) allows for variability in the parameters by an extension of the linear regression model, providing a better understanding of the spatial phenomenon. Therefore, we propose the Geographically Weighted Beta Regression (GWBR) model which combines the features of the above models such that a better fit is provided in the study of spatially varying continuous variables restricted to an interval of the real line. We applied this model to analyze the proportion of households that have telephones in the state of Sao Paulo, Brazil. The results were more appropriate than those obtained by the global models and the Geographically Weighted Regression model, following statistics such as AICc, pseudo-R2, log-likelihood and by the reduction of spatial dependence computed by Moran’s I. |
---|---|
AbstractList | Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are based on the assumption that the error (or, in some cases, the response variable) is normally distributed with constant variance and that the relations are equal throughout space. Thus, these models may not be the most appropriate to adjust spatially varying rates and proportions. The Beta Regression model deals with rates and proportions and has been shown to be a good approach to model this type of data, since it naturally adapts to variables constrained to an interval of the real line and exhibiting heteroscedasticity, which is a common characteristic in this type of data. In addition, to deal with spatial non-stationarity, Geographically Weighted Regression (GWR) allows for variability in the parameters by an extension of the linear regression model, providing a better understanding of the spatial phenomenon. Therefore, we propose the Geographically Weighted Beta Regression (GWBR) model which combines the features of the above models such that a better fit is provided in the study of spatially varying continuous variables restricted to an interval of the real line. We applied this model to analyze the proportion of households that have telephones in the state of Sao Paulo, Brazil. The results were more appropriate than those obtained by the global models and the Geographically Weighted Regression model, following statistics such as AICc, pseudo-R2, log-likelihood and by the reduction of spatial dependence computed by Moran’s I. |
Author | de Oliveira Lima, Andreza da Silva, Alan Ricardo |
Author_xml | – sequence: 1 givenname: Alan Ricardo surname: da Silva fullname: da Silva, Alan Ricardo email: alansilva@unb.br – sequence: 2 givenname: Andreza surname: de Oliveira Lima fullname: de Oliveira Lima, Andreza |
BookMark | eNp9j0FLw0AQhRepYK39Bx5685Q4k91mk4ugRatQEETxuEx3J-2GmJTdIPTfmxIPnhwezLu8x_suxaTtWhbiGiFFwPy2TuOBYk9pBqhTGIR4JqZZhpjkeiknf_yFmMdYw3BagVxmU3Gz5m4X6LD3lprmuPhkv9v37BYP3NPijXeBY_RdeyXOK2oiz3__THw8Pb6vnpPN6_pldb9JrIS8T7hSViOAlYi2dJli0EW1tQqRqHQOpJJQ2qUklRWOhx22oAJ4qx2pgrScCTX22tDFGLgyh-C_KBwNgjnxmtqMvObEa2AQ4hC7G2M8bPv2HEy0nlvLzge2vXGd_7_gBwZ_YSc |
CitedBy_id | crossref_primary_10_1016_j_asej_2019_08_002 crossref_primary_10_1080_00031305_2021_1965657 crossref_primary_10_30897_ijegeo_1399172 crossref_primary_10_17341_gazimmfd_757131 crossref_primary_10_1177_1044389418768523 crossref_primary_10_3390_infrastructures9060089 crossref_primary_10_1214_22_BA1357 crossref_primary_10_3390_land9010007 crossref_primary_10_1016_j_neucom_2020_02_058 crossref_primary_10_1111_area_12757 crossref_primary_10_3390_sym13020197 crossref_primary_10_1214_22_BJPS543 crossref_primary_10_1002_cjs_11563 crossref_primary_10_5638_thagis_29_11 |
Cites_doi | 10.14214/sf.1405 10.1016/0304-4076(94)01612-4 10.1093/forestscience/57.3.212 10.1002/sim.2129 10.1016/S0960-1481(99)00002-6 10.1158/1055-9965.EPI-12-0005 10.1029/JC079i009p01261 10.2307/2111384 10.1353/geo.2002.0028 10.1111/j.1538-4632.1996.tb00936.x 10.18637/jss.v034.i02 10.1111/1467-9884.00145 10.2307/3001521 10.1080/0266476042000214501 10.17811/ebl.1.3.2012.16-22 10.1007/s10109-016-0239-5 10.1080/026937996137909 10.1111/gean.12084 10.1068/a44111 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spasta.2017.07.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2211-6753 |
EndPage | 303 |
ExternalDocumentID | 10_1016_j_spasta_2017_07_011 S2211675317300179 |
GroupedDBID | --M .~1 0R~ 1~. 1~5 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AARIN AAXUO ABAOU ABFYP ABLST ABMAC ABMMH ABQEM ABQYD ABXDB ABYKQ ACAZW ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ARUGR ATOGT AVARZ AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IMUCA KCYFY KOM M41 MHUIS MO0 O-L O9- OAUVE P-8 P-9 PC. PRBVW Q38 RIG ROL SDF SPC SPCBC SSB SSD SSE SSJ SSO SSW SSZ T5K ~G- AAQFI AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c306t-ef4c7100c311c9d24e078fbc411aa9dd034309c53a428de007c8a80eb7da48a73 |
IEDL.DBID | AIKHN |
ISSN | 2211-6753 |
IngestDate | Thu Sep 26 21:33:42 EDT 2024 Fri Feb 23 02:26:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatial analysis Generalized Linear Models Geographically Weighted Regression Beta regression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-ef4c7100c311c9d24e078fbc411aa9dd034309c53a428de007c8a80eb7da48a73 |
PageCount | 25 |
ParticipantIDs | crossref_primary_10_1016_j_spasta_2017_07_011 elsevier_sciencedirect_doi_10_1016_j_spasta_2017_07_011 |
PublicationCentury | 2000 |
PublicationDate | August 2017 2017-08-00 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationTitle | Spatial statistics |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eskelson, Madsen, Hagar, Temesgen (b8) 2011; 57 Castellani, Pattitoni, Scorcu (b5) 2012; 1 Silva, Rodrigues (b28) 2014; 24 Nakaya, Fotheringham, Brunsdon, Charlton (b21) 2005; 24 (Accessed 02 September 2015). Korhonen, Ali-Sisto, Tokola (b17) 2015; 49 PNUD, IPEA, FJP, 2010. Atlas do desenvolvimento humano no Brasil. Available at Brehm, Gates (b2) 1993; 37 IBGE, 2010. Censo demografico 2010. Available at Brunsdon, Fotheringham, Charlton (b4) 1998; 47 Gollini, Lu, Charlton, Brunsdon, Harris (b14) 2015; 63 Falls (b9) 1974; 79 Brunsdon, Fotheringham, Charlton (b3) 1996; 28 Cribari-Neto, Zeileis (b6) 2010; 34 Sulaiman, Oo, Wahab, Zakaria (b29) 1999; 18 Ferrari, Cribari-Neto (b10) 2004; 31 Atkinson, German, Sear, Clark (b1) 2003; 35 Fotheringham, Brunsdon, Charlton (b11) 2002 Dyke, Patterson (b7) 1952; 8 Nocedal, Wright (b22) 2006 Paez, Farber, Wheeler (b23) 2011; 43 Fotheringham, Oshan (b13) 2016; 18 Fotheringham, Charlton, Brunsdon (b12) 1996; 10 Gupta, Nadarajah (b15) 2004 Luo, Kanala (b18) 2008; 7144 Pereira, Souza, Cribari-Neto (b25) 2014; 36 Montgomery, Runger (b20) 2010 Swearingen, Castro, Bursac (b30) 2011 Peplonska, Bukowska, Sobala, Reszka, Gromadzinska, Wasowicz, Lie, Kjuus, Ursin (b24) 2012; 21 McDonald, Xu (b19) 1995; 66 Silva, Fotheringham (b27) 2016; 48 Castellani (10.1016/j.spasta.2017.07.011_b5) 2012; 1 Atkinson (10.1016/j.spasta.2017.07.011_b1) 2003; 35 Fotheringham (10.1016/j.spasta.2017.07.011_b13) 2016; 18 Fotheringham (10.1016/j.spasta.2017.07.011_b12) 1996; 10 McDonald (10.1016/j.spasta.2017.07.011_b19) 1995; 66 Dyke (10.1016/j.spasta.2017.07.011_b7) 1952; 8 Nocedal (10.1016/j.spasta.2017.07.011_b22) 2006 10.1016/j.spasta.2017.07.011_b26 Eskelson (10.1016/j.spasta.2017.07.011_b8) 2011; 57 Paez (10.1016/j.spasta.2017.07.011_b23) 2011; 43 Montgomery (10.1016/j.spasta.2017.07.011_b20) 2010 Falls (10.1016/j.spasta.2017.07.011_b9) 1974; 79 Brunsdon (10.1016/j.spasta.2017.07.011_b4) 1998; 47 Gupta (10.1016/j.spasta.2017.07.011_b15) 2004 Silva (10.1016/j.spasta.2017.07.011_b28) 2014; 24 Cribari-Neto (10.1016/j.spasta.2017.07.011_b6) 2010; 34 Korhonen (10.1016/j.spasta.2017.07.011_b17) 2015; 49 Brunsdon (10.1016/j.spasta.2017.07.011_b3) 1996; 28 Fotheringham (10.1016/j.spasta.2017.07.011_b11) 2002 Ferrari (10.1016/j.spasta.2017.07.011_b10) 2004; 31 Luo (10.1016/j.spasta.2017.07.011_b18) 2008; 7144 Gollini (10.1016/j.spasta.2017.07.011_b14) 2015; 63 Brehm (10.1016/j.spasta.2017.07.011_b2) 1993; 37 Swearingen (10.1016/j.spasta.2017.07.011_b30) 2011 10.1016/j.spasta.2017.07.011_b16 Silva (10.1016/j.spasta.2017.07.011_b27) 2016; 48 Peplonska (10.1016/j.spasta.2017.07.011_b24) 2012; 21 Pereira (10.1016/j.spasta.2017.07.011_b25) 2014; 36 Sulaiman (10.1016/j.spasta.2017.07.011_b29) 1999; 18 Nakaya (10.1016/j.spasta.2017.07.011_b21) 2005; 24 |
References_xml | – volume: 8 start-page: 1 year: 1952 end-page: 12 ident: b7 article-title: Analysis of factorial arrangements when the data are proportions publication-title: Biometrics contributor: fullname: Patterson – volume: 47 start-page: 431 year: 1998 end-page: 443 ident: b4 article-title: Geographically weighted regression - Modelling Spatial Non-Stationarity publication-title: The Statistician contributor: fullname: Charlton – volume: 66 start-page: 133 year: 1995 end-page: 152 ident: b19 article-title: A generalization of the beta distribution with applications publication-title: J. Econometrics contributor: fullname: Xu – volume: 35 start-page: 58 year: 2003 end-page: 82 ident: b1 article-title: Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression publication-title: Geogr. Anal. contributor: fullname: Clark – volume: 57 start-page: 212 year: 2011 end-page: 221 ident: b8 article-title: Estimating riparian understory vegetation cover with beta regression and copula models publication-title: Forest Sci. contributor: fullname: Temesgen – volume: 28 start-page: 281 year: 1996 end-page: 298 ident: b3 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geograph. Anal. contributor: fullname: Charlton – volume: 37 start-page: 555 year: 1993 end-page: 581 ident: b2 article-title: Donut shops and speed traps: Evaluating models of supervision on police behavior publication-title: Amer. J. Polit. Sci. contributor: fullname: Gates – volume: 24 start-page: 769 year: 2014 end-page: 783 ident: b28 article-title: Geographically weighted negative binomial regression - incorporating overdispersion publication-title: Stat. Comput. contributor: fullname: Rodrigues – volume: 63 start-page: 1 year: 2015 end-page: 50 ident: b14 article-title: Gwmodel: an r package for exploring spatial heterogeneity using geographically weighted models publication-title: J. J. Stat. Softw. contributor: fullname: Harris – volume: 36 start-page: 23 year: 2014 end-page: 36 ident: b25 article-title: UMA avaliacao da eficiencia do gasto publico nas regioes do brasil publication-title: Cienc. Natura contributor: fullname: Cribari-Neto – volume: 24 start-page: 2695 year: 2005 end-page: 2717 ident: b21 article-title: Geographically weighted Poisson regression for disease association mapping publication-title: Stat. Med. contributor: fullname: Charlton – volume: 34 start-page: 1 year: 2010 end-page: 24 ident: b6 article-title: Beta regression in R publication-title: J. Stat. Softw. contributor: fullname: Zeileis – volume: 10 start-page: 605 year: 1996 end-page: 627 ident: b12 article-title: The geography of parameter space: an investigation of spatial non-stationarity publication-title: Int. J. Geogr. Inf. Syst. contributor: fullname: Brunsdon – year: 2006 ident: b22 publication-title: Numerical Optimization contributor: fullname: Wright – volume: 21 start-page: 1028 year: 2012 end-page: 1037 ident: b24 article-title: Rotating night shift work and mammographic density publication-title: Cancer Epidemiol. Biomarkers Prevent. contributor: fullname: Ursin – start-page: 1 year: 2011 end-page: 12 ident: b30 article-title: Modeling percentage outcomes: the% beta_regression macro publication-title: Proceedings of the SAS Global Forum, Las Vegas, NV contributor: fullname: Bursac – volume: 49 year: 2015 ident: b17 article-title: Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data publication-title: Silva Fennica contributor: fullname: Tokola – year: 2002 ident: b11 publication-title: Geographically Weighted Regression contributor: fullname: Charlton – volume: 7144 start-page: 1 year: 2008 end-page: 11 ident: b18 article-title: Modelling urban growth with geographically weighted multinomial logistic regression publication-title: Proc. SPIE, Int. Soc. Opt. Eng. contributor: fullname: Kanala – volume: 48 start-page: 233 year: 2016 end-page: 247 ident: b27 article-title: The multiple testing issue in geographically weighted regression publication-title: Geograph. Anal. contributor: fullname: Fotheringham – volume: 18 start-page: 303 year: 2016 end-page: 329 ident: b13 article-title: Geographically weighted regression and multicollinearity: dispelling the myth publication-title: J. Geogr. Syst. contributor: fullname: Oshan – year: 2004 ident: b15 publication-title: Handbook of Beta Distribution and Its Applications contributor: fullname: Nadarajah – year: 2010 ident: b20 publication-title: Applied Statistics and Probability for Engineers contributor: fullname: Runger – volume: 18 start-page: 573 year: 1999 end-page: 579 ident: b29 article-title: Application of beta distribution model to Malaysian sunshine data publication-title: Renew. Energy contributor: fullname: Zakaria – volume: 1 start-page: 16 year: 2012 end-page: 22 ident: b5 article-title: Visual artist price heterogeneity publication-title: Econ. Bus. Lett. contributor: fullname: Scorcu – volume: 79 start-page: 1261 year: 1974 end-page: 1264 ident: b9 article-title: The beta distribution: a statistical model for world cloud cover publication-title: J. Geophys. Res. contributor: fullname: Falls – volume: 31 start-page: 799 year: 2004 end-page: 815 ident: b10 article-title: Beta regression for modelling rates and proportions publication-title: J. Appl. Stat. contributor: fullname: Cribari-Neto – volume: 43 start-page: 2992 year: 2011 end-page: 3010 ident: b23 article-title: A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships publication-title: Environ. Plan. A contributor: fullname: Wheeler – volume: 49 issue: 5 year: 2015 ident: 10.1016/j.spasta.2017.07.011_b17 article-title: Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data publication-title: Silva Fennica doi: 10.14214/sf.1405 contributor: fullname: Korhonen – volume: 66 start-page: 133 issue: 1 year: 1995 ident: 10.1016/j.spasta.2017.07.011_b19 article-title: A generalization of the beta distribution with applications publication-title: J. Econometrics doi: 10.1016/0304-4076(94)01612-4 contributor: fullname: McDonald – start-page: 1 year: 2011 ident: 10.1016/j.spasta.2017.07.011_b30 article-title: Modeling percentage outcomes: the% beta_regression macro contributor: fullname: Swearingen – volume: 57 start-page: 212 issue: 3 year: 2011 ident: 10.1016/j.spasta.2017.07.011_b8 article-title: Estimating riparian understory vegetation cover with beta regression and copula models publication-title: Forest Sci. doi: 10.1093/forestscience/57.3.212 contributor: fullname: Eskelson – year: 2006 ident: 10.1016/j.spasta.2017.07.011_b22 contributor: fullname: Nocedal – volume: 24 start-page: 2695 issue: 17 year: 2005 ident: 10.1016/j.spasta.2017.07.011_b21 article-title: Geographically weighted Poisson regression for disease association mapping publication-title: Stat. Med. doi: 10.1002/sim.2129 contributor: fullname: Nakaya – volume: 18 start-page: 573 issue: 4 year: 1999 ident: 10.1016/j.spasta.2017.07.011_b29 article-title: Application of beta distribution model to Malaysian sunshine data publication-title: Renew. Energy doi: 10.1016/S0960-1481(99)00002-6 contributor: fullname: Sulaiman – year: 2004 ident: 10.1016/j.spasta.2017.07.011_b15 contributor: fullname: Gupta – volume: 21 start-page: 1028 issue: 7 year: 2012 ident: 10.1016/j.spasta.2017.07.011_b24 article-title: Rotating night shift work and mammographic density publication-title: Cancer Epidemiol. Biomarkers Prevent. doi: 10.1158/1055-9965.EPI-12-0005 contributor: fullname: Peplonska – volume: 79 start-page: 1261 issue: 9 year: 1974 ident: 10.1016/j.spasta.2017.07.011_b9 article-title: The beta distribution: a statistical model for world cloud cover publication-title: J. Geophys. Res. doi: 10.1029/JC079i009p01261 contributor: fullname: Falls – volume: 37 start-page: 555 issue: 2 year: 1993 ident: 10.1016/j.spasta.2017.07.011_b2 article-title: Donut shops and speed traps: Evaluating models of supervision on police behavior publication-title: Amer. J. Polit. Sci. doi: 10.2307/2111384 contributor: fullname: Brehm – volume: 7144 start-page: 1 year: 2008 ident: 10.1016/j.spasta.2017.07.011_b18 article-title: Modelling urban growth with geographically weighted multinomial logistic regression publication-title: Proc. SPIE, Int. Soc. Opt. Eng. contributor: fullname: Luo – volume: 35 start-page: 58 issue: 1 year: 2003 ident: 10.1016/j.spasta.2017.07.011_b1 article-title: Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression publication-title: Geogr. Anal. doi: 10.1353/geo.2002.0028 contributor: fullname: Atkinson – volume: 28 start-page: 281 issue: 4 year: 1996 ident: 10.1016/j.spasta.2017.07.011_b3 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geograph. Anal. doi: 10.1111/j.1538-4632.1996.tb00936.x contributor: fullname: Brunsdon – volume: 34 start-page: 1 issue: 2 year: 2010 ident: 10.1016/j.spasta.2017.07.011_b6 article-title: Beta regression in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v034.i02 contributor: fullname: Cribari-Neto – volume: 47 start-page: 431 issue: 3 year: 1998 ident: 10.1016/j.spasta.2017.07.011_b4 article-title: Geographically weighted regression - Modelling Spatial Non-Stationarity publication-title: The Statistician doi: 10.1111/1467-9884.00145 contributor: fullname: Brunsdon – volume: 8 start-page: 1 issue: 1 year: 1952 ident: 10.1016/j.spasta.2017.07.011_b7 article-title: Analysis of factorial arrangements when the data are proportions publication-title: Biometrics doi: 10.2307/3001521 contributor: fullname: Dyke – ident: 10.1016/j.spasta.2017.07.011_b16 – volume: 31 start-page: 799 issue: 7 year: 2004 ident: 10.1016/j.spasta.2017.07.011_b10 article-title: Beta regression for modelling rates and proportions publication-title: J. Appl. Stat. doi: 10.1080/0266476042000214501 contributor: fullname: Ferrari – year: 2010 ident: 10.1016/j.spasta.2017.07.011_b20 contributor: fullname: Montgomery – volume: 63 start-page: 1 issue: 17 year: 2015 ident: 10.1016/j.spasta.2017.07.011_b14 article-title: Gwmodel: an r package for exploring spatial heterogeneity using geographically weighted models publication-title: J. J. Stat. Softw. contributor: fullname: Gollini – volume: 1 start-page: 16 issue: 3 year: 2012 ident: 10.1016/j.spasta.2017.07.011_b5 article-title: Visual artist price heterogeneity publication-title: Econ. Bus. Lett. doi: 10.17811/ebl.1.3.2012.16-22 contributor: fullname: Castellani – volume: 18 start-page: 303 issue: 4 year: 2016 ident: 10.1016/j.spasta.2017.07.011_b13 article-title: Geographically weighted regression and multicollinearity: dispelling the myth publication-title: J. Geogr. Syst. doi: 10.1007/s10109-016-0239-5 contributor: fullname: Fotheringham – volume: 10 start-page: 605 issue: 5 year: 1996 ident: 10.1016/j.spasta.2017.07.011_b12 article-title: The geography of parameter space: an investigation of spatial non-stationarity publication-title: Int. J. Geogr. Inf. Syst. doi: 10.1080/026937996137909 contributor: fullname: Fotheringham – ident: 10.1016/j.spasta.2017.07.011_b26 – volume: 48 start-page: 233 year: 2016 ident: 10.1016/j.spasta.2017.07.011_b27 article-title: The multiple testing issue in geographically weighted regression publication-title: Geograph. Anal. doi: 10.1111/gean.12084 contributor: fullname: Silva – volume: 24 start-page: 769 issue: 5 year: 2014 ident: 10.1016/j.spasta.2017.07.011_b28 article-title: Geographically weighted negative binomial regression - incorporating overdispersion publication-title: Stat. Comput. contributor: fullname: Silva – volume: 36 start-page: 23 issue: Ed. Especial year: 2014 ident: 10.1016/j.spasta.2017.07.011_b25 article-title: UMA avaliacao da eficiencia do gasto publico nas regioes do brasil publication-title: Cienc. Natura contributor: fullname: Pereira – year: 2002 ident: 10.1016/j.spasta.2017.07.011_b11 contributor: fullname: Fotheringham – volume: 43 start-page: 2992 issue: 12 year: 2011 ident: 10.1016/j.spasta.2017.07.011_b23 article-title: A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships publication-title: Environ. Plan. A doi: 10.1068/a44111 contributor: fullname: Paez |
SSID | ssj0000740352 |
Score | 2.1658142 |
Snippet | Linear regression models are often used to describe the relationship between a dependent variable and a set of independent variables. However, these models are... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 279 |
SubjectTerms | Beta regression Generalized Linear Models Geographically Weighted Regression Spatial analysis |
Title | Geographically Weighted Beta Regression |
URI | https://dx.doi.org/10.1016/j.spasta.2017.07.011 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uPQiPvFZchA8rc1mN01yrMVSFXtQi70t-4pUSiwSD1787c5mE1EQD0IuCQxkZyYzk9lvvwE4jVlOc_QDkseRJNywiKhsiAYxmvFhziJlXB_ydjaczvn1Il60YNychXGwyjr2-5heRev6yaDW5mC9XA7uo8jtIaAPOcp19Ks2dDEdRWkHuqOrm-nsq9WCWdKxfroxcyhCnExziK5CeuGni5WYg3klFZEnpb8nqW-JZ7IJG3XFGIz8S21Byxbb0HNFoudY3oGzepK5Q1WsVu_BY9XutCa4sKUM7uyTx7oWuzCfXD6Mp6QegEA0VvIlsTnXjn1HM0p1ZiJuMaHnSnNKpcyMCRlnYaZjJvEnwlhcqE5lGlqVGMlTmbA96BQvhd2HIKNWSWUUd4R3VDMVx1pTw5VJmNYmOwDSrFisPc-FaABgz8JrSDgNiRAvSg8gadQifthLYCj-U_Lw35JH0HN3Hn53DJ3y9c2eYElQqj60zz9ovzb8J0hLtQs |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CL-MT6zEHwtDSb3TTNsRZLah8HbbG3ZV-RSolF4sF_72weoiAehJwSBrIzszOTybffAFyHLKUp-gFJw0ASblhAVNxFgxjNeDdlgTKuDzmddZMFv1-GywYM6rMwDlZZxf4yphfRurrTqbTZ2axWnccgcP8Q0Icc5Tr61Ra0sBqIcXe2-qNxMvtqtWCWdKyfbswcihAnUx-iK5BeuHWxEnMwr6gg8qT09yT1LfEM92C3qhi9fvlS-9Cw2QHsuCKx5Fg-hJtqkrlDVazXH95T0e60xru1ufQe7HOJdc2OYDG8mw8SUg1AIBor-ZzYlGvHvqMZpTo2AbeY0FOlOaVSxsb4jDM_1iGT-BFhLC5U92TPtyoykvdkxI6hmb1m9gS8mFollVHcEd5RzVQYak0NVyZiWpu4DaResdiUPBeiBoC9iFJDwmlI-HhR2oaoVov4YS-BofhPydN_S17BdjKfTsRkNBufwY57UkLxzqGZv73bCywPcnVZmf8Tr9S2_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geographically+Weighted+Beta+Regression&rft.jtitle=Spatial+statistics&rft.au=da+Silva%2C+Alan+Ricardo&rft.au=de+Oliveira+Lima%2C+Andreza&rft.date=2017-08-01&rft.issn=2211-6753&rft.eissn=2211-6753&rft.volume=21&rft.spage=279&rft.epage=303&rft_id=info:doi/10.1016%2Fj.spasta.2017.07.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spasta_2017_07_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-6753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-6753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-6753&client=summon |