Tannin acid induced anticorrosive film toward stable Zn-ion batteries

Aqueous Zn-ion batteries (AZIBs) have been regarded as a promising next-generation energy storage system. However, the poor reversibility of Zn anodes with serious dendrite growth and parasitic reactions degrades the battery performance. Inspired by the anticorrosion strategy for metal protection, a...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 102; p. 107721
Main Authors Zhang, Peng-Fang, Wu, Zhenzhen, Zhang, Shao-Jian, Liu, Ling-Yang, Tian, Yuhui, Dou, Yuhai, Lin, Zhan, Zhang, Shanqing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous Zn-ion batteries (AZIBs) have been regarded as a promising next-generation energy storage system. However, the poor reversibility of Zn anodes with serious dendrite growth and parasitic reactions degrades the battery performance. Inspired by the anticorrosion strategy for metal protection, an extremely simple and cost-effective method of soaking Zn plate in tannin acid (TA) solution is applied to design ZnTA anticorrosive film on Zn anodes. Robust chemical interaction between Zn and phenolic hydroxyl groups in TA molecules endows ZnTA with the excellent film-forming capacity of ensuring uniform surface and desirable coverage on Zn anodes. A remarkable suppression of parasitic hydrogen evolution during Zn plating is available by ZnTA@Zn anodes, evidenced by in-situ electrochemical gas chromatography (EC-GC). The Symmetric cells with ZnTA@Zn anodes show long-term stability of over 4500 cycles under an ultra-high current density of 30 mA cm−2, verifying the excellent reversibility ZnTA@Zn anodes. Besides, ZnTA anticorrosive film also demonstrates significant capacity to suppress the Zn corrosion resulted from shuttling polyiodide. Consequently, highly-reversible Zn-I2 batteries with excellent rate performance and ultra-long lifespan (20,000 cycles at 6 A g−1) are achieved with ZnTA@Zn anodes. This finding emphasizes the protective mechanism of anticorrosive films against electrolyte/polyiodide corrosion which contributes to the highly-reversible Zn anodes. An anti-corrosion strategy was applied to build an anti-corrosive film on the Zn surface by a tannin acid (TA) solution. The in-situ generated ZnTA anti-corrosive film significantly suppresses the dendrites formation, H2 evolution, and parasitic by-products generation. The ZnTA modified Zn anode in Zn-I2 full batteries exhibits remarkable potential in ultra-long cycling life (20000 cycles) and outstanding electrochemical performance. [Display omitted] •Tannin acid (TA) would in-situ construct a ZnTA anti-corrosive film on Zn anode.•The ZnTA film suppresses dendrite formation and parasitic H2 evolution.•The ZnTA-modified Zn anode delivers an ultra-high current density and ultra-stability.•The ZnTA film suppresses polyiodide corrosion, endowing Zn-I2 full batteries with an ultra-long lifespan of 20000 cycles.
AbstractList Aqueous Zn-ion batteries (AZIBs) have been regarded as a promising next-generation energy storage system. However, the poor reversibility of Zn anodes with serious dendrite growth and parasitic reactions degrades the battery performance. Inspired by the anticorrosion strategy for metal protection, an extremely simple and cost-effective method of soaking Zn plate in tannin acid (TA) solution is applied to design ZnTA anticorrosive film on Zn anodes. Robust chemical interaction between Zn and phenolic hydroxyl groups in TA molecules endows ZnTA with the excellent film-forming capacity of ensuring uniform surface and desirable coverage on Zn anodes. A remarkable suppression of parasitic hydrogen evolution during Zn plating is available by ZnTA@Zn anodes, evidenced by in-situ electrochemical gas chromatography (EC-GC). The Symmetric cells with ZnTA@Zn anodes show long-term stability of over 4500 cycles under an ultra-high current density of 30 mA cm−2, verifying the excellent reversibility ZnTA@Zn anodes. Besides, ZnTA anticorrosive film also demonstrates significant capacity to suppress the Zn corrosion resulted from shuttling polyiodide. Consequently, highly-reversible Zn-I2 batteries with excellent rate performance and ultra-long lifespan (20,000 cycles at 6 A g−1) are achieved with ZnTA@Zn anodes. This finding emphasizes the protective mechanism of anticorrosive films against electrolyte/polyiodide corrosion which contributes to the highly-reversible Zn anodes. An anti-corrosion strategy was applied to build an anti-corrosive film on the Zn surface by a tannin acid (TA) solution. The in-situ generated ZnTA anti-corrosive film significantly suppresses the dendrites formation, H2 evolution, and parasitic by-products generation. The ZnTA modified Zn anode in Zn-I2 full batteries exhibits remarkable potential in ultra-long cycling life (20000 cycles) and outstanding electrochemical performance. [Display omitted] •Tannin acid (TA) would in-situ construct a ZnTA anti-corrosive film on Zn anode.•The ZnTA film suppresses dendrite formation and parasitic H2 evolution.•The ZnTA-modified Zn anode delivers an ultra-high current density and ultra-stability.•The ZnTA film suppresses polyiodide corrosion, endowing Zn-I2 full batteries with an ultra-long lifespan of 20000 cycles.
ArticleNumber 107721
Author Zhang, Shao-Jian
Wu, Zhenzhen
Dou, Yuhai
Liu, Ling-Yang
Zhang, Shanqing
Tian, Yuhui
Lin, Zhan
Zhang, Peng-Fang
Author_xml – sequence: 1
  givenname: Peng-Fang
  surname: Zhang
  fullname: Zhang, Peng-Fang
  organization: Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, PR China
– sequence: 2
  givenname: Zhenzhen
  surname: Wu
  fullname: Wu, Zhenzhen
  organization: School of Environment and Science, Gold Coast Campus, Griffith University, Queensland 4222, Australia
– sequence: 3
  givenname: Shao-Jian
  surname: Zhang
  fullname: Zhang, Shao-Jian
  email: zsjarea@foxmail.com
  organization: Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical, Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 4
  givenname: Ling-Yang
  surname: Liu
  fullname: Liu, Ling-Yang
  organization: Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, PR China
– sequence: 5
  givenname: Yuhui
  surname: Tian
  fullname: Tian, Yuhui
  organization: School of Environment and Science, Gold Coast Campus, Griffith University, Queensland 4222, Australia
– sequence: 6
  givenname: Yuhai
  surname: Dou
  fullname: Dou, Yuhai
  organization: Shandong Institute of Advanced Technology, Jinan 250100, PR China
– sequence: 7
  givenname: Zhan
  surname: Lin
  fullname: Lin, Zhan
  email: zhanlin@gdut.edu.cn
  organization: Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical, Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 8
  givenname: Shanqing
  surname: Zhang
  fullname: Zhang, Shanqing
  email: s.zhang@griffith.edu.au
  organization: School of Environment and Science, Gold Coast Campus, Griffith University, Queensland 4222, Australia
BookMark eNqFkE1LAzEQhnOoYK39Bx7yB7Zmss1-eBCk1A8oeKkXLyHJzsKUbVaSWPHfG1lPHnQOMzDwvMw8F2zmR4-MXYFYgYDq-rDyxo_oV1JImVd1LWHG5lICFLJR6pwtYzyIXJWCGuScbffGe_LcOOo4-e7dYceNT-TGEMZIJ-Q9DUeexg8TOh6TsQPyV1_Q6Lk1KWEgjJfsrDdDxOXPXLCX--1-81jsnh-eNne7wpWiSgW6CvvWiMYKBarpwKwB6nqtHErbgmxdaWQlAdsuN2vr1qlKOdvK1paNMOWC3Uy5Lt8WA_baUTIp35KCoUGD0N8e9EFPHvS3Bz15yPD6F_wW6GjC53_Y7YRhfuxEGHR0hD57ooAu6W6kvwO-AAJtfXo
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_125597
crossref_primary_10_1002_adma_202404011
crossref_primary_10_1016_j_molliq_2023_122988
crossref_primary_10_1016_j_apsusc_2024_159982
crossref_primary_10_1039_D3EE02945J
crossref_primary_10_1002_sus2_184
crossref_primary_10_1016_j_ijbiomac_2024_137388
crossref_primary_10_1039_D3CS00771E
crossref_primary_10_1002_adfm_202312855
crossref_primary_10_1039_D3NR01306E
crossref_primary_10_1002_aenm_202404845
crossref_primary_10_1016_j_cej_2024_152324
crossref_primary_10_1016_j_porgcoat_2023_107706
crossref_primary_10_1016_j_jcis_2023_08_047
crossref_primary_10_1002_aenm_202303928
crossref_primary_10_1016_j_cej_2023_144845
crossref_primary_10_1016_j_jcis_2024_01_211
crossref_primary_10_1021_acsami_2c22477
crossref_primary_10_1002_ange_202215060
crossref_primary_10_1021_acsnano_3c01518
crossref_primary_10_1016_j_nxmate_2025_100517
crossref_primary_10_1021_acsami_4c09002
crossref_primary_10_1002_smsc_202300007
crossref_primary_10_1002_aenm_202401328
crossref_primary_10_1016_j_scib_2023_08_024
crossref_primary_10_1016_j_colsurfa_2024_134038
crossref_primary_10_1016_j_ijbiomac_2024_138737
crossref_primary_10_1007_s12598_023_02552_1
crossref_primary_10_1016_j_cej_2023_142580
crossref_primary_10_1039_D3CC04156E
crossref_primary_10_1002_smll_202309057
crossref_primary_10_26599_NRE_2024_9120127
crossref_primary_10_1002_anie_202215060
crossref_primary_10_1002_adma_202309838
crossref_primary_10_1016_j_apsusc_2024_159921
crossref_primary_10_1016_j_nantod_2024_102461
crossref_primary_10_1021_acsnano_4c11486
crossref_primary_10_1016_j_cej_2023_148511
crossref_primary_10_1002_adma_202306601
crossref_primary_10_1021_acs_nanolett_2c03919
crossref_primary_10_1016_j_ensm_2024_103238
crossref_primary_10_1016_j_mtchem_2024_102120
crossref_primary_10_1002_adfm_202417462
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1002_adfm_202306359
crossref_primary_10_1016_j_jpowsour_2024_235368
crossref_primary_10_1016_j_nanoen_2023_108810
crossref_primary_10_1021_acsami_4c21968
crossref_primary_10_1002_smm2_1212
crossref_primary_10_1002_batt_202300544
crossref_primary_10_1002_anie_202301570
crossref_primary_10_1016_j_nanoen_2023_109076
crossref_primary_10_1039_D4SC00792A
crossref_primary_10_1021_jacs_4c03518
crossref_primary_10_1016_j_carbpol_2023_121621
crossref_primary_10_1002_adfm_202414022
crossref_primary_10_1016_j_est_2023_110101
crossref_primary_10_1016_j_jpowsour_2024_235364
crossref_primary_10_1016_j_porgcoat_2023_107454
crossref_primary_10_1016_j_est_2024_111892
crossref_primary_10_26599_NR_2025_94907031
crossref_primary_10_1016_j_jpowsour_2024_235799
crossref_primary_10_1016_j_jallcom_2024_176647
crossref_primary_10_1002_ange_202301570
crossref_primary_10_1021_acsnano_2c09317
Cites_doi 10.1039/C8CC07730D
10.1039/D1TA10170F
10.1039/C9EE02526J
10.1016/j.nanoen.2020.105739
10.1039/C9CP00223E
10.1002/aenm.202102010
10.1016/j.ensm.2021.05.029
10.1002/adma.201903675
10.1016/j.nanoen.2018.12.086
10.1002/adfm.202001263
10.1002/anie.202014447
10.1002/adma.202003021
10.1038/s41467-018-04060-8
10.1007/s12598-009-0056-9
10.1103/PhysRevB.15.1669
10.1016/j.apsusc.2006.07.004
10.1016/j.joule.2019.02.012
10.1002/adma.201700389
10.1016/j.matchemphys.2006.08.007
10.1002/adfm.201802564
10.1002/anie.202016531
10.1002/adfm.201903605
10.1016/j.joule.2020.03.002
10.1038/s41563-020-0667-y
10.1038/s41563-018-0063-z
10.1039/D0TA06622B
10.1002/aenm.201801090
10.1016/j.apsusc.2015.02.179
10.1002/adma.202007470
10.1002/admi.201800848
10.1021/acsami.6b16560
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2022.107721
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2022_107721
S2211285522007996
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-ec6ef9a08b05158d1a4117745ce2b9129c3a2621e9d21ebb79c565cb929b380a3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:57 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Fri Feb 23 02:39:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tannin acid
Zn-I2 battery
Zn dendrite
Anticorrosive film
Parasitic reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-ec6ef9a08b05158d1a4117745ce2b9129c3a2621e9d21ebb79c565cb929b380a3
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2022_107721
crossref_primary_10_1016_j_nanoen_2022_107721
elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_107721
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zuo, Wu, Yang, Yin, Ye, Li, Guo (bib17) 2017; 29
Shimizu, Hirahara, Arai (bib13) 2019; 21
Wang, Meng, Lin, Yang, Zhou, Wang, Pan (bib20) 2021; 31
Tang, Shan, Liang, Zhou (bib3) 2019; 12
Yan, Xu, Sun, Pan, Li (bib16) 2021; 82
Xie, Liang, Lu (bib10) 2020; 19
Hao, Yuan, Ye, Chao, Davey, Guo, Qiao (bib2) 2021; 60
Sun, Hoang, Doan, Yu, Zhu, Tian, Chen (bib14) 2017; 9
Wang, Huang, Guo, Dong, Liu, Wang, Xia (bib34) 2019; 3
Zhang, Hao, Luo, Zhang, Zhang, Davey, Lin, Qiao (bib15) 2021; 11
Yang, Qiao, Chang, Deng, He, Zhou (bib30) 2020; 32
Blanc, Kundu, Nazar (bib4) 2020; 4
Zhang, Hao, Li, Zhang, Yin, Li, Zhang, Lin, Qiao (bib35) 2022; 34
Hao, Long, Li, Li, Zhang, Yang, Zeng, Yang, Pang, Guo (bib12) 2019; 29
Zhao, Zhang, Yang, Chen, Zhao, Qiu, Dong, Zhou, Cui, Chen (bib9) 2019; 57
Ma, Ying, Chen, Huang, Li, Huang, Zhi (bib33) 2021; 60
Santa Coloma, Izagirre, Belaustegi, Jorcin, Cano, Lapeña (bib25) 2015; 345
Wan, Zhang, Dai, Wang, Niu, Chen (bib11) 2018; 9
Zhou, Huang, Zhu, Chen, Sheng, Xie, Mei (bib28) 2020; 143
Antonides, Janse, Sawatzky (bib31) 1977; 15
Kulinich, Akhtar, Susac, Wong, Wong, Mitchell (bib26) 2007; 253
Kang, Cui, Jiang, Gao, Luo, Liu, Liang, Zhi (bib23) 2018; 8
Hao, Li, Zhang, Yang, Zeng, Zhang, Bo, Wang, Guo (bib24) 2020; 30
Yang, Ger, Hwu, Sung, Liu (bib27) 2007; 101
Zhang, Holoubek, Wu, Daniyar, Zhu, Chen, Leonard, Rodriguez-Perez, Jiang, Fang, Ji (bib7) 2018; 54
Hou, Tan, Gao, Li, Lu, Zhang (bib6) 2020; 8
Liu, Yu, Yang, Tian, Du (bib29) 2009; 28
Zhang, Yin, Wu, Luo, Hu, You, Zhang, Li, Yan, Yang, Zhou, Zanna, Marcus, Pan, Światowska, Sun, Chen, Li (bib32) 2021; 40
Wang, Borodin, Gao, Fan, Sun, Han, Faraone, Dura, Xu, Wang (bib1) 2018; 17
Cai, Chu, Liu, Lai, Chen, Jiang, Guo, Xu, Wang, Gao (bib8) 2021; 33
Zhao, Wang, Yu, Yan, Wei, He, Dong, Zhang, Wang, Mai (bib19) 2018; 5
Song, Tan, Chao, Fan (bib5) 2018; 28
Hao, Li, Li, Zeng, Zhang, Yang, Liu, Li, Wu, Guo (bib21) 2020; 32
Zeng, Zhang, Qin, Liu, Fang, Zheng, Tong, Lu (bib18) 2019; 31
Wang, Le, Zhang, Ren, Yuan, Su, Chi, Shao, Sun (bib22) 2022; 10
Zhang (10.1016/j.nanoen.2022.107721_bib15) 2021; 11
Sun (10.1016/j.nanoen.2022.107721_bib14) 2017; 9
Wang (10.1016/j.nanoen.2022.107721_bib1) 2018; 17
Hao (10.1016/j.nanoen.2022.107721_bib24) 2020; 30
Yan (10.1016/j.nanoen.2022.107721_bib16) 2021; 82
Xie (10.1016/j.nanoen.2022.107721_bib10) 2020; 19
Hao (10.1016/j.nanoen.2022.107721_bib2) 2021; 60
Cai (10.1016/j.nanoen.2022.107721_bib8) 2021; 33
Zeng (10.1016/j.nanoen.2022.107721_bib18) 2019; 31
Zhao (10.1016/j.nanoen.2022.107721_bib19) 2018; 5
Kang (10.1016/j.nanoen.2022.107721_bib23) 2018; 8
Wang (10.1016/j.nanoen.2022.107721_bib22) 2022; 10
Yang (10.1016/j.nanoen.2022.107721_bib27) 2007; 101
Hao (10.1016/j.nanoen.2022.107721_bib21) 2020; 32
Yang (10.1016/j.nanoen.2022.107721_bib30) 2020; 32
Zhao (10.1016/j.nanoen.2022.107721_bib9) 2019; 57
Hao (10.1016/j.nanoen.2022.107721_bib12) 2019; 29
Shimizu (10.1016/j.nanoen.2022.107721_bib13) 2019; 21
Antonides (10.1016/j.nanoen.2022.107721_bib31) 1977; 15
Tang (10.1016/j.nanoen.2022.107721_bib3) 2019; 12
Wang (10.1016/j.nanoen.2022.107721_bib20) 2021; 31
Zhang (10.1016/j.nanoen.2022.107721_bib32) 2021; 40
Kulinich (10.1016/j.nanoen.2022.107721_bib26) 2007; 253
Wang (10.1016/j.nanoen.2022.107721_bib34) 2019; 3
Blanc (10.1016/j.nanoen.2022.107721_bib4) 2020; 4
Santa Coloma (10.1016/j.nanoen.2022.107721_bib25) 2015; 345
Zhou (10.1016/j.nanoen.2022.107721_bib28) 2020; 143
Zhang (10.1016/j.nanoen.2022.107721_bib7) 2018; 54
Zhang (10.1016/j.nanoen.2022.107721_bib35) 2022; 34
Liu (10.1016/j.nanoen.2022.107721_bib29) 2009; 28
Ma (10.1016/j.nanoen.2022.107721_bib33) 2021; 60
Zuo (10.1016/j.nanoen.2022.107721_bib17) 2017; 29
Hou (10.1016/j.nanoen.2022.107721_bib6) 2020; 8
Song (10.1016/j.nanoen.2022.107721_bib5) 2018; 28
Wan (10.1016/j.nanoen.2022.107721_bib11) 2018; 9
References_xml – volume: 8
  start-page: 19367
  year: 2020
  end-page: 19374
  ident: bib6
  article-title: Tailoring desolvation kinetics enables stable zinc metal anodes
  publication-title: J. Mater. Chem. A
– volume: 253
  start-page: 3144
  year: 2007
  end-page: 3153
  ident: bib26
  article-title: On the growth of conversion chromate coatings on 2024-Al alloy
  publication-title: Appl. Surf. Sci.
– volume: 8
  year: 2018
  ident: bib23
  article-title: Nanoporous CaCO
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3288
  year: 2019
  end-page: 3304
  ident: bib3
  article-title: Issues and opportunities facing aqueous zinc-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 1006
  year: 2020
  end-page: 1011
  ident: bib10
  article-title: Molecular crowding electrolytes for high-voltage aqueous batteries
  publication-title: Nat. Mater.
– volume: 40
  start-page: 337
  year: 2021
  end-page: 346
  ident: bib32
  article-title: Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure
  publication-title: Energy Storage Mater.
– volume: 33
  year: 2021
  ident: bib8
  article-title: Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries
  publication-title: Adv. Mater.
– volume: 82
  year: 2021
  ident: bib16
  article-title: Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive
  publication-title: Nano Energy
– volume: 28
  year: 2018
  ident: bib5
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2018
  ident: bib19
  article-title: Ultrathin surface coating enables stabilized zinc metal anode
  publication-title: Adv. Mater. Interfaces
– volume: 60
  start-page: 3791
  year: 2021
  end-page: 3798
  ident: bib33
  article-title: Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2021
  ident: bib15
  article-title: Dual‐function electrolyte additive for highly reversible Zn anode
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 4845
  year: 2022
  end-page: 4857
  ident: bib22
  article-title: A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc–iodine batteries
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2020
  ident: bib24
  article-title: Designing dendrite‐free zinc anodes for advanced aqueous zinc batteries
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 7045
  year: 2019
  end-page: 7052
  ident: bib13
  article-title: Morphology control of zinc electrodeposition by surfactant addition for alkaline-based rechargeable batteries
  publication-title: Phys. Chem. Chem. Phys.
– volume: 34
  year: 2022
  ident: bib35
  article-title: Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  ident: bib17
  article-title: Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  ident: bib20
  article-title: Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings
  publication-title: Adv. Funct. Mater.
– volume: 345
  start-page: 24
  year: 2015
  end-page: 35
  ident: bib25
  article-title: Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications
  publication-title: Appl. Surf. Sci.
– volume: 54
  start-page: 14097
  year: 2018
  end-page: 14099
  ident: bib7
  article-title: A ZnCl
  publication-title: Chem. Commun.
– volume: 4
  start-page: 771
  year: 2020
  end-page: 799
  ident: bib4
  article-title: Scientific challenges for the implementation of Zn-ion batteries
  publication-title: Joule
– volume: 15
  start-page: 1669
  year: 1977
  end-page: 1679
  ident: bib31
  article-title: LMM Auger spectra of Cu, Zn, Ga, and Ge. I. Transition probabilities, term splittings, and effective Coulomb interaction
  publication-title: Phys. Rev. B
– volume: 60
  start-page: 7366
  year: 2021
  end-page: 7375
  ident: bib2
  article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  ident: bib1
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
– volume: 3
  start-page: 1289
  year: 2019
  end-page: 1300
  ident: bib34
  article-title: A metal-organic framework host for highly reversible dendrite-free zinc metal anodes
  publication-title: Joule
– volume: 32
  year: 2020
  ident: bib21
  article-title: An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries
  publication-title: Adv. Mater.
– volume: 28
  start-page: 284
  year: 2009
  end-page: 288
  ident: bib29
  article-title: Cerium-tannic acid passivation treatment on galvanized steel
  publication-title: Rare Met.
– volume: 32
  year: 2020
  ident: bib30
  article-title: A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1656
  year: 2018
  ident: bib11
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
– volume: 9
  start-page: 9681
  year: 2017
  end-page: 9687
  ident: bib14
  article-title: Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 101
  start-page: 480
  year: 2007
  end-page: 485
  ident: bib27
  article-title: Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy
  publication-title: Mater. Chem. Phys.
– volume: 57
  start-page: 625
  year: 2019
  end-page: 634
  ident: bib9
  article-title: “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries
  publication-title: Nano Energy
– volume: 29
  year: 2019
  ident: bib12
  article-title: Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2019
  ident: bib18
  article-title: Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible zn-ion batteries
  publication-title: Adv. Mater.
– volume: 143
  year: 2020
  ident: bib28
  article-title: Green modification of graphene oxide with phytic acid and its application in anticorrosive water-borne epoxy coatings
  publication-title: Prog. Org. Coat.
– volume: 54
  start-page: 14097
  year: 2018
  ident: 10.1016/j.nanoen.2022.107721_bib7
  article-title: A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07730D
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2022.107721_bib20
  article-title: Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 4845
  year: 2022
  ident: 10.1016/j.nanoen.2022.107721_bib22
  article-title: A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc–iodine batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10170F
– volume: 143
  year: 2020
  ident: 10.1016/j.nanoen.2022.107721_bib28
  article-title: Green modification of graphene oxide with phytic acid and its application in anticorrosive water-borne epoxy coatings
  publication-title: Prog. Org. Coat.
– volume: 12
  start-page: 3288
  year: 2019
  ident: 10.1016/j.nanoen.2022.107721_bib3
  article-title: Issues and opportunities facing aqueous zinc-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02526J
– volume: 82
  year: 2021
  ident: 10.1016/j.nanoen.2022.107721_bib16
  article-title: Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105739
– volume: 21
  start-page: 7045
  year: 2019
  ident: 10.1016/j.nanoen.2022.107721_bib13
  article-title: Morphology control of zinc electrodeposition by surfactant addition for alkaline-based rechargeable batteries
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP00223E
– volume: 11
  year: 2021
  ident: 10.1016/j.nanoen.2022.107721_bib15
  article-title: Dual‐function electrolyte additive for highly reversible Zn anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102010
– volume: 40
  start-page: 337
  year: 2021
  ident: 10.1016/j.nanoen.2022.107721_bib32
  article-title: Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.05.029
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2022.107721_bib18
  article-title: Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible zn-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903675
– volume: 57
  start-page: 625
  year: 2019
  ident: 10.1016/j.nanoen.2022.107721_bib9
  article-title: “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.086
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2022.107721_bib30
  article-title: A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2022.107721_bib24
  article-title: Designing dendrite‐free zinc anodes for advanced aqueous zinc batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001263
– volume: 60
  start-page: 3791
  year: 2021
  ident: 10.1016/j.nanoen.2022.107721_bib33
  article-title: Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014447
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2022.107721_bib21
  article-title: An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003021
– volume: 9
  start-page: 1656
  year: 2018
  ident: 10.1016/j.nanoen.2022.107721_bib11
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04060-8
– volume: 28
  start-page: 284
  year: 2009
  ident: 10.1016/j.nanoen.2022.107721_bib29
  article-title: Cerium-tannic acid passivation treatment on galvanized steel
  publication-title: Rare Met.
  doi: 10.1007/s12598-009-0056-9
– volume: 15
  start-page: 1669
  year: 1977
  ident: 10.1016/j.nanoen.2022.107721_bib31
  article-title: LMM Auger spectra of Cu, Zn, Ga, and Ge. I. Transition probabilities, term splittings, and effective Coulomb interaction
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.15.1669
– volume: 253
  start-page: 3144
  year: 2007
  ident: 10.1016/j.nanoen.2022.107721_bib26
  article-title: On the growth of conversion chromate coatings on 2024-Al alloy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.07.004
– volume: 3
  start-page: 1289
  year: 2019
  ident: 10.1016/j.nanoen.2022.107721_bib34
  article-title: A metal-organic framework host for highly reversible dendrite-free zinc metal anodes
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.012
– volume: 29
  year: 2017
  ident: 10.1016/j.nanoen.2022.107721_bib17
  article-title: Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700389
– volume: 101
  start-page: 480
  year: 2007
  ident: 10.1016/j.nanoen.2022.107721_bib27
  article-title: Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2006.08.007
– volume: 34
  year: 2022
  ident: 10.1016/j.nanoen.2022.107721_bib35
  article-title: Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  ident: 10.1016/j.nanoen.2022.107721_bib5
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802564
– volume: 60
  start-page: 7366
  year: 2021
  ident: 10.1016/j.nanoen.2022.107721_bib2
  article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016531
– volume: 29
  year: 2019
  ident: 10.1016/j.nanoen.2022.107721_bib12
  article-title: Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903605
– volume: 4
  start-page: 771
  year: 2020
  ident: 10.1016/j.nanoen.2022.107721_bib4
  article-title: Scientific challenges for the implementation of Zn-ion batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.002
– volume: 19
  start-page: 1006
  year: 2020
  ident: 10.1016/j.nanoen.2022.107721_bib10
  article-title: Molecular crowding electrolytes for high-voltage aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0667-y
– volume: 17
  start-page: 543
  year: 2018
  ident: 10.1016/j.nanoen.2022.107721_bib1
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 8
  start-page: 19367
  year: 2020
  ident: 10.1016/j.nanoen.2022.107721_bib6
  article-title: Tailoring desolvation kinetics enables stable zinc metal anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06622B
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2022.107721_bib23
  article-title: Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801090
– volume: 345
  start-page: 24
  year: 2015
  ident: 10.1016/j.nanoen.2022.107721_bib25
  article-title: Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.02.179
– volume: 33
  year: 2021
  ident: 10.1016/j.nanoen.2022.107721_bib8
  article-title: Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007470
– volume: 5
  year: 2018
  ident: 10.1016/j.nanoen.2022.107721_bib19
  article-title: Ultrathin surface coating enables stabilized zinc metal anode
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800848
– volume: 9
  start-page: 9681
  year: 2017
  ident: 10.1016/j.nanoen.2022.107721_bib14
  article-title: Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16560
SSID ssj0000651712
Score 2.5766149
Snippet Aqueous Zn-ion batteries (AZIBs) have been regarded as a promising next-generation energy storage system. However, the poor reversibility of Zn anodes with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107721
SubjectTerms Anticorrosive film
Parasitic reaction
Tannin acid
Zn dendrite
Zn-I2 battery
Title Tannin acid induced anticorrosive film toward stable Zn-ion batteries
URI https://dx.doi.org/10.1016/j.nanoen.2022.107721
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX_RBvOK8jDz4Grc06e1xjI2puBc3GL6UJE2hMrsx5qu_3S-9jAmi4EuhaQ4t30nP-dKeCyF3PnwcLnAWChswqfAqRjJSTElujAlkoI3bKD5PgvFMPs79eYsMmlwYF1ZZ2_7KppfWuh7p1mh2V3neffGwd_EiHwQCfg603WWwy9Ct8vtPvv3OAhfLw_Knp5vPnECTQVeGeRWqWFpXCNXzMASuyX_2UDteZ3RMjmq6SPvVE52Qli1OyeFOEcEzMpyWbYeoMnlKscOGrlIKvKDiNW4Aa0azfPFON2WALAUb1AtLXwsGjVBdltfEbvmczEbD6WDM6uYIzIDlb5g1gc1i1Yu069ISpRzocnA531hPx_DiRigv8LiNUxy0DmMD7mY06JAWUU-JC7JXLAt7SSg4DoasiCMtZBpnWqXGKdBKkbmKd20iGkASU1cOdw0sFkkTIvaWVDAmDsakgrFN2FZqVVXO-GN-2GCdfFsBCYz7r5JX_5a8JgfurMotvCF7m_WHvQXJ2OhOuYo6ZL__8DSefAFJ3NCT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RTl6QFG08ZJ02RgQDzU0tKFVkIswXZcqagEVIoQC3-KP8jnPCqQEEhIXTLYcWJ9vtx955zviA5qsHHocHjdNT73JD7FwAskl56jtfY9X2nrKF51_EbPu7yp3czQR3EWxoZV5ro_0-mpts5bKjmalafBoHIt4LuIoAYCATsH2p5HVrbM2yv8tufj5hkW-VCIi_PuaYPnpQW4Bkcec6N90w9lNVC2xkkQO5ibAyZU00aoEDZQu1L4wjFhjItS9VCD-WgFMqHcoCpdPHeW5jyoC1s24ejdmWzswKY79fQvq50gtzMsjuylcWWJTB6NzbwqBJpAbp2fTeIXM3exTEs5P2UnGQQrNGOSVVr8krVwjc67aZ0jJvUgZnDpIRwxwwJBpkZ4AdQn6w-GD2ycRuQy0E81NOw24RABptJ8nnDP16k3Fcg2qJQ8JmaTGEgVmowbBsr14rCvZKytxBjP7dsUe2VyC0AinacqtxUzhlERk3YfZTBGFsYog7FMfDLqKUvV8cf99QLr6JvIRbAmv47c-vfIfZpvdK_aUbvZaW3Tgu3JDjbuUGk8ejG7YDhjtZdKFKO7aYvwJ1GLC5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tannin+acid+induced+anticorrosive+film+toward+stable+Zn-ion+batteries&rft.jtitle=Nano+energy&rft.au=Zhang%2C+Peng-Fang&rft.au=Wu%2C+Zhenzhen&rft.au=Zhang%2C+Shao-Jian&rft.au=Liu%2C+Ling-Yang&rft.date=2022-11-01&rft.issn=2211-2855&rft.volume=102&rft.spage=107721&rft_id=info:doi/10.1016%2Fj.nanoen.2022.107721&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_107721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon