A comprehensive evaluation method for frailty based on semi-supervised learning and transfer-learning
Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after treatment. In this article, in order to make up for the shortcomings of the traditional evaluation methods, a comprehensive intelligent evaluation me...
Saved in:
Published in | Information fusion Vol. 111; p. 102504 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after treatment. In this article, in order to make up for the shortcomings of the traditional evaluation methods, a comprehensive intelligent evaluation method that integrates physiological data from multiple perspectives, such as mobility, muscle level, and body composition data has been proposed. The multi-source physiological data of 174 participants has been collected, and a series of features related to frailty have been extracted. A recurrent stepping semi-supervised learning (RSSSL) framework is proposed to transmit the knowledge from the annotated data to the unannotated gait sequence utilizing various networks with varying architectures. Moreover, in order to enhance the frailty evaluation’s performance, an approach based on subspace transfer learning integrating with heterogeneous features (STL-IHF) is proposed. The mean segmentation accuracy on the unannotated gait sequence reaches over 97.10% across recruited subjects with distinct gait patterns, which is significantly superior when compared with classical deep learning methods. And the recognition accuracy of the STL-IHF method for frailty evaluation reaches over 92.9%. The overall experimental results demonstrate that the proposed methods are effective in frailty evaluation tasks in clinics.
•A novel and comprehensive evaluation method for frailty is proposed.•A recurrent stepping semi-supervised learning framework is proposed.•A subspace transfer learning integrating with heterogeneous features algorithm. |
---|---|
AbstractList | Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after treatment. In this article, in order to make up for the shortcomings of the traditional evaluation methods, a comprehensive intelligent evaluation method that integrates physiological data from multiple perspectives, such as mobility, muscle level, and body composition data has been proposed. The multi-source physiological data of 174 participants has been collected, and a series of features related to frailty have been extracted. A recurrent stepping semi-supervised learning (RSSSL) framework is proposed to transmit the knowledge from the annotated data to the unannotated gait sequence utilizing various networks with varying architectures. Moreover, in order to enhance the frailty evaluation’s performance, an approach based on subspace transfer learning integrating with heterogeneous features (STL-IHF) is proposed. The mean segmentation accuracy on the unannotated gait sequence reaches over 97.10% across recruited subjects with distinct gait patterns, which is significantly superior when compared with classical deep learning methods. And the recognition accuracy of the STL-IHF method for frailty evaluation reaches over 92.9%. The overall experimental results demonstrate that the proposed methods are effective in frailty evaluation tasks in clinics.
•A novel and comprehensive evaluation method for frailty is proposed.•A recurrent stepping semi-supervised learning framework is proposed.•A subspace transfer learning integrating with heterogeneous features algorithm. |
ArticleNumber | 102504 |
Author | Zhang, Ke Wang, Zheng Wang, Zhelong Lin, Fang Qiu, Sen Peng, Daoyong Li, Jiaxi |
Author_xml | – sequence: 1 givenname: Jiaxi orcidid: 0000-0001-9108-5676 surname: Li fullname: Li, Jiaxi email: lijiaxi@mail.dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Zhelong surname: Wang fullname: Wang, Zhelong email: wangzl@dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Zheng surname: Wang fullname: Wang, Zheng email: 13236639095@163.com organization: Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China – sequence: 4 givenname: Sen surname: Qiu fullname: Qiu, Sen email: qiu@dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 5 givenname: Daoyong surname: Peng fullname: Peng, Daoyong email: 13019422638@163.com organization: Neurology Department, Central Hospital of Dalian University of Technology, Dalian 116024, China – sequence: 6 givenname: Ke surname: Zhang fullname: Zhang, Ke email: zhangk1@mail.dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 7 givenname: Fang surname: Lin fullname: Lin, Fang email: linfang@mail.dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China |
BookMark | eNqFkM1OwzAQhC1UJErhDTj4BVLs_DgpB6Sq4k-qxAXOlmPvUleJU9lupL49CYELBzjt7reakWYuycx1Dgi54WzJGRe3-6V1iMewTFmaDygtWH5G5rwq00RkrJgNeyFEkhZZcUEuQ9gzxkuW8TmBNdVde_CwAxdsDxR61RxVtJ2jLcRdZyh2nqJXtoknWqsAhg6_AK1NwvEAvrcjakB5Z90HVc7Q6JULCD75oVfkHFUT4Pp7Lsj748Pb5jnZvj69bNbbRGdMxASQ87o0gleYqgp1XZV5ulIV11giiLI2ZoBYrdSqUGy8smI4Mc9R8Lpm2YLcTb7adyF4QKlt_AoTxwCSMzkWJvdyKkyOhcmpsEGc_xIfvG2VP_0nu59kMATrLXgZtAWnwVgPOkrT2b8NPgH8E41h |
CitedBy_id | crossref_primary_10_2478_amns_2024_2492 |
Cites_doi | 10.1016/j.tipsro.2020.09.001 10.1109/JSEN.2019.2894143 10.1109/TKDE.2005.186 10.3322/caac.21406 10.1016/j.inffus.2023.102035 10.1109/THMS.2022.3228515 10.1109/CVPR.2017.547 10.1109/JBHI.2022.3152538 10.1109/TNN.2010.2091281 10.3389/fmed.2021.715513 10.1109/JBHI.2015.2501828 10.1002/jpen.1424 10.1109/TETCI.2022.3221129 10.1109/TBME.2014.2368211 10.1016/j.jamda.2016.11.003 10.1109/TNSRE.2015.2409123 10.1109/JBHI.2023.3281977 10.1016/j.ejim.2016.03.007 10.1016/S0140-6736(14)61595-6 10.3390/rs13173504 10.1016/j.ygyno.2022.05.009 10.1109/THMS.2014.2320277 10.1145/1645953.1646121 10.1136/bmjopen-2014-006645 10.1109/TII.2018.2889315 10.1016/j.inffus.2023.102044 10.1093/gerona/56.3.M146 10.1093/annonc/mdu540 10.3399/bjgp13X664289 10.1109/TNSRE.2017.2699124 10.1016/j.physrep.2021.10.005 10.1016/j.inffus.2023.102197 10.1109/JBHI.2022.3173655 10.1609/aaai.v34i04.6045 10.1109/TBME.2012.2212245 10.1016/S0140-6736(14)62000-6 10.1109/TCSVT.2019.2910208 10.1016/S0140-6736(12)62167-9 10.1145/279943.279962 10.1109/ACCESS.2020.3031665 10.1016/j.inffus.2016.09.005 10.1109/TPAMI.2016.2599532 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.inffus.2024.102504 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6305 |
ExternalDocumentID | 10_1016_j_inffus_2024_102504 S1566253524002823 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-ef11b7d618f2a8fcb87429a81cf7fe67bddfcbf89a95a0bddf35bf8f44f61bb03 |
IEDL.DBID | .~1 |
ISSN | 1566-2535 |
IngestDate | Tue Jul 01 04:14:45 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Sat Jul 06 15:30:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transfer-learning Frailty evaluation Physiological data Semi-supervised learning Gait features |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-ef11b7d618f2a8fcb87429a81cf7fe67bddfcbf89a95a0bddf35bf8f44f61bb03 |
ORCID | 0000-0001-9108-5676 |
ParticipantIDs | crossref_citationtrail_10_1016_j_inffus_2024_102504 crossref_primary_10_1016_j_inffus_2024_102504 elsevier_sciencedirect_doi_10_1016_j_inffus_2024_102504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Information fusion |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Romero-Ortuno, Soraghan (b7) 2014; 4 Handley, Sood, Dal Molin, Westin, Meyer, Fellman, Soliman, Coleman, Fleming (b4) 2022; 166 D’Aniello, Gaeta, Gravina, Li, Rehman, Fortino (b12) 2024; 104 Zhou, Goldman (b59) 2004 Ethun, Bilen, Jani, Maithel, Ogan, Master (b2) 2017; 67 Li, Chow, Zhang (b52) 2020; 8 Ayad, Barhoush, Frei, Völker, Schmeink (b55) 2023; 27 Dai, Yang, Song, Dai, Wu (b5) 2021; 8 Zhou, Li (b58) 2005; 17 Arshad, Jung, Park, Shin, Kim, Mun (b18) 2021 Takeru, Shin-Ichi, Shin, Masanori (b24) 2018 Zhang, Chen, Lin, Wu, Yang, Li (b53) 2022; 26 Leong, Teo, Rangarajan, Lopez-Jaramillo, Avezum, Orlandini, Seron, Ahmed, Rosengren, Kelishadi (b46) 2015; 386 Gretton, Fukumizu, Harchaoui, Sriperumbudur, Culotta (b48) 2009 Liu, DuMontier, Murillo, Hshieh, Bean, Soiffer, Stone, Abel, Driver (b44) 2019; 134 Handforth, Clegg, Young, Simpkins, Seymour, Selby, Young (b1) 2015; 26 Shi, Wang, Zhao, Qiu, Liu, Lin, Tang (b43) 2023; 53 van Kempen, Schers, Jacobs, Zuidema, Ruikes, Robben, Melis, Rikkert (b9) 2013; 63 Fried, Tangen, Walston, Newman, Hirsch, Gottdiener, Seeman, Tracy, Kop, Burke (b15) 2001; 56 Khowaja, Khuwaja, Dharejo, Raza, Lee, Naqvi, Dev (b21) 2024; 102 Kingma, Mohamed, Jimenez Rezende, Welling (b29) 2014; 27 Clegg, Young, Iliffe, Rikkert, Rockwood (b16) 2013; 381 Rampp, Barth, Schülein, Gaßmann, Klucken, Eskofier (b11) 2014; 62 Zhai, Oliver, Kolesnikov, Beyer (b25) 2019 B. Quanz, J. Huan, Large margin transductive transfer learning, in: Proceedings of the 18th ACM Conference on Information and Knowledge Management, 2009, pp. 1327–1336. Dent, Kowal, Hoogendijk (b6) 2016; 31 Mendes, Afonso, Moreira, Padrão, Santos, Borges, Negrão, Amaral (b45) 2019; 43 Fried, Tangen, Walston, Newman, Hirsch, Gottdiener, Seeman, Tracy, Kop, Burke (b50) 2001; 56 Lee (b30) 2013 Gordon, Tibshirani (b49) 2012; 10 Ghifary, Balduzzi, Kleijn, Zhang (b34) 2016; 39 Gravina, Alinia, Ghasemzadeh, Fortino (b13) 2017; 35 Li, Wang, Zhao, Qiu, Zhang, Shi, Qu, Jiang (b14) 2023; 7 A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100. Zhu, Chen, Soh (b51) 2019; 15 Shen, Tao, Qi, Wang (b54) 2021; 13 J. Zhang, W. Li, P. Ogunbona, Joint geometrical and statistical alignment for visual domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1859–1867. Sun, Cong, Wang, Zhong, Fu (b38) 2019 Millor, Lecumberri, Gómez, Martinez, Martinikorena, Rodriguez-Manas, Garcia-Garcia, Izquierdo (b20) 2017; 25 Bouzón, Carnicero, Turín, García-García, Esteban, Rodríguez-Mañas (b8) 2017; 18 Han, Wong, Murray (b40) 2019; 19 Wang, Zhai, Li, Chen, Xue (b39) 2018; 310 Wang, Lin, Yang, Ho (b41) 2012; 59 Barbero-Aparicio, Olivares-Gil, Rodríguez, García-Osorio, Díez-Pastor (b22) 2024; 102 Pan, Tsang, Kwok, Yang (b36) 2010; 22 O’Donovan, Leech (b3) 2020; 16 Si, Nie, Wang, Wang, Tan, Feng (b26) 2020 Sogaard (b60) 2010 Jusup, Holme, Kanazawa, Takayasu, Romić, Wang, Geček, Lipić, Podobnik, Wang (b27) 2022; 948 Rodriguez-Mañas, Fried (b17) 2015; 385 Tarvainen, Valpola (b23) 2017; 30 Barbero-Aparicio, Olivares-Gil, Rodríguez, García-Osorio, Díez-Pastor (b33) 2024; 102 Ghasemzadeh, Panuccio, Trovato, Fortino, Jafari (b10) 2014; 44 Zhang, Regterschot, Geraedts, Baldus, Zijlstra (b56) 2017; 21 Z.-H. Zhou, M. Li, et al., Semi-supervised regression with co-training, in: IJCAI, Vol. 5, 2005, pp. 908–913. G. Sun, Y. Cong, Q. Wang, J. Li, Y. Fu, Lifelong spectral clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 5867–5874. Eskandari, Parvaneh, Ehsani, Fain, Toosizadeh (b57) 2022; 26 Eskandari, Parvaneh, Ehsani, Fain, Toosizadeh (b19) 2022; 26 Qi, Soh, Gunawan, Low, Thomas (b42) 2015; 24 Jia, Ding, Kong, Fu (b28) 2019; 30 Jusup (10.1016/j.inffus.2024.102504_b27) 2022; 948 Zhang (10.1016/j.inffus.2024.102504_b56) 2017; 21 Ghasemzadeh (10.1016/j.inffus.2024.102504_b10) 2014; 44 Ghifary (10.1016/j.inffus.2024.102504_b34) 2016; 39 Lee (10.1016/j.inffus.2024.102504_b30) 2013 Mendes (10.1016/j.inffus.2024.102504_b45) 2019; 43 Shi (10.1016/j.inffus.2024.102504_b43) 2023; 53 Clegg (10.1016/j.inffus.2024.102504_b16) 2013; 381 Jia (10.1016/j.inffus.2024.102504_b28) 2019; 30 Leong (10.1016/j.inffus.2024.102504_b46) 2015; 386 Dent (10.1016/j.inffus.2024.102504_b6) 2016; 31 Zhang (10.1016/j.inffus.2024.102504_b53) 2022; 26 Dai (10.1016/j.inffus.2024.102504_b5) 2021; 8 D’Aniello (10.1016/j.inffus.2024.102504_b12) 2024; 104 Gravina (10.1016/j.inffus.2024.102504_b13) 2017; 35 Zhou (10.1016/j.inffus.2024.102504_b59) 2004 Sun (10.1016/j.inffus.2024.102504_b38) 2019 Han (10.1016/j.inffus.2024.102504_b40) 2019; 19 Barbero-Aparicio (10.1016/j.inffus.2024.102504_b22) 2024; 102 Zhai (10.1016/j.inffus.2024.102504_b25) 2019 Ethun (10.1016/j.inffus.2024.102504_b2) 2017; 67 Si (10.1016/j.inffus.2024.102504_b26) 2020 Barbero-Aparicio (10.1016/j.inffus.2024.102504_b33) 2024; 102 Rampp (10.1016/j.inffus.2024.102504_b11) 2014; 62 Wang (10.1016/j.inffus.2024.102504_b39) 2018; 310 Kingma (10.1016/j.inffus.2024.102504_b29) 2014; 27 Eskandari (10.1016/j.inffus.2024.102504_b19) 2022; 26 Romero-Ortuno (10.1016/j.inffus.2024.102504_b7) 2014; 4 Fried (10.1016/j.inffus.2024.102504_b50) 2001; 56 Eskandari (10.1016/j.inffus.2024.102504_b57) 2022; 26 Millor (10.1016/j.inffus.2024.102504_b20) 2017; 25 Bouzón (10.1016/j.inffus.2024.102504_b8) 2017; 18 Gordon (10.1016/j.inffus.2024.102504_b49) 2012; 10 Li (10.1016/j.inffus.2024.102504_b14) 2023; 7 10.1016/j.inffus.2024.102504_b47 Qi (10.1016/j.inffus.2024.102504_b42) 2015; 24 Ayad (10.1016/j.inffus.2024.102504_b55) 2023; 27 Liu (10.1016/j.inffus.2024.102504_b44) 2019; 134 Handley (10.1016/j.inffus.2024.102504_b4) 2022; 166 Tarvainen (10.1016/j.inffus.2024.102504_b23) 2017; 30 van Kempen (10.1016/j.inffus.2024.102504_b9) 2013; 63 Fried (10.1016/j.inffus.2024.102504_b15) 2001; 56 Zhu (10.1016/j.inffus.2024.102504_b51) 2019; 15 Khowaja (10.1016/j.inffus.2024.102504_b21) 2024; 102 O’Donovan (10.1016/j.inffus.2024.102504_b3) 2020; 16 Gretton (10.1016/j.inffus.2024.102504_b48) 2009 Pan (10.1016/j.inffus.2024.102504_b36) 2010; 22 Wang (10.1016/j.inffus.2024.102504_b41) 2012; 59 Shen (10.1016/j.inffus.2024.102504_b54) 2021; 13 Sogaard (10.1016/j.inffus.2024.102504_b60) 2010 10.1016/j.inffus.2024.102504_b37 Zhou (10.1016/j.inffus.2024.102504_b58) 2005; 17 10.1016/j.inffus.2024.102504_b35 Li (10.1016/j.inffus.2024.102504_b52) 2020; 8 Takeru (10.1016/j.inffus.2024.102504_b24) 2018 10.1016/j.inffus.2024.102504_b32 Rodriguez-Mañas (10.1016/j.inffus.2024.102504_b17) 2015; 385 10.1016/j.inffus.2024.102504_b31 Handforth (10.1016/j.inffus.2024.102504_b1) 2015; 26 Arshad (10.1016/j.inffus.2024.102504_b18) 2021 |
References_xml | – year: 2019 ident: b38 article-title: Representative task self-selection for flexible clustered lifelong learning – volume: 59 start-page: 2884 year: 2012 end-page: 2892 ident: b41 article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information publication-title: IEEE Trans. Biomed. Eng. – volume: 63 start-page: e225 year: 2013 end-page: e231 ident: b9 article-title: Development of an instrument for the identification of frail older people as a target population for integrated care publication-title: Br. J. Gen. Pract. – volume: 30 year: 2017 ident: b23 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2018 ident: b24 article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 134 start-page: 374 year: 2019 end-page: 382 ident: b44 article-title: Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies publication-title: Blood J. Am. Soc. Hematol. – volume: 386 start-page: 266 year: 2015 end-page: 273 ident: b46 article-title: Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study publication-title: Lancet – start-page: 1476 year: 2019 end-page: 1485 ident: b25 article-title: S4l: Self-supervised semi-supervised learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 16 start-page: 30 year: 2020 end-page: 38 ident: b3 article-title: Personalised treatment for older adults with cancer: the role of frailty assessment publication-title: Tech. Innov. Patient Support Radiat. Oncol. – reference: G. Sun, Y. Cong, Q. Wang, J. Li, Y. Fu, Lifelong spectral clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 5867–5874. – volume: 26 start-page: 1091 year: 2015 end-page: 1101 ident: b1 article-title: The prevalence and outcomes of frailty in older cancer patients: a systematic review publication-title: Ann. Oncol. – volume: 56 start-page: M146 year: 2001 end-page: M157 ident: b15 article-title: Frailty in older adults: evidence for a phenotype publication-title: J. Gerontol. (A. Biol. Sci. Med. Sci.) – volume: 26 start-page: 3409 year: 2022 end-page: 3417 ident: b57 article-title: Frailty identification using heart rate dynamics: A deep learning approach publication-title: IEEE J. Biomed. Health Inf. – volume: 104 year: 2024 ident: b12 article-title: Situation identification in smart wearable computing systems based on machine learning and Context Space Theory publication-title: Inf. Fusion – volume: 35 start-page: 68 year: 2017 end-page: 80 ident: b13 article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges publication-title: Inf. Fusion – volume: 102 year: 2024 ident: b33 article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques publication-title: Inf. Fusion – volume: 21 start-page: 211 year: 2017 end-page: 217 ident: b56 article-title: Chair rise peak power in daily life measured with a pendant sensor associates with mobility, limitation in activities, and frailty in old people publication-title: IEEE J. Biomed. Health Inf. – start-page: 35 year: 2020 end-page: 51 ident: b26 article-title: Adversarial self-supervised learning for semi-supervised 3D action recognition publication-title: Computer Vision – ECCV 2020 – volume: 18 start-page: 402 year: 2017 end-page: 408 ident: b8 article-title: The standardization of frailty phenotype criteria improves its predictive ability: the Toledo study for healthy aging publication-title: J. Am. Med. Dir. Assoc. – volume: 39 start-page: 1414 year: 2016 end-page: 1430 ident: b34 article-title: Scatter component analysis: A unified framework for domain adaptation and domain generalization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Z.-H. Zhou, M. Li, et al., Semi-supervised regression with co-training, in: IJCAI, Vol. 5, 2005, pp. 908–913. – start-page: 594 year: 2004 end-page: 602 ident: b59 article-title: Democratic co-learning publication-title: 16th IEEE International Conference on Tools with Artificial Intelligence – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: b36 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. – volume: 56 start-page: M146 year: 2001 end-page: M157 ident: b50 article-title: Frailty in older adults: evidence for a phenotype publication-title: J. Gerontol. (A Biol. Sci. Med. Sci.) – year: 2009 ident: b48 article-title: A fast, consistent kernel two-sample test publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 725 year: 2012 ident: b49 article-title: Karush-kuhn-tucker conditions publication-title: Optimization – reference: A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100. – volume: 8 year: 2021 ident: b5 article-title: Impacts of frailty on prognosis in lung cancer patients: a systematic review and meta-analysis publication-title: Front. Med. – volume: 62 start-page: 1089 year: 2014 end-page: 1097 ident: b11 article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 189287 year: 2020 end-page: 189297 ident: b52 article-title: SEML: A semi-supervised multi-task learning framework for aspect-based sentiment analysis publication-title: IEEE Access – volume: 31 start-page: 3 year: 2016 end-page: 10 ident: b6 article-title: Frailty measurement in research and clinical practice: a review publication-title: Eur. J. Intern. Med. – volume: 26 start-page: 3409 year: 2022 end-page: 3417 ident: b19 article-title: Frailty identification using heart rate dynamics: A deep learning approach publication-title: IEEE J. Biomed. Health Inf. – volume: 24 start-page: 88 year: 2015 end-page: 97 ident: b42 article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: B. Quanz, J. Huan, Large margin transductive transfer learning, in: Proceedings of the 18th ACM Conference on Information and Knowledge Management, 2009, pp. 1327–1336. – volume: 948 start-page: 1 year: 2022 end-page: 148 ident: b27 article-title: Social physics publication-title: Phys. Rep. – volume: 30 start-page: 2801 year: 2019 end-page: 2814 ident: b28 article-title: Semi-supervised cross-modality action recognition by latent tensor transfer learning publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 4 year: 2014 ident: b7 article-title: A frailty instrument for primary care for those aged 75 years or more: findings from the Survey of Health, Ageing and Retirement in Europe, a longitudinal population-based cohort study (SHARE-FI75+) publication-title: BMJ Open – volume: 25 start-page: 2018 year: 2017 end-page: 2025 ident: b20 article-title: Gait velocity and chair sit-stand-sit performance improves current frailty-status identification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: J. Zhang, W. Li, P. Ogunbona, Joint geometrical and statistical alignment for visual domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1859–1867. – volume: 53 start-page: 176 year: 2023 end-page: 186 ident: b43 article-title: Threshold-free phase segmentation and zero velocity detection for gait analysis using foot-mounted inertial sensors publication-title: IEEE Trans. Hum.-Mach. Syst. – volume: 44 start-page: 537 year: 2014 end-page: 544 ident: b10 article-title: Power-aware activity monitoring using distributed wearable sensors publication-title: IEEE Trans. Hum.-Mach. Syst. – volume: 381 start-page: 752 year: 2013 end-page: 762 ident: b16 article-title: Frailty in elderly people publication-title: The Lancet – volume: 15 start-page: 3821 year: 2019 end-page: 3830 ident: b51 article-title: A novel semisupervised deep learning method for human activity recognition publication-title: IEEE Trans. Ind. Inform. – volume: 26 start-page: 3791 year: 2022 end-page: 3801 ident: b53 article-title: Semi-supervised learning for automatic atrial fibrillation detection in 24-hour holter monitoring publication-title: IEEE J. Biomed. Health Inf. – volume: 19 start-page: 3439 year: 2019 end-page: 3448 ident: b40 article-title: Gait phase detection for normal and abnormal gaits using IMU publication-title: IEEE Sens. J. – volume: 7 start-page: 1290 year: 2023 end-page: 1300 ident: b14 article-title: Physical fitness assessment for cancer patients using multi-model decision fusion based on multi-source data publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 67 start-page: 362 year: 2017 end-page: 377 ident: b2 article-title: Frailty and cancer: implications for oncology surgery, medical oncology, and radiation oncology publication-title: CA Cancer J. Clin. – volume: 102 year: 2024 ident: b21 article-title: ReFuSeAct: Representation fusion using self-supervised learning for activity recognition in next generation networks publication-title: Inf. Fusion – start-page: 896 year: 2013 ident: b30 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks publication-title: Workshop on Challenges in Representation Learning, Vol. 3, No. 2 – volume: 17 start-page: 1529 year: 2005 end-page: 1541 ident: b58 article-title: Tri-training: exploiting unlabeled data using three classifiers publication-title: IEEE Trans. Knowl. Data Eng. – volume: 166 start-page: 50 year: 2022 end-page: 56 ident: b4 article-title: Frailty repels the knife: the impact of frailty index on surgical intervention and outcomes publication-title: Gynecol. Oncol. – volume: 310 start-page: 115 year: 2018 end-page: 124 ident: b39 article-title: Transfer learning with partial related “instance-feature” knowledge publication-title: Neurocomputing – volume: 13 year: 2021 ident: b54 article-title: Semi-supervised convolutional long short-term memory neural networks for time series land cover classification publication-title: Remote Sens. – volume: 102 year: 2024 ident: b22 article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques publication-title: Inf. Fusion – volume: 43 start-page: 347 year: 2019 end-page: 356 ident: b45 article-title: Association of anthropometric and nutrition status indicators with hand grip strength and gait speed in older adults publication-title: J. Parenter Enteral Nutr. – volume: 385 start-page: e7 year: 2015 end-page: e9 ident: b17 article-title: Frailty in the clinical scenario publication-title: Lancet – volume: 27 start-page: 4261 year: 2023 end-page: 4272 ident: b55 article-title: An efficient and private ECG classification system using split and semi-supervised learning publication-title: IEEE J. Biomed. Health Inf. – volume: 27 year: 2014 ident: b29 article-title: Semi-supervised learning with deep generative models publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1874 year: 2021 end-page: 1879 ident: b18 article-title: Gait-based frailty assessment using image representation of IMU signals and deep CNN publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society – start-page: 205 year: 2010 end-page: 208 ident: b60 publication-title: Simple Semi-Supervised Training of Part-Of-Speech Taggers – volume: 16 start-page: 30 year: 2020 ident: 10.1016/j.inffus.2024.102504_b3 article-title: Personalised treatment for older adults with cancer: the role of frailty assessment publication-title: Tech. Innov. Patient Support Radiat. Oncol. doi: 10.1016/j.tipsro.2020.09.001 – volume: 19 start-page: 3439 issue: 9 year: 2019 ident: 10.1016/j.inffus.2024.102504_b40 article-title: Gait phase detection for normal and abnormal gaits using IMU publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2894143 – volume: 30 year: 2017 ident: 10.1016/j.inffus.2024.102504_b23 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Adv. Neural Inf. Process. Syst. – volume: 17 start-page: 1529 issue: 11 year: 2005 ident: 10.1016/j.inffus.2024.102504_b58 article-title: Tri-training: exploiting unlabeled data using three classifiers publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.186 – ident: 10.1016/j.inffus.2024.102504_b31 – volume: 67 start-page: 362 issue: 5 year: 2017 ident: 10.1016/j.inffus.2024.102504_b2 article-title: Frailty and cancer: implications for oncology surgery, medical oncology, and radiation oncology publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21406 – volume: 102 year: 2024 ident: 10.1016/j.inffus.2024.102504_b22 article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102035 – volume: 27 year: 2014 ident: 10.1016/j.inffus.2024.102504_b29 article-title: Semi-supervised learning with deep generative models publication-title: Adv. Neural Inf. Process. Syst. – volume: 53 start-page: 176 issue: 1 year: 2023 ident: 10.1016/j.inffus.2024.102504_b43 article-title: Threshold-free phase segmentation and zero velocity detection for gait analysis using foot-mounted inertial sensors publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2022.3228515 – ident: 10.1016/j.inffus.2024.102504_b35 doi: 10.1109/CVPR.2017.547 – volume: 26 start-page: 3409 issue: 7 year: 2022 ident: 10.1016/j.inffus.2024.102504_b19 article-title: Frailty identification using heart rate dynamics: A deep learning approach publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3152538 – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.inffus.2024.102504_b36 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 8 year: 2021 ident: 10.1016/j.inffus.2024.102504_b5 article-title: Impacts of frailty on prognosis in lung cancer patients: a systematic review and meta-analysis publication-title: Front. Med. doi: 10.3389/fmed.2021.715513 – volume: 21 start-page: 211 issue: 1 year: 2017 ident: 10.1016/j.inffus.2024.102504_b56 article-title: Chair rise peak power in daily life measured with a pendant sensor associates with mobility, limitation in activities, and frailty in old people publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2015.2501828 – start-page: 896 year: 2013 ident: 10.1016/j.inffus.2024.102504_b30 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – volume: 43 start-page: 347 issue: 3 year: 2019 ident: 10.1016/j.inffus.2024.102504_b45 article-title: Association of anthropometric and nutrition status indicators with hand grip strength and gait speed in older adults publication-title: J. Parenter Enteral Nutr. doi: 10.1002/jpen.1424 – volume: 7 start-page: 1290 issue: 4 year: 2023 ident: 10.1016/j.inffus.2024.102504_b14 article-title: Physical fitness assessment for cancer patients using multi-model decision fusion based on multi-source data publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2022.3221129 – volume: 62 start-page: 1089 issue: 4 year: 2014 ident: 10.1016/j.inffus.2024.102504_b11 article-title: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2368211 – volume: 18 start-page: 402 issue: 5 year: 2017 ident: 10.1016/j.inffus.2024.102504_b8 article-title: The standardization of frailty phenotype criteria improves its predictive ability: the Toledo study for healthy aging publication-title: J. Am. Med. Dir. Assoc. doi: 10.1016/j.jamda.2016.11.003 – volume: 26 start-page: 3409 issue: 7 year: 2022 ident: 10.1016/j.inffus.2024.102504_b57 article-title: Frailty identification using heart rate dynamics: A deep learning approach publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3152538 – volume: 24 start-page: 88 issue: 1 year: 2015 ident: 10.1016/j.inffus.2024.102504_b42 article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2409123 – volume: 27 start-page: 4261 issue: 9 year: 2023 ident: 10.1016/j.inffus.2024.102504_b55 article-title: An efficient and private ECG classification system using split and semi-supervised learning publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2023.3281977 – volume: 31 start-page: 3 year: 2016 ident: 10.1016/j.inffus.2024.102504_b6 article-title: Frailty measurement in research and clinical practice: a review publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2016.03.007 – volume: 385 start-page: e7 issue: 9968 year: 2015 ident: 10.1016/j.inffus.2024.102504_b17 article-title: Frailty in the clinical scenario publication-title: Lancet doi: 10.1016/S0140-6736(14)61595-6 – volume: 13 issue: 17 year: 2021 ident: 10.1016/j.inffus.2024.102504_b54 article-title: Semi-supervised convolutional long short-term memory neural networks for time series land cover classification publication-title: Remote Sens. doi: 10.3390/rs13173504 – volume: 166 start-page: 50 issue: 1 year: 2022 ident: 10.1016/j.inffus.2024.102504_b4 article-title: Frailty repels the knife: the impact of frailty index on surgical intervention and outcomes publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2022.05.009 – volume: 44 start-page: 537 issue: 4 year: 2014 ident: 10.1016/j.inffus.2024.102504_b10 article-title: Power-aware activity monitoring using distributed wearable sensors publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2014.2320277 – volume: 310 start-page: 115 issue: OCT.8 year: 2018 ident: 10.1016/j.inffus.2024.102504_b39 article-title: Transfer learning with partial related “instance-feature” knowledge publication-title: Neurocomputing – ident: 10.1016/j.inffus.2024.102504_b47 doi: 10.1145/1645953.1646121 – volume: 4 issue: 12 year: 2014 ident: 10.1016/j.inffus.2024.102504_b7 article-title: A frailty instrument for primary care for those aged 75 years or more: findings from the Survey of Health, Ageing and Retirement in Europe, a longitudinal population-based cohort study (SHARE-FI75+) publication-title: BMJ Open doi: 10.1136/bmjopen-2014-006645 – start-page: 1874 year: 2021 ident: 10.1016/j.inffus.2024.102504_b18 article-title: Gait-based frailty assessment using image representation of IMU signals and deep CNN – volume: 15 start-page: 3821 issue: 7 year: 2019 ident: 10.1016/j.inffus.2024.102504_b51 article-title: A novel semisupervised deep learning method for human activity recognition publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2889315 – start-page: 205 year: 2010 ident: 10.1016/j.inffus.2024.102504_b60 – start-page: 35 year: 2020 ident: 10.1016/j.inffus.2024.102504_b26 article-title: Adversarial self-supervised learning for semi-supervised 3D action recognition – volume: 102 year: 2024 ident: 10.1016/j.inffus.2024.102504_b21 article-title: ReFuSeAct: Representation fusion using self-supervised learning for activity recognition in next generation networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102044 – year: 2019 ident: 10.1016/j.inffus.2024.102504_b38 – start-page: 1 year: 2018 ident: 10.1016/j.inffus.2024.102504_b24 article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 56 start-page: M146 issue: 3 year: 2001 ident: 10.1016/j.inffus.2024.102504_b15 article-title: Frailty in older adults: evidence for a phenotype publication-title: J. Gerontol. (A. Biol. Sci. Med. Sci.) doi: 10.1093/gerona/56.3.M146 – volume: 26 start-page: 1091 issue: 6 year: 2015 ident: 10.1016/j.inffus.2024.102504_b1 article-title: The prevalence and outcomes of frailty in older cancer patients: a systematic review publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu540 – volume: 134 start-page: 374 issue: 4 year: 2019 ident: 10.1016/j.inffus.2024.102504_b44 article-title: Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies publication-title: Blood J. Am. Soc. Hematol. – volume: 63 start-page: e225 issue: 608 year: 2013 ident: 10.1016/j.inffus.2024.102504_b9 article-title: Development of an instrument for the identification of frail older people as a target population for integrated care publication-title: Br. J. Gen. Pract. doi: 10.3399/bjgp13X664289 – volume: 25 start-page: 2018 issue: 11 year: 2017 ident: 10.1016/j.inffus.2024.102504_b20 article-title: Gait velocity and chair sit-stand-sit performance improves current frailty-status identification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2699124 – volume: 56 start-page: M146 issue: 3 year: 2001 ident: 10.1016/j.inffus.2024.102504_b50 article-title: Frailty in older adults: evidence for a phenotype publication-title: J. Gerontol. (A Biol. Sci. Med. Sci.) doi: 10.1093/gerona/56.3.M146 – volume: 102 year: 2024 ident: 10.1016/j.inffus.2024.102504_b33 article-title: Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102035 – volume: 10 start-page: 725 issue: 725/36 year: 2012 ident: 10.1016/j.inffus.2024.102504_b49 article-title: Karush-kuhn-tucker conditions publication-title: Optimization – volume: 948 start-page: 1 year: 2022 ident: 10.1016/j.inffus.2024.102504_b27 article-title: Social physics publication-title: Phys. Rep. doi: 10.1016/j.physrep.2021.10.005 – volume: 104 year: 2024 ident: 10.1016/j.inffus.2024.102504_b12 article-title: Situation identification in smart wearable computing systems based on machine learning and Context Space Theory publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102197 – volume: 26 start-page: 3791 issue: 8 year: 2022 ident: 10.1016/j.inffus.2024.102504_b53 article-title: Semi-supervised learning for automatic atrial fibrillation detection in 24-hour holter monitoring publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3173655 – start-page: 1476 year: 2019 ident: 10.1016/j.inffus.2024.102504_b25 article-title: S4l: Self-supervised semi-supervised learning – year: 2009 ident: 10.1016/j.inffus.2024.102504_b48 article-title: A fast, consistent kernel two-sample test publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.inffus.2024.102504_b37 doi: 10.1609/aaai.v34i04.6045 – volume: 59 start-page: 2884 issue: 10 year: 2012 ident: 10.1016/j.inffus.2024.102504_b41 article-title: Walking pattern classification and walking distance estimation algorithms using gait phase information publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2212245 – volume: 386 start-page: 266 issue: 9990 year: 2015 ident: 10.1016/j.inffus.2024.102504_b46 article-title: Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study publication-title: Lancet doi: 10.1016/S0140-6736(14)62000-6 – start-page: 594 year: 2004 ident: 10.1016/j.inffus.2024.102504_b59 article-title: Democratic co-learning – volume: 30 start-page: 2801 issue: 9 year: 2019 ident: 10.1016/j.inffus.2024.102504_b28 article-title: Semi-supervised cross-modality action recognition by latent tensor transfer learning publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2910208 – volume: 381 start-page: 752 issue: 9868 year: 2013 ident: 10.1016/j.inffus.2024.102504_b16 article-title: Frailty in elderly people publication-title: The Lancet doi: 10.1016/S0140-6736(12)62167-9 – ident: 10.1016/j.inffus.2024.102504_b32 doi: 10.1145/279943.279962 – volume: 8 start-page: 189287 year: 2020 ident: 10.1016/j.inffus.2024.102504_b52 article-title: SEML: A semi-supervised multi-task learning framework for aspect-based sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031665 – volume: 35 start-page: 68 year: 2017 ident: 10.1016/j.inffus.2024.102504_b13 article-title: Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.09.005 – volume: 39 start-page: 1414 issue: 7 year: 2016 ident: 10.1016/j.inffus.2024.102504_b34 article-title: Scatter component analysis: A unified framework for domain adaptation and domain generalization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2599532 |
SSID | ssj0017031 |
Score | 2.4216413 |
Snippet | Frailty evaluation is of great significance for the specific population, which can speed up the treatment process and reduce the adverse effects after... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102504 |
SubjectTerms | Frailty evaluation Gait features Physiological data Semi-supervised learning Transfer-learning |
Title | A comprehensive evaluation method for frailty based on semi-supervised learning and transfer-learning |
URI | https://dx.doi.org/10.1016/j.inffus.2024.102504 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jVuXNG2PYzjm1xB1sFtJmkQrs46uO3jxbzevaaciKHgqeU2g_BJ-eY--93sInVr-86nUnGhDDWGya4hIdEKkUUEgqYBfVZBtMeajCbuc-tMGGtS1MJBWWXG_4_SSrStLp0KzM0_Tzj1EHj1QJ2Fl4ACKn4wFcMrP3ldpHh7os5eaqZwTmF2Xz5U5XnYTzRJEu3sMNAz8ql3bj-vpy5Uz3EKbla-I--5ztlFDZzto42YltLrYRbqPISk8108uER1_qndj1xwaW68Um1yks-INw52lsH230C8pWSznwBRgqppHPGKRKVyUzqzOSW3dQ5Ph-cNgRKrOCSSxIUBhgfc8GSjuhaYnQpPI0EbAkQU-MYHRPJBKWaMJIxH5ogsj6tuhYcxwT8ou3UfN7DXTBwh7QmtKI7t3KmSUGhtRWhZVPFI0MZH2W4jWgMVJJSsO3S1mcZ0_9hw7mGOAOXYwtxBZrZo7WY0_5gf1XsTfjkdsmf_XlYf_XnmE1mHkCg-PUbPIl_rEeiCFbJdHrI3W-oO761t4XlyNxh_p3uDc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwdWq02d51hVVCl9LLRStyiObSgqoUrTgX-PL3EKCAkkRp9zUvTZ-nwnn78DuNP85zAuXSoVU9TmbUXjRCaUK-F5nMV4VYXVFhM3nNkPc2deg171FgbLKg33l5xesLWxtAyardVi0XrEzKOD6iR2kTiwHWigOpVTh0Z3MAwn28sElGgvZFNdl6JD9YKuKPPS66g2qNvdsVHGwDEd236cUF9Onf4hHJhwkXTLPzqCmkyPYX-81Vpdn4DsEqwLz-RzWYtOPgW8SdkfmujAlKgsXizzd4LHliB6bi1fF3S9WSFZoMn0j3gicSpIXsSzMqOV9RRm_ftpL6SmeQJNdBaQa-wti3vCtXzViX2VcF8nwYHGPlGekq7HhdBG5Qdx4MRtHDFHD5VtK9fivM3OoJ6-pfIciBVLyVigl0_4NmNKJ5WaSIUbCJaoQDpNYBVgUWKUxbHBxTKqSsheohLmCGGOSpibQLdeq1JZ44_vvWotom87JNLk_6vnxb89b2E3nI5H0WgwGV7CHs6U7xCvoJ5nG3mtA5Kc35gN9wGSq-H4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+evaluation+method+for+frailty+based+on+semi-supervised+learning+and+transfer-learning&rft.jtitle=Information+fusion&rft.au=Li%2C+Jiaxi&rft.au=Wang%2C+Zhelong&rft.au=Wang%2C+Zheng&rft.au=Qiu%2C+Sen&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=111&rft_id=info:doi/10.1016%2Fj.inffus.2024.102504&rft.externalDocID=S1566253524002823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |