3D printed stretchable triboelectric nanogenerator fibers and devices
Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human activity. Here, we report a process for 3D printing stretchable membranes, meshes, and hollow 3D structures on planar, rotating, and non-plan...
Saved in:
Published in | Nano energy Vol. 75; p. 104973 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human activity. Here, we report a process for 3D printing stretchable membranes, meshes, and hollow 3D structures on planar, rotating, and non-planar anatomical substrates using elastomeric metal-core triboelectric nanogenerator (TENG) fibers. The triboelectric performance of single 3D-printed elastomeric metal-core silicone-copper (Cu) (cladding-core) fibers and 3D-printed membranes was quantified by cyclic loading tests, which showed maximum power densities of 31.39 and 23.94 mW m−2, respectively. The utility of the flexible silicone-Cu TENG fibers and 3D printing process was demonstrated through applications to wearable mechanosensors for organ and human activity monitoring, specifically, monitoring of perfused organs and speech recognition in the absence of sound production by the speaker (i.e., ‘silent speech’), respectively. 3D-printed wearable triboelectric mechanosensors, in the form of stretchable form-fitting meshes and membranes, in combination with machine-learning signal processing algorithms, enabled real-time monitoring of perfusion-induced kidney edema and speech recognition in the absence of sound production by human subjects (99% word classification accuracy). Overall, this work expands the conductive and functional materials palette for 3D printing and encourages the use of 3D-printed triboelectric devices for self-powered sensing applications in biomanufacturing, medicine, and defense.
[Display omitted]
•Coaxial micro-extrusion process for production of flexible silicone-copper triboelectric nanogenerator (TENG) fibers.•3D printing of stretchable triboelectric constructs and devices, including form-fitting wearable systems.•Triboelectric-based real-time mechanosensing of organ edema and speech recognition in the absence of sound production by the speaker using machine learning techniques. |
---|---|
AbstractList | Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human activity. Here, we report a process for 3D printing stretchable membranes, meshes, and hollow 3D structures on planar, rotating, and non-planar anatomical substrates using elastomeric metal-core triboelectric nanogenerator (TENG) fibers. The triboelectric performance of single 3D-printed elastomeric metal-core silicone-copper (Cu) (cladding-core) fibers and 3D-printed membranes was quantified by cyclic loading tests, which showed maximum power densities of 31.39 and 23.94 mW m−2, respectively. The utility of the flexible silicone-Cu TENG fibers and 3D printing process was demonstrated through applications to wearable mechanosensors for organ and human activity monitoring, specifically, monitoring of perfused organs and speech recognition in the absence of sound production by the speaker (i.e., ‘silent speech’), respectively. 3D-printed wearable triboelectric mechanosensors, in the form of stretchable form-fitting meshes and membranes, in combination with machine-learning signal processing algorithms, enabled real-time monitoring of perfusion-induced kidney edema and speech recognition in the absence of sound production by human subjects (99% word classification accuracy). Overall, this work expands the conductive and functional materials palette for 3D printing and encourages the use of 3D-printed triboelectric devices for self-powered sensing applications in biomanufacturing, medicine, and defense.
[Display omitted]
•Coaxial micro-extrusion process for production of flexible silicone-copper triboelectric nanogenerator (TENG) fibers.•3D printing of stretchable triboelectric constructs and devices, including form-fitting wearable systems.•Triboelectric-based real-time mechanosensing of organ edema and speech recognition in the absence of sound production by the speaker using machine learning techniques. |
ArticleNumber | 104973 |
Author | Kim, Jongwoon Feng, Ziang Jia, Xiaoting Tong, Yuxin Robertson, John L. Johnson, Blake N. |
Author_xml | – sequence: 1 givenname: Yuxin surname: Tong fullname: Tong, Yuxin organization: Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA – sequence: 2 givenname: Ziang orcidid: 0000-0001-7651-222X surname: Feng fullname: Feng, Ziang organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24060, USA – sequence: 3 givenname: Jongwoon surname: Kim fullname: Kim, Jongwoon organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24060, USA – sequence: 4 givenname: John L. surname: Robertson fullname: Robertson, John L. organization: School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA – sequence: 5 givenname: Xiaoting surname: Jia fullname: Jia, Xiaoting email: xjia@vt.edu organization: Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24060, USA – sequence: 6 givenname: Blake N. surname: Johnson fullname: Johnson, Blake N. email: bnj@vt.edu organization: Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA |
BookMark | eNqFkMFOwzAMhnMYEmPsDTj0BTqSdMlaDkhojIE0iQucI9dxIVNJUBJN4u1pVU4cwBdblr5f9nfBZj54YuxK8JXgQl8fVx58IL-SXI6rdbOpZmwupRClrJU6Z8uUjnworcRGyDnbVffFZ3Q-ky1SjpTxHdqeihxdG6gnHAYsxtQ38hQhh1h0rqWYCvC2sHRySOmSnXXQJ1r-9AV7fdi9bB_Lw_P-aXt3KLHiOpdEbdfUEjqugBBFw7FGUdtaVVWjOVSA2GjbdrAhJECtJChSoibeNFroasHWUy7GkFKkzgy3f0D8MoKb0YA5msmAGQ2YycCA3fzC0GXILvgcwfX_wbcTTMNjJ0fRJHTkkayLgx5jg_s74Bs_pH73 |
CitedBy_id | crossref_primary_10_1007_s42765_020_00057_5 crossref_primary_10_1063_5_0223007 crossref_primary_10_1186_s40580_021_00289_0 crossref_primary_10_1002_cnl2_39 crossref_primary_10_1002_smll_202202792 crossref_primary_10_3390_polym15112564 crossref_primary_10_1016_j_compositesb_2024_111995 crossref_primary_10_1002_adfm_202403918 crossref_primary_10_1007_s10853_021_06637_z crossref_primary_10_1039_D4MH00522H crossref_primary_10_1007_s40843_023_2542_5 crossref_primary_10_1016_j_nanoen_2021_105844 crossref_primary_10_1016_j_nanoen_2021_106534 crossref_primary_10_1088_2631_7990_ada858 crossref_primary_10_1063_5_0213289 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_1016_j_mtsust_2022_100292 crossref_primary_10_1016_j_mattod_2021_05_017 crossref_primary_10_1016_j_nanoen_2022_107585 crossref_primary_10_1002_adma_202109355 crossref_primary_10_1088_2058_8585_ac28f1 crossref_primary_10_1002_admt_202301316 crossref_primary_10_1002_admt_202400554 crossref_primary_10_1002_advs_202408653 crossref_primary_10_1007_s12274_022_5238_x crossref_primary_10_1126_sciadv_abo0869 crossref_primary_10_1002_admt_202301874 crossref_primary_10_3390_bios12090697 crossref_primary_10_1002_adfm_202105169 crossref_primary_10_1016_j_cesys_2021_100042 crossref_primary_10_1021_acsami_1c14273 crossref_primary_10_1016_j_matpr_2022_09_025 crossref_primary_10_1002_ente_202201275 crossref_primary_10_1039_D3TA04710E crossref_primary_10_1016_j_carbpol_2021_118120 crossref_primary_10_1016_j_nanoen_2022_107737 crossref_primary_10_1002_adma_202307963 crossref_primary_10_1002_inf2_12262 crossref_primary_10_1021_acs_chemrev_1c00502 crossref_primary_10_1002_ente_202401863 crossref_primary_10_1039_D2TA03813G crossref_primary_10_1557_s43577_021_00079_3 crossref_primary_10_1002_eom2_12054 crossref_primary_10_1007_s42765_020_00056_6 crossref_primary_10_1016_j_addlet_2023_100160 crossref_primary_10_1007_s42235_022_00181_5 crossref_primary_10_1002_adfm_202401593 crossref_primary_10_1002_advs_202102189 crossref_primary_10_1021_acsnano_1c05003 crossref_primary_10_1002_adsr_202200044 crossref_primary_10_1109_ACCESS_2022_3165428 crossref_primary_10_3390_bios13090872 crossref_primary_10_1186_s40486_022_00150_x crossref_primary_10_1016_j_nanoen_2022_106956 crossref_primary_10_1002_adfm_202309424 crossref_primary_10_1002_anie_202301618 crossref_primary_10_1007_s40820_022_00965_8 crossref_primary_10_1016_j_jmapro_2025_01_052 crossref_primary_10_1002_adem_202400199 crossref_primary_10_1016_j_nanoen_2022_108137 crossref_primary_10_1016_j_nanoen_2024_110208 crossref_primary_10_1016_j_nanoen_2022_107600 crossref_primary_10_1360_TB_2024_0647 crossref_primary_10_1093_nsr_nwac202 crossref_primary_10_1016_j_joule_2022_06_001 crossref_primary_10_1016_j_nanoen_2023_109224 crossref_primary_10_1002_aisy_202200371 crossref_primary_10_1002_adma_202300034 crossref_primary_10_1002_adma_202307546 crossref_primary_10_1016_j_jmsy_2021_07_023 crossref_primary_10_1007_s10570_023_05194_9 crossref_primary_10_1002_ange_202301618 crossref_primary_10_1109_JFLEX_2024_3419078 crossref_primary_10_1088_2631_7990_ad94b8 crossref_primary_10_1016_j_jmst_2024_02_028 crossref_primary_10_1016_j_nanoen_2023_108707 crossref_primary_10_1002_admt_202201442 crossref_primary_10_1002_mame_202100017 crossref_primary_10_1021_acsaelm_3c00340 crossref_primary_10_1002_smtd_202100936 crossref_primary_10_1039_D3RA06290B crossref_primary_10_3390_polym15224383 crossref_primary_10_1002_adfm_202008807 crossref_primary_10_1016_j_nanoen_2021_106881 crossref_primary_10_1002_admt_202201769 crossref_primary_10_1002_aisy_202300792 crossref_primary_10_1016_j_nanoen_2023_108542 crossref_primary_10_1149_1945_7111_ac72c3 crossref_primary_10_34133_adi_0054 |
Cites_doi | 10.1002/adfm.201707538 10.1007/s00170-014-5717-7 10.1021/acsnano.6b03926 10.1016/j.nantod.2016.04.007 10.1002/aenm.201600665 10.1002/adfm.201805108 10.1021/nl4007744 10.1371/journal.pone.0214120 10.1126/sciadv.1501478 10.1159/000327033 10.1016/j.joule.2017.09.004 10.1021/acsnano.7b05317 10.1109/ACCESS.2014.2311810 10.1080/14686996.2019.1650396 10.1016/j.nanoen.2018.10.078 10.1021/nl5033292 10.1039/C7LC00468K 10.1016/j.nanoen.2019.104429 10.1038/srep35153 10.1007/s40843-019-9498-5 10.1002/adfm.201501760 10.1021/acsnano.7b07534 10.1002/adfm.201604462 10.1016/j.medengphy.2014.10.002 10.1038/s41467-019-09461-x 10.1126/sciadv.1501624 10.1088/0964-1726/25/11/115009 10.1002/adfm.201604378 10.1557/mrc.2018.138 10.1016/j.specom.2009.11.004 10.1108/13552541211212113 10.1002/adma.201504150 10.1063/1.5048553 10.1002/aenm.201801114 10.1002/adma.201504366 10.1016/j.cryobiol.2009.10.006 10.1016/j.nanoen.2017.12.049 10.1016/j.specom.2009.08.002 10.5114/pdia.2013.38359 10.1002/adma.201701218 10.1002/adma.201504403 10.1016/j.nanoen.2017.08.003 10.1557/adv.2018.378 10.1002/adma.201400633 10.1007/BF00683706 10.1016/j.nanoen.2018.08.011 10.1002/smll.201600760 10.1089/3dp.2015.0003 10.1002/ppap.200931106 10.1016/j.nanoen.2019.01.058 10.1002/adma.201504299 10.1002/adma.201705195 10.1002/adma.201705918 10.1016/j.mattod.2019.05.004 10.1002/adma.201702181 10.1126/sciadv.1700015 10.1002/adma.201603527 10.1039/C5LC01270H 10.1080/15583724.2016.1268156 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.104973 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_104973 S2211285520305504 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-eebf982af05aecc190c8c18d8533960a3acc96dbfa7eceac652a5e518e0996163 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:38 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Fri Feb 23 02:49:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wearable systems Organ preservation Bionics Conformal printing Silent speech 3D printing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-eebf982af05aecc190c8c18d8533960a3acc96dbfa7eceac652a5e518e0996163 |
ORCID | 0000-0001-7651-222X |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2020_104973 crossref_citationtrail_10_1016_j_nanoen_2020_104973 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_104973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Eshmuminov, Becker, Borrego, Hefti, Schuler, Hagedorn, Muller, Mueller, Onder, Graf (bib62) 2020 Pu, Liu, Chen, Sun, Du, Zhang, Zhai, Hu, Wang (bib56) 2017; 3 Chen, Tang, Jiang, Zhu, Chen, He, Xu, Guo, Lin, Li (bib23) 2018; 45 Brigham, Kumar (bib65) 2010 He, Zi, Guo, Zheng, Xi, Wu, Wang, Zhang, Lu, Wang (bib12) 2017; 27 Li, Peng, Wang, Lin, Zi, Zhang, Wang (bib43) 2016; 10 Zheng, Zou, Zhang, Liu, Shi, Wang, Jin, Ouyang, Li, Wang (bib58) 2016; 2 Denby, Schultz, Honda, Hueber, Gilbert, Brumberg (bib52) 2010; 52 Murbach, Currlin, Widener, Tong, Chhatre, Subramanian, Martin, Johnson, Otto (bib36) 2018; 8 Sim, Choi, Kim, Kim, Lee, Kim, Lepró, Baughman, Kim (bib9) 2016; 6 Guibert, Petrenko, Balaban, Somov, Rodriguez, Fuller (bib51) 2011; 38 Espalin, Muse, MacDonald, Wicker (bib22) 2014; 72 Hueber, Benaroya, Chollet, Denby, Dreyfus, Stone (bib64) 2010; 52 Joe Lopes, MacDonald, Wicker (bib20) 2012; 18 Kong, Tamargo, Kim, Johnson, Gupta, Koh, Chin, Steingart, Rand, McAlpine (bib33) 2014; 14 Zhang, Qin, Feng, Li, Yang, Sun, Liang, Mao, Wang (bib49) 2020 Lai, Deng, Niu, Peng, Wu, Liu, Wen, Wang (bib42) 2016; 28 Costantino, Zeik, Clarson (bib54) 1994; 4 Deng, Kuang, Liu, Ding, Wang, Lai, Dong, Wen, Wang, Wang (bib59) 2018; 30 Zhang, Zhang, Liang, Gao, Yi, Ma, Liao, Kang, Zhang (bib7) 2019; 55 Li, Luo, Qin, Wang, Xiong, Ding, Gu, Liu, Zhang (bib47) 2016; 12 Pu, Li, Liu, Jiang, Du, Zhao, Hu, Wang (bib8) 2016; 28 Park, Kim, Choi, Kim (bib15) 2018; 6 Mannoor, Jiang, James, Kong, Malatesta, Soboyejo, Verma, Gracias, McAlpine (bib25) 2013; 13 Lai, Deng, Zhang, Niu, Guo, Wang (bib17) 2017; 27 Wang, Ouyang, Chen, Jakobsen (bib40) 2017; 57 Johnson, Lancaster, Zhen, He, Gupta, Kong, Engel, Krick, Ju, Meng (bib37) 2015; 25 Zhang, Du, Chen, Xue, Wang (bib46) 2018; 53 Dong, Peng, Wang (bib18) 2019 Gao, Zhu, Chen, Tian, Yang, Jiang, Wang (bib24) 2019; 28 Laszczak, Jiang, Bader, Moser, Zahedi (bib30) 2015; 37 Dong, Wang, Deng, Dai, Zhang, Zou, Gu, Sun, Wang (bib10) 2017; 11 Xiong, Lee (bib19) 2019; 20 Singh, Tong, Webster, Cesewski, Haring, Laheri, Carswell, O'Brien, Aardema, Senger (bib39) 2017; 17 Lai, Deng, Zhang, Niu, Guo, Wang (bib1) 2017; 27 Liu, Kuang, Deng, Wang, Wang, Ding, Lai, Chen, Wang, Lin (bib57) 2018; 30 Parida, Kumar, Jiangxin, Bhavanasi, Bendi, Lee (bib41) 2017; 29 Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu (bib44) 2019; 10 Zeng, Shu, Li, Chen, Wang, Tao (bib6) 2014; 26 Chen, Huang, Zuo, Qian, Guo, Sun, Lei, Wu, Zhu, He (bib32) 2018; 28 Khan, Ostfeld, Lochner, Pierre, Arias (bib3) 2016; 28 Gul, Yang, Yang, Chang, Choi (bib27) 2016; 25 Webster (bib63) 2017 Gong, Hou, Guo, Zhou, Mu, Li, Zhang, Wang (bib11) 2017; 39 Tong, Murbach, Subramanian, Chhatre, Delgado, Martin, Otto, Romero-Ortega, Johnson (bib35) 2018; 3 Wang, Gong, Shang, Ding, Yin, Jiang, Gong, Xuan (bib45) 2018; 28 Chen, Wang (bib55) 2017; 1 Borges, Belmonte, Guillot, Duday, Moreno‐Couranjou, Choquet, Migeon (bib53) 2009; 6 Pawlaczyk, Lelonkiewicz, Wieczorowski (bib61) 2013; 30 Wang, Sun, Dong, Lv, Zhang, Shang, Yang, Wang, Shan (bib48) 2019; 58 Dong, Deng, Ding, Wang, Wang, Cheng, Wang, Jin, Gu, Sun (bib14) 2018; 8 Choi, Lee, Ghaffari, Hyeon, Kim (bib2) 2016; 28 Tong, Kucukdeger, Halper, Cesewski, Karakozoff, Haring, McIlvain, Singh, Khandelwal, Meholic (bib31) 2019; 14 Yi, Wang, Niu, Li, Yin, Dai, Zhang, Lin, Wen, Guo (bib60) 2016; 2 Zhu, Lou, Abdalla, Yu, Li, Ding (bib16) 2020 Lei, Luo, Guo, Wang, Yang, Wang, Xuan, Shen, Zhang, Liu (bib28) 2019; 62 Cao, Jie, Wang, Wang (bib4) 2016; 6 Johnson, Lancaster, Hogue, Meng, Kong, Enquist, McAlpine (bib38) 2016; 16 Yu, Pu, Wen, Liu, Zhou, Zhang, Zhang, Zhai, Hu, Wang (bib13) 2017; 11 Guo, Qiu, Meng, Park, McAlpine (bib29) 2017; 29 Taylor, Baicu (bib50) 2010; 60 Kong, Gupta, Johnson, McAlpine (bib26) 2016; 11 Fan, Tang, Wang (bib5) 2016; 28 Saari, Cox, Richer, Krueger, Cohen (bib34) 2015; 2 Macdonald, Salas, Espalin, Perez, Aguilera, Muse, Wicker (bib21) 2014; 2 Gao (10.1016/j.nanoen.2020.104973_bib24) 2019; 28 Guo (10.1016/j.nanoen.2020.104973_bib29) 2017; 29 Li (10.1016/j.nanoen.2020.104973_bib47) 2016; 12 Chen (10.1016/j.nanoen.2020.104973_bib55) 2017; 1 Dong (10.1016/j.nanoen.2020.104973_bib10) 2017; 11 Webster (10.1016/j.nanoen.2020.104973_bib63) 2017 Wang (10.1016/j.nanoen.2020.104973_bib48) 2019; 58 Hueber (10.1016/j.nanoen.2020.104973_bib64) 2010; 52 Dong (10.1016/j.nanoen.2020.104973_bib18) 2019 Li (10.1016/j.nanoen.2020.104973_bib43) 2016; 10 Deng (10.1016/j.nanoen.2020.104973_bib59) 2018; 30 Fan (10.1016/j.nanoen.2020.104973_bib5) 2016; 28 Chen (10.1016/j.nanoen.2020.104973_bib23) 2018; 45 Tong (10.1016/j.nanoen.2020.104973_bib35) 2018; 3 Pawlaczyk (10.1016/j.nanoen.2020.104973_bib61) 2013; 30 Zhang (10.1016/j.nanoen.2020.104973_bib46) 2018; 53 Costantino (10.1016/j.nanoen.2020.104973_bib54) 1994; 4 Gul (10.1016/j.nanoen.2020.104973_bib27) 2016; 25 Gong (10.1016/j.nanoen.2020.104973_bib11) 2017; 39 Macdonald (10.1016/j.nanoen.2020.104973_bib21) 2014; 2 Wang (10.1016/j.nanoen.2020.104973_bib45) 2018; 28 Zhang (10.1016/j.nanoen.2020.104973_bib49) 2020 Cao (10.1016/j.nanoen.2020.104973_bib4) 2016; 6 Tong (10.1016/j.nanoen.2020.104973_bib31) 2019; 14 Yu (10.1016/j.nanoen.2020.104973_bib13) 2017; 11 Borges (10.1016/j.nanoen.2020.104973_bib53) 2009; 6 Kong (10.1016/j.nanoen.2020.104973_bib26) 2016; 11 Saari (10.1016/j.nanoen.2020.104973_bib34) 2015; 2 Johnson (10.1016/j.nanoen.2020.104973_bib38) 2016; 16 Choi (10.1016/j.nanoen.2020.104973_bib2) 2016; 28 Mannoor (10.1016/j.nanoen.2020.104973_bib25) 2013; 13 Kong (10.1016/j.nanoen.2020.104973_bib33) 2014; 14 Zeng (10.1016/j.nanoen.2020.104973_bib6) 2014; 26 He (10.1016/j.nanoen.2020.104973_bib12) 2017; 27 Brigham (10.1016/j.nanoen.2020.104973_bib65) 2010 Denby (10.1016/j.nanoen.2020.104973_bib52) 2010; 52 Murbach (10.1016/j.nanoen.2020.104973_bib36) 2018; 8 Parida (10.1016/j.nanoen.2020.104973_bib41) 2017; 29 Xiong (10.1016/j.nanoen.2020.104973_bib19) 2019; 20 Singh (10.1016/j.nanoen.2020.104973_bib39) 2017; 17 Yi (10.1016/j.nanoen.2020.104973_bib60) 2016; 2 Johnson (10.1016/j.nanoen.2020.104973_bib37) 2015; 25 Joe Lopes (10.1016/j.nanoen.2020.104973_bib20) 2012; 18 Wang (10.1016/j.nanoen.2020.104973_bib40) 2017; 57 Pu (10.1016/j.nanoen.2020.104973_bib8) 2016; 28 Guibert (10.1016/j.nanoen.2020.104973_bib51) 2011; 38 Lai (10.1016/j.nanoen.2020.104973_bib17) 2017; 27 Zheng (10.1016/j.nanoen.2020.104973_bib58) 2016; 2 Liu (10.1016/j.nanoen.2020.104973_bib57) 2018; 30 Eshmuminov (10.1016/j.nanoen.2020.104973_bib62) 2020 Pu (10.1016/j.nanoen.2020.104973_bib56) 2017; 3 Laszczak (10.1016/j.nanoen.2020.104973_bib30) 2015; 37 Lai (10.1016/j.nanoen.2020.104973_bib1) 2017; 27 Park (10.1016/j.nanoen.2020.104973_bib15) 2018; 6 Khan (10.1016/j.nanoen.2020.104973_bib3) 2016; 28 Zhu (10.1016/j.nanoen.2020.104973_bib16) 2020 Chen (10.1016/j.nanoen.2020.104973_bib32) 2018; 28 Lei (10.1016/j.nanoen.2020.104973_bib28) 2019; 62 Dong (10.1016/j.nanoen.2020.104973_bib14) 2018; 8 Lai (10.1016/j.nanoen.2020.104973_bib42) 2016; 28 Zhang (10.1016/j.nanoen.2020.104973_bib7) 2019; 55 Espalin (10.1016/j.nanoen.2020.104973_bib22) 2014; 72 Zou (10.1016/j.nanoen.2020.104973_bib44) 2019; 10 Sim (10.1016/j.nanoen.2020.104973_bib9) 2016; 6 Taylor (10.1016/j.nanoen.2020.104973_bib50) 2010; 60 |
References_xml | – volume: 10 start-page: 7973 year: 2016 end-page: 7981 ident: bib43 article-title: All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy publication-title: ACS Nano – start-page: 1 year: 2010 end-page: 4 ident: bib65 article-title: Imagined Speech Classification with EEG Signals for Silent Communication: a Preliminary Investigation into Synthetic Telepathy – volume: 2 start-page: 32 year: 2015 end-page: 39 ident: bib34 article-title: Fiber encapsulation additive manufacturing: an enabling technology for 3D printing of electromechanical devices and robotic components publication-title: 3D Print. Addit. Manuf. – volume: 2 start-page: 234 year: 2014 end-page: 242 ident: bib21 article-title: 3D printing for the rapid prototyping of structural electronics publication-title: IEEE Access – volume: 14 start-page: 7017 year: 2014 end-page: 7023 ident: bib33 article-title: 3D printed quantum dot light-emitting diodes publication-title: Nano Lett. – volume: 30 start-page: 1705195 year: 2018 ident: bib57 article-title: Shape memory polymers for body motion energy harvesting and self‐powered mechanosensing publication-title: Adv. Mater. – volume: 28 start-page: 17 year: 2019 end-page: 24 ident: bib24 article-title: Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators publication-title: Mater. Today – volume: 3 year: 2017 ident: bib56 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. – volume: 6 start-page: 1600665 year: 2016 ident: bib4 article-title: Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science publication-title: Adv. Energy Mater. – volume: 2 year: 2016 ident: bib58 article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source publication-title: Sci. Adv. – volume: 53 start-page: 108 year: 2018 end-page: 115 ident: bib46 article-title: An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring publication-title: Nano Energy – volume: 14 year: 2019 ident: bib31 article-title: Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: a case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays publication-title: PloS One – volume: 72 start-page: 963 year: 2014 end-page: 978 ident: bib22 article-title: 3D Printing multifunctionality: structures with electronics publication-title: Int. J. Adv. Manuf. Technol. – volume: 26 start-page: 5310 year: 2014 end-page: 5336 ident: bib6 article-title: Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications publication-title: Adv. Mater. – volume: 6 start-page: S490 year: 2009 end-page: S495 ident: bib53 article-title: Functionalization of copper surfaces by plasma treatments to improve adhesion of epoxy resins publication-title: Plasma Process. Polym. – volume: 28 start-page: 10024 year: 2016 end-page: 10032 ident: bib42 article-title: Electric eel‐skin‐inspired mechanically durable and super‐stretchable nanogenerator for deformable power source and fully autonomous conformable electronic‐skin applications publication-title: Adv. Mater. – volume: 55 start-page: 151 year: 2019 end-page: 163 ident: bib7 article-title: Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics publication-title: Nano Energy – volume: 60 start-page: S20 year: 2010 end-page: S35 ident: bib50 article-title: Current state of hypothermic machine perfusion preservation of organs: the clinical perspective publication-title: Cryobiology – volume: 8 start-page: 1801114 year: 2018 ident: bib14 article-title: Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing publication-title: Adv. Energy Mater. – volume: 45 start-page: 380 year: 2018 end-page: 389 ident: bib23 article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing publication-title: Nano Energy – volume: 27 start-page: 1604378 year: 2017 ident: bib12 article-title: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics publication-title: Adv. Funct. Mater. – start-page: 1 year: 2020 end-page: 10 ident: bib62 article-title: An integrated perfusion machine preserves injured human livers for 1 week publication-title: Nat. Biotechnol. – volume: 25 start-page: 6205 year: 2015 end-page: 6217 ident: bib37 article-title: 3D printed anatomical nerve regeneration pathways publication-title: Adv. Funct. Mater. – volume: 58 start-page: 410 year: 2019 end-page: 418 ident: bib48 article-title: Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator publication-title: Nano Energy – volume: 27 start-page: 1604462 year: 2017 ident: bib1 article-title: Single‐thread‐based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human‐interactive and biomedical sensing publication-title: Adv. Funct. Mater. – volume: 30 start-page: 302 year: 2013 ident: bib61 article-title: Age-dependent biomechanical properties of the skin publication-title: Adv. Dermatol. Allergol. – start-page: 1 year: 2020 end-page: 5 ident: bib49 article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics publication-title: Nano Res. – volume: 28 start-page: 1707538 year: 2018 ident: bib45 article-title: Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures publication-title: Adv. Funct. Mater. – volume: 28 start-page: 98 year: 2016 end-page: 105 ident: bib8 article-title: Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators publication-title: Adv. Mater. – volume: 12 start-page: 5042 year: 2016 end-page: 5048 ident: bib47 article-title: Flexible capacitive tactile sensor based on micropatterned dielectric layer publication-title: Small – volume: 30 start-page: 1705918 year: 2018 ident: bib59 article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv. Mater. – volume: 28 start-page: 4373 year: 2016 end-page: 4395 ident: bib3 article-title: Monitoring of vital signs with flexible and wearable medical devices publication-title: Adv. Mater. – volume: 52 start-page: 288 year: 2010 end-page: 300 ident: bib64 article-title: Development of a silent speech interface driven by ultrasound and optical images of the tongue and lips publication-title: Speech Commun. – volume: 25 start-page: 115009 year: 2016 ident: bib27 article-title: In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait publication-title: Smart Mater. Struct. – start-page: 104429 year: 2020 ident: bib16 article-title: Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing publication-title: Nano Energy – volume: 29 start-page: 1701218 year: 2017 ident: bib29 article-title: 3D printed stretchable tactile sensors publication-title: Adv. Mater. – volume: 20 start-page: 837 year: 2019 end-page: 857 ident: bib19 article-title: Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile publication-title: Sci. Technol. Adv. Mater. – volume: 52 start-page: 270 year: 2010 end-page: 287 ident: bib52 article-title: Silent speech interfaces publication-title: Speech Commun. – volume: 6 start-page: 35153 year: 2016 ident: bib9 article-title: Stretchable triboelectric fiber for self-powered kinematic sensing textile publication-title: Sci. Rep. – volume: 11 start-page: 9490 year: 2017 end-page: 9499 ident: bib10 article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano – volume: 11 start-page: 12764 year: 2017 end-page: 12771 ident: bib13 article-title: Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths publication-title: ACS Nano – start-page: 1902549 year: 2019 ident: bib18 article-title: Fiber/Fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv. Mater. – volume: 4 start-page: 425 year: 1994 end-page: 430 ident: bib54 article-title: Improvement of the adhesion of silicone to aluminum using plasma polymerization publication-title: J. Inorg. Organomet. Polym. – volume: 17 start-page: 2561 year: 2017 end-page: 2571 ident: bib39 article-title: 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs publication-title: Lab Chip – volume: 18 start-page: 129 year: 2012 end-page: 143 ident: bib20 article-title: Integrating stereolithography and direct print technologies for 3D structural electronics fabrication publication-title: Rapid Prototyp. J. – volume: 8 start-page: 1043 year: 2018 end-page: 1049 ident: bib36 article-title: In situ electrochemical polymerization of poly (3, 4-ethylenedioxythiophene)(PEDOT) for peripheral nerve interfaces publication-title: MRS Commun. – volume: 28 start-page: 1805108 year: 2018 ident: bib32 article-title: A single integrated 3D‐printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: bib44 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. – volume: 13 start-page: 2634 year: 2013 end-page: 2639 ident: bib25 article-title: 3D printed bionic ears publication-title: Nano Lett. – volume: 1 start-page: 480 year: 2017 end-page: 521 ident: bib55 article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator publication-title: Joule – volume: 38 start-page: 125 year: 2011 end-page: 142 ident: bib51 article-title: Organ preservation: current concepts and new strategies for the next decade publication-title: Transfus. Med. Hemotherapy – volume: 39 start-page: 673 year: 2017 end-page: 683 ident: bib11 article-title: A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers publication-title: Nano Energy – volume: 62 start-page: 1910 year: 2019 end-page: 1920 ident: bib28 article-title: 4-Axis printing microfibrous tubular scaffold and tracheal cartilage application publication-title: Sci. China Mater. – volume: 37 start-page: 132 year: 2015 end-page: 137 ident: bib30 article-title: Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications publication-title: Med. Eng. Phys. – volume: 27 start-page: 1604462 year: 2017 ident: bib17 article-title: Single-Thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing publication-title: Adv. Funct. Mater. – volume: 57 start-page: 369 year: 2017 end-page: 396 ident: bib40 article-title: Engineering electroactive dielectric elastomers for miniature electromechanical transducers publication-title: Polym. Rev. – volume: 28 start-page: 4283 year: 2016 end-page: 4305 ident: bib5 article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics publication-title: Adv. Mater. – year: 2017 ident: bib63 article-title: Quantifying renal swelling during machine perfusion using digital image correlation – volume: 28 start-page: 4203 year: 2016 end-page: 4218 ident: bib2 article-title: Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials publication-title: Adv. Mater. – volume: 6 start-page: 101106 year: 2018 ident: bib15 article-title: Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics publication-title: Apl. Mater. – volume: 3 start-page: 2365 year: 2018 end-page: 2372 ident: bib35 article-title: A hybrid 3D printing and robotic-assisted embedding approach for design and fabrication of nerve cuffs with integrated locking mechanisms publication-title: MRS Adv. – volume: 11 start-page: 330 year: 2016 end-page: 350 ident: bib26 article-title: 3D printed bionic nanodevices publication-title: Nano Today – volume: 16 start-page: 1393 year: 2016 end-page: 1400 ident: bib38 article-title: 3D printed nervous system on a chip publication-title: Lab Chip – volume: 2 year: 2016 ident: bib60 article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring publication-title: Sci. Adv. – volume: 29 start-page: 1702181 year: 2017 ident: bib41 article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications publication-title: Adv. Mater. – volume: 28 start-page: 1707538 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib45 article-title: Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707538 – volume: 72 start-page: 963 year: 2014 ident: 10.1016/j.nanoen.2020.104973_bib22 article-title: 3D Printing multifunctionality: structures with electronics publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-5717-7 – volume: 10 start-page: 7973 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib43 article-title: All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy publication-title: ACS Nano doi: 10.1021/acsnano.6b03926 – volume: 11 start-page: 330 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib26 article-title: 3D printed bionic nanodevices publication-title: Nano Today doi: 10.1016/j.nantod.2016.04.007 – year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib63 – volume: 6 start-page: 1600665 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib4 article-title: Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600665 – volume: 28 start-page: 1805108 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib32 article-title: A single integrated 3D‐printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805108 – volume: 13 start-page: 2634 year: 2013 ident: 10.1016/j.nanoen.2020.104973_bib25 article-title: 3D printed bionic ears publication-title: Nano Lett. doi: 10.1021/nl4007744 – volume: 14 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib31 article-title: Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: a case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays publication-title: PloS One doi: 10.1371/journal.pone.0214120 – volume: 2 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib58 article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source publication-title: Sci. Adv. doi: 10.1126/sciadv.1501478 – volume: 38 start-page: 125 year: 2011 ident: 10.1016/j.nanoen.2020.104973_bib51 article-title: Organ preservation: current concepts and new strategies for the next decade publication-title: Transfus. Med. Hemotherapy doi: 10.1159/000327033 – volume: 1 start-page: 480 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib55 article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator publication-title: Joule doi: 10.1016/j.joule.2017.09.004 – volume: 11 start-page: 9490 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib10 article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano doi: 10.1021/acsnano.7b05317 – volume: 2 start-page: 234 year: 2014 ident: 10.1016/j.nanoen.2020.104973_bib21 article-title: 3D printing for the rapid prototyping of structural electronics publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2311810 – volume: 20 start-page: 837 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib19 article-title: Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1650396 – volume: 55 start-page: 151 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib7 article-title: Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.078 – volume: 14 start-page: 7017 year: 2014 ident: 10.1016/j.nanoen.2020.104973_bib33 article-title: 3D printed quantum dot light-emitting diodes publication-title: Nano Lett. doi: 10.1021/nl5033292 – volume: 17 start-page: 2561 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib39 article-title: 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs publication-title: Lab Chip doi: 10.1039/C7LC00468K – start-page: 104429 year: 2020 ident: 10.1016/j.nanoen.2020.104973_bib16 article-title: Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104429 – volume: 6 start-page: 35153 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib9 article-title: Stretchable triboelectric fiber for self-powered kinematic sensing textile publication-title: Sci. Rep. doi: 10.1038/srep35153 – volume: 62 start-page: 1910 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib28 article-title: 4-Axis printing microfibrous tubular scaffold and tracheal cartilage application publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9498-5 – volume: 25 start-page: 6205 year: 2015 ident: 10.1016/j.nanoen.2020.104973_bib37 article-title: 3D printed anatomical nerve regeneration pathways publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501760 – volume: 11 start-page: 12764 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib13 article-title: Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths publication-title: ACS Nano doi: 10.1021/acsnano.7b07534 – volume: 27 start-page: 1604462 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib1 article-title: Single‐thread‐based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human‐interactive and biomedical sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604462 – volume: 37 start-page: 132 year: 2015 ident: 10.1016/j.nanoen.2020.104973_bib30 article-title: Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.10.002 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib44 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 2 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib60 article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring publication-title: Sci. Adv. doi: 10.1126/sciadv.1501624 – volume: 25 start-page: 115009 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib27 article-title: In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/11/115009 – volume: 27 start-page: 1604378 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib12 article-title: A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604378 – volume: 8 start-page: 1043 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib36 article-title: In situ electrochemical polymerization of poly (3, 4-ethylenedioxythiophene)(PEDOT) for peripheral nerve interfaces publication-title: MRS Commun. doi: 10.1557/mrc.2018.138 – volume: 52 start-page: 288 year: 2010 ident: 10.1016/j.nanoen.2020.104973_bib64 article-title: Development of a silent speech interface driven by ultrasound and optical images of the tongue and lips publication-title: Speech Commun. doi: 10.1016/j.specom.2009.11.004 – volume: 18 start-page: 129 year: 2012 ident: 10.1016/j.nanoen.2020.104973_bib20 article-title: Integrating stereolithography and direct print technologies for 3D structural electronics fabrication publication-title: Rapid Prototyp. J. doi: 10.1108/13552541211212113 – volume: 28 start-page: 4203 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib2 article-title: Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials publication-title: Adv. Mater. doi: 10.1002/adma.201504150 – volume: 6 start-page: 101106 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib15 article-title: Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics publication-title: Apl. Mater. doi: 10.1063/1.5048553 – start-page: 1 year: 2020 ident: 10.1016/j.nanoen.2020.104973_bib62 article-title: An integrated perfusion machine preserves injured human livers for 1 week publication-title: Nat. Biotechnol. – volume: 8 start-page: 1801114 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib14 article-title: Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801114 – volume: 28 start-page: 4373 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib3 article-title: Monitoring of vital signs with flexible and wearable medical devices publication-title: Adv. Mater. doi: 10.1002/adma.201504366 – volume: 60 start-page: S20 year: 2010 ident: 10.1016/j.nanoen.2020.104973_bib50 article-title: Current state of hypothermic machine perfusion preservation of organs: the clinical perspective publication-title: Cryobiology doi: 10.1016/j.cryobiol.2009.10.006 – volume: 45 start-page: 380 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib23 article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.049 – volume: 52 start-page: 270 year: 2010 ident: 10.1016/j.nanoen.2020.104973_bib52 article-title: Silent speech interfaces publication-title: Speech Commun. doi: 10.1016/j.specom.2009.08.002 – volume: 30 start-page: 302 year: 2013 ident: 10.1016/j.nanoen.2020.104973_bib61 article-title: Age-dependent biomechanical properties of the skin publication-title: Adv. Dermatol. Allergol. doi: 10.5114/pdia.2013.38359 – volume: 29 start-page: 1701218 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib29 article-title: 3D printed stretchable tactile sensors publication-title: Adv. Mater. doi: 10.1002/adma.201701218 – volume: 28 start-page: 98 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib8 article-title: Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201504403 – volume: 39 start-page: 673 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib11 article-title: A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.003 – volume: 3 start-page: 2365 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib35 article-title: A hybrid 3D printing and robotic-assisted embedding approach for design and fabrication of nerve cuffs with integrated locking mechanisms publication-title: MRS Adv. doi: 10.1557/adv.2018.378 – volume: 26 start-page: 5310 year: 2014 ident: 10.1016/j.nanoen.2020.104973_bib6 article-title: Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201400633 – start-page: 1 year: 2020 ident: 10.1016/j.nanoen.2020.104973_bib49 article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics publication-title: Nano Res. – volume: 4 start-page: 425 year: 1994 ident: 10.1016/j.nanoen.2020.104973_bib54 article-title: Improvement of the adhesion of silicone to aluminum using plasma polymerization publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/BF00683706 – volume: 53 start-page: 108 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib46 article-title: An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.011 – volume: 12 start-page: 5042 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib47 article-title: Flexible capacitive tactile sensor based on micropatterned dielectric layer publication-title: Small doi: 10.1002/smll.201600760 – volume: 2 start-page: 32 year: 2015 ident: 10.1016/j.nanoen.2020.104973_bib34 article-title: Fiber encapsulation additive manufacturing: an enabling technology for 3D printing of electromechanical devices and robotic components publication-title: 3D Print. Addit. Manuf. doi: 10.1089/3dp.2015.0003 – volume: 6 start-page: S490 year: 2009 ident: 10.1016/j.nanoen.2020.104973_bib53 article-title: Functionalization of copper surfaces by plasma treatments to improve adhesion of epoxy resins publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200931106 – volume: 58 start-page: 410 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib48 article-title: Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.058 – volume: 28 start-page: 4283 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib5 article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics publication-title: Adv. Mater. doi: 10.1002/adma.201504299 – volume: 30 start-page: 1705195 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib57 article-title: Shape memory polymers for body motion energy harvesting and self‐powered mechanosensing publication-title: Adv. Mater. doi: 10.1002/adma.201705195 – volume: 30 start-page: 1705918 year: 2018 ident: 10.1016/j.nanoen.2020.104973_bib59 article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201705918 – volume: 28 start-page: 17 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib24 article-title: Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.004 – start-page: 1902549 year: 2019 ident: 10.1016/j.nanoen.2020.104973_bib18 article-title: Fiber/Fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv. Mater. – volume: 29 start-page: 1702181 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib41 article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications publication-title: Adv. Mater. doi: 10.1002/adma.201702181 – volume: 3 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib56 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.1700015 – volume: 28 start-page: 10024 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib42 article-title: Electric eel‐skin‐inspired mechanically durable and super‐stretchable nanogenerator for deformable power source and fully autonomous conformable electronic‐skin applications publication-title: Adv. Mater. doi: 10.1002/adma.201603527 – start-page: 1 year: 2010 ident: 10.1016/j.nanoen.2020.104973_bib65 – volume: 27 start-page: 1604462 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib17 article-title: Single-Thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604462 – volume: 16 start-page: 1393 year: 2016 ident: 10.1016/j.nanoen.2020.104973_bib38 article-title: 3D printed nervous system on a chip publication-title: Lab Chip doi: 10.1039/C5LC01270H – volume: 57 start-page: 369 year: 2017 ident: 10.1016/j.nanoen.2020.104973_bib40 article-title: Engineering electroactive dielectric elastomers for miniature electromechanical transducers publication-title: Polym. Rev. doi: 10.1080/15583724.2016.1268156 |
SSID | ssj0000651712 |
Score | 2.5573719 |
Snippet | Triboelectric generators and sensors have a great potential as self-powered wearable devices for energy harvesting, biomedical monitoring, and recording human... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104973 |
SubjectTerms | 3D printing Bionics Conformal printing Organ preservation Silent speech Wearable systems |
Title | 3D printed stretchable triboelectric nanogenerator fibers and devices |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.104973 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9sQeva9N9JsdSW6piL1roLewrUpG0aL36253dJKWCKHhM2AnL7GReO_MNQlcqo4nn4f8WGSXcZ5yYwhkipfLKKWFcEfIdDxM5nvK7mZi10KDphQlllbXur3R61Nb1m27Nze5yPu8-UohdaCoEjTBXEROUcxWk_Pqzt86zgIntqXjpGdaTQNB00MUyr1KXCx-AUGm878wU-9lCbVid0R7ard1F3K92tI9avjxAOxsggodoyG5wyM6B64hD5wccQ2iHwmGU1aKacjO3OGzgOUJMQ5CNi1An8o516bDzUVccoelo-DQYk3o4ArHg5a-I96bIUqqLRGg4BrDrNrW91IH5ZRCVaKatzaQzhVbegnaVgmrhRS_14BNK8MKOUbtclP4E4YxJqdPEQTCccMalEdak8D0IhlTBFOsg1jAktzVyeBhg8Zo3JWIvecXGPLAxr9jYQWRNtayQM_5Yrxpe598kIAfl_ivl6b8pz9B2eKpqxs5Re_X24S_AyViZyyhFl2irf3s_nnwBj03Qtg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAcEE8xnjlwrdYlTdIepzHUsceFTdqtSpMUDaFugvH_sfuYhoRA4trWVeQk9ufE_kzIvYqY7wLc3yJiXuCiwEszm3pSKqesEqnN8LxjMpXxPHhaiEWD9OtaGEyrrGx_adMLa1096VTa7KyXy84zg9iFhUKwguYKOUFbyE4lmqTVG47i6faoBbxsVxX3nijioUxdRFdkeuU6XznkQmXFlWek-M9OasfxPB6Rwwox0l45qGPScPkJOdjhETwlA_5A8YAO0CPF4g-YCayIotjNalU2ulkaigN4KVimIc6mGaaKfFCdW2pdYS7OyPxxMOvHXtUfwTMA9Deec2kWhUxnvtAwE-DaTWi6oQUPzCEw0VwbE0mbZlo5AwZWCqaFE93QASyUAMTOSTNf5e6C0IhLqUPfQjzsBzyQqTBpCP-DeEhlXPE24bVCElORh2MPi7ekzhJ7TUo1JqjGpFRjm3hbqXVJnvHH96rWdfJtESRg33-VvPy35B3Zi2eTcTIeTkdXZB_flClk16S5ef90N4A5Nulttaa-AMd502c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+stretchable+triboelectric+nanogenerator+fibers+and+devices&rft.jtitle=Nano+energy&rft.au=Tong%2C+Yuxin&rft.au=Feng%2C+Ziang&rft.au=Kim%2C+Jongwoon&rft.au=Robertson%2C+John+L.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=75&rft_id=info:doi/10.1016%2Fj.nanoen.2020.104973&rft.externalDocID=S2211285520305504 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |