Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis
[Display omitted] ► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate consistent with experiments was confirmed. ► QM/MM and fragment molecular orbital approaches were applied. ► GAMESS(US) code operational on the ‘R...
Saved in:
Published in | Chemical physics letters Vol. 556; pp. 251 - 255 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
29.01.2013
|
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate consistent with experiments was confirmed. ► QM/MM and fragment molecular orbital approaches were applied. ► GAMESS(US) code operational on the ‘RSC Tornado’ computational cluster was used.
We apply computational methods aiming to approach a full quantum mechanical treatment of chemical reactions in proteins. A combination of the quantum mechanical – molecular mechanical methodology for geometry optimization and the fragment molecular orbital approach for energy calculations is examined for an example of acetylcholinesterase catalysis. The codes based on the GAMESS(US) package operational on the ‘RSC Tornado’ computational cluster are applied to determine that the energy of the reaction intermediate upon hydrolysis of acetylcholine is lower than that of the enzyme–substrate complex. This conclusion is consistent with the experiments and it is free from the empirical force field contributions. |
---|---|
AbstractList | [Display omitted]
► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate consistent with experiments was confirmed. ► QM/MM and fragment molecular orbital approaches were applied. ► GAMESS(US) code operational on the ‘RSC Tornado’ computational cluster was used.
We apply computational methods aiming to approach a full quantum mechanical treatment of chemical reactions in proteins. A combination of the quantum mechanical – molecular mechanical methodology for geometry optimization and the fragment molecular orbital approach for energy calculations is examined for an example of acetylcholinesterase catalysis. The codes based on the GAMESS(US) package operational on the ‘RSC Tornado’ computational cluster are applied to determine that the energy of the reaction intermediate upon hydrolysis of acetylcholine is lower than that of the enzyme–substrate complex. This conclusion is consistent with the experiments and it is free from the empirical force field contributions. |
Author | Polyakov, Igor V. Grigorenko, Bella L. Moskovsky, Alexander A. Pentkovski, Vladimir M. Nemukhin, Alexander V. |
Author_xml | – sequence: 1 givenname: Igor V. surname: Polyakov fullname: Polyakov, Igor V. organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation – sequence: 2 givenname: Bella L. surname: Grigorenko fullname: Grigorenko, Bella L. email: bell_grig@yahoo.com organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation – sequence: 3 givenname: Alexander A. surname: Moskovsky fullname: Moskovsky, Alexander A. organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation – sequence: 4 givenname: Vladimir M. surname: Pentkovski fullname: Pentkovski, Vladimir M. organization: Moscow Institute of Physics and Technology (State University), Institutskii per. 9, 141700 Dolgoprudny, Moscow region, Russian Federation – sequence: 5 givenname: Alexander V. surname: Nemukhin fullname: Nemukhin, Alexander V. organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation |
BookMark | eNqFkMtOAzEMRSNUJMrjD1jkB2aIM492WCChipdUiQ2sIzdxaKrpZEhS0PD1DJQVC1hZtnyu7HPMJp3viLFzEDkIqC82ue5bSimXAmQOkAsJB2wK81mRlWU5n7CpEKLJZA3lETuOcTO2UFQwZf7Jv2Mwkb_usEu7bbbCSIZvvaHWdS_cW07dx7DF5DQPhDo53_Ee0_odh3jJr_u-dRq_p8nztCaOmtLQrv3IU0wUxkA-bmA7RBdP2aHFNtLZTz1hz7c3T4v7bPl497C4Xma6EHXKqDG1FsUMcE62NLJoRG1XtpphNUdpCmtRVILQyNpUDdqyMivQjcQGaivLVXHCLve5OvgYA1mlXfo-MwV0rQKhvtSpjdqrU1_qFIAa1Y1w-Qvug9tiGP7DrvYYjY-9OQoqakedJuMC6aSMd38HfAJQIpEc |
CitedBy_id | crossref_primary_10_1063_1_4800990 crossref_primary_10_1371_journal_pone_0060602 crossref_primary_10_1021_acs_jpca_6b12830 crossref_primary_10_1039_C6CP02623K crossref_primary_10_1021_bi400709v crossref_primary_10_1021_jp508423s crossref_primary_10_3103_S0027131417030051 |
Cites_doi | 10.1016/0022-2836(76)90311-9 10.1021/cr00081a005 10.1063/1.3156313 10.1073/pnas.0804828105 10.1002/jcc.10309 10.1021/jp026464w 10.1021/jp002747h 10.1016/S0009-2614(99)00874-X 10.1007/s00894-008-0287-y 10.1039/c2cp23784a 10.1021/ja104496q 10.1007/128_2006_084 10.1002/jcc.20018 10.1021/jp104258d 10.1016/S1574-1400(07)03010-1 10.1021/jp101498m 10.1007/s00214-006-0143-z 10.2174/1389557013406828 10.1007/s11172-011-0338-x 10.1021/cr200093j 10.1021/ja020243m 10.1002/jcc.540141112 10.1021/jp903843s 10.1063/1.3517110 10.1021/jp101724p |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cplett.2012.11.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-4448 |
EndPage | 255 |
ExternalDocumentID | 10_1016_j_cplett_2012_11_021 S0009261412013279 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSM SSQ T5K TN5 UPT WH7 YK3 ZMT ~02 ~G- 6TJ AAEDT AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HMU HMV HVGLF HZ~ H~9 NDZJH OHT R2- SCB SCH SEW SPG SSH SSZ UQL VH1 WUQ ZCG |
ID | FETCH-LOGICAL-c306t-e9d6c0371a8ef4d23906fbf57a58a2d3ffa050ead26d59af45db1c92a916f24b3 |
IEDL.DBID | .~1 |
ISSN | 0009-2614 |
IngestDate | Tue Jul 01 04:11:01 EDT 2025 Thu Apr 24 22:57:01 EDT 2025 Fri Feb 23 02:27:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-e9d6c0371a8ef4d23906fbf57a58a2d3ffa050ead26d59af45db1c92a916f24b3 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cplett_2012_11_021 crossref_primary_10_1016_j_cplett_2012_11_021 elsevier_sciencedirect_doi_10_1016_j_cplett_2012_11_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-29 |
PublicationDateYYYYMMDD | 2013-01-29 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-29 day: 29 |
PublicationDecade | 2010 |
PublicationTitle | Chemical physics letters |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Quinn (b0050) 1987; 87 Steinmann, Fedorov, Jensen (b0140) 2010; 114 Fedorov, Olson, Kitaura, Gordon, Koseki (b0035) 2004; 25 Nemukhin, Grigorenko, Topol, Burt (b0115) 2003; 24 Schmidt (b0100) 1993; 14 Lushchekina, Kaliman, Grigorenko, Nemukhin, Varfolomeev (b0085) 2011; 60 Zhang, Kua, McCammon (b0070) 2002; 124 Fedorov, Slipchenko, Kitaura (b0040) 2010; 114 Tormos, Wiley, Wang, Fournier, Masson, Nachon, Quinn (b0090) 2010; 132 Gordon, Slipchenko, Li, Jensen (b0120) 2007; 3 Warshel, Levitt (b0005) 1976; 103 Senn, Thiel (b0015) 2007; 268 Zhou, Wang, Zhang (b0075) 2010; 114 Nagata, Fedorov, Sawada, Kitaura, Gordon (b0135) 2011; 134 Gordon, Fedorov, Pruitt, Slipchenko (b0125) 2012; 112 Kitaura, Ikeo, Asada, Nakano, Uebayasi (b0025) 1999; 313 Grigorenko, Nemukhin, Topol, Burt (b0110) 2002; 106 Lin, Truhlar (b0010) 2007; 117 Colletier, Bourgeois, Sanson, Fournier, Sussman, Silman, Weik (b0065) 2008; 105 Fedorov, Kitaura (b0145) 2006 Nagata, Fedorov, Kitaura, Gordon (b0130) 2009; 131 Fedorov, Nagata, Kitaura (b0045) 2012; 14 Nemukhin, Lushchekina, Bochenkova, Golubeva, Varfolomeev (b0080) 2008; 14 Ranaghana, Mulholland (b0020) 2010; 29 Gordon, Freitag, Bandyopadhyay, Jensen, Kairys, Stevens (b0095) 2001; 105 Gordon, Schmidt (b0105) 2005 Kwasnieski, Verdier, Malacria, Derat (b0055) 2009; 113 Barril, Orozco, Luque (b0060) 2001; 1 Schmidt (10.1016/j.cplett.2012.11.021_b0100) 1993; 14 Gordon (10.1016/j.cplett.2012.11.021_b0120) 2007; 3 Nagata (10.1016/j.cplett.2012.11.021_b0135) 2011; 134 Steinmann (10.1016/j.cplett.2012.11.021_b0140) 2010; 114 Kitaura (10.1016/j.cplett.2012.11.021_b0025) 1999; 313 Colletier (10.1016/j.cplett.2012.11.021_b0065) 2008; 105 Fedorov (10.1016/j.cplett.2012.11.021_b0045) 2012; 14 Nemukhin (10.1016/j.cplett.2012.11.021_b0115) 2003; 24 Warshel (10.1016/j.cplett.2012.11.021_b0005) 1976; 103 Gordon (10.1016/j.cplett.2012.11.021_b0125) 2012; 112 Zhang (10.1016/j.cplett.2012.11.021_b0070) 2002; 124 Ranaghana (10.1016/j.cplett.2012.11.021_b0020) 2010; 29 Quinn (10.1016/j.cplett.2012.11.021_b0050) 1987; 87 Tormos (10.1016/j.cplett.2012.11.021_b0090) 2010; 132 Gordon (10.1016/j.cplett.2012.11.021_b0095) 2001; 105 Kwasnieski (10.1016/j.cplett.2012.11.021_b0055) 2009; 113 Barril (10.1016/j.cplett.2012.11.021_b0060) 2001; 1 Lushchekina (10.1016/j.cplett.2012.11.021_b0085) 2011; 60 Gordon (10.1016/j.cplett.2012.11.021_b0105) 2005 Lin (10.1016/j.cplett.2012.11.021_b0010) 2007; 117 Fedorov (10.1016/j.cplett.2012.11.021_b0040) 2010; 114 Fedorov (10.1016/j.cplett.2012.11.021_b0035) 2004; 25 Nemukhin (10.1016/j.cplett.2012.11.021_b0080) 2008; 14 Fedorov (10.1016/j.cplett.2012.11.021_b0145) 2006 Nagata (10.1016/j.cplett.2012.11.021_b0130) 2009; 131 Zhou (10.1016/j.cplett.2012.11.021_b0075) 2010; 114 Senn (10.1016/j.cplett.2012.11.021_b0015) 2007; 268 Grigorenko (10.1016/j.cplett.2012.11.021_b0110) 2002; 106 |
References_xml | – volume: 113 start-page: 10001 year: 2009 ident: b0055 publication-title: J. Phys. Chem. B – volume: 24 start-page: 1410 year: 2003 ident: b0115 publication-title: J. Comput. Chem. – volume: 117 start-page: 185 year: 2007 ident: b0010 publication-title: Theor. Chem. Acc. – volume: 112 start-page: 632 year: 2012 ident: b0125 publication-title: Chem. Rev. – volume: 132 start-page: 17751 year: 2010 ident: b0090 publication-title: J. Am. Chem. Soc. – start-page: 3 year: 2006 ident: b0145 publication-title: Modern methods for theoretical physical chemistry of biopolymers – volume: 14 start-page: 1347 year: 1993 ident: b0100 publication-title: J. Comput. Chem. – volume: 268 start-page: 173 year: 2007 ident: b0015 publication-title: Top. Curr. Chem. – volume: 3 start-page: 177 year: 2007 ident: b0120 publication-title: Ann. Rep. Comp. Chem. – volume: 134 start-page: 034110 year: 2011 ident: b0135 publication-title: J. Chem. Phys. – volume: 29 start-page: 65 year: 2010 ident: b0020 publication-title: Rev. Phys. Chem. – volume: 60 start-page: 2196 year: 2011 ident: b0085 publication-title: Russ. Chem. Bull. – volume: 1 start-page: 255 year: 2001 ident: b0060 publication-title: Mini Rev. Med. Chem. – volume: 103 start-page: 227 year: 1976 ident: b0005 publication-title: J. Mol. Biol. – volume: 114 start-page: 8742 year: 2010 ident: b0040 publication-title: J. Phys. Chem. A – volume: 14 start-page: 409 year: 2008 ident: b0080 publication-title: J. Mol. Model. – volume: 105 start-page: 11742 year: 2008 ident: b0065 publication-title: PNAS – volume: 114 start-page: 8817 year: 2010 ident: b0075 publication-title: J. Phys. Chem. B – volume: 105 start-page: 293 year: 2001 ident: b0095 publication-title: J. Phys. Chem. A – volume: 124 start-page: 10572 year: 2002 ident: b0070 publication-title: J. Am. Chem. Soc. – volume: 313 start-page: 701 year: 1999 ident: b0025 publication-title: Chem. Phys. Lett. – volume: 87 start-page: 955 year: 1987 ident: b0050 publication-title: Chem. Rev. – volume: 25 start-page: 872 year: 2004 ident: b0035 publication-title: J. Comput. Chem. – volume: 131 start-page: 024101 year: 2009 ident: b0130 publication-title: J. Chem. Phys. – volume: 106 start-page: 10663 year: 2002 ident: b0110 publication-title: J. Phys. Chem. A – volume: 114 start-page: 8705 year: 2010 ident: b0140 publication-title: J. Phys. Chem. A – volume: 14 start-page: 7562 year: 2012 ident: b0045 publication-title: Phys. Chem. Chem. Phys. – year: 2005 ident: b0105 article-title: Theory and Applications of Computational Chemistry, the first forty years – volume: 103 start-page: 227 year: 1976 ident: 10.1016/j.cplett.2012.11.021_b0005 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(76)90311-9 – volume: 87 start-page: 955 year: 1987 ident: 10.1016/j.cplett.2012.11.021_b0050 publication-title: Chem. Rev. doi: 10.1021/cr00081a005 – volume: 131 start-page: 024101 year: 2009 ident: 10.1016/j.cplett.2012.11.021_b0130 publication-title: J. Chem. Phys. doi: 10.1063/1.3156313 – volume: 105 start-page: 11742 year: 2008 ident: 10.1016/j.cplett.2012.11.021_b0065 publication-title: PNAS doi: 10.1073/pnas.0804828105 – year: 2005 ident: 10.1016/j.cplett.2012.11.021_b0105 – volume: 24 start-page: 1410 year: 2003 ident: 10.1016/j.cplett.2012.11.021_b0115 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10309 – volume: 29 start-page: 65 year: 2010 ident: 10.1016/j.cplett.2012.11.021_b0020 publication-title: Rev. Phys. Chem. – volume: 106 start-page: 10663 year: 2002 ident: 10.1016/j.cplett.2012.11.021_b0110 publication-title: J. Phys. Chem. A doi: 10.1021/jp026464w – volume: 105 start-page: 293 year: 2001 ident: 10.1016/j.cplett.2012.11.021_b0095 publication-title: J. Phys. Chem. A doi: 10.1021/jp002747h – volume: 313 start-page: 701 year: 1999 ident: 10.1016/j.cplett.2012.11.021_b0025 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)00874-X – volume: 14 start-page: 409 year: 2008 ident: 10.1016/j.cplett.2012.11.021_b0080 publication-title: J. Mol. Model. doi: 10.1007/s00894-008-0287-y – volume: 14 start-page: 7562 year: 2012 ident: 10.1016/j.cplett.2012.11.021_b0045 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp23784a – volume: 132 start-page: 17751 year: 2010 ident: 10.1016/j.cplett.2012.11.021_b0090 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104496q – volume: 268 start-page: 173 year: 2007 ident: 10.1016/j.cplett.2012.11.021_b0015 publication-title: Top. Curr. Chem. doi: 10.1007/128_2006_084 – volume: 25 start-page: 872 year: 2004 ident: 10.1016/j.cplett.2012.11.021_b0035 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20018 – volume: 114 start-page: 8817 year: 2010 ident: 10.1016/j.cplett.2012.11.021_b0075 publication-title: J. Phys. Chem. B doi: 10.1021/jp104258d – start-page: 3 year: 2006 ident: 10.1016/j.cplett.2012.11.021_b0145 – volume: 3 start-page: 177 year: 2007 ident: 10.1016/j.cplett.2012.11.021_b0120 publication-title: Ann. Rep. Comp. Chem. doi: 10.1016/S1574-1400(07)03010-1 – volume: 114 start-page: 8705 year: 2010 ident: 10.1016/j.cplett.2012.11.021_b0140 publication-title: J. Phys. Chem. A doi: 10.1021/jp101498m – volume: 117 start-page: 185 year: 2007 ident: 10.1016/j.cplett.2012.11.021_b0010 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-006-0143-z – volume: 1 start-page: 255 year: 2001 ident: 10.1016/j.cplett.2012.11.021_b0060 publication-title: Mini Rev. Med. Chem. doi: 10.2174/1389557013406828 – volume: 60 start-page: 2196 year: 2011 ident: 10.1016/j.cplett.2012.11.021_b0085 publication-title: Russ. Chem. Bull. doi: 10.1007/s11172-011-0338-x – volume: 112 start-page: 632 year: 2012 ident: 10.1016/j.cplett.2012.11.021_b0125 publication-title: Chem. Rev. doi: 10.1021/cr200093j – volume: 124 start-page: 10572 year: 2002 ident: 10.1016/j.cplett.2012.11.021_b0070 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja020243m – volume: 14 start-page: 1347 year: 1993 ident: 10.1016/j.cplett.2012.11.021_b0100 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540141112 – volume: 113 start-page: 10001 year: 2009 ident: 10.1016/j.cplett.2012.11.021_b0055 publication-title: J. Phys. Chem. B doi: 10.1021/jp903843s – volume: 134 start-page: 034110 year: 2011 ident: 10.1016/j.cplett.2012.11.021_b0135 publication-title: J. Chem. Phys. doi: 10.1063/1.3517110 – volume: 114 start-page: 8742 year: 2010 ident: 10.1016/j.cplett.2012.11.021_b0040 publication-title: J. Phys. Chem. A doi: 10.1021/jp101724p |
SSID | ssj0001351 |
Score | 2.104078 |
Snippet | [Display omitted]
► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 251 |
Title | Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis |
URI | https://dx.doi.org/10.1016/j.cplett.2012.11.021 |
Volume | 556 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3yTg9doO01a421ZlFXRk4K3kuaBiu6u2kXWg7_dmWzrA0TBSw8hU8qXITNpZr6PsV3lwBowuZAO8JG4RFSqUgJAS52bwphAjcLnF3nvSp5eq-sp1m17Yaisstn7J3t63K2bkf0Gzf3h7S31-CYa83-ZAt0XFNTEJ2VBXr739lnmQQp0rZoazW7b52KNlx0iOFRRmcIecXlC-nN4-hJyjhfYfJMr8s7kcxbZlO8vsdluK9G2zAaXsej1mT-OEKDRg6CY5HhUt8GQxAeB-_7rOLKycswOYw8DJxHiFzN-PuSdz9trXg845oLcWF-P729IyidyKOALefzFQ8wlK-zq-Oiy2xONgoKweBSohdcut0TKZw58wNXIdJKHKqjCqAMDLgvBJCpBZ4LcKW2CVK5KrQaDSWMAWWWrbLo_6Ps1xjM8CPqsMIWvtPTSVtpbwAEI4HSWm3WWtcCVtqEXJ5WL-7KtI7srJ3CXBDeePEqEe52JD6vhhF7jj_lFuyblNzcpMQL8arnxb8tNNgdRAyMVoLfYdP008tuYidTVTnS1HTbTOTnrXbwDvkPhww |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKHOCCWEVZfeBqSCZ2UnNDFags5VQkbpHjRYCgLTQVKge-nbGbsEgIJC45WJ4oel5mHM-8R8i-MKAVqJRxA_iITMQKUQgGILlMVaaU84XC3au0c83Pb8RNg7TrWhifVlnt_dM9PezWVcthhebh8O7O1_hGEuN_HoO_L8jkDJnjuHy9jMHB22eeh5egq-XUfPe6fi4keekhouNTKmM48GSeEP_sn774nNMlslgFi_R4-j3LpGH7K2S-XWu0rZJBL2S9jujTGBEaPzLvlAwN8jbok-jAUdt_nQRaVorhYShioF6F-EVNRkf0-PP6mpYDisEgVdqWk4dbr-UTSBTwhTT84_HUJWvk-vSk1-6wSkKBaTwLlMxKk2rPyqda1uFwJDJKXeFEpkRLgUmcU5GIcDZBaoRUjgtTxFqCwqjRAS-SdTLbH_TtBqEJngRtkqnMFpJbrgtpNWADODAySVWTJDVwua74xb3MxUNeJ5Ld51O4cw83Hj1yhLtJ2IfVcMqv8Uf_rB6T_Ns8ydEF_Gq5-W_LPTLf6XUv88uzq4stsgBBECNmILfJbPk8tjsYlpTFbph27_uA41E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+quantum-based+modeling+of+enzymatic+reaction+pathways%3A+Application+to+the+acetylholinesterase+catalysis&rft.jtitle=Chemical+physics+letters&rft.au=Polyakov%2C+Igor+V.&rft.au=Grigorenko%2C+Bella+L.&rft.au=Moskovsky%2C+Alexander+A.&rft.au=Pentkovski%2C+Vladimir+M.&rft.date=2013-01-29&rft.pub=Elsevier+B.V&rft.issn=0009-2614&rft.eissn=1873-4448&rft.volume=556&rft.spage=251&rft.epage=255&rft_id=info:doi/10.1016%2Fj.cplett.2012.11.021&rft.externalDocID=S0009261412013279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2614&client=summon |