3D printed stretchable triboelectric nanogenerator fibers and devices

Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human activity. Here, we report a process for 3D printing stretchable membranes, meshes, and hollow 3D structures on planar, rotating, and non-plan...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 75; p. 104973
Main Authors Tong, Yuxin, Feng, Ziang, Kim, Jongwoon, Robertson, John L., Jia, Xiaoting, Johnson, Blake N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human activity. Here, we report a process for 3D printing stretchable membranes, meshes, and hollow 3D structures on planar, rotating, and non-planar anatomical substrates using elastomeric metal-core triboelectric nanogenerator (TENG) fibers. The triboelectric performance of single 3D-printed elastomeric metal-core silicone-copper (Cu) (cladding-core) fibers and 3D-printed membranes was quantified by cyclic loading tests, which showed maximum power densities of 31.39 and 23.94 mW m−2, respectively. The utility of the flexible silicone-Cu TENG fibers and 3D printing process was demonstrated through applications to wearable mechanosensors for organ and human activity monitoring, specifically, monitoring of perfused organs and speech recognition in the absence of sound production by the speaker (i.e., ‘silent speech’), respectively. 3D-printed wearable triboelectric mechanosensors, in the form of stretchable form-fitting meshes and membranes, in combination with machine-learning signal processing algorithms, enabled real-time monitoring of perfusion-induced kidney edema and speech recognition in the absence of sound production by human subjects (99% word classification accuracy). Overall, this work expands the conductive and functional materials palette for 3D printing and encourages the use of 3D-printed triboelectric devices for self-powered sensing applications in biomanufacturing, medicine, and defense. [Display omitted] •Coaxial micro-extrusion process for production of flexible silicone-copper triboelectric nanogenerator (TENG) fibers.•3D printing of stretchable triboelectric constructs and devices, including form-fitting wearable systems.•Triboelectric-based real-time mechanosensing of organ edema and speech recognition in the absence of sound production by the speaker using machine learning techniques.
AbstractList Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human activity. Here, we report a process for 3D printing stretchable membranes, meshes, and hollow 3D structures on planar, rotating, and non-planar anatomical substrates using elastomeric metal-core triboelectric nanogenerator (TENG) fibers. The triboelectric performance of single 3D-printed elastomeric metal-core silicone-copper (Cu) (cladding-core) fibers and 3D-printed membranes was quantified by cyclic loading tests, which showed maximum power densities of 31.39 and 23.94 mW m−2, respectively. The utility of the flexible silicone-Cu TENG fibers and 3D printing process was demonstrated through applications to wearable mechanosensors for organ and human activity monitoring, specifically, monitoring of perfused organs and speech recognition in the absence of sound production by the speaker (i.e., ‘silent speech’), respectively. 3D-printed wearable triboelectric mechanosensors, in the form of stretchable form-fitting meshes and membranes, in combination with machine-learning signal processing algorithms, enabled real-time monitoring of perfusion-induced kidney edema and speech recognition in the absence of sound production by human subjects (99% word classification accuracy). Overall, this work expands the conductive and functional materials palette for 3D printing and encourages the use of 3D-printed triboelectric devices for self-powered sensing applications in biomanufacturing, medicine, and defense. [Display omitted] •Coaxial micro-extrusion process for production of flexible silicone-copper triboelectric nanogenerator (TENG) fibers.•3D printing of stretchable triboelectric constructs and devices, including form-fitting wearable systems.•Triboelectric-based real-time mechanosensing of organ edema and speech recognition in the absence of sound production by the speaker using machine learning techniques.
ArticleNumber 104973
Author Kim, Jongwoon
Feng, Ziang
Jia, Xiaoting
Tong, Yuxin
Robertson, John L.
Johnson, Blake N.
Author_xml – sequence: 1
  givenname: Yuxin
  surname: Tong
  fullname: Tong, Yuxin
  organization: Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
– sequence: 2
  givenname: Ziang
  orcidid: 0000-0001-7651-222X
  surname: Feng
  fullname: Feng, Ziang
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
– sequence: 3
  givenname: Jongwoon
  surname: Kim
  fullname: Kim, Jongwoon
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
– sequence: 4
  givenname: John L.
  surname: Robertson
  fullname: Robertson, John L.
  organization: School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
– sequence: 5
  givenname: Xiaoting
  surname: Jia
  fullname: Jia, Xiaoting
  email: xjia@vt.edu
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
– sequence: 6
  givenname: Blake N.
  surname: Johnson
  fullname: Johnson, Blake N.
