Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach
A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to precisely anticipate the remaining useful life (RUL) of lithium-ion batteries (LIBs). Initially, VMD is employed to decompose the LIBs capacity data...
Saved in:
Published in | Energy (Oxford) Vol. 282; p. 128984 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to precisely anticipate the remaining useful life (RUL) of lithium-ion batteries (LIBs). Initially, VMD is employed to decompose the LIBs capacity data in multiple scales to obtain the signal's global degradation tendency and local random fluctuation components. Then, the global degradation trend and each fluctuation component are modeled using an echo state network (ESN) and a Bayesian optimized long short-term memory (LSTM) network, respectively. The final LIBs RUL prediction results are obtained by integrating the prediction outcomes. On three public LIBs datasets with distinct degradation characteristics, the performance of the proposed model is tested, and alternative prediction algorithms are compared. The results of the experiments show that the proposed model's maximum average absolute percentage error does not exceed 0.43%. The average relative error not more than 0.5%, indicating great accuracy and stability in prediction.
•VMD algorithm parameters using automatic optimization.•The optimized VMD algorithm is used to separate the capacity decay curve.•An integrated depth prediction model is constructed.•Bayesian optimization of hyperparameters for deep learning algorithms. |
---|---|
AbstractList | A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to precisely anticipate the remaining useful life (RUL) of lithium-ion batteries (LIBs). Initially, VMD is employed to decompose the LIBs capacity data in multiple scales to obtain the signal's global degradation tendency and local random fluctuation components. Then, the global degradation trend and each fluctuation component are modeled using an echo state network (ESN) and a Bayesian optimized long short-term memory (LSTM) network, respectively. The final LIBs RUL prediction results are obtained by integrating the prediction outcomes. On three public LIBs datasets with distinct degradation characteristics, the performance of the proposed model is tested, and alternative prediction algorithms are compared. The results of the experiments show that the proposed model's maximum average absolute percentage error does not exceed 0.43%. The average relative error not more than 0.5%, indicating great accuracy and stability in prediction.
•VMD algorithm parameters using automatic optimization.•The optimized VMD algorithm is used to separate the capacity decay curve.•An integrated depth prediction model is constructed.•Bayesian optimization of hyperparameters for deep learning algorithms. |
ArticleNumber | 128984 |
Author | Ma, Hongyan Wang, Shuai He, Wei Zhang, Yingda Li, Shengyan |
Author_xml | – sequence: 1 givenname: Shuai orcidid: 0000-0003-2351-7996 surname: Wang fullname: Wang, Shuai organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China – sequence: 2 givenname: Hongyan orcidid: 0000-0001-8066-9238 surname: Ma fullname: Ma, Hongyan email: mahongyan@bucea.edu.cn organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China – sequence: 3 givenname: Yingda surname: Zhang fullname: Zhang, Yingda organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China – sequence: 4 givenname: Shengyan surname: Li fullname: Li, Shengyan organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China – sequence: 5 givenname: Wei surname: He fullname: He, Wei organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China |
BookMark | eNp9kEtqwzAQhrVIoUnaG3ShC9jVw3bsTaGEvqBQKO1ayNI4UbAlIymBXKMnrhx33c0M8_j_Gb4VWlhnAaE7SnJKaHV_yMGC351zRhjPKaubuligJeEVycqiYNdoFcKBEFLWTbNEP58wSGON3eFjgO7Y4950gEcP2qhonMUDxL3T2HVpEvfmOGRTt5UxgjcQsAmpCJA2LD5Jb-Skkj0enE5Rg3LD6IK5eEmrUwdG3IP0l6PGRth5GZNejqN3Uu1v0FUn-wC3f3mNvp-fvrav2fvHy9v28T1TnFQxg41SNVdNA21Fa0ULpaoCKsl4VzOpdccY15TpFjjf8KYlQErFuOSQwJRQ8TUqZl_lXQgeOjF6M0h_FpSIiaU4iJmlmFiKmWWSPcwySL-dDHgRlAGrEjAPKgrtzP8Gv1fMh6k |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_130602 crossref_primary_10_3390_electronics13132501 crossref_primary_10_4108_ew_4653 crossref_primary_10_3390_e26050358 |
Cites_doi | 10.1016/j.jpowsour.2020.229327 10.1016/j.electacta.2020.137101 10.1016/j.joule.2019.11.018 10.1016/j.energy.2016.09.099 10.1109/TIM.2012.2215142 10.1016/j.microrel.2017.12.036 10.1109/TVT.2020.3000970 10.1002/ese3.460 10.1016/j.energy.2018.10.131 10.1016/j.jpowsour.2020.228358 10.1177/0142331219888370 10.1016/j.energy.2021.121269 10.1016/j.rser.2019.109334 10.1109/TCST.2018.2819965 10.1016/j.measurement.2020.108679 10.1115/1.4052838 10.1109/TII.2020.3008223 10.1016/j.energy.2020.118965 10.1016/j.apenergy.2017.09.106 10.1109/TTE.2017.2776558 10.1002/er.7548 10.1126/science.1091277 10.1016/j.measurement.2019.06.004 10.1109/TIM.2018.2809138 10.1007/s00521-020-05105-0 10.1002/er.4433 10.1109/TVT.2020.3014932 10.1109/TSP.2013.2288675 10.1109/ACCESS.2020.2976595 10.1016/j.measurement.2020.108185 10.1115/1.4046697 10.1016/j.energy.2016.12.004 10.1016/j.jpowsour.2020.228863 10.1016/j.jpowsour.2018.05.040 10.1016/j.compchemeng.2022.107738 10.1038/s41560-019-0356-8 10.1016/j.neucom.2019.11.006 10.1016/j.apenergy.2019.113626 10.1016/j.jpowsour.2015.12.058 10.1016/j.energy.2020.118858 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.energy.2023.128984 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2023_128984 S0360544223023782 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABFNM ABXDB ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- RIG SAC WUQ |
ID | FETCH-LOGICAL-c306t-e7cc83c99eb618c14cc64e6a23f82addf223d12dbe33739b0e05c23a3e0235e63 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Thu Sep 26 18:55:09 EDT 2024 Fri Feb 23 02:37:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Variational modal decomposition Long-short-term memory Remaining useful life Echo state network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-e7cc83c99eb618c14cc64e6a23f82addf223d12dbe33739b0e05c23a3e0235e63 |
ORCID | 0000-0003-2351-7996 0000-0001-8066-9238 |
ParticipantIDs | crossref_primary_10_1016_j_energy_2023_128984 elsevier_sciencedirect_doi_10_1016_j_energy_2023_128984 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 2023-11-00 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Miao, Zhang (bib26) 2018; 81 Ma, Zhang, Cheng (bib9) 2019; 253 Gou, Xu, Feng (bib25) 2020; 69 Shen, Gao (bib6) 2019; 43 Li, Sengupta, Dechent (bib31) 2021; 482 Ren, Dong, Wang (bib32) 2020; 17 Hu, Xu, Lin (bib7) 2020; 4 Zhao, Zhang, Wang (bib8) 2019; 146 Hu, Feng, Liu (bib1) 2019; 114 Hershey, Olsen (bib41) 2007; 4 Li, Xu, Hong (bib2) 2021; 214 Guha, Patra (bib14) 2018; 67 Wang, Ni, Li (bib21) 2019; 7 Landini, O'Donovan (bib5) 2021; 214 Guha, Patra (bib16) 2017; 4 Deng, Shen, Wang (bib30) 2021; 33 Tran, Wildey, McCann, sMF-Bo-2CoGP (bib37) 2020; 20 Severson, Attia, Jin (bib4) 2019; 4 Pan, Dong, Wang (bib19) 2020; 362 Chehade, Hussein (bib23) 2020; 69 Li, Yuan, Wang (bib24) 2020; 467 Lui, Li, Downey (bib15) 2021; 485 Klein, Falkner, Bartels (bib39) 2017 Li, Wang, Lyu (bib13) 2016; 307 Li, He (bib36) 2020; 8 Li, Fan, Rizzoni (bib10) 2016; 116 Lyu, Lai, Ge (bib11) 2017; 120 Sun, Zhong, Han (bib22) 2021; 170 Li, Liu, Wu (bib33) 2020; 166 Hansen, Stokholm-Bjerregaard, Durdevic (bib43) 2022; 160 Sadabadi, Jin, Rizzoni (bib17) 2021; 481 Chang, Fang, Zhang (bib27) 2017; 206 Liu, Wang, Chen (bib3) 2019; 166 Kong, Wang, Ping (bib40) 2022; 46 Bartlett, Marcicki, Onori (bib12) 2015; 24 Olivares, Munoz, Orchard (bib29) 2012; 62 Ma, Chen, Zhou (bib18) 2018; 27 Jaeger, Haas (bib35) 2004 Chen, Shi, Ji (bib28) 2021; 234 Cabrera, Guamán, Zhang (bib44) 2020; 380 Thoppil, Vasu, Rao (bib38) 2022; 22 Wu, Han, Shin (bib20) 2018; 395 Bounoua, Benkara, Kouadri (bib42) 2020; 42 Dragomiretskiy, Zosso (bib34) 2013; 62 Li (10.1016/j.energy.2023.128984_bib31) 2021; 482 Ma (10.1016/j.energy.2023.128984_bib18) 2018; 27 Bartlett (10.1016/j.energy.2023.128984_bib12) 2015; 24 Liu (10.1016/j.energy.2023.128984_bib3) 2019; 166 Cabrera (10.1016/j.energy.2023.128984_bib44) 2020; 380 Gou (10.1016/j.energy.2023.128984_bib25) 2020; 69 Li (10.1016/j.energy.2023.128984_bib10) 2016; 116 Chang (10.1016/j.energy.2023.128984_bib27) 2017; 206 Ma (10.1016/j.energy.2023.128984_bib9) 2019; 253 Li (10.1016/j.energy.2023.128984_bib33) 2020; 166 Landini (10.1016/j.energy.2023.128984_bib5) 2021; 214 Bounoua (10.1016/j.energy.2023.128984_bib42) 2020; 42 Sadabadi (10.1016/j.energy.2023.128984_bib17) 2021; 481 Thoppil (10.1016/j.energy.2023.128984_bib38) 2022; 22 Shen (10.1016/j.energy.2023.128984_bib6) 2019; 43 Zhao (10.1016/j.energy.2023.128984_bib8) 2019; 146 Olivares (10.1016/j.energy.2023.128984_bib29) 2012; 62 Ren (10.1016/j.energy.2023.128984_bib32) 2020; 17 Jaeger (10.1016/j.energy.2023.128984_bib35) 2004 Guha (10.1016/j.energy.2023.128984_bib14) 2018; 67 Zhang (10.1016/j.energy.2023.128984_bib26) 2018; 81 Lui (10.1016/j.energy.2023.128984_bib15) 2021; 485 Hansen (10.1016/j.energy.2023.128984_bib43) 2022; 160 Pan (10.1016/j.energy.2023.128984_bib19) 2020; 362 Sun (10.1016/j.energy.2023.128984_bib22) 2021; 170 Hu (10.1016/j.energy.2023.128984_bib7) 2020; 4 Wu (10.1016/j.energy.2023.128984_bib20) 2018; 395 Deng (10.1016/j.energy.2023.128984_bib30) 2021; 33 Li (10.1016/j.energy.2023.128984_bib36) 2020; 8 Li (10.1016/j.energy.2023.128984_bib2) 2021; 214 Lyu (10.1016/j.energy.2023.128984_bib11) 2017; 120 Guha (10.1016/j.energy.2023.128984_bib16) 2017; 4 Klein (10.1016/j.energy.2023.128984_bib39) 2017 Chehade (10.1016/j.energy.2023.128984_bib23) 2020; 69 Kong (10.1016/j.energy.2023.128984_bib40) 2022; 46 Hershey (10.1016/j.energy.2023.128984_bib41) 2007; 4 Hu (10.1016/j.energy.2023.128984_bib1) 2019; 114 Tran (10.1016/j.energy.2023.128984_bib37) 2020; 20 Wang (10.1016/j.energy.2023.128984_bib21) 2019; 7 Chen (10.1016/j.energy.2023.128984_bib28) 2021; 234 Severson (10.1016/j.energy.2023.128984_bib4) 2019; 4 Li (10.1016/j.energy.2023.128984_bib13) 2016; 307 Li (10.1016/j.energy.2023.128984_bib24) 2020; 467 Dragomiretskiy (10.1016/j.energy.2023.128984_bib34) 2013; 62 |
References_xml | – volume: 481 year: 2021 ident: bib17 article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J] publication-title: J Power Sources contributor: fullname: Rizzoni – volume: 62 start-page: 364 year: 2012 end-page: 376 ident: bib29 article-title: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena[J] publication-title: IEEE Trans Instrum Meas contributor: fullname: Orchard – volume: 467 year: 2020 ident: bib24 article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J] publication-title: J Power Sources contributor: fullname: Wang – volume: 485 year: 2021 ident: bib15 article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction[J] publication-title: J Power Sources contributor: fullname: Downey – volume: 253 year: 2019 ident: bib9 article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J] publication-title: Appl Energy contributor: fullname: Cheng – volume: 67 start-page: 1836 year: 2018 end-page: 1849 ident: bib14 article-title: Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J] publication-title: IEEE Trans Instrum Meas contributor: fullname: Patra – volume: 17 start-page: 3478 year: 2020 end-page: 3487 ident: bib32 article-title: A data-driven auto-cnn-lstm prediction model for lithium-ion battery remaining useful life[J] publication-title: IEEE Trans Ind Inf contributor: fullname: Wang – volume: 33 start-page: 2035 year: 2021 end-page: 2046 ident: bib30 article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery[J] publication-title: Neural Comput Appl contributor: fullname: Wang – volume: 120 start-page: 975 year: 2017 end-page: 984 ident: bib11 article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework[J] publication-title: Energy contributor: fullname: Ge – volume: 20 year: 2020 ident: bib37 article-title: A sequential multi-fidelity constrained Bayesian optimization framework for design applications[J] publication-title: J Comput Inf Sci Eng contributor: fullname: sMF-Bo-2CoGP – volume: 4 start-page: 383 year: 2019 end-page: 391 ident: bib4 article-title: Data-driven prediction of battery cycle life before capacity degradation[J] publication-title: Nat Energy contributor: fullname: Jin – volume: 4 year: 2007 ident: bib41 article-title: Approximating the Kullback leibler divergence between Gaussian mixture models[C]//2007 IEEE international conference on acoustics, speech and signal processing-icassp'07 publication-title: IEEE contributor: fullname: Olsen – volume: 166 year: 2020 ident: bib33 article-title: An optimized VMD method and its applications in bearing fault diagnosis[J] publication-title: Measurement contributor: fullname: Wu – volume: 81 start-page: 288 year: 2018 end-page: 298 ident: bib26 article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J] publication-title: Microelectron Reliab contributor: fullname: Zhang – volume: 206 start-page: 1564 year: 2017 end-page: 1578 ident: bib27 article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery[J] publication-title: Appl Energy contributor: fullname: Zhang – volume: 8 start-page: 41482 year: 2020 end-page: 41501 ident: bib36 article-title: A Bayesian optimization AdaBN-DCNN method with self-optimized structure and hyperparameters for domain adaptation remaining useful life prediction[J] publication-title: IEEE Access contributor: fullname: He – volume: 214 year: 2021 ident: bib5 article-title: Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions[J] publication-title: Energy contributor: fullname: O'Donovan – volume: 46 start-page: 6081 year: 2022 end-page: 6098 ident: bib40 article-title: State‐of‐health estimation and remaining useful life for lithium‐ion battery based on deep learning with Bayesian hyperparameter optimization[J] publication-title: Int J Energy Res contributor: fullname: Ping – volume: 24 start-page: 384 year: 2015 end-page: 399 ident: bib12 article-title: Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery[J] publication-title: IEEE Trans Control Syst Technol contributor: fullname: Onori – year: 2004 ident: bib35 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J] publication-title: Science contributor: fullname: Haas – volume: 307 start-page: 220 year: 2016 end-page: 230 ident: bib13 article-title: New method for parameter estimation of an electrochemical-thermal coupling model for LiCoO2 battery[J] publication-title: J Power Sources contributor: fullname: Lyu – volume: 170 year: 2021 ident: bib22 article-title: A hybrid prognostic strategy with unscented particle filter and optimized multiple kernel relevance vector machine for lithium-ion battery[J] publication-title: Measurement contributor: fullname: Han – volume: 42 start-page: 1225 year: 2020 end-page: 1238 ident: bib42 article-title: Online monitoring scheme using principal component analysis through Kullback-Leibler divergence analysis technique for fault detection[J] publication-title: Trans Inst Meas Control contributor: fullname: Kouadri – volume: 362 year: 2020 ident: bib19 article-title: Aging mechanism diagnosis of lithium ion battery by open circuit voltage analysis[J] publication-title: Electrochim Acta contributor: fullname: Wang – volume: 69 start-page: 10854 year: 2020 end-page: 10867 ident: bib25 article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J] publication-title: IEEE Trans Veh Technol contributor: fullname: Feng – volume: 69 start-page: 9542 year: 2020 end-page: 9552 ident: bib23 article-title: A collaborative Gaussian process regression model for transfer learning of capacity trends between li-ion battery cells[J] publication-title: IEEE Trans Veh Technol contributor: fullname: Hussein – volume: 116 start-page: 154 year: 2016 end-page: 169 ident: bib10 article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization[J] publication-title: Energy contributor: fullname: Rizzoni – volume: 62 start-page: 531 year: 2013 end-page: 544 ident: bib34 article-title: Variational mode decomposition[J] publication-title: IEEE Trans Signal Process contributor: fullname: Zosso – volume: 22 year: 2022 ident: bib38 article-title: Bayesian optimization LSTM/bi-LSTM network with self-optimized structure and hyperparameters for remaining useful life estimation of lathe spindle unit[J] publication-title: J Comput Inf Sci Eng contributor: fullname: Rao – volume: 234 year: 2021 ident: bib28 article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J] publication-title: Energy contributor: fullname: Ji – volume: 43 start-page: 5042 year: 2019 end-page: 5075 ident: bib6 article-title: A review on battery management system from the modeling efforts to its multiapplication and integration[J] publication-title: Int J Energy Res contributor: fullname: Gao – volume: 4 start-page: 135 year: 2017 end-page: 146 ident: bib16 article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J] publication-title: IEEE Transactions on Transportation Electrification contributor: fullname: Patra – volume: 146 start-page: 279 year: 2019 end-page: 288 ident: bib8 article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method publication-title: J]. Measurement contributor: fullname: Wang – volume: 27 start-page: 1788 year: 2018 end-page: 1795 ident: bib18 article-title: Remaining useful life prediction of lithium-ion battery based on Gauss–Hermite particle filter[J] publication-title: IEEE Trans Control Syst Technol contributor: fullname: Zhou – volume: 4 start-page: 310 year: 2020 end-page: 346 ident: bib7 article-title: Battery lifetime prognostics[J] publication-title: Joule contributor: fullname: Lin – volume: 7 start-page: 2797 year: 2019 end-page: 2813 ident: bib21 article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries[J] publication-title: Energy Sci Eng contributor: fullname: Li – volume: 214 year: 2021 ident: bib2 article-title: State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy[J] publication-title: Energy contributor: fullname: Hong – start-page: 528 year: 2017 end-page: 536 ident: bib39 article-title: Fast bayesian optimization of machine learning hyperparameters on large datasets[C]//Artificial intelligence and statistics publication-title: PMLR contributor: fullname: Bartels – volume: 380 start-page: 51 year: 2020 end-page: 66 ident: bib44 article-title: Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor[J] publication-title: Neurocomputing contributor: fullname: Zhang – volume: 160 year: 2022 ident: bib43 article-title: Modeling phosphorous dynamics in a wastewater treatment process using Bayesian optimized LSTM[J] publication-title: Comput Chem Eng contributor: fullname: Durdevic – volume: 114 year: 2019 ident: bib1 article-title: State estimation for advanced battery management: key challenges and future trends[J] publication-title: Renew Sustain Energy Rev contributor: fullname: Liu – volume: 482 year: 2021 ident: bib31 article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J] publication-title: J Power Sources contributor: fullname: Dechent – volume: 166 start-page: 796 year: 2019 end-page: 806 ident: bib3 article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J] publication-title: Energy contributor: fullname: Chen – volume: 395 start-page: 128 year: 2018 end-page: 136 ident: bib20 article-title: Application of artificial neural networks in design of lithium-ion batteries[J] publication-title: J Power Sources contributor: fullname: Shin – volume: 485 year: 2021 ident: 10.1016/j.energy.2023.128984_bib15 article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction[J] publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.229327 contributor: fullname: Lui – volume: 362 year: 2020 ident: 10.1016/j.energy.2023.128984_bib19 article-title: Aging mechanism diagnosis of lithium ion battery by open circuit voltage analysis[J] publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.137101 contributor: fullname: Pan – volume: 4 start-page: 310 issue: 2 year: 2020 ident: 10.1016/j.energy.2023.128984_bib7 article-title: Battery lifetime prognostics[J] publication-title: Joule doi: 10.1016/j.joule.2019.11.018 contributor: fullname: Hu – volume: 116 start-page: 154 year: 2016 ident: 10.1016/j.energy.2023.128984_bib10 article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization[J] publication-title: Energy doi: 10.1016/j.energy.2016.09.099 contributor: fullname: Li – volume: 62 start-page: 364 issue: 2 year: 2012 ident: 10.1016/j.energy.2023.128984_bib29 article-title: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena[J] publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2215142 contributor: fullname: Olivares – volume: 81 start-page: 288 year: 2018 ident: 10.1016/j.energy.2023.128984_bib26 article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J] publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2017.12.036 contributor: fullname: Zhang – volume: 69 start-page: 9542 issue: 9 year: 2020 ident: 10.1016/j.energy.2023.128984_bib23 article-title: A collaborative Gaussian process regression model for transfer learning of capacity trends between li-ion battery cells[J] publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.3000970 contributor: fullname: Chehade – volume: 7 start-page: 2797 issue: 6 year: 2019 ident: 10.1016/j.energy.2023.128984_bib21 article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries[J] publication-title: Energy Sci Eng doi: 10.1002/ese3.460 contributor: fullname: Wang – volume: 166 start-page: 796 year: 2019 ident: 10.1016/j.energy.2023.128984_bib3 article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J] publication-title: Energy doi: 10.1016/j.energy.2018.10.131 contributor: fullname: Liu – volume: 467 year: 2020 ident: 10.1016/j.energy.2023.128984_bib24 article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J] publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228358 contributor: fullname: Li – volume: 42 start-page: 1225 issue: 6 year: 2020 ident: 10.1016/j.energy.2023.128984_bib42 article-title: Online monitoring scheme using principal component analysis through Kullback-Leibler divergence analysis technique for fault detection[J] publication-title: Trans Inst Meas Control doi: 10.1177/0142331219888370 contributor: fullname: Bounoua – volume: 234 year: 2021 ident: 10.1016/j.energy.2023.128984_bib28 article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J] publication-title: Energy doi: 10.1016/j.energy.2021.121269 contributor: fullname: Chen – volume: 114 year: 2019 ident: 10.1016/j.energy.2023.128984_bib1 article-title: State estimation for advanced battery management: key challenges and future trends[J] publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109334 contributor: fullname: Hu – volume: 27 start-page: 1788 issue: 4 year: 2018 ident: 10.1016/j.energy.2023.128984_bib18 article-title: Remaining useful life prediction of lithium-ion battery based on Gauss–Hermite particle filter[J] publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2018.2819965 contributor: fullname: Ma – volume: 170 year: 2021 ident: 10.1016/j.energy.2023.128984_bib22 article-title: A hybrid prognostic strategy with unscented particle filter and optimized multiple kernel relevance vector machine for lithium-ion battery[J] publication-title: Measurement doi: 10.1016/j.measurement.2020.108679 contributor: fullname: Sun – volume: 481 year: 2021 ident: 10.1016/j.energy.2023.128984_bib17 article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J] publication-title: J Power Sources contributor: fullname: Sadabadi – volume: 24 start-page: 384 issue: 2 year: 2015 ident: 10.1016/j.energy.2023.128984_bib12 article-title: Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery[J] publication-title: IEEE Trans Control Syst Technol contributor: fullname: Bartlett – volume: 22 issue: 2 year: 2022 ident: 10.1016/j.energy.2023.128984_bib38 article-title: Bayesian optimization LSTM/bi-LSTM network with self-optimized structure and hyperparameters for remaining useful life estimation of lathe spindle unit[J] publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4052838 contributor: fullname: Thoppil – volume: 17 start-page: 3478 issue: 5 year: 2020 ident: 10.1016/j.energy.2023.128984_bib32 article-title: A data-driven auto-cnn-lstm prediction model for lithium-ion battery remaining useful life[J] publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2020.3008223 contributor: fullname: Ren – volume: 214 year: 2021 ident: 10.1016/j.energy.2023.128984_bib5 article-title: Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions[J] publication-title: Energy doi: 10.1016/j.energy.2020.118965 contributor: fullname: Landini – volume: 206 start-page: 1564 year: 2017 ident: 10.1016/j.energy.2023.128984_bib27 article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery[J] publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.09.106 contributor: fullname: Chang – volume: 4 start-page: 135 issue: 1 year: 2017 ident: 10.1016/j.energy.2023.128984_bib16 article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J] publication-title: IEEE Transactions on Transportation Electrification doi: 10.1109/TTE.2017.2776558 contributor: fullname: Guha – volume: 46 start-page: 6081 issue: 5 year: 2022 ident: 10.1016/j.energy.2023.128984_bib40 article-title: State‐of‐health estimation and remaining useful life for lithium‐ion battery based on deep learning with Bayesian hyperparameter optimization[J] publication-title: Int J Energy Res doi: 10.1002/er.7548 contributor: fullname: Kong – year: 2004 ident: 10.1016/j.energy.2023.128984_bib35 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J] publication-title: Science doi: 10.1126/science.1091277 contributor: fullname: Jaeger – volume: 146 start-page: 279 year: 2019 ident: 10.1016/j.energy.2023.128984_bib8 article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method publication-title: J]. Measurement doi: 10.1016/j.measurement.2019.06.004 contributor: fullname: Zhao – volume: 67 start-page: 1836 issue: 8 year: 2018 ident: 10.1016/j.energy.2023.128984_bib14 article-title: Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J] publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2018.2809138 contributor: fullname: Guha – volume: 33 start-page: 2035 issue: 6 year: 2021 ident: 10.1016/j.energy.2023.128984_bib30 article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery[J] publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05105-0 contributor: fullname: Deng – volume: 43 start-page: 5042 issue: 10 year: 2019 ident: 10.1016/j.energy.2023.128984_bib6 article-title: A review on battery management system from the modeling efforts to its multiapplication and integration[J] publication-title: Int J Energy Res doi: 10.1002/er.4433 contributor: fullname: Shen – volume: 69 start-page: 10854 issue: 10 year: 2020 ident: 10.1016/j.energy.2023.128984_bib25 article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J] publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.3014932 contributor: fullname: Gou – volume: 62 start-page: 531 issue: 3 year: 2013 ident: 10.1016/j.energy.2023.128984_bib34 article-title: Variational mode decomposition[J] publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 contributor: fullname: Dragomiretskiy – volume: 8 start-page: 41482 year: 2020 ident: 10.1016/j.energy.2023.128984_bib36 article-title: A Bayesian optimization AdaBN-DCNN method with self-optimized structure and hyperparameters for domain adaptation remaining useful life prediction[J] publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976595 contributor: fullname: Li – volume: 4 year: 2007 ident: 10.1016/j.energy.2023.128984_bib41 article-title: Approximating the Kullback leibler divergence between Gaussian mixture models[C]//2007 IEEE international conference on acoustics, speech and signal processing-icassp'07 publication-title: IEEE contributor: fullname: Hershey – start-page: 528 year: 2017 ident: 10.1016/j.energy.2023.128984_bib39 article-title: Fast bayesian optimization of machine learning hyperparameters on large datasets[C]//Artificial intelligence and statistics publication-title: PMLR contributor: fullname: Klein – volume: 166 year: 2020 ident: 10.1016/j.energy.2023.128984_bib33 article-title: An optimized VMD method and its applications in bearing fault diagnosis[J] publication-title: Measurement doi: 10.1016/j.measurement.2020.108185 contributor: fullname: Li – volume: 20 issue: 3 year: 2020 ident: 10.1016/j.energy.2023.128984_bib37 article-title: A sequential multi-fidelity constrained Bayesian optimization framework for design applications[J] publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4046697 contributor: fullname: Tran – volume: 120 start-page: 975 year: 2017 ident: 10.1016/j.energy.2023.128984_bib11 article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework[J] publication-title: Energy doi: 10.1016/j.energy.2016.12.004 contributor: fullname: Lyu – volume: 482 year: 2021 ident: 10.1016/j.energy.2023.128984_bib31 article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J] publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228863 contributor: fullname: Li – volume: 395 start-page: 128 year: 2018 ident: 10.1016/j.energy.2023.128984_bib20 article-title: Application of artificial neural networks in design of lithium-ion batteries[J] publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.05.040 contributor: fullname: Wu – volume: 160 year: 2022 ident: 10.1016/j.energy.2023.128984_bib43 article-title: Modeling phosphorous dynamics in a wastewater treatment process using Bayesian optimized LSTM[J] publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2022.107738 contributor: fullname: Hansen – volume: 4 start-page: 383 issue: 5 year: 2019 ident: 10.1016/j.energy.2023.128984_bib4 article-title: Data-driven prediction of battery cycle life before capacity degradation[J] publication-title: Nat Energy doi: 10.1038/s41560-019-0356-8 contributor: fullname: Severson – volume: 380 start-page: 51 year: 2020 ident: 10.1016/j.energy.2023.128984_bib44 article-title: Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor[J] publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.006 contributor: fullname: Cabrera – volume: 253 year: 2019 ident: 10.1016/j.energy.2023.128984_bib9 article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J] publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113626 contributor: fullname: Ma – volume: 307 start-page: 220 year: 2016 ident: 10.1016/j.energy.2023.128984_bib13 article-title: New method for parameter estimation of an electrochemical-thermal coupling model for LiCoO2 battery[J] publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.058 contributor: fullname: Li – volume: 214 year: 2021 ident: 10.1016/j.energy.2023.128984_bib2 article-title: State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy[J] publication-title: Energy doi: 10.1016/j.energy.2020.118858 contributor: fullname: Li |
SSID | ssj0005899 |
Score | 2.4974167 |
Snippet | A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 128984 |
SubjectTerms | Echo state network Lithium-ion battery Long-short-term memory Remaining useful life Variational modal decomposition |
Title | Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach |
URI | https://dx.doi.org/10.1016/j.energy.2023.128984 |
Volume | 282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPOjFKErEB9mD14W2W_o4EgJBjRxUEm5Nu53VGigEikd_hL_Y2e5WMTEevDTpdjZpdrbzzWznmyHkmnPhW9IXTNqxz1wRJiwOXYthLNGzAws8za-4n3jjqXs7681qZFBxYVRapbH92qaX1tqMdM1qdldZ1n1E24v-hov4hriDQKcY7Ah_uKc77ztpHkHZQ1IJMyVd0efKHC8o-XUd1UK8g4Y6DNzf4WkHckZH5ND4irSvX-eY1CBvkP2KSrxpkObwm6aGguY73ZyQjwdY6NYPdLsBuZ3TeSaBrtbqt4xSBdWdo-lS4pPiJdsumBpNymqbGDzTbEMVwKFETt8wnjZnhnSxTPGagkpFN_leNM5THIEVNS0onulXEYqUVkXLT8l0NHwajJnpvsAEhhEFA1-IgIswhMSzA2G7QngueLHDZeCgVZS48KntpAlw7vMwscDqCYfHHFQJHfB4k9TzZQ5nhKbCgkCK2PJS31XVCHyJjqcHAs1L7IigRVi16NFKF9mIquyz10grKVJKirSSWsSvNBP92CwR4sCfM8__PfOCHKg7TUO8JPVivYUr9EeKpF1uuDbZ69_cjSefc0LkDA |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHOCCeIo3OXANa5uuj-OEQBt7HHhI3Ko2daCIddMe_BB-MU6TMpAQBy49JI5UxYk_u_VnA1wIIUNHhZIrNw25L-OMp7HvcIolWm7kYGD4FYNh0Hn0b59aTw24qrkwOq3S2n5j0ytrbUeadjebk6Jo3pPtJX_DJ3wj3CGgW4E18gZiup1r7W6vM1xmekRVG0ktz_WCmkFXpXlhRbG71F3EL8lWx5H_O0J9Q52bLdi07iJrmzfahgaWO7Bes4lnO7B_vWSqkaC9qrNd-LjDken-wBYzVIs39lYoZJOp_jOjtcFM82g2VjQzfykWI65Hs6rgJsXPrJgxjXEkUbJ3CqntZ0M2Guf0zFFno9uUL5aWOY3ghNkuFM_sqw5Fzuq65XvweHP9cNXhtgEDlxRJzDmGUkZCxjFmgRtJ15cy8DFIPaEijwyjor3PXS_PUIhQxJmDTkt6IhWoq-hgIPZhtRyXeAAslw5GSqZOkIe-LkgQKvI9A5RkYVJPRofA601PJqbORlInoL0mRkmJVlJilHQIYa2Z5Md5SQgK_lx59O-V57DeeRj0k3532DuGDT1jWIknsDqfLvCU3JN5dmaP3ydHD-bA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prediction+method+of+lithium-ion+batteries+is+based+on+variational+modal+decomposition+and+deep+learning+integrated+approach&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Shuai&rft.au=Ma%2C+Hongyan&rft.au=Zhang%2C+Yingda&rft.au=Li%2C+Shengyan&rft.date=2023-11-01&rft.issn=0360-5442&rft.volume=282&rft.spage=128984&rft_id=info:doi/10.1016%2Fj.energy.2023.128984&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_128984 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |