Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis

[Display omitted] ► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate consistent with experiments was confirmed. ► QM/MM and fragment molecular orbital approaches were applied. ► GAMESS(US) code operational on the ‘R...

Full description

Saved in:
Bibliographic Details
Published inChemical physics letters Vol. 556; pp. 251 - 255
Main Authors Polyakov, Igor V., Grigorenko, Bella L., Moskovsky, Alexander A., Pentkovski, Vladimir M., Nemukhin, Alexander V.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 29.01.2013
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate consistent with experiments was confirmed. ► QM/MM and fragment molecular orbital approaches were applied. ► GAMESS(US) code operational on the ‘RSC Tornado’ computational cluster was used. We apply computational methods aiming to approach a full quantum mechanical treatment of chemical reactions in proteins. A combination of the quantum mechanical – molecular mechanical methodology for geometry optimization and the fragment molecular orbital approach for energy calculations is examined for an example of acetylcholinesterase catalysis. The codes based on the GAMESS(US) package operational on the ‘RSC Tornado’ computational cluster are applied to determine that the energy of the reaction intermediate upon hydrolysis of acetylcholine is lower than that of the enzyme–substrate complex. This conclusion is consistent with the experiments and it is free from the empirical force field contributions.
AbstractList [Display omitted] ► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate consistent with experiments was confirmed. ► QM/MM and fragment molecular orbital approaches were applied. ► GAMESS(US) code operational on the ‘RSC Tornado’ computational cluster was used. We apply computational methods aiming to approach a full quantum mechanical treatment of chemical reactions in proteins. A combination of the quantum mechanical – molecular mechanical methodology for geometry optimization and the fragment molecular orbital approach for energy calculations is examined for an example of acetylcholinesterase catalysis. The codes based on the GAMESS(US) package operational on the ‘RSC Tornado’ computational cluster are applied to determine that the energy of the reaction intermediate upon hydrolysis of acetylcholine is lower than that of the enzyme–substrate complex. This conclusion is consistent with the experiments and it is free from the empirical force field contributions.
Author Polyakov, Igor V.
Grigorenko, Bella L.
Moskovsky, Alexander A.
Pentkovski, Vladimir M.
Nemukhin, Alexander V.
Author_xml – sequence: 1
  givenname: Igor V.
  surname: Polyakov
  fullname: Polyakov, Igor V.
  organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation
– sequence: 2
  givenname: Bella L.
  surname: Grigorenko
  fullname: Grigorenko, Bella L.
  email: bell_grig@yahoo.com
  organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation
– sequence: 3
  givenname: Alexander A.
  surname: Moskovsky
  fullname: Moskovsky, Alexander A.
  organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation
– sequence: 4
  givenname: Vladimir M.
  surname: Pentkovski
  fullname: Pentkovski, Vladimir M.
  organization: Moscow Institute of Physics and Technology (State University), Institutskii per. 9, 141700 Dolgoprudny, Moscow region, Russian Federation
– sequence: 5
  givenname: Alexander V.
  surname: Nemukhin
  fullname: Nemukhin, Alexander V.
  organization: M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russian Federation
BookMark eNqFkMtOAzEMRSNUJMrjD1jkB2aIM492WCChipdUiQ2sIzdxaKrpZEhS0PD1DJQVC1hZtnyu7HPMJp3viLFzEDkIqC82ue5bSimXAmQOkAsJB2wK81mRlWU5n7CpEKLJZA3lETuOcTO2UFQwZf7Jv2Mwkb_usEu7bbbCSIZvvaHWdS_cW07dx7DF5DQPhDo53_Ee0_odh3jJr_u-dRq_p8nztCaOmtLQrv3IU0wUxkA-bmA7RBdP2aHFNtLZTz1hz7c3T4v7bPl497C4Xma6EHXKqDG1FsUMcE62NLJoRG1XtpphNUdpCmtRVILQyNpUDdqyMivQjcQGaivLVXHCLve5OvgYA1mlXfo-MwV0rQKhvtSpjdqrU1_qFIAa1Y1w-Qvug9tiGP7DrvYYjY-9OQoqakedJuMC6aSMd38HfAJQIpEc
CitedBy_id crossref_primary_10_1063_1_4800990
crossref_primary_10_1371_journal_pone_0060602
crossref_primary_10_1021_acs_jpca_6b12830
crossref_primary_10_1039_C6CP02623K
crossref_primary_10_1021_bi400709v
crossref_primary_10_1021_jp508423s
crossref_primary_10_3103_S0027131417030051
Cites_doi 10.1016/0022-2836(76)90311-9
10.1021/cr00081a005
10.1063/1.3156313
10.1073/pnas.0804828105
10.1002/jcc.10309
10.1021/jp026464w
10.1021/jp002747h
10.1016/S0009-2614(99)00874-X
10.1007/s00894-008-0287-y
10.1039/c2cp23784a
10.1021/ja104496q
10.1007/128_2006_084
10.1002/jcc.20018
10.1021/jp104258d
10.1016/S1574-1400(07)03010-1
10.1021/jp101498m
10.1007/s00214-006-0143-z
10.2174/1389557013406828
10.1007/s11172-011-0338-x
10.1021/cr200093j
10.1021/ja020243m
10.1002/jcc.540141112
10.1021/jp903843s
10.1063/1.3517110
10.1021/jp101724p
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cplett.2012.11.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4448
EndPage 255
ExternalDocumentID 10_1016_j_cplett_2012_11_021
S0009261412013279
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSM
SSQ
T5K
TN5
UPT
WH7
YK3
ZMT
~02
~G-
6TJ
AAEDT
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABJNI
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HMU
HMV
HVGLF
HZ~
H~9
NDZJH
OHT
R2-
SCB
SCH
SEW
SPG
SSH
SSZ
UQL
VH1
WUQ
ZCG
ID FETCH-LOGICAL-c306t-e9d6c0371a8ef4d23906fbf57a58a2d3ffa050ead26d59af45db1c92a916f24b3
IEDL.DBID .~1
ISSN 0009-2614
IngestDate Tue Jul 01 04:11:01 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Fri Feb 23 02:27:25 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e9d6c0371a8ef4d23906fbf57a58a2d3ffa050ead26d59af45db1c92a916f24b3
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_cplett_2012_11_021
crossref_primary_10_1016_j_cplett_2012_11_021
elsevier_sciencedirect_doi_10_1016_j_cplett_2012_11_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-29
PublicationDateYYYYMMDD 2013-01-29
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-29
  day: 29
PublicationDecade 2010
PublicationTitle Chemical physics letters
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Quinn (b0050) 1987; 87
Steinmann, Fedorov, Jensen (b0140) 2010; 114
Fedorov, Olson, Kitaura, Gordon, Koseki (b0035) 2004; 25
Nemukhin, Grigorenko, Topol, Burt (b0115) 2003; 24
Schmidt (b0100) 1993; 14
Lushchekina, Kaliman, Grigorenko, Nemukhin, Varfolomeev (b0085) 2011; 60
Zhang, Kua, McCammon (b0070) 2002; 124
Fedorov, Slipchenko, Kitaura (b0040) 2010; 114
Tormos, Wiley, Wang, Fournier, Masson, Nachon, Quinn (b0090) 2010; 132
Gordon, Slipchenko, Li, Jensen (b0120) 2007; 3
Warshel, Levitt (b0005) 1976; 103
Senn, Thiel (b0015) 2007; 268
Zhou, Wang, Zhang (b0075) 2010; 114
Nagata, Fedorov, Sawada, Kitaura, Gordon (b0135) 2011; 134
Gordon, Fedorov, Pruitt, Slipchenko (b0125) 2012; 112
Kitaura, Ikeo, Asada, Nakano, Uebayasi (b0025) 1999; 313
Grigorenko, Nemukhin, Topol, Burt (b0110) 2002; 106
Lin, Truhlar (b0010) 2007; 117
Colletier, Bourgeois, Sanson, Fournier, Sussman, Silman, Weik (b0065) 2008; 105
Fedorov, Kitaura (b0145) 2006
Nagata, Fedorov, Kitaura, Gordon (b0130) 2009; 131
Fedorov, Nagata, Kitaura (b0045) 2012; 14
Nemukhin, Lushchekina, Bochenkova, Golubeva, Varfolomeev (b0080) 2008; 14
Ranaghana, Mulholland (b0020) 2010; 29
Gordon, Freitag, Bandyopadhyay, Jensen, Kairys, Stevens (b0095) 2001; 105
Gordon, Schmidt (b0105) 2005
Kwasnieski, Verdier, Malacria, Derat (b0055) 2009; 113
Barril, Orozco, Luque (b0060) 2001; 1
Schmidt (10.1016/j.cplett.2012.11.021_b0100) 1993; 14
Gordon (10.1016/j.cplett.2012.11.021_b0120) 2007; 3
Nagata (10.1016/j.cplett.2012.11.021_b0135) 2011; 134
Steinmann (10.1016/j.cplett.2012.11.021_b0140) 2010; 114
Kitaura (10.1016/j.cplett.2012.11.021_b0025) 1999; 313
Colletier (10.1016/j.cplett.2012.11.021_b0065) 2008; 105
Fedorov (10.1016/j.cplett.2012.11.021_b0045) 2012; 14
Nemukhin (10.1016/j.cplett.2012.11.021_b0115) 2003; 24
Warshel (10.1016/j.cplett.2012.11.021_b0005) 1976; 103
Gordon (10.1016/j.cplett.2012.11.021_b0125) 2012; 112
Zhang (10.1016/j.cplett.2012.11.021_b0070) 2002; 124
Ranaghana (10.1016/j.cplett.2012.11.021_b0020) 2010; 29
Quinn (10.1016/j.cplett.2012.11.021_b0050) 1987; 87
Tormos (10.1016/j.cplett.2012.11.021_b0090) 2010; 132
Gordon (10.1016/j.cplett.2012.11.021_b0095) 2001; 105
Kwasnieski (10.1016/j.cplett.2012.11.021_b0055) 2009; 113
Barril (10.1016/j.cplett.2012.11.021_b0060) 2001; 1
Lushchekina (10.1016/j.cplett.2012.11.021_b0085) 2011; 60
Gordon (10.1016/j.cplett.2012.11.021_b0105) 2005
Lin (10.1016/j.cplett.2012.11.021_b0010) 2007; 117
Fedorov (10.1016/j.cplett.2012.11.021_b0040) 2010; 114
Fedorov (10.1016/j.cplett.2012.11.021_b0035) 2004; 25
Nemukhin (10.1016/j.cplett.2012.11.021_b0080) 2008; 14
Fedorov (10.1016/j.cplett.2012.11.021_b0145) 2006
Nagata (10.1016/j.cplett.2012.11.021_b0130) 2009; 131
Zhou (10.1016/j.cplett.2012.11.021_b0075) 2010; 114
Senn (10.1016/j.cplett.2012.11.021_b0015) 2007; 268
Grigorenko (10.1016/j.cplett.2012.11.021_b0110) 2002; 106
References_xml – volume: 113
  start-page: 10001
  year: 2009
  ident: b0055
  publication-title: J. Phys. Chem. B
– volume: 24
  start-page: 1410
  year: 2003
  ident: b0115
  publication-title: J. Comput. Chem.
– volume: 117
  start-page: 185
  year: 2007
  ident: b0010
  publication-title: Theor. Chem. Acc.
– volume: 112
  start-page: 632
  year: 2012
  ident: b0125
  publication-title: Chem. Rev.
– volume: 132
  start-page: 17751
  year: 2010
  ident: b0090
  publication-title: J. Am. Chem. Soc.
– start-page: 3
  year: 2006
  ident: b0145
  publication-title: Modern methods for theoretical physical chemistry of biopolymers
– volume: 14
  start-page: 1347
  year: 1993
  ident: b0100
  publication-title: J. Comput. Chem.
– volume: 268
  start-page: 173
  year: 2007
  ident: b0015
  publication-title: Top. Curr. Chem.
– volume: 3
  start-page: 177
  year: 2007
  ident: b0120
  publication-title: Ann. Rep. Comp. Chem.
– volume: 134
  start-page: 034110
  year: 2011
  ident: b0135
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 65
  year: 2010
  ident: b0020
  publication-title: Rev. Phys. Chem.
– volume: 60
  start-page: 2196
  year: 2011
  ident: b0085
  publication-title: Russ. Chem. Bull.
– volume: 1
  start-page: 255
  year: 2001
  ident: b0060
  publication-title: Mini Rev. Med. Chem.
– volume: 103
  start-page: 227
  year: 1976
  ident: b0005
  publication-title: J. Mol. Biol.
– volume: 114
  start-page: 8742
  year: 2010
  ident: b0040
  publication-title: J. Phys. Chem. A
– volume: 14
  start-page: 409
  year: 2008
  ident: b0080
  publication-title: J. Mol. Model.
– volume: 105
  start-page: 11742
  year: 2008
  ident: b0065
  publication-title: PNAS
– volume: 114
  start-page: 8817
  year: 2010
  ident: b0075
  publication-title: J. Phys. Chem. B
– volume: 105
  start-page: 293
  year: 2001
  ident: b0095
  publication-title: J. Phys. Chem. A
– volume: 124
  start-page: 10572
  year: 2002
  ident: b0070
  publication-title: J. Am. Chem. Soc.
– volume: 313
  start-page: 701
  year: 1999
  ident: b0025
  publication-title: Chem. Phys. Lett.
– volume: 87
  start-page: 955
  year: 1987
  ident: b0050
  publication-title: Chem. Rev.
– volume: 25
  start-page: 872
  year: 2004
  ident: b0035
  publication-title: J. Comput. Chem.
– volume: 131
  start-page: 024101
  year: 2009
  ident: b0130
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 10663
  year: 2002
  ident: b0110
  publication-title: J. Phys. Chem. A
– volume: 114
  start-page: 8705
  year: 2010
  ident: b0140
  publication-title: J. Phys. Chem. A
– volume: 14
  start-page: 7562
  year: 2012
  ident: b0045
  publication-title: Phys. Chem. Chem. Phys.
– year: 2005
  ident: b0105
  article-title: Theory and Applications of Computational Chemistry, the first forty years
– volume: 103
  start-page: 227
  year: 1976
  ident: 10.1016/j.cplett.2012.11.021_b0005
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(76)90311-9
– volume: 87
  start-page: 955
  year: 1987
  ident: 10.1016/j.cplett.2012.11.021_b0050
  publication-title: Chem. Rev.
  doi: 10.1021/cr00081a005
– volume: 131
  start-page: 024101
  year: 2009
  ident: 10.1016/j.cplett.2012.11.021_b0130
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3156313
– volume: 105
  start-page: 11742
  year: 2008
  ident: 10.1016/j.cplett.2012.11.021_b0065
  publication-title: PNAS
  doi: 10.1073/pnas.0804828105
– year: 2005
  ident: 10.1016/j.cplett.2012.11.021_b0105
– volume: 24
  start-page: 1410
  year: 2003
  ident: 10.1016/j.cplett.2012.11.021_b0115
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10309
– volume: 29
  start-page: 65
  year: 2010
  ident: 10.1016/j.cplett.2012.11.021_b0020
  publication-title: Rev. Phys. Chem.
– volume: 106
  start-page: 10663
  year: 2002
  ident: 10.1016/j.cplett.2012.11.021_b0110
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp026464w
– volume: 105
  start-page: 293
  year: 2001
  ident: 10.1016/j.cplett.2012.11.021_b0095
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp002747h
– volume: 313
  start-page: 701
  year: 1999
  ident: 10.1016/j.cplett.2012.11.021_b0025
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00874-X
– volume: 14
  start-page: 409
  year: 2008
  ident: 10.1016/j.cplett.2012.11.021_b0080
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-008-0287-y
– volume: 14
  start-page: 7562
  year: 2012
  ident: 10.1016/j.cplett.2012.11.021_b0045
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp23784a
– volume: 132
  start-page: 17751
  year: 2010
  ident: 10.1016/j.cplett.2012.11.021_b0090
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104496q
– volume: 268
  start-page: 173
  year: 2007
  ident: 10.1016/j.cplett.2012.11.021_b0015
  publication-title: Top. Curr. Chem.
  doi: 10.1007/128_2006_084
– volume: 25
  start-page: 872
  year: 2004
  ident: 10.1016/j.cplett.2012.11.021_b0035
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20018
– volume: 114
  start-page: 8817
  year: 2010
  ident: 10.1016/j.cplett.2012.11.021_b0075
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp104258d
– start-page: 3
  year: 2006
  ident: 10.1016/j.cplett.2012.11.021_b0145
– volume: 3
  start-page: 177
  year: 2007
  ident: 10.1016/j.cplett.2012.11.021_b0120
  publication-title: Ann. Rep. Comp. Chem.
  doi: 10.1016/S1574-1400(07)03010-1
– volume: 114
  start-page: 8705
  year: 2010
  ident: 10.1016/j.cplett.2012.11.021_b0140
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp101498m
– volume: 117
  start-page: 185
  year: 2007
  ident: 10.1016/j.cplett.2012.11.021_b0010
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-006-0143-z
– volume: 1
  start-page: 255
  year: 2001
  ident: 10.1016/j.cplett.2012.11.021_b0060
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/1389557013406828
– volume: 60
  start-page: 2196
  year: 2011
  ident: 10.1016/j.cplett.2012.11.021_b0085
  publication-title: Russ. Chem. Bull.
  doi: 10.1007/s11172-011-0338-x
– volume: 112
  start-page: 632
  year: 2012
  ident: 10.1016/j.cplett.2012.11.021_b0125
  publication-title: Chem. Rev.
  doi: 10.1021/cr200093j
– volume: 124
  start-page: 10572
  year: 2002
  ident: 10.1016/j.cplett.2012.11.021_b0070
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020243m
– volume: 14
  start-page: 1347
  year: 1993
  ident: 10.1016/j.cplett.2012.11.021_b0100
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540141112
– volume: 113
  start-page: 10001
  year: 2009
  ident: 10.1016/j.cplett.2012.11.021_b0055
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp903843s
– volume: 134
  start-page: 034110
  year: 2011
  ident: 10.1016/j.cplett.2012.11.021_b0135
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3517110
– volume: 114
  start-page: 8742
  year: 2010
  ident: 10.1016/j.cplett.2012.11.021_b0040
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp101724p
SSID ssj0001351
Score 2.104078
Snippet [Display omitted] ► Acylation stage of acetylcholine hydrolysis by acetylcholinesterase was considered. ► Stability of the first tetrahedral intermediate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 251
Title Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis
URI https://dx.doi.org/10.1016/j.cplett.2012.11.021
Volume 556
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3yTg9doO01a421ZlFXRk4K3kuaBiu6u2kXWg7_dmWzrA0TBSw8hU8qXITNpZr6PsV3lwBowuZAO8JG4RFSqUgJAS52bwphAjcLnF3nvSp5eq-sp1m17Yaisstn7J3t63K2bkf0Gzf3h7S31-CYa83-ZAt0XFNTEJ2VBXr739lnmQQp0rZoazW7b52KNlx0iOFRRmcIecXlC-nN4-hJyjhfYfJMr8s7kcxbZlO8vsdluK9G2zAaXsej1mT-OEKDRg6CY5HhUt8GQxAeB-_7rOLKycswOYw8DJxHiFzN-PuSdz9trXg845oLcWF-P729IyidyKOALefzFQ8wlK-zq-Oiy2xONgoKweBSohdcut0TKZw58wNXIdJKHKqjCqAMDLgvBJCpBZ4LcKW2CVK5KrQaDSWMAWWWrbLo_6Ps1xjM8CPqsMIWvtPTSVtpbwAEI4HSWm3WWtcCVtqEXJ5WL-7KtI7srJ3CXBDeePEqEe52JD6vhhF7jj_lFuyblNzcpMQL8arnxb8tNNgdRAyMVoLfYdP008tuYidTVTnS1HTbTOTnrXbwDvkPhww
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKHOCCWEVZfeBqSCZ2UnNDFags5VQkbpHjRYCgLTQVKge-nbGbsEgIJC45WJ4oel5mHM-8R8i-MKAVqJRxA_iITMQKUQgGILlMVaaU84XC3au0c83Pb8RNg7TrWhifVlnt_dM9PezWVcthhebh8O7O1_hGEuN_HoO_L8jkDJnjuHy9jMHB22eeh5egq-XUfPe6fi4keekhouNTKmM48GSeEP_sn774nNMlslgFi_R4-j3LpGH7K2S-XWu0rZJBL2S9jujTGBEaPzLvlAwN8jbok-jAUdt_nQRaVorhYShioF6F-EVNRkf0-PP6mpYDisEgVdqWk4dbr-UTSBTwhTT84_HUJWvk-vSk1-6wSkKBaTwLlMxKk2rPyqda1uFwJDJKXeFEpkRLgUmcU5GIcDZBaoRUjgtTxFqCwqjRAS-SdTLbH_TtBqEJngRtkqnMFpJbrgtpNWADODAySVWTJDVwua74xb3MxUNeJ5Ld51O4cw83Hj1yhLtJ2IfVcMqv8Uf_rB6T_Ns8ydEF_Gq5-W_LPTLf6XUv88uzq4stsgBBECNmILfJbPk8tjsYlpTFbph27_uA41E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+quantum-based+modeling+of+enzymatic+reaction+pathways%3A+Application+to+the+acetylholinesterase+catalysis&rft.jtitle=Chemical+physics+letters&rft.au=Polyakov%2C+Igor+V.&rft.au=Grigorenko%2C+Bella+L.&rft.au=Moskovsky%2C+Alexander+A.&rft.au=Pentkovski%2C+Vladimir+M.&rft.date=2013-01-29&rft.pub=Elsevier+B.V&rft.issn=0009-2614&rft.eissn=1873-4448&rft.volume=556&rft.spage=251&rft.epage=255&rft_id=info:doi/10.1016%2Fj.cplett.2012.11.021&rft.externalDocID=S0009261412013279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2614&client=summon