  email: bnj@vt.edu
  organization: Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
BookMark eNqFkMFOwzAMhnMYEmPsDTj0BTqSdMlaDkhojIE0iQucI9dxIVNJUBJN4u1pVU4cwBdblr5f9nfBZj54YuxK8JXgQl8fVx58IL-SXI6rdbOpZmwupRClrJU6Z8uUjnworcRGyDnbVffFZ3Q-ky1SjpTxHdqeihxdG6gnHAYsxtQ38hQhh1h0rqWYCvC2sHRySOmSnXXQJ1r-9AV7fdi9bB_Lw_P-aXt3KLHiOpdEbdfUEjqugBBFw7FGUdtaVVWjOVSA2GjbdrAhJECtJChSoibeNFroasHWUy7GkFKkzgy3f0D8MoKb0YA5msmAGQ2YycCA3fzC0GXILvgcwfX_wbcTTMNjJ0fRJHTkkayLgx5jg_s74Bs_pH73
CitedBy_id crossref_primary_10_1007_s42765_020_00057_5
crossref_primary_10_1063_5_0223007
crossref_primary_10_1186_s40580_021_00289_0
crossref_primary_10_1002_cnl2_39
crossref_primary_10_1002_smll_202202792
crossref_primary_10_3390_polym15112564
crossref_primary_10_1016_j_compositesb_2024_111995
crossref_primary_10_1002_adfm_202403918
crossref_primary_10_1007_s10853_021_06637_z
crossref_primary_10_1039_D4MH00522H
crossref_primary_10_1007_s40843_023_2542_5
crossref_primary_10_1016_j_nanoen_2021_105844
crossref_primary_10_1016_j_nanoen_2021_106534
crossref_primary_10_1088_2631_7990_ada858
crossref_primary_10_1063_5_0213289
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_1016_j_mtsust_2022_100292
crossref_primary_10_1016_j_mattod_2021_05_017
crossref_primary_10_1016_j_nanoen_2022_107585
crossref_primary_10_1002_adma_202109355
crossref_primary_10_1088_2058_8585_ac28f1
crossref_primary_10_1002_admt_202301316
crossref_primary_10_1002_admt_202400554
crossref_primary_10_1002_advs_202408653
crossref_primary_10_1007_s12274_022_5238_x
crossref_primary_10_1126_sciadv_abo0869
crossref_primary_10_1002_admt_202301874
crossref_primary_10_3390_bios12090697
crossref_primary_10_1002_adfm_202105169
crossref_primary_10_1016_j_cesys_2021_100042
crossref_primary_10_1021_acsami_1c14273
crossref_primary_10_1016_j_matpr_2022_09_025
crossref_primary_10_1002_ente_202201275
crossref_primary_10_1039_D3TA04710E
crossref_primary_10_1016_j_carbpol_2021_118120
crossref_primary_10_1016_j_nanoen_2022_107737
crossref_primary_10_1002_adma_202307963
crossref_primary_10_1002_inf2_12262
crossref_primary_10_1021_acs_chemrev_1c00502
crossref_primary_10_1002_ente_202401863
crossref_primary_10_1039_D2TA03813G
crossref_primary_10_1557_s43577_021_00079_3
crossref_primary_10_1002_eom2_12054
crossref_primary_10_1007_s42765_020_00056_6
crossref_primary_10_1016_j_addlet_2023_100160
crossref_primary_10_1007_s42235_022_00181_5
crossref_primary_10_1002_adfm_202401593
crossref_primary_10_1002_advs_202102189
crossref_primary_10_1021_acsnano_1c05003
crossref_primary_10_1002_adsr_202200044
crossref_primary_10_1109_ACCESS_2022_3165428
crossref_primary_10_3390_bios13090872
crossref_primary_10_1186_s40486_022_00150_x
crossref_primary_10_1016_j_nanoen_2022_106956
crossref_primary_10_1002_adfm_202309424
crossref_primary_10_1002_anie_202301618
crossref_primary_10_1007_s40820_022_00965_8
crossref_primary_10_1016_j_jmapro_2025_01_052
crossref_primary_10_1002_adem_202400199
crossref_primary_10_1016_j_nanoen_2022_108137
crossref_primary_10_1016_j_nanoen_2024_110208
crossref_primary_10_1016_j_nanoen_2022_107600
crossref_primary_10_1360_TB_2024_0647
crossref_primary_10_1093_nsr_nwac202
crossref_primary_10_1016_j_joule_2022_06_001
crossref_primary_10_1016_j_nanoen_2023_109224
crossref_primary_10_1002_aisy_202200371
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1002_adma_202307546
crossref_primary_10_1016_j_jmsy_2021_07_023
crossref_primary_10_1007_s10570_023_05194_9
crossref_primary_10_1002_ange_202301618
crossref_primary_10_1109_JFLEX_2024_3419078
crossref_primary_10_1088_2631_7990_ad94b8
crossref_primary_10_1016_j_jmst_2024_02_028
crossref_primary_10_1016_j_nanoen_2023_108707
crossref_primary_10_1002_admt_202201442
crossref_primary_10_1002_mame_202100017
crossref_primary_10_1021_acsaelm_3c00340
crossref_primary_10_1002_smtd_202100936
crossref_primary_10_1039_D3RA06290B
crossref_primary_10_3390_polym15224383
crossref_primary_10_1002_adfm_202008807
crossref_primary_10_1016_j_nanoen_2021_106881
crossref_primary_10_1002_admt_202201769
crossref_primary_10_1002_aisy_202300792
crossref_primary_10_1016_j_nanoen_2023_108542
crossref_primary_10_1149_1945_7111_ac72c3
crossref_primary_10_34133_adi_0054
Cites_doi 10.1002/adfm.201707538
10.1007/s00170-014-5717-7
10.1021/acsnano.6b03926
10.1016/j.nantod.2016.04.007
10.1002/aenm.201600665
10.1002/adfm.201805108
10.1021/nl4007744
10.1371/journal.pone.0214120
10.1126/sciadv.1501478
10.1159/000327033
10.1016/j.joule.2017.09.004
10.1021/acsnano.7b05317
10.1109/ACCESS.2014.2311810
10.1080/14686996.2019.1650396
10.1016/j.nanoen.2018.10.078
10.1021/nl5033292
10.1039/C7LC00468K
10.1016/j.nanoen.2019.104429
10.1038/srep35153
10.1007/s40843-019-9498-5
10.1002/adfm.201501760
10.1021/acsnano.7b07534
10.1002/adfm.201604462
10.1016/j.medengphy.2014.10.002
10.1038/s41467-019-09461-x
10.1126/sciadv.1501624
10.1088/0964-1726/25/11/115009
10.1002/adfm.201604378
10.1557/mrc.2018.138
10.1016/j.specom.2009.11.004
10.1108/13552541211212113
10.1002/adma.201504150
10.1063/1.5048553
10.1002/aenm.201801114
10.1002/adma.201504366
10.1016/j.cryobiol.2009.10.006
10.1016/j.nanoen.2017.12.049
10.1016/j.specom.2009.08.002
10.5114/pdia.2013.38359
10.1002/adma.201701218
10.1002/adma.201504403
10.1016/j.nanoen.2017.08.003
10.1557/adv.2018.378
10.1002/adma.201400633
10.1007/BF00683706
10.1016/j.nanoen.2018.08.011
10.1002/smll.201600760
10.1089/3dp.2015.0003
10.1002/ppap.200931106
10.1016/j.nanoen.2019.01.058
10.1002/adma.201504299
10.1002/adma.201705195
10.1002/adma.201705918
10.1016/j.mattod.2019.05.004
10.1002/adma.201702181
10.1126/sciadv.1700015
10.1002/adma.201603527
10.1039/C5LC01270H
10.1080/15583724.2016.1268156
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.104973
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_104973
S2211285520305504
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-eebf982af05aecc190c8c18d8533960a3acc96dbfa7eceac652a5e518e0996163
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:38 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Fri Feb 23 02:49:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wearable systems
Organ preservation
Bionics
Conformal printing
Silent speech
3D printing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-eebf982af05aecc190c8c18d8533960a3acc96dbfa7eceac652a5e518e0996163
ORCID 0000-0001-7651-222X
ParticipantIDs crossref_primary_10_1016_j_nanoen_2020_104973
crossref_citationtrail_10_1016_j_nanoen_2020_104973
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_104973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Eshmuminov, Becker, Borrego, Hefti, Schuler, Hagedorn, Muller, Mueller, Onder, Graf (bib62) 2020
Pu, Liu, Chen, Sun, Du, Zhang, Zhai, Hu, Wang (bib56) 2017; 3
Chen, Tang, Jiang, Zhu, Chen, He, Xu, Guo, Lin, Li (bib23) 2018; 45
Brigham, Kumar (bib65) 2010
He, Zi, Guo, Zheng, Xi, Wu, Wang, Zhang, Lu, Wang (bib12) 2017; 27
Li, Peng, Wang, Lin, Zi, Zhang, Wang (bib43) 2016; 10
Zheng, Zou, Zhang, Liu, Shi, Wang, Jin, Ouyang, Li, Wang (bib58) 2016; 2
Denby, Schultz, Honda, Hueber, Gilbert, Brumberg (bib52) 2010; 52
Murbach, Currlin, Widener, Tong, Chhatre, Subramanian, Martin, Johnson, Otto (bib36) 2018; 8
Sim, Choi, Kim, Kim, Lee, Kim, Lepró, Baughman, Kim (bib9) 2016; 6
Guibert, Petrenko, Balaban, Somov, Rodriguez, Fuller (bib51) 2011; 38
Espalin, Muse, MacDonald, Wicker (bib22) 2014; 72
Hueber, Benaroya, Chollet, Denby, Dreyfus, Stone (bib64) 2010; 52
Joe Lopes, MacDonald, Wicker (bib20) 2012; 18
Kong, Tamargo, Kim, Johnson, Gupta, Koh, Chin, Steingart, Rand, McAlpine (bib33) 2014; 14
Zhang, Qin, Feng, Li, Yang, Sun, Liang, Mao, Wang (bib49) 2020
Lai, Deng, Niu, Peng, Wu, Liu, Wen, Wang (bib42) 2016; 28
Costantino, Zeik, Clarson (bib54) 1994; 4
Deng, Kuang, Liu, Ding, Wang, Lai, Dong, Wen, Wang, Wang (bib59) 2018; 30
Zhang, Zhang, Liang, Gao, Yi, Ma, Liao, Kang, Zhang (bib7) 2019; 55
Li, Luo, Qin, Wang, Xiong, Ding, Gu, Liu, Zhang (bib47) 2016; 12
Pu, Li, Liu, Jiang, Du, Zhao, Hu, Wang (bib8) 2016; 28
Park, Kim, Choi, Kim (bib15) 2018; 6
Mannoor, Jiang, James, Kong, Malatesta, Soboyejo, Verma, Gracias, McAlpine (bib25) 2013; 13
Lai, Deng, Zhang, Niu, Guo, Wang (bib17) 2017; 27
Wang, Ouyang, Chen, Jakobsen (bib40) 2017; 57
Johnson, Lancaster, Zhen, He, Gupta, Kong, Engel, Krick, Ju, Meng (bib37) 2015; 25
Zhang, Du, Chen, Xue, Wang (bib46) 2018; 53
Dong, Peng, Wang (bib18) 2019
Gao, Zhu, Chen, Tian, Yang, Jiang, Wang (bib24) 2019; 28
Laszczak, Jiang, Bader, Moser, Zahedi (bib30) 2015; 37
Dong, Wang, Deng, Dai, Zhang, Zou, Gu, Sun, Wang (bib10) 2017; 11
Xiong, Lee (bib19) 2019; 20
Singh, Tong, Webster, Cesewski, Haring, Laheri, Carswell, O'Brien, Aardema, Senger (bib39) 2017; 17
Lai, Deng, Zhang, Niu, Guo, Wang (bib1) 2017; 27
Liu, Kuang, Deng, Wang, Wang, Ding, Lai, Chen, Wang, Lin (bib57) 2018; 30
Parida, Kumar, Jiangxin, Bhavanasi, Bendi, Lee (bib41) 2017; 29
Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu (bib44) 2019; 10
Zeng, Shu, Li, Chen, Wang, Tao (bib6) 2014; 26
Chen, Huang, Zuo, Qian, Guo, Sun, Lei, Wu, Zhu, He (bib32) 2018; 28
Khan, Ostfeld, Lochner, Pierre, Arias (bib3) 2016; 28
Gul, Yang, Yang, Chang, Choi (bib27) 2016; 25
Webster (bib63) 2017
Gong, Hou, Guo, Zhou, Mu, Li, Zhang, Wang (bib11) 2017; 39
Tong, Murbach, Subramanian, Chhatre, Delgado, Martin, Otto, Romero-Ortega, Johnson (bib35) 2018; 3
Wang, Gong, Shang, Ding, Yin, Jiang, Gong, Xuan (bib45) 2018; 28
Chen, Wang (bib55) 2017; 1
Borges, Belmonte, Guillot, Duday, Moreno‐Couranjou, Choquet, Migeon (bib53) 2009; 6
Pawlaczyk, Lelonkiewicz, Wieczorowski (bib61) 2013; 30
Wang, Sun, Dong, Lv, Zhang, Shang, Yang, Wang, Shan (bib48) 2019; 58
Dong, Deng, Ding, Wang, Wang, Cheng, Wang, Jin, Gu, Sun (bib14) 2018; 8
Choi, Lee, Ghaffari, Hyeon, Kim (bib2) 2016; 28
Tong, Kucukdeger, Halper, Cesewski, Karakozoff, Haring, McIlvain, Singh, Khandelwal, Meholic (bib31) 2019; 14
Yi, Wang, Niu, Li, Yin, Dai, Zhang, Lin, Wen, Guo (bib60) 2016; 2
Zhu, Lou, Abdalla, Yu, Li, Ding (bib16) 2020
Lei, Luo, Guo, Wang, Yang, Wang, Xuan, Shen, Zhang, Liu (bib28) 2019; 62
Cao, Jie, Wang, Wang (bib4) 2016; 6
Johnson, Lancaster, Hogue, Meng, Kong, Enquist, McAlpine (bib38) 2016; 16
Yu, Pu, Wen, Liu, Zhou, Zhang, Zhang, Zhai, Hu, Wang (bib13) 2017; 11
Guo, Qiu, Meng, Park, McAlpine (bib29) 2017; 29
Taylor, Baicu (bib50) 2010; 60
Kong, Gupta, Johnson, McAlpine (bib26) 2016; 11
Fan, Tang, Wang (bib5) 2016; 28
Saari, Cox, Richer, Krueger, Cohen (bib34) 2015; 2
Macdonald, Salas, Espalin, Perez, Aguilera, Muse, Wicker (bib21) 2014; 2
Gao (10.1016/j.nanoen.2020.104973_bib24) 2019; 28
Guo (10.1016/j.nanoen.2020.104973_bib29) 2017; 29
Li (10.1016/j.nanoen.2020.104973_bib47) 2016; 12
Chen (10.1016/j.nanoen.2020.104973_bib55) 2017; 1
Dong (10.1016/j.nanoen.2020.104973_bib10) 2017; 11
Webster (10.1016/j.nanoen.2020.104973_bib63) 2017
Wang (10.1016/j.nanoen.2020.104973_bib48) 2019; 58
Hueber (10.1016/j.nanoen.2020.104973_bib64) 2010; 52
Dong (10.1016/j.nanoen.2020.104973_bib18) 2019
Li (10.1016/j.nanoen.2020.104973_bib43) 2016; 10
Deng (10.1016/j.nanoen.2020.104973_bib59) 2018; 30
Fan (10.1016/j.nanoen.2020.104973_bib5) 2016; 28
Chen (10.1016/j.nanoen.2020.104973_bib23) 2018; 45
Tong (10.1016/j.nanoen.2020.104973_bib35) 2018; 3
Pawlaczyk (10.1016/j.nanoen.2020.104973_bib61) 2013; 30
Zhang (10.1016/j.nanoen.2020.104973_bib46) 2018; 53
Costantino (10.1016/j.nanoen.2020.104973_bib54) 1994; 4
Gul (10.1016/j.nanoen.2020.104973_bib27) 2016; 25
Gong (10.1016/j.nanoen.2020.104973_bib11) 2017; 39
Macdonald (10.1016/j.nanoen.2020.104973_bib21) 2014; 2
Wang (10.1016/j.nanoen.2020.104973_bib45) 2018; 28
Zhang (10.1016/j.nanoen.2020.104973_bib49) 2020
Cao (10.1016/j.nanoen.2020.104973_bib4) 2016; 6
Tong (10.1016/j.nanoen.2020.104973_bib31) 2019; 14
Yu (10.1016/j.nanoen.2020.104973_bib13) 2017; 11
Borges (10.1016/j.nanoen.2020.104973_bib53) 2009; 6
Kong (10.1016/j.nanoen.2020.104973_bib26) 2016; 11
Saari (10.1016/j.nanoen.2020.104973_bib34) 2015; 2
Johnson (10.1016/j.nanoen.2020.104973_bib38) 2016; 16
Choi (10.1016/j.nanoen.2020.104973_bib2) 2016; 28
Mannoor (10.1016/j.nanoen.2020.104973_bib25) 2013; 13
Kong (10.1016/j.nanoen.2020.104973_bib33) 2014; 14
Zeng (10.1016/j.nanoen.2020.104973_bib6) 2014; 26
He (10.1016/j.nanoen.2020.104973_bib12) 2017; 27
Brigham (10.1016/j.nanoen.2020.104973_bib65) 2010
Denby (10.1016/j.nanoen.2020.104973_bib52) 2010; 52
Murbach (10.1016/j.nanoen.2020.104973_bib36) 2018; 8
Parida (10.1016/j.nanoen.2020.104973_bib41) 2017; 29
Xiong (10.1016/j.nanoen.2020.104973_bib19) 2019; 20
Singh (10.1016/j.nanoen.2020.104973_bib39) 2017; 17
Yi (10.1016/j.nanoen.2020.104973_bib60) 2016; 2
Johnson (10.1016/j.nanoen.2020.104973_bib37) 2015; 25
Joe Lopes (10.1016/j.nanoen.2020.104973_bib20) 2012; 18
Wang (10.1016/j.nanoen.2020.104973_bib40) 2017; 57
Pu (10.1016/j.nanoen.2020.104973_bib8) 2016; 28
Guibert (10.1016/j.nanoen.2020.104973_bib51) 2011; 38
Lai (10.1016/j.nanoen.2020.104973_bib17) 2017; 27
Zheng (10.1016/j.nanoen.2020.104973_bib58) 2016; 2
Liu (10.1016/j.nanoen.2020.104973_bib57) 2018; 30
Eshmuminov (10.1016/j.nanoen.2020.104973_bib62) 2020
Pu (10.1016/j.nanoen.2020.104973_bib56) 2017; 3
Laszczak (10.1016/j.nanoen.2020.104973_bib30) 2015; 37
Lai (10.1016/j.nanoen.2020.104973_bib1) 2017; 27
Park (10.1016/j.nanoen.2020.104973_bib15) 2018; 6
Khan (10.1016/j.nanoen.2020.104973_bib3) 2016; 28
Zhu (10.1016/j.nanoen.2020.104973_bib16) 2020
Chen (10.1016/j.nanoen.2020.104973_bib32) 2018; 28
Lei (10.1016/j.nanoen.2020.104973_bib28) 2019; 62
Dong (10.1016/j.nanoen.2020.104973_bib14) 2018; 8
Lai (10.1016/j.nanoen.2020.104973_bib42) 2016; 28
Zhang (10.1016/j.nanoen.2020.104973_bib7) 2019; 55
Espalin (10.1016/j.nanoen.2020.104973_bib22) 2014; 72
Zou (10.1016/j.nanoen.2020.104973_bib44) 2019; 10
Sim (10.1016/j.nanoen.2020.104973_bib9) 2016; 6
Taylor (10.1016/j.nanoen.2020.104973_bib50) 2010; 60
References_xml – volume: 10
  start-page: 7973
  year: 2016
  end-page: 7981
  ident: bib43
  article-title: All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy
  publication-title: ACS Nano
– start-page: 1
  year: 2010
  end-page: 4
  ident: bib65
  article-title: Imagined Speech Classification with EEG Signals for Silent Communication: a Preliminary Investigation into Synthetic Telepathy
– volume: 2
  start-page: 32
  year: 2015
  end-page: 39
  ident: bib34
  article-title: Fiber encapsulation additive manufacturing: an enabling technology for 3D printing of electromechanical devices and robotic components
  publication-title: 3D Print. Addit. Manuf.
– volume: 2
  start-page: 234
  year: 2014
  end-page: 242
  ident: bib21
  article-title: 3D printing for the rapid prototyping of structural electronics
  publication-title: IEEE Access
– volume: 14
  start-page: 7017
  year: 2014
  end-page: 7023
  ident: bib33
  article-title: 3D printed quantum dot light-emitting diodes
  publication-title: Nano Lett.
– volume: 30
  start-page: 1705195
  year: 2018
  ident: bib57
  article-title: Shape memory polymers for body motion energy harvesting and self‐powered mechanosensing
  publication-title: Adv. Mater.
– volume: 28
  start-page: 17
  year: 2019
  end-page: 24
  ident: bib24
  article-title: Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators
  publication-title: Mater. Today
– volume: 3
  year: 2017
  ident: bib56
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
– volume: 6
  start-page: 1600665
  year: 2016
  ident: bib4
  article-title: Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2016
  ident: bib58
  article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source
  publication-title: Sci. Adv.
– volume: 53
  start-page: 108
  year: 2018
  end-page: 115
  ident: bib46
  article-title: An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring
  publication-title: Nano Energy
– volume: 14
  year: 2019
  ident: bib31
  article-title: Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: a case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays
  publication-title: PloS One
– volume: 72
  start-page: 963
  year: 2014
  end-page: 978
  ident: bib22
  article-title: 3D Printing multifunctionality: structures with electronics
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 26
  start-page: 5310
  year: 2014
  end-page: 5336
  ident: bib6
  article-title: Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications
  publication-title: Adv. Mater.
– volume: 6
  start-page: S490
  year: 2009
  end-page: S495
  ident: bib53
  article-title: Functionalization of copper surfaces by plasma treatments to improve adhesion of epoxy resins
  publication-title: Plasma Process. Polym.
– volume: 28
  start-page: 10024
  year: 2016
  end-page: 10032
  ident: bib42
  article-title: Electric eel‐skin‐inspired mechanically durable and super‐stretchable nanogenerator for deformable power source and fully autonomous conformable electronic‐skin applications
  publication-title: Adv. Mater.
– volume: 55
  start-page: 151
  year: 2019
  end-page: 163
  ident: bib7
  article-title: Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics
  publication-title: Nano Energy
– volume: 60
  start-page: S20
  year: 2010
  end-page: S35
  ident: bib50
  article-title: Current state of hypothermic machine perfusion preservation of organs: the clinical perspective
  publication-title: Cryobiology
– volume: 8
  start-page: 1801114
  year: 2018
  ident: bib14
  article-title: Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing
  publication-title: Adv. Energy Mater.
– volume: 45
  start-page: 380
  year: 2018
  end-page: 389
  ident: bib23
  article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing
  publication-title: Nano Energy
– volume: 27
  start-page: 1604378
  year: 2017
  ident: bib12
  article-title: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics
  publication-title: Adv. Funct. Mater.
– start-page: 1
  year: 2020
  end-page: 10
  ident: bib62
  article-title: An integrated perfusion machine preserves injured human livers for 1 week
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 6205
  year: 2015
  end-page: 6217
  ident: bib37
  article-title: 3D printed anatomical nerve regeneration pathways
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 410
  year: 2019
  end-page: 418
  ident: bib48
  article-title: Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 27
  start-page: 1604462
  year: 2017
  ident: bib1
  article-title: Single‐thread‐based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human‐interactive and biomedical sensing
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 302
  year: 2013
  ident: bib61
  article-title: Age-dependent biomechanical properties of the skin
  publication-title: Adv. Dermatol. Allergol.
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib49
  article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics
  publication-title: Nano Res.
– volume: 28
  start-page: 1707538
  year: 2018
  ident: bib45
  article-title: Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 98
  year: 2016
  end-page: 105
  ident: bib8
  article-title: Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators
  publication-title: Adv. Mater.
– volume: 12
  start-page: 5042
  year: 2016
  end-page: 5048
  ident: bib47
  article-title: Flexible capacitive tactile sensor based on micropatterned dielectric layer
  publication-title: Small
– volume: 30
  start-page: 1705918
  year: 2018
  ident: bib59
  article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4373
  year: 2016
  end-page: 4395
  ident: bib3
  article-title: Monitoring of vital signs with flexible and wearable medical devices
  publication-title: Adv. Mater.
– volume: 52
  start-page: 288
  year: 2010
  end-page: 300
  ident: bib64
  article-title: Development of a silent speech interface driven by ultrasound and optical images of the tongue and lips
  publication-title: Speech Commun.
– volume: 25
  start-page: 115009
  year: 2016
  ident: bib27
  article-title: In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait
  publication-title: Smart Mater. Struct.
– start-page: 104429
  year: 2020
  ident: bib16
  article-title: Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing
  publication-title: Nano Energy
– volume: 29
  start-page: 1701218
  year: 2017
  ident: bib29
  article-title: 3D printed stretchable tactile sensors
  publication-title: Adv. Mater.
– volume: 20
  start-page: 837
  year: 2019
  end-page: 857
  ident: bib19
  article-title: Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile
  publication-title: Sci. Technol. Adv. Mater.
– volume: 52
  start-page: 270
  year: 2010
  end-page: 287
  ident: bib52
  article-title: Silent speech interfaces
  publication-title: Speech Commun.
– volume: 6
  start-page: 35153
  year: 2016
  ident: bib9
  article-title: Stretchable triboelectric fiber for self-powered kinematic sensing textile
  publication-title: Sci. Rep.
– volume: 11
  start-page: 9490
  year: 2017
  end-page: 9499
  ident: bib10
  article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
– volume: 11
  start-page: 12764
  year: 2017
  end-page: 12771
  ident: bib13
  article-title: Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths
  publication-title: ACS Nano
– start-page: 1902549
  year: 2019
  ident: bib18
  article-title: Fiber/Fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Adv. Mater.
– volume: 4
  start-page: 425
  year: 1994
  end-page: 430
  ident: bib54
  article-title: Improvement of the adhesion of silicone to aluminum using plasma polymerization
  publication-title: J. Inorg. Organomet. Polym.
– volume: 17
  start-page: 2561
  year: 2017
  end-page: 2571
  ident: bib39
  article-title: 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs
  publication-title: Lab Chip
– volume: 18
  start-page: 129
  year: 2012
  end-page: 143
  ident: bib20
  article-title: Integrating stereolithography and direct print technologies for 3D structural electronics fabrication
  publication-title: Rapid Prototyp. J.
– volume: 8
  start-page: 1043
  year: 2018
  end-page: 1049
  ident: bib36
  article-title: In situ electrochemical polymerization of poly (3, 4-ethylenedioxythiophene)(PEDOT) for peripheral nerve interfaces
  publication-title: MRS Commun.
– volume: 28
  start-page: 1805108
  year: 2018
  ident: bib32
  article-title: A single integrated 3D‐printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib44
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2634
  year: 2013
  end-page: 2639
  ident: bib25
  article-title: 3D printed bionic ears
  publication-title: Nano Lett.
– volume: 1
  start-page: 480
  year: 2017
  end-page: 521
  ident: bib55
  article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator
  publication-title: Joule
– volume: 38
  start-page: 125
  year: 2011
  end-page: 142
  ident: bib51
  article-title: Organ preservation: current concepts and new strategies for the next decade
  publication-title: Transfus. Med. Hemotherapy
– volume: 39
  start-page: 673
  year: 2017
  end-page: 683
  ident: bib11
  article-title: A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers
  publication-title: Nano Energy
– volume: 62
  start-page: 1910
  year: 2019
  end-page: 1920
  ident: bib28
  article-title: 4-Axis printing microfibrous tubular scaffold and tracheal cartilage application
  publication-title: Sci. China Mater.
– volume: 37
  start-page: 132
  year: 2015
  end-page: 137
  ident: bib30
  article-title: Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications
  publication-title: Med. Eng. Phys.
– volume: 27
  start-page: 1604462
  year: 2017
  ident: bib17
  article-title: Single-Thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 369
  year: 2017
  end-page: 396
  ident: bib40
  article-title: Engineering electroactive dielectric elastomers for miniature electromechanical transducers
  publication-title: Polym. Rev.
– volume: 28
  start-page: 4283
  year: 2016
  end-page: 4305
  ident: bib5
  article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics
  publication-title: Adv. Mater.
– year: 2017
  ident: bib63
  article-title: Quantifying renal swelling during machine perfusion using digital image correlation
– volume: 28
  start-page: 4203
  year: 2016
  end-page: 4218
  ident: bib2
  article-title: Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials
  publication-title: Adv. Mater.
– volume: 6
  start-page: 101106
  year: 2018
  ident: bib15
  article-title: Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics
  publication-title: Apl. Mater.
– volume: 3
  start-page: 2365
  year: 2018
  end-page: 2372
  ident: bib35
  article-title: A hybrid 3D printing and robotic-assisted embedding approach for design and fabrication of nerve cuffs with integrated locking mechanisms
  publication-title: MRS Adv.
– volume: 11
  start-page: 330
  year: 2016
  end-page: 350
  ident: bib26
  article-title: 3D printed bionic nanodevices
  publication-title: Nano Today
– volume: 16
  start-page: 1393
  year: 2016
  end-page: 1400
  ident: bib38
  article-title: 3D printed nervous system on a chip
  publication-title: Lab Chip
– volume: 2
  year: 2016
  ident: bib60
  article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
  publication-title: Sci. Adv.
– volume: 29
  start-page: 1702181
  year: 2017
  ident: bib41
  article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1707538
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib45
  article-title: Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707538
– volume: 72
  start-page: 963
  year: 2014
  ident: 10.1016/j.nanoen.2020.104973_bib22
  article-title: 3D Printing multifunctionality: structures with electronics
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-5717-7
– volume: 10
  start-page: 7973
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib43
  article-title: All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03926
– volume: 11
  start-page: 330
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib26
  article-title: 3D printed bionic nanodevices
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.04.007
– year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib63
– volume: 6
  start-page: 1600665
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib4
  article-title: Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600665
– volume: 28
  start-page: 1805108
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib32
  article-title: A single integrated 3D‐printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805108
– volume: 13
  start-page: 2634
  year: 2013
  ident: 10.1016/j.nanoen.2020.104973_bib25
  article-title: 3D printed bionic ears
  publication-title: Nano Lett.
  doi: 10.1021/nl4007744
– volume: 14
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib31
  article-title: Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: a case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays
  publication-title: PloS One
  doi: 10.1371/journal.pone.0214120
– volume: 2
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib58
  article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501478
– volume: 38
  start-page: 125
  year: 2011
  ident: 10.1016/j.nanoen.2020.104973_bib51
  article-title: Organ preservation: current concepts and new strategies for the next decade
  publication-title: Transfus. Med. Hemotherapy
  doi: 10.1159/000327033
– volume: 1
  start-page: 480
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib55
  article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.004
– volume: 11
  start-page: 9490
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib10
  article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05317
– volume: 2
  start-page: 234
  year: 2014
  ident: 10.1016/j.nanoen.2020.104973_bib21
  article-title: 3D printing for the rapid prototyping of structural electronics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2311810
– volume: 20
  start-page: 837
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib19
  article-title: Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2019.1650396
– volume: 55
  start-page: 151
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib7
  article-title: Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.078
– volume: 14
  start-page: 7017
  year: 2014
  ident: 10.1016/j.nanoen.2020.104973_bib33
  article-title: 3D printed quantum dot light-emitting diodes
  publication-title: Nano Lett.
  doi: 10.1021/nl5033292
– volume: 17
  start-page: 2561
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib39
  article-title: 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs
  publication-title: Lab Chip
  doi: 10.1039/C7LC00468K
– start-page: 104429
  year: 2020
  ident: 10.1016/j.nanoen.2020.104973_bib16
  article-title: Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104429
– volume: 6
  start-page: 35153
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib9
  article-title: Stretchable triboelectric fiber for self-powered kinematic sensing textile
  publication-title: Sci. Rep.
  doi: 10.1038/srep35153
– volume: 62
  start-page: 1910
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib28
  article-title: 4-Axis printing microfibrous tubular scaffold and tracheal cartilage application
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-9498-5
– volume: 25
  start-page: 6205
  year: 2015
  ident: 10.1016/j.nanoen.2020.104973_bib37
  article-title: 3D printed anatomical nerve regeneration pathways
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501760
– volume: 11
  start-page: 12764
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib13
  article-title: Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07534
– volume: 27
  start-page: 1604462
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib1
  article-title: Single‐thread‐based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human‐interactive and biomedical sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604462
– volume: 37
  start-page: 132
  year: 2015
  ident: 10.1016/j.nanoen.2020.104973_bib30
  article-title: Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.10.002
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib44
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 2
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib60
  article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501624
– volume: 25
  start-page: 115009
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib27
  article-title: In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/11/115009
– volume: 27
  start-page: 1604378
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib12
  article-title: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604378
– volume: 8
  start-page: 1043
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib36
  article-title: In situ electrochemical polymerization of poly (3, 4-ethylenedioxythiophene)(PEDOT) for peripheral nerve interfaces
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2018.138
– volume: 52
  start-page: 288
  year: 2010
  ident: 10.1016/j.nanoen.2020.104973_bib64
  article-title: Development of a silent speech interface driven by ultrasound and optical images of the tongue and lips
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2009.11.004
– volume: 18
  start-page: 129
  year: 2012
  ident: 10.1016/j.nanoen.2020.104973_bib20
  article-title: Integrating stereolithography and direct print technologies for 3D structural electronics fabrication
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541211212113
– volume: 28
  start-page: 4203
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib2
  article-title: Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504150
– volume: 6
  start-page: 101106
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib15
  article-title: Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics
  publication-title: Apl. Mater.
  doi: 10.1063/1.5048553
– start-page: 1
  year: 2020
  ident: 10.1016/j.nanoen.2020.104973_bib62
  article-title: An integrated perfusion machine preserves injured human livers for 1 week
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 1801114
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib14
  article-title: Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801114
– volume: 28
  start-page: 4373
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib3
  article-title: Monitoring of vital signs with flexible and wearable medical devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504366
– volume: 60
  start-page: S20
  year: 2010
  ident: 10.1016/j.nanoen.2020.104973_bib50
  article-title: Current state of hypothermic machine perfusion preservation of organs: the clinical perspective
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2009.10.006
– volume: 45
  start-page: 380
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib23
  article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.049
– volume: 52
  start-page: 270
  year: 2010
  ident: 10.1016/j.nanoen.2020.104973_bib52
  article-title: Silent speech interfaces
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2009.08.002
– volume: 30
  start-page: 302
  year: 2013
  ident: 10.1016/j.nanoen.2020.104973_bib61
  article-title: Age-dependent biomechanical properties of the skin
  publication-title: Adv. Dermatol. Allergol.
  doi: 10.5114/pdia.2013.38359
– volume: 29
  start-page: 1701218
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib29
  article-title: 3D printed stretchable tactile sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701218
– volume: 28
  start-page: 98
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib8
  article-title: Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504403
– volume: 39
  start-page: 673
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib11
  article-title: A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.003
– volume: 3
  start-page: 2365
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib35
  article-title: A hybrid 3D printing and robotic-assisted embedding approach for design and fabrication of nerve cuffs with integrated locking mechanisms
  publication-title: MRS Adv.
  doi: 10.1557/adv.2018.378
– volume: 26
  start-page: 5310
  year: 2014
  ident: 10.1016/j.nanoen.2020.104973_bib6
  article-title: Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400633
– start-page: 1
  year: 2020
  ident: 10.1016/j.nanoen.2020.104973_bib49
  article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics
  publication-title: Nano Res.
– volume: 4
  start-page: 425
  year: 1994
  ident: 10.1016/j.nanoen.2020.104973_bib54
  article-title: Improvement of the adhesion of silicone to aluminum using plasma polymerization
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/BF00683706
– volume: 53
  start-page: 108
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib46
  article-title: An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.011
– volume: 12
  start-page: 5042
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib47
  article-title: Flexible capacitive tactile sensor based on micropatterned dielectric layer
  publication-title: Small
  doi: 10.1002/smll.201600760
– volume: 2
  start-page: 32
  year: 2015
  ident: 10.1016/j.nanoen.2020.104973_bib34
  article-title: Fiber encapsulation additive manufacturing: an enabling technology for 3D printing of electromechanical devices and robotic components
  publication-title: 3D Print. Addit. Manuf.
  doi: 10.1089/3dp.2015.0003
– volume: 6
  start-page: S490
  year: 2009
  ident: 10.1016/j.nanoen.2020.104973_bib53
  article-title: Functionalization of copper surfaces by plasma treatments to improve adhesion of epoxy resins
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200931106
– volume: 58
  start-page: 410
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib48
  article-title: Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.058
– volume: 28
  start-page: 4283
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib5
  article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504299
– volume: 30
  start-page: 1705195
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib57
  article-title: Shape memory polymers for body motion energy harvesting and self‐powered mechanosensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705195
– volume: 30
  start-page: 1705918
  year: 2018
  ident: 10.1016/j.nanoen.2020.104973_bib59
  article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705918
– volume: 28
  start-page: 17
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib24
  article-title: Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.004
– start-page: 1902549
  year: 2019
  ident: 10.1016/j.nanoen.2020.104973_bib18
  article-title: Fiber/Fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1702181
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib41
  article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702181
– volume: 3
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib56
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700015
– volume: 28
  start-page: 10024
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib42
  article-title: Electric eel‐skin‐inspired mechanically durable and super‐stretchable nanogenerator for deformable power source and fully autonomous conformable electronic‐skin applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603527
– start-page: 1
  year: 2010
  ident: 10.1016/j.nanoen.2020.104973_bib65
– volume: 27
  start-page: 1604462
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib17
  article-title: Single-Thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604462
– volume: 16
  start-page: 1393
  year: 2016
  ident: 10.1016/j.nanoen.2020.104973_bib38
  article-title: 3D printed nervous system on a chip
  publication-title: Lab Chip
  doi: 10.1039/C5LC01270H
– volume: 57
  start-page: 369
  year: 2017
  ident: 10.1016/j.nanoen.2020.104973_bib40
  article-title: Engineering electroactive dielectric elastomers for miniature electromechanical transducers
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2016.1268156
SSID ssj0000651712
Score 2.5573719
Snippet Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104973
SubjectTerms 3D printing
Bionics
Conformal printing
Organ preservation
Silent speech
Wearable systems
Title 3D printed stretchable triboelectric nanogenerator fibers and devices
URI https://dx.doi.org/10.1016/j.nanoen.2020.104973
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9sQeva9N9JsdSW6piL1roLewrUpG0aL36253dJKWCKHhM2AnL7GReO_MNQlcqo4nn4f8WGSXcZ5yYwhkipfLKKWFcEfIdDxM5nvK7mZi10KDphQlllbXur3R61Nb1m27Nze5yPu8-UohdaCoEjTBXEROUcxWk_Pqzt86zgIntqXjpGdaTQNB00MUyr1KXCx-AUGm878wU-9lCbVid0R7ard1F3K92tI9avjxAOxsggodoyG5wyM6B64hD5wccQ2iHwmGU1aKacjO3OGzgOUJMQ5CNi1An8o516bDzUVccoelo-DQYk3o4ArHg5a-I96bIUqqLRGg4BrDrNrW91IH5ZRCVaKatzaQzhVbegnaVgmrhRS_14BNK8MKOUbtclP4E4YxJqdPEQTCccMalEdak8D0IhlTBFOsg1jAktzVyeBhg8Zo3JWIvecXGPLAxr9jYQWRNtayQM_5Yrxpe598kIAfl_ivl6b8pz9B2eKpqxs5Re_X24S_AyViZyyhFl2irf3s_nnwBj03Qtg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAcEE8xnjlwrdYlTdIepzHUsceFTdqtSpMUDaFugvH_sfuYhoRA4trWVeQk9ufE_kzIvYqY7wLc3yJiXuCiwEszm3pSKqesEqnN8LxjMpXxPHhaiEWD9OtaGEyrrGx_adMLa1096VTa7KyXy84zg9iFhUKwguYKOUFbyE4lmqTVG47i6faoBbxsVxX3nijioUxdRFdkeuU6XznkQmXFlWek-M9OasfxPB6Rwwox0l45qGPScPkJOdjhETwlA_5A8YAO0CPF4g-YCayIotjNalU2ulkaigN4KVimIc6mGaaKfFCdW2pdYS7OyPxxMOvHXtUfwTMA9Deec2kWhUxnvtAwE-DaTWi6oQUPzCEw0VwbE0mbZlo5AwZWCqaFE93QASyUAMTOSTNf5e6C0IhLqUPfQjzsBzyQqTBpCP-DeEhlXPE24bVCElORh2MPi7ekzhJ7TUo1JqjGpFRjm3hbqXVJnvHH96rWdfJtESRg33-VvPy35B3Zi2eTcTIeTkdXZB_flClk16S5ef90N4A5Nulttaa-AMd502c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+stretchable+triboelectric+nanogenerator+fibers+and+devices&rft.jtitle=Nano+energy&rft.au=Tong%2C+Yuxin&rft.au=Feng%2C+Ziang&rft.au=Kim%2C+Jongwoon&rft.au=Robertson%2C+John+L.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=75&rft_id=info:doi/10.1016%2Fj.nanoen.2020.104973&rft.externalDocID=S2211285520305504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon