A comprehensive evaluation method for frailty based on semi-supervised learning and transfer-learning

Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after treatment. In this article, in order to make up for the shortcomings of the traditional evaluation methods, a comprehensive intelligent evaluation me...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 111; p. 102504
Main Authors Li, Jiaxi, Wang, Zhelong, Wang, Zheng, Qiu, Sen, Peng, Daoyong, Zhang, Ke, Lin, Fang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after treatment. In this article, in order to make up for the shortcomings of the traditional evaluation methods, a comprehensive intelligent evaluation method that integrates physiological data from multiple perspectives, such as mobility, muscle level, and body composition data has been proposed. The multi-source physiological data of 174 participants has been collected, and a series of features related to frailty have been extracted. A recurrent stepping semi-supervised learning (RSSSL) framework is proposed to transmit the knowledge from the annotated data to the unannotated gait sequence utilizing various networks with varying architectures. Moreover, in order to enhance the frailty evaluation’s performance, an approach based on subspace transfer learning integrating with heterogeneous features (STL-IHF) is proposed. The mean segmentation accuracy on the unannotated gait sequence reaches over 97.10% across recruited subjects with distinct gait patterns, which is significantly superior when compared with classical deep learning methods. And the recognition accuracy of the STL-IHF method for frailty evaluation reaches over 92.9%. The overall experimental results demonstrate that the proposed methods are effective in frailty evaluation tasks in clinics. •A novel and comprehensive evaluation method for frailty is proposed.•A recurrent stepping semi-supervised learning framework is proposed.•A subspace transfer learning integrating with heterogeneous features algorithm.
AbstractList Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after treatment. In this article, in order to make up for the shortcomings of the traditional evaluation methods, a comprehensive intelligent evaluation method that integrates physiological data from multiple perspectives, such as mobility, muscle level, and body composition data has been proposed. The multi-source physiological data of 174 participants has been collected, and a series of features related to frailty have been extracted. A recurrent stepping semi-supervised learning (RSSSL) framework is proposed to transmit the knowledge from the annotated data to the unannotated gait sequence utilizing various networks with varying architectures. Moreover, in order to enhance the frailty evaluation’s performance, an approach based on subspace transfer learning integrating with heterogeneous features (STL-IHF) is proposed. The mean segmentation accuracy on the unannotated gait sequence reaches over 97.10% across recruited subjects with distinct gait patterns, which is significantly superior when compared with classical deep learning methods. And the recognition accuracy of the STL-IHF method for frailty evaluation reaches over 92.9%. The overall experimental results demonstrate that the proposed methods are effective in frailty evaluation tasks in clinics. •A novel and comprehensive evaluation method for frailty is proposed.•A recurrent stepping semi-supervised learning framework is proposed.•A subspace transfer learning integrating with heterogeneous features algorithm.
ArticleNumber 102504
Author Zhang, Ke
Wang, Zheng
Wang, Zhelong
Lin, Fang
Qiu, Sen
Peng, Daoyong
Li, Jiaxi
Author_xml – sequence: 1
  givenname: Jiaxi
  orcidid: 0000-0001-9108-5676
  surname: Li
  fullname: Li, Jiaxi
  email: lijiaxi@mail.dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Zhelong
  surname: Wang
  fullname: Wang, Zhelong
  email: wangzl@dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  email: 13236639095@163.com
  organization: Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
– sequence: 4
  givenname: Sen
  surname: Qiu
  fullname: Qiu, Sen
  email: qiu@dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 5
  givenname: Daoyong
  surname: Peng
  fullname: Peng, Daoyong
  email: 13019422638@163.com
  organization: Neurology Department, Central Hospital of Dalian University of Technology, Dalian 116024, China
– sequence: 6
  givenname: Ke
  surname: Zhang
  fullname: Zhang, Ke
  email: zhangk1@mail.dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 7
  givenname: Fang
  surname: Lin
  fullname: Lin, Fang
  email: linfang@mail.dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
BookMark eNqFkM1OwzAQhC1UJErhDTj4BVLs_DgpB6Sq4k-qxAXOlmPvUleJU9lupL49CYELBzjt7reakWYuycx1Dgi54WzJGRe3-6V1iMewTFmaDygtWH5G5rwq00RkrJgNeyFEkhZZcUEuQ9gzxkuW8TmBNdVde_CwAxdsDxR61RxVtJ2jLcRdZyh2nqJXtoknWqsAhg6_AK1NwvEAvrcjakB5Z90HVc7Q6JULCD75oVfkHFUT4Pp7Lsj748Pb5jnZvj69bNbbRGdMxASQ87o0gleYqgp1XZV5ulIV11giiLI2ZoBYrdSqUGy8smI4Mc9R8Lpm2YLcTb7adyF4QKlt_AoTxwCSMzkWJvdyKkyOhcmpsEGc_xIfvG2VP_0nu59kMATrLXgZtAWnwVgPOkrT2b8NPgH8E41h
CitedBy_id crossref_primary_10_2478_amns_2024_2492
Cites_doi 10.1016/j.tipsro.2020.09.001
10.1109/JSEN.2019.2894143
10.1109/TKDE.2005.186
10.3322/caac.21406
10.1016/j.inffus.2023.102035
10.1109/THMS.2022.3228515
10.1109/CVPR.2017.547
10.1109/JBHI.2022.3152538
10.1109/TNN.2010.2091281
10.3389/fmed.2021.715513
10.1109/JBHI.2015.2501828
10.1002/jpen.1424
10.1109/TETCI.2022.3221129
10.1109/TBME.2014.2368211
10.1016/j.jamda.2016.11.003
10.1109/TNSRE.2015.2409123
10.1109/JBHI.2023.3281977
10.1016/j.ejim.2016.03.007
10.1016/S0140-6736(14)61595-6
10.3390/rs13173504
10.1016/j.ygyno.2022.05.009
10.1109/THMS.2014.2320277
10.1145/1645953.1646121
10.1136/bmjopen-2014-006645
10.1109/TII.2018.2889315
10.1016/j.inffus.2023.102044
10.1093/gerona/56.3.M146
10.1093/annonc/mdu540
10.3399/bjgp13X664289
10.1109/TNSRE.2017.2699124
10.1016/j.physrep.2021.10.005
10.1016/j.inffus.2023.102197
10.1109/JBHI.2022.3173655
10.1609/aaai.v34i04.6045
10.1109/TBME.2012.2212245
10.1016/S0140-6736(14)62000-6
10.1109/TCSVT.2019.2910208
10.1016/S0140-6736(12)62167-9
10.1145/279943.279962
10.1109/ACCESS.2020.3031665
10.1016/j.inffus.2016.09.005
10.1109/TPAMI.2016.2599532
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2024.102504
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
ExternalDocumentID 10_1016_j_inffus_2024_102504
S1566253524002823
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-ef11b7d618f2a8fcb87429a81cf7fe67bddfcbf89a95a0bddf35bf8f44f61bb03
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Tue Jul 01 04:14:45 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Sat Jul 06 15:30:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Transfer-learning
Frailty evaluation
Physiological data
Semi-supervised learning
Gait features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-ef11b7d618f2a8fcb87429a81cf7fe67bddfcbf89a95a0bddf35bf8f44f61bb03
ORCID 0000-0001-9108-5676
ParticipantIDs crossref_citationtrail_10_1016_j_inffus_2024_102504
crossref_primary_10_1016_j_inffus_2024_102504
elsevier_sciencedirect_doi_10_1016_j_inffus_2024_102504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Romero-Ortuno, Soraghan (b7) 2014; 4
Handley, Sood, Dal Molin, Westin, Meyer, Fellman, Soliman, Coleman, Fleming (b4) 2022; 166
D’Aniello, Gaeta, Gravina, Li, Rehman, Fortino (b12) 2024; 104
Zhou, Goldman (b59) 2004
Ethun, Bilen, Jani, Maithel, Ogan, Master (b2) 2017; 67
Li, Chow, Zhang (b52) 2020; 8
Ayad, Barhoush, Frei, Völker, Schmeink (b55) 2023; 27
Dai, Yang, Song, Dai, Wu (b5) 2021; 8
Zhou, Li (b58) 2005; 17
Arshad, Jung, Park, Shin, Kim, Mun (b18) 2021
Takeru, Shin-Ichi, Shin, Masanori (b24) 2018
Zhang, Chen, Lin, Wu, Yang, Li (b53) 2022; 26
Leong, Teo, Rangarajan, Lopez-Jaramillo, Avezum, Orlandini, Seron, Ahmed, Rosengren, Kelishadi (b46) 2015; 386
Gretton, Fukumizu, Harchaoui, Sriperumbudur, Culotta (b48) 2009
Liu, DuMontier, Murillo, Hshieh, Bean, Soiffer, Stone, Abel, Driver (b44) 2019; 134
Handforth, Clegg, Young, Simpkins, Seymour, Selby, Young (b1) 2015; 26
Shi, Wang, Zhao, Qiu, Liu, Lin, Tang (b43) 2023; 53
van Kempen, Schers, Jacobs, Zuidema, Ruikes, Robben, Melis, Rikkert (b9) 2013; 63
Fried, Tangen, Walston, Newman, Hirsch, Gottdiener, Seeman, Tracy, Kop, Burke (b15) 2001; 56
Khowaja, Khuwaja, Dharejo, Raza, Lee, Naqvi, Dev (b21) 2024; 102
Kingma, Mohamed, Jimenez Rezende, Welling (b29) 2014; 27
Clegg, Young, Iliffe, Rikkert, Rockwood (b16) 2013; 381
Rampp, Barth, Schülein, Gaßmann, Klucken, Eskofier (b11) 2014; 62
Zhai, Oliver, Kolesnikov, Beyer (b25) 2019
B. Quanz, J. Huan, Large margin transductive transfer learning, in: Proceedings of the 18th ACM Conference on Information and Knowledge Management, 2009, pp. 1327–1336.
Dent, Kowal, Hoogendijk (b6) 2016; 31
Mendes, Afonso, Moreira, Padrão, Santos, Borges, Negrão, Amaral (b45) 2019; 43
Fried, Tangen, Walston, Newman, Hirsch, Gottdiener, Seeman, Tracy, Kop, Burke (b50) 2001; 56
Lee (b30) 2013
Gordon, Tibshirani (b49) 2012; 10
Ghifary, Balduzzi, Kleijn, Zhang (b34) 2016; 39
Gravina, Alinia, Ghasemzadeh, Fortino (b13) 2017; 35
Li, Wang, Zhao, Qiu, Zhang, Shi, Qu, Jiang (b14) 2023; 7
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100.
Zhu, Chen, Soh (b51) 2019; 15
Shen, Tao, Qi, Wang (b54) 2021; 13
J. Zhang, W. Li, P. Ogunbona, Joint geometrical and statistical alignment for visual domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1859–1867.
Sun, Cong, Wang, Zhong, Fu (b38) 2019
Millor, Lecumberri, Gómez, Martinez, Martinikorena, Rodriguez-Manas, Garcia-Garcia, Izquierdo (b20) 2017; 25
Bouzón, Carnicero, Turín, García-García, Esteban, Rodríguez-Mañas (b8) 2017; 18
Han, Wong, Murray (b40) 2019; 19
Wang, Zhai, Li, Chen, Xue (b39) 2018; 310
Wang, Lin, Yang, Ho (b41) 2012; 59
Barbero-Aparicio, Olivares-Gil, Rodríguez, García-Osorio, Díez-Pastor (b22) 2024; 102
Pan, Tsang, Kwok, Yang (b36) 2010; 22
O’Donovan, Leech (b3) 2020; 16
Si, Nie, Wang, Wang, Tan, Feng (b26) 2020
Sogaard (b60) 2010
Jusup, Holme, Kanazawa, Takayasu, Romić, Wang, Geček, Lipić, Podobnik, Wang (b27) 2022; 948
Rodriguez-Mañas, Fried (b17) 2015; 385
Tarvainen, Valpola (b23) 2017; 30
Barbero-Aparicio, Olivares-Gil, Rodríguez, García-Osorio, Díez-Pastor (b33) 2024; 102
Ghasemzadeh, Panuccio, Trovato, Fortino, Jafari (b10) 2014; 44
Zhang, Regterschot, Geraedts, Baldus, Zijlstra (b56) 2017; 21
Z.-H. Zhou, M. Li, et al., Semi-supervised regression with co-training, in: IJCAI, Vol. 5, 2005, pp. 908–913.
G. Sun, Y. Cong, Q. Wang, J. Li, Y. Fu, Lifelong spectral clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 5867–5874.
Eskandari, Parvaneh, Ehsani, Fain, Toosizadeh (b57) 2022; 26
Eskandari, Parvaneh, Ehsani, Fain, Toosizadeh (b19) 2022; 26
Qi, Soh, Gunawan, Low, Thomas (b42) 2015; 24
Jia, Ding, Kong, Fu (b28) 2019; 30
Jusup (10.1016/j.inffus.2024.102504_b27) 2022; 948
Zhang (10.1016/j.inffus.2024.102504_b56) 2017; 21
Ghasemzadeh (10.1016/j.inffus.2024.102504_b10) 2014; 44
Ghifary (10.1016/j.inffus.2024.102504_b34) 2016; 39
Lee (10.1016/j.inffus.2024.102504_b30) 2013
Mendes (10.1016/j.inffus.2024.102504_b45) 2019; 43
Shi (10.1016/j.inffus.2024.102504_b43) 2023; 53
Clegg (10.1016/j.inffus.2024.102504_b16) 2013; 381
Jia (10.1016/j.inffus.2024.102504_b28) 2019; 30
Leong (10.1016/j.inffus.2024.102504_b46) 2015; 386
Dent (10.1016/j.inffus.2024.102504_b6) 2016; 31
Zhang (10.1016/j.inffus.2024.102504_b53) 2022; 26
Dai (10.1016/j.inffus.2024.102504_b5) 2021; 8
D’Aniello (10.1016/j.inffus.2024.102504_b12) 2024; 104
Gravina (10.1016/j.inffus.2024.102504_b13) 2017; 35
Zhou (10.1016/j.inffus.2024.102504_b59) 2004
Sun (10.1016/j.inffus.2024.102504_b38) 2019
Han (10.1016/j.inffus.2024.102504_b40) 2019; 19
Barbero-Aparicio (10.1016/j.inffus.2024.102504_b22) 2024; 102
Zhai (10.1016/j.inffus.2024.102504_b25) 2019
Ethun (10.1016/j.inffus.2024.102504_b2) 2017; 67
Si (10.1016/j.inffus.2024.102504_b26) 2020
Barbero-Aparicio (10.1016/j.inffus.2024.102504_b33) 2024; 102
Rampp (10.1016/j.inffus.2024.102504_b11) 2014; 62
Wang (10.1016/j.inffus.2024.102504_b39) 2018; 310
Kingma (10.1016/j.inffus.2024.102504_b29) 2014; 27
Eskandari (10.1016/j.inffus.2024.102504_b19) 2022; 26
Romero-Ortuno (10.1016/j.inffus.2024.102504_b7) 2014; 4
Fried (10.1016/j.inffus.2024.102504_b50) 2001; 56
Eskandari (10.1016/j.inffus.2024.102504_b57) 2022; 26
Millor (10.1016/j.inffus.2024.102504_b20) 2017; 25
Bouzón (10.1016/j.inffus.2024.102504_b8) 2017; 18
Gordon (10.1016/j.inffus.2024.102504_b49) 2012; 10
Li (10.1016/j.inffus.2024.102504_b14) 2023; 7
10.1016/j.inffus.2024.102504_b47
Qi (10.1016/j.inffus.2024.102504_b42) 2015; 24
Ayad (10.1016/j.inffus.2024.102504_b55) 2023; 27
Liu (10.1016/j.inffus.2024.102504_b44) 2019; 134
Handley (10.1016/j.inffus.2024.102504_b4) 2022; 166
Tarvainen (10.1016/j.inffus.2024.102504_b23) 2017; 30
van Kempen (10.1016/j.inffus.2024.102504_b9) 2013; 63
Fried (10.1016/j.inffus.2024.102504_b15) 2001; 56
Zhu (10.1016/j.inffus.2024.102504_b51) 2019; 15
Khowaja (10.1016/j.inffus.2024.102504_b21) 2024; 102
O’Donovan (10.1016/j.inffus.2024.102504_b3) 2020; 16
Gretton (10.1016/j.inffus.2024.102504_b48) 2009
Pan (10.1016/j.inffus.2024.102504_b36) 2010; 22
Wang (10.1016/j.inffus.2024.102504_b41) 2012; 59
Shen (10.1016/j.inffus.2024.102504_b54) 2021; 13
Sogaard (10.1016/j.inffus.2024.102504_b60) 2010
10.1016/j.inffus.2024.102504_b37
Zhou (10.1016/j.inffus.2024.102504_b58) 2005; 17
10.1016/j.inffus.2024.102504_b35
Li (10.1016/j.inffus.2024.102504_b52) 2020; 8
Takeru (10.1016/j.inffus.2024.102504_b24) 2018
10.1016/j.inffus.2024.102504_b32
Rodriguez-Mañas (10.1016/j.inffus.2024.102504_b17) 2015; 385
10.1016/j.inffus.2024.102504_b31
Handforth (10.1016/j.inffus.2024.102504_b1) 2015; 26
Arshad (10.1016/j.inffus.2024.102504_b18) 2021
References_xml – year: 2019
  ident: b38
  article-title: Representative task self-selection for flexible clustered lifelong learning
– volume: 59
  start-page: 2884
  year: 2012
  end-page: 2892
  ident: b41
  article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 63
  start-page: e225
  year: 2013
  end-page: e231
  ident: b9
  article-title: Development of an instrument for the identification of frail older people as a target population for integrated care
  publication-title: Br. J. Gen. Pract.
– volume: 30
  year: 2017
  ident: b23
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2018
  ident: b24
  article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 134
  start-page: 374
  year: 2019
  end-page: 382
  ident: b44
  article-title: Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies
  publication-title: Blood J. Am. Soc. Hematol.
– volume: 386
  start-page: 266
  year: 2015
  end-page: 273
  ident: b46
  article-title: Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study
  publication-title: Lancet
– start-page: 1476
  year: 2019
  end-page: 1485
  ident: b25
  article-title: S4l: Self-supervised semi-supervised learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 16
  start-page: 30
  year: 2020
  end-page: 38
  ident: b3
  article-title: Personalised treatment for older adults with cancer: the role of frailty assessment
  publication-title: Tech. Innov. Patient Support Radiat. Oncol.
– reference: G. Sun, Y. Cong, Q. Wang, J. Li, Y. Fu, Lifelong spectral clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 5867–5874.
– volume: 26
  start-page: 1091
  year: 2015
  end-page: 1101
  ident: b1
  article-title: The prevalence and outcomes of frailty in older cancer patients: a systematic review
  publication-title: Ann. Oncol.
– volume: 56
  start-page: M146
  year: 2001
  end-page: M157
  ident: b15
  article-title: Frailty in older adults: evidence for a phenotype
  publication-title: J. Gerontol. (A. Biol. Sci. Med. Sci.)
– volume: 26
  start-page: 3409
  year: 2022
  end-page: 3417
  ident: b57
  article-title: Frailty identification using heart rate dynamics: A deep learning approach
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 104
  year: 2024
  ident: b12
  article-title: Situation identification in smart wearable computing systems based on machine learning and Context Space Theory
  publication-title: Inf. Fusion
– volume: 35
  start-page: 68
  year: 2017
  end-page: 80
  ident: b13
  article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges
  publication-title: Inf. Fusion
– volume: 102
  year: 2024
  ident: b33
  article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques
  publication-title: Inf. Fusion
– volume: 21
  start-page: 211
  year: 2017
  end-page: 217
  ident: b56
  article-title: Chair rise peak power in daily life measured with a pendant sensor associates with mobility, limitation in activities, and frailty in old people
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 35
  year: 2020
  end-page: 51
  ident: b26
  article-title: Adversarial self-supervised learning for semi-supervised 3D action recognition
  publication-title: Computer Vision – ECCV 2020
– volume: 18
  start-page: 402
  year: 2017
  end-page: 408
  ident: b8
  article-title: The standardization of frailty phenotype criteria improves its predictive ability: the Toledo study for healthy aging
  publication-title: J. Am. Med. Dir. Assoc.
– volume: 39
  start-page: 1414
  year: 2016
  end-page: 1430
  ident: b34
  article-title: Scatter component analysis: A unified framework for domain adaptation and domain generalization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Z.-H. Zhou, M. Li, et al., Semi-supervised regression with co-training, in: IJCAI, Vol. 5, 2005, pp. 908–913.
– start-page: 594
  year: 2004
  end-page: 602
  ident: b59
  article-title: Democratic co-learning
  publication-title: 16th IEEE International Conference on Tools with Artificial Intelligence
– volume: 22
  start-page: 199
  year: 2010
  end-page: 210
  ident: b36
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 56
  start-page: M146
  year: 2001
  end-page: M157
  ident: b50
  article-title: Frailty in older adults: evidence for a phenotype
  publication-title: J. Gerontol. (A Biol. Sci. Med. Sci.)
– year: 2009
  ident: b48
  article-title: A fast, consistent kernel two-sample test
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 725
  year: 2012
  ident: b49
  article-title: Karush-kuhn-tucker conditions
  publication-title: Optimization
– reference: A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100.
– volume: 8
  year: 2021
  ident: b5
  article-title: Impacts of frailty on prognosis in lung cancer patients: a systematic review and meta-analysis
  publication-title: Front. Med.
– volume: 62
  start-page: 1089
  year: 2014
  end-page: 1097
  ident: b11
  article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 189287
  year: 2020
  end-page: 189297
  ident: b52
  article-title: SEML: A semi-supervised multi-task learning framework for aspect-based sentiment analysis
  publication-title: IEEE Access
– volume: 31
  start-page: 3
  year: 2016
  end-page: 10
  ident: b6
  article-title: Frailty measurement in research and clinical practice: a review
  publication-title: Eur. J. Intern. Med.
– volume: 26
  start-page: 3409
  year: 2022
  end-page: 3417
  ident: b19
  article-title: Frailty identification using heart rate dynamics: A deep learning approach
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 24
  start-page: 88
  year: 2015
  end-page: 97
  ident: b42
  article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: B. Quanz, J. Huan, Large margin transductive transfer learning, in: Proceedings of the 18th ACM Conference on Information and Knowledge Management, 2009, pp. 1327–1336.
– volume: 948
  start-page: 1
  year: 2022
  end-page: 148
  ident: b27
  article-title: Social physics
  publication-title: Phys. Rep.
– volume: 30
  start-page: 2801
  year: 2019
  end-page: 2814
  ident: b28
  article-title: Semi-supervised cross-modality action recognition by latent tensor transfer learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 4
  year: 2014
  ident: b7
  article-title: A frailty instrument for primary care for those aged 75 years or more: findings from the Survey of Health, Ageing and Retirement in Europe, a longitudinal population-based cohort study (SHARE-FI75+)
  publication-title: BMJ Open
– volume: 25
  start-page: 2018
  year: 2017
  end-page: 2025
  ident: b20
  article-title: Gait velocity and chair sit-stand-sit performance improves current frailty-status identification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: J. Zhang, W. Li, P. Ogunbona, Joint geometrical and statistical alignment for visual domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1859–1867.
– volume: 53
  start-page: 176
  year: 2023
  end-page: 186
  ident: b43
  article-title: Threshold-free phase segmentation and zero velocity detection for gait analysis using foot-mounted inertial sensors
  publication-title: IEEE Trans. Hum.-Mach. Syst.
– volume: 44
  start-page: 537
  year: 2014
  end-page: 544
  ident: b10
  article-title: Power-aware activity monitoring using distributed wearable sensors
  publication-title: IEEE Trans. Hum.-Mach. Syst.
– volume: 381
  start-page: 752
  year: 2013
  end-page: 762
  ident: b16
  article-title: Frailty in elderly people
  publication-title: The Lancet
– volume: 15
  start-page: 3821
  year: 2019
  end-page: 3830
  ident: b51
  article-title: A novel semisupervised deep learning method for human activity recognition
  publication-title: IEEE Trans. Ind. Inform.
– volume: 26
  start-page: 3791
  year: 2022
  end-page: 3801
  ident: b53
  article-title: Semi-supervised learning for automatic atrial fibrillation detection in 24-hour holter monitoring
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 19
  start-page: 3439
  year: 2019
  end-page: 3448
  ident: b40
  article-title: Gait phase detection for normal and abnormal gaits using IMU
  publication-title: IEEE Sens. J.
– volume: 7
  start-page: 1290
  year: 2023
  end-page: 1300
  ident: b14
  article-title: Physical fitness assessment for cancer patients using multi-model decision fusion based on multi-source data
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 67
  start-page: 362
  year: 2017
  end-page: 377
  ident: b2
  article-title: Frailty and cancer: implications for oncology surgery, medical oncology, and radiation oncology
  publication-title: CA Cancer J. Clin.
– volume: 102
  year: 2024
  ident: b21
  article-title: ReFuSeAct: Representation fusion using self-supervised learning for activity recognition in next generation networks
  publication-title: Inf. Fusion
– start-page: 896
  year: 2013
  ident: b30
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Workshop on Challenges in Representation Learning, Vol. 3, No. 2
– volume: 17
  start-page: 1529
  year: 2005
  end-page: 1541
  ident: b58
  article-title: Tri-training: exploiting unlabeled data using three classifiers
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 166
  start-page: 50
  year: 2022
  end-page: 56
  ident: b4
  article-title: Frailty repels the knife: the impact of frailty index on surgical intervention and outcomes
  publication-title: Gynecol. Oncol.
– volume: 310
  start-page: 115
  year: 2018
  end-page: 124
  ident: b39
  article-title: Transfer learning with partial related “instance-feature” knowledge
  publication-title: Neurocomputing
– volume: 13
  year: 2021
  ident: b54
  article-title: Semi-supervised convolutional long short-term memory neural networks for time series land cover classification
  publication-title: Remote Sens.
– volume: 102
  year: 2024
  ident: b22
  article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques
  publication-title: Inf. Fusion
– volume: 43
  start-page: 347
  year: 2019
  end-page: 356
  ident: b45
  article-title: Association of anthropometric and nutrition status indicators with hand grip strength and gait speed in older adults
  publication-title: J. Parenter Enteral Nutr.
– volume: 385
  start-page: e7
  year: 2015
  end-page: e9
  ident: b17
  article-title: Frailty in the clinical scenario
  publication-title: Lancet
– volume: 27
  start-page: 4261
  year: 2023
  end-page: 4272
  ident: b55
  article-title: An efficient and private ECG classification system using split and semi-supervised learning
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 27
  year: 2014
  ident: b29
  article-title: Semi-supervised learning with deep generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1874
  year: 2021
  end-page: 1879
  ident: b18
  article-title: Gait-based frailty assessment using image representation of IMU signals and deep CNN
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society
– start-page: 205
  year: 2010
  end-page: 208
  ident: b60
  publication-title: Simple Semi-Supervised Training of Part-Of-Speech Taggers
– volume: 16
  start-page: 30
  year: 2020
  ident: 10.1016/j.inffus.2024.102504_b3
  article-title: Personalised treatment for older adults with cancer: the role of frailty assessment
  publication-title: Tech. Innov. Patient Support Radiat. Oncol.
  doi: 10.1016/j.tipsro.2020.09.001
– volume: 19
  start-page: 3439
  issue: 9
  year: 2019
  ident: 10.1016/j.inffus.2024.102504_b40
  article-title: Gait phase detection for normal and abnormal gaits using IMU
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2894143
– volume: 30
  year: 2017
  ident: 10.1016/j.inffus.2024.102504_b23
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  start-page: 1529
  issue: 11
  year: 2005
  ident: 10.1016/j.inffus.2024.102504_b58
  article-title: Tri-training: exploiting unlabeled data using three classifiers
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.186
– ident: 10.1016/j.inffus.2024.102504_b31
– volume: 67
  start-page: 362
  issue: 5
  year: 2017
  ident: 10.1016/j.inffus.2024.102504_b2
  article-title: Frailty and cancer: implications for oncology surgery, medical oncology, and radiation oncology
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21406
– volume: 102
  year: 2024
  ident: 10.1016/j.inffus.2024.102504_b22
  article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102035
– volume: 27
  year: 2014
  ident: 10.1016/j.inffus.2024.102504_b29
  article-title: Semi-supervised learning with deep generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 53
  start-page: 176
  issue: 1
  year: 2023
  ident: 10.1016/j.inffus.2024.102504_b43
  article-title: Threshold-free phase segmentation and zero velocity detection for gait analysis using foot-mounted inertial sensors
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2022.3228515
– ident: 10.1016/j.inffus.2024.102504_b35
  doi: 10.1109/CVPR.2017.547
– volume: 26
  start-page: 3409
  issue: 7
  year: 2022
  ident: 10.1016/j.inffus.2024.102504_b19
  article-title: Frailty identification using heart rate dynamics: A deep learning approach
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3152538
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.inffus.2024.102504_b36
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 8
  year: 2021
  ident: 10.1016/j.inffus.2024.102504_b5
  article-title: Impacts of frailty on prognosis in lung cancer patients: a systematic review and meta-analysis
  publication-title: Front. Med.
  doi: 10.3389/fmed.2021.715513
– volume: 21
  start-page: 211
  issue: 1
  year: 2017
  ident: 10.1016/j.inffus.2024.102504_b56
  article-title: Chair rise peak power in daily life measured with a pendant sensor associates with mobility, limitation in activities, and frailty in old people
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2015.2501828
– start-page: 896
  year: 2013
  ident: 10.1016/j.inffus.2024.102504_b30
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– volume: 43
  start-page: 347
  issue: 3
  year: 2019
  ident: 10.1016/j.inffus.2024.102504_b45
  article-title: Association of anthropometric and nutrition status indicators with hand grip strength and gait speed in older adults
  publication-title: J. Parenter Enteral Nutr.
  doi: 10.1002/jpen.1424
– volume: 7
  start-page: 1290
  issue: 4
  year: 2023
  ident: 10.1016/j.inffus.2024.102504_b14
  article-title: Physical fitness assessment for cancer patients using multi-model decision fusion based on multi-source data
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2022.3221129
– volume: 62
  start-page: 1089
  issue: 4
  year: 2014
  ident: 10.1016/j.inffus.2024.102504_b11
  article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2368211
– volume: 18
  start-page: 402
  issue: 5
  year: 2017
  ident: 10.1016/j.inffus.2024.102504_b8
  article-title: The standardization of frailty phenotype criteria improves its predictive ability: the Toledo study for healthy aging
  publication-title: J. Am. Med. Dir. Assoc.
  doi: 10.1016/j.jamda.2016.11.003
– volume: 26
  start-page: 3409
  issue: 7
  year: 2022
  ident: 10.1016/j.inffus.2024.102504_b57
  article-title: Frailty identification using heart rate dynamics: A deep learning approach
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3152538
– volume: 24
  start-page: 88
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2024.102504_b42
  article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2409123
– volume: 27
  start-page: 4261
  issue: 9
  year: 2023
  ident: 10.1016/j.inffus.2024.102504_b55
  article-title: An efficient and private ECG classification system using split and semi-supervised learning
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2023.3281977
– volume: 31
  start-page: 3
  year: 2016
  ident: 10.1016/j.inffus.2024.102504_b6
  article-title: Frailty measurement in research and clinical practice: a review
  publication-title: Eur. J. Intern. Med.
  doi: 10.1016/j.ejim.2016.03.007
– volume: 385
  start-page: e7
  issue: 9968
  year: 2015
  ident: 10.1016/j.inffus.2024.102504_b17
  article-title: Frailty in the clinical scenario
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61595-6
– volume: 13
  issue: 17
  year: 2021
  ident: 10.1016/j.inffus.2024.102504_b54
  article-title: Semi-supervised convolutional long short-term memory neural networks for time series land cover classification
  publication-title: Remote Sens.
  doi: 10.3390/rs13173504
– volume: 166
  start-page: 50
  issue: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102504_b4
  article-title: Frailty repels the knife: the impact of frailty index on surgical intervention and outcomes
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2022.05.009
– volume: 44
  start-page: 537
  issue: 4
  year: 2014
  ident: 10.1016/j.inffus.2024.102504_b10
  article-title: Power-aware activity monitoring using distributed wearable sensors
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2014.2320277
– volume: 310
  start-page: 115
  issue: OCT.8
  year: 2018
  ident: 10.1016/j.inffus.2024.102504_b39
  article-title: Transfer learning with partial related “instance-feature” knowledge
  publication-title: Neurocomputing
– ident: 10.1016/j.inffus.2024.102504_b47
  doi: 10.1145/1645953.1646121
– volume: 4
  issue: 12
  year: 2014
  ident: 10.1016/j.inffus.2024.102504_b7
  article-title: A frailty instrument for primary care for those aged 75 years or more: findings from the Survey of Health, Ageing and Retirement in Europe, a longitudinal population-based cohort study (SHARE-FI75+)
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2014-006645
– start-page: 1874
  year: 2021
  ident: 10.1016/j.inffus.2024.102504_b18
  article-title: Gait-based frailty assessment using image representation of IMU signals and deep CNN
– volume: 15
  start-page: 3821
  issue: 7
  year: 2019
  ident: 10.1016/j.inffus.2024.102504_b51
  article-title: A novel semisupervised deep learning method for human activity recognition
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2889315
– start-page: 205
  year: 2010
  ident: 10.1016/j.inffus.2024.102504_b60
– start-page: 35
  year: 2020
  ident: 10.1016/j.inffus.2024.102504_b26
  article-title: Adversarial self-supervised learning for semi-supervised 3D action recognition
– volume: 102
  year: 2024
  ident: 10.1016/j.inffus.2024.102504_b21
  article-title: ReFuSeAct: Representation fusion using self-supervised learning for activity recognition in next generation networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102044
– year: 2019
  ident: 10.1016/j.inffus.2024.102504_b38
– start-page: 1
  year: 2018
  ident: 10.1016/j.inffus.2024.102504_b24
  article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 56
  start-page: M146
  issue: 3
  year: 2001
  ident: 10.1016/j.inffus.2024.102504_b15
  article-title: Frailty in older adults: evidence for a phenotype
  publication-title: J. Gerontol. (A. Biol. Sci. Med. Sci.)
  doi: 10.1093/gerona/56.3.M146
– volume: 26
  start-page: 1091
  issue: 6
  year: 2015
  ident: 10.1016/j.inffus.2024.102504_b1
  article-title: The prevalence and outcomes of frailty in older cancer patients: a systematic review
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdu540
– volume: 134
  start-page: 374
  issue: 4
  year: 2019
  ident: 10.1016/j.inffus.2024.102504_b44
  article-title: Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies
  publication-title: Blood J. Am. Soc. Hematol.
– volume: 63
  start-page: e225
  issue: 608
  year: 2013
  ident: 10.1016/j.inffus.2024.102504_b9
  article-title: Development of an instrument for the identification of frail older people as a target population for integrated care
  publication-title: Br. J. Gen. Pract.
  doi: 10.3399/bjgp13X664289
– volume: 25
  start-page: 2018
  issue: 11
  year: 2017
  ident: 10.1016/j.inffus.2024.102504_b20
  article-title: Gait velocity and chair sit-stand-sit performance improves current frailty-status identification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2699124
– volume: 56
  start-page: M146
  issue: 3
  year: 2001
  ident: 10.1016/j.inffus.2024.102504_b50
  article-title: Frailty in older adults: evidence for a phenotype
  publication-title: J. Gerontol. (A Biol. Sci. Med. Sci.)
  doi: 10.1093/gerona/56.3.M146
– volume: 102
  year: 2024
  ident: 10.1016/j.inffus.2024.102504_b33
  article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102035
– volume: 10
  start-page: 725
  issue: 725/36
  year: 2012
  ident: 10.1016/j.inffus.2024.102504_b49
  article-title: Karush-kuhn-tucker conditions
  publication-title: Optimization
– volume: 948
  start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102504_b27
  article-title: Social physics
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2021.10.005
– volume: 104
  year: 2024
  ident: 10.1016/j.inffus.2024.102504_b12
  article-title: Situation identification in smart wearable computing systems based on machine learning and Context Space Theory
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102197
– volume: 26
  start-page: 3791
  issue: 8
  year: 2022
  ident: 10.1016/j.inffus.2024.102504_b53
  article-title: Semi-supervised learning for automatic atrial fibrillation detection in 24-hour holter monitoring
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3173655
– start-page: 1476
  year: 2019
  ident: 10.1016/j.inffus.2024.102504_b25
  article-title: S4l: Self-supervised semi-supervised learning
– year: 2009
  ident: 10.1016/j.inffus.2024.102504_b48
  article-title: A fast, consistent kernel two-sample test
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.inffus.2024.102504_b37
  doi: 10.1609/aaai.v34i04.6045
– volume: 59
  start-page: 2884
  issue: 10
  year: 2012
  ident: 10.1016/j.inffus.2024.102504_b41
  article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2212245
– volume: 386
  start-page: 266
  issue: 9990
  year: 2015
  ident: 10.1016/j.inffus.2024.102504_b46
  article-title: Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)62000-6
– start-page: 594
  year: 2004
  ident: 10.1016/j.inffus.2024.102504_b59
  article-title: Democratic co-learning
– volume: 30
  start-page: 2801
  issue: 9
  year: 2019
  ident: 10.1016/j.inffus.2024.102504_b28
  article-title: Semi-supervised cross-modality action recognition by latent tensor transfer learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2910208
– volume: 381
  start-page: 752
  issue: 9868
  year: 2013
  ident: 10.1016/j.inffus.2024.102504_b16
  article-title: Frailty in elderly people
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(12)62167-9
– ident: 10.1016/j.inffus.2024.102504_b32
  doi: 10.1145/279943.279962
– volume: 8
  start-page: 189287
  year: 2020
  ident: 10.1016/j.inffus.2024.102504_b52
  article-title: SEML: A semi-supervised multi-task learning framework for aspect-based sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031665
– volume: 35
  start-page: 68
  year: 2017
  ident: 10.1016/j.inffus.2024.102504_b13
  article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.09.005
– volume: 39
  start-page: 1414
  issue: 7
  year: 2016
  ident: 10.1016/j.inffus.2024.102504_b34
  article-title: Scatter component analysis: A unified framework for domain adaptation and domain generalization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2599532
SSID ssj0017031
Score 2.4216413
Snippet Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102504
SubjectTerms Frailty evaluation
Gait features
Physiological data
Semi-supervised learning
Transfer-learning
Title A comprehensive evaluation method for frailty based on semi-supervised learning and transfer-learning
URI https://dx.doi.org/10.1016/j.inffus.2024.102504
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jVuXNG2PYzjm1xB1sFtJmkQrs46uO3jxbzevaaciKHgqeU2g_BJ-eY--93sInVr-86nUnGhDDWGya4hIdEKkUUEgqYBfVZBtMeajCbuc-tMGGtS1MJBWWXG_4_SSrStLp0KzM0_Tzj1EHj1QJ2Fl4ACKn4wFcMrP3ldpHh7os5eaqZwTmF2Xz5U5XnYTzRJEu3sMNAz8ql3bj-vpy5Uz3EKbla-I--5ztlFDZzto42YltLrYRbqPISk8108uER1_qndj1xwaW68Um1yks-INw52lsH230C8pWSznwBRgqppHPGKRKVyUzqzOSW3dQ5Ph-cNgRKrOCSSxIUBhgfc8GSjuhaYnQpPI0EbAkQU-MYHRPJBKWaMJIxH5ogsj6tuhYcxwT8ou3UfN7DXTBwh7QmtKI7t3KmSUGhtRWhZVPFI0MZH2W4jWgMVJJSsO3S1mcZ0_9hw7mGOAOXYwtxBZrZo7WY0_5gf1XsTfjkdsmf_XlYf_XnmE1mHkCg-PUbPIl_rEeiCFbJdHrI3W-oO761t4XlyNxh_p3uDc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwdWq02d51hVVCl9LLRStyiObSgqoUrTgX-PL3EKCAkkRp9zUvTZ-nwnn78DuNP85zAuXSoVU9TmbUXjRCaUK-F5nMV4VYXVFhM3nNkPc2deg171FgbLKg33l5xesLWxtAyardVi0XrEzKOD6iR2kTiwHWigOpVTh0Z3MAwn28sElGgvZFNdl6JD9YKuKPPS66g2qNvdsVHGwDEd236cUF9Onf4hHJhwkXTLPzqCmkyPYX-81Vpdn4DsEqwLz-RzWYtOPgW8SdkfmujAlKgsXizzd4LHliB6bi1fF3S9WSFZoMn0j3gicSpIXsSzMqOV9RRm_ftpL6SmeQJNdBaQa-wti3vCtXzViX2VcF8nwYHGPlGekq7HhdBG5Qdx4MRtHDFHD5VtK9fivM3OoJ6-pfIciBVLyVigl0_4NmNKJ5WaSIUbCJaoQDpNYBVgUWKUxbHBxTKqSsheohLmCGGOSpibQLdeq1JZ44_vvWotom87JNLk_6vnxb89b2E3nI5H0WgwGV7CHs6U7xCvoJ5nG3mtA5Kc35gN9wGSq-H4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+evaluation+method+for+frailty+based+on+semi-supervised+learning+and+transfer-learning&rft.jtitle=Information+fusion&rft.au=Li%2C+Jiaxi&rft.au=Wang%2C+Zhelong&rft.au=Wang%2C+Zheng&rft.au=Qiu%2C+Sen&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=111&rft_id=info:doi/10.1016%2Fj.inffus.2024.102504&rft.externalDocID=S1566253524002823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon