Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach

A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to precisely anticipate the remaining useful life (RUL) of lithium-ion batteries (LIBs). Initially, VMD is employed to decompose the LIBs capacity data...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 282; p. 128984
Main Authors Wang, Shuai, Ma, Hongyan, Zhang, Yingda, Li, Shengyan, He, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to precisely anticipate the remaining useful life (RUL) of lithium-ion batteries (LIBs). Initially, VMD is employed to decompose the LIBs capacity data in multiple scales to obtain the signal's global degradation tendency and local random fluctuation components. Then, the global degradation trend and each fluctuation component are modeled using an echo state network (ESN) and a Bayesian optimized long short-term memory (LSTM) network, respectively. The final LIBs RUL prediction results are obtained by integrating the prediction outcomes. On three public LIBs datasets with distinct degradation characteristics, the performance of the proposed model is tested, and alternative prediction algorithms are compared. The results of the experiments show that the proposed model's maximum average absolute percentage error does not exceed 0.43%. The average relative error not more than 0.5%, indicating great accuracy and stability in prediction. •VMD algorithm parameters using automatic optimization.•The optimized VMD algorithm is used to separate the capacity decay curve.•An integrated depth prediction model is constructed.•Bayesian optimization of hyperparameters for deep learning algorithms.
AbstractList A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to precisely anticipate the remaining useful life (RUL) of lithium-ion batteries (LIBs). Initially, VMD is employed to decompose the LIBs capacity data in multiple scales to obtain the signal's global degradation tendency and local random fluctuation components. Then, the global degradation trend and each fluctuation component are modeled using an echo state network (ESN) and a Bayesian optimized long short-term memory (LSTM) network, respectively. The final LIBs RUL prediction results are obtained by integrating the prediction outcomes. On three public LIBs datasets with distinct degradation characteristics, the performance of the proposed model is tested, and alternative prediction algorithms are compared. The results of the experiments show that the proposed model's maximum average absolute percentage error does not exceed 0.43%. The average relative error not more than 0.5%, indicating great accuracy and stability in prediction. •VMD algorithm parameters using automatic optimization.•The optimized VMD algorithm is used to separate the capacity decay curve.•An integrated depth prediction model is constructed.•Bayesian optimization of hyperparameters for deep learning algorithms.
ArticleNumber 128984
Author Ma, Hongyan
Wang, Shuai
He, Wei
Zhang, Yingda
Li, Shengyan
Author_xml – sequence: 1
  givenname: Shuai
  orcidid: 0000-0003-2351-7996
  surname: Wang
  fullname: Wang, Shuai
  organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China
– sequence: 2
  givenname: Hongyan
  orcidid: 0000-0001-8066-9238
  surname: Ma
  fullname: Ma, Hongyan
  email: mahongyan@bucea.edu.cn
  organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China
– sequence: 3
  givenname: Yingda
  surname: Zhang
  fullname: Zhang, Yingda
  organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China
– sequence: 4
  givenname: Shengyan
  surname: Li
  fullname: Li, Shengyan
  organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China
– sequence: 5
  givenname: Wei
  surname: He
  fullname: He, Wei
  organization: School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 10044, China
BookMark eNp9kEtqwzAQhrVIoUnaG3ShC9jVw3bsTaGEvqBQKO1ayNI4UbAlIymBXKMnrhx33c0M8_j_Gb4VWlhnAaE7SnJKaHV_yMGC351zRhjPKaubuligJeEVycqiYNdoFcKBEFLWTbNEP58wSGON3eFjgO7Y4950gEcP2qhonMUDxL3T2HVpEvfmOGRTt5UxgjcQsAmpCJA2LD5Jb-Skkj0enE5Rg3LD6IK5eEmrUwdG3IP0l6PGRth5GZNejqN3Uu1v0FUn-wC3f3mNvp-fvrav2fvHy9v28T1TnFQxg41SNVdNA21Fa0ULpaoCKsl4VzOpdccY15TpFjjf8KYlQErFuOSQwJRQ8TUqZl_lXQgeOjF6M0h_FpSIiaU4iJmlmFiKmWWSPcwySL-dDHgRlAGrEjAPKgrtzP8Gv1fMh6k
CitedBy_id crossref_primary_10_1016_j_energy_2024_130602
crossref_primary_10_3390_electronics13132501
crossref_primary_10_4108_ew_4653
crossref_primary_10_3390_e26050358
Cites_doi 10.1016/j.jpowsour.2020.229327
10.1016/j.electacta.2020.137101
10.1016/j.joule.2019.11.018
10.1016/j.energy.2016.09.099
10.1109/TIM.2012.2215142
10.1016/j.microrel.2017.12.036
10.1109/TVT.2020.3000970
10.1002/ese3.460
10.1016/j.energy.2018.10.131
10.1016/j.jpowsour.2020.228358
10.1177/0142331219888370
10.1016/j.energy.2021.121269
10.1016/j.rser.2019.109334
10.1109/TCST.2018.2819965
10.1016/j.measurement.2020.108679
10.1115/1.4052838
10.1109/TII.2020.3008223
10.1016/j.energy.2020.118965
10.1016/j.apenergy.2017.09.106
10.1109/TTE.2017.2776558
10.1002/er.7548
10.1126/science.1091277
10.1016/j.measurement.2019.06.004
10.1109/TIM.2018.2809138
10.1007/s00521-020-05105-0
10.1002/er.4433
10.1109/TVT.2020.3014932
10.1109/TSP.2013.2288675
10.1109/ACCESS.2020.2976595
10.1016/j.measurement.2020.108185
10.1115/1.4046697
10.1016/j.energy.2016.12.004
10.1016/j.jpowsour.2020.228863
10.1016/j.jpowsour.2018.05.040
10.1016/j.compchemeng.2022.107738
10.1038/s41560-019-0356-8
10.1016/j.neucom.2019.11.006
10.1016/j.apenergy.2019.113626
10.1016/j.jpowsour.2015.12.058
10.1016/j.energy.2020.118858
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2023.128984
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_128984
S0360544223023782
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
RIG
SAC
WUQ
ID FETCH-LOGICAL-c306t-e7cc83c99eb618c14cc64e6a23f82addf223d12dbe33739b0e05c23a3e0235e63
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Sep 26 18:55:09 EDT 2024
Fri Feb 23 02:37:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Variational modal decomposition
Long-short-term memory
Remaining useful life
Echo state network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e7cc83c99eb618c14cc64e6a23f82addf223d12dbe33739b0e05c23a3e0235e63
ORCID 0000-0003-2351-7996
0000-0001-8066-9238
ParticipantIDs crossref_primary_10_1016_j_energy_2023_128984
elsevier_sciencedirect_doi_10_1016_j_energy_2023_128984
PublicationCentury 2000
PublicationDate 2023-11-01
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Miao, Zhang (bib26) 2018; 81
Ma, Zhang, Cheng (bib9) 2019; 253
Gou, Xu, Feng (bib25) 2020; 69
Shen, Gao (bib6) 2019; 43
Li, Sengupta, Dechent (bib31) 2021; 482
Ren, Dong, Wang (bib32) 2020; 17
Hu, Xu, Lin (bib7) 2020; 4
Zhao, Zhang, Wang (bib8) 2019; 146
Hu, Feng, Liu (bib1) 2019; 114
Hershey, Olsen (bib41) 2007; 4
Li, Xu, Hong (bib2) 2021; 214
Guha, Patra (bib14) 2018; 67
Wang, Ni, Li (bib21) 2019; 7
Landini, O'Donovan (bib5) 2021; 214
Guha, Patra (bib16) 2017; 4
Deng, Shen, Wang (bib30) 2021; 33
Tran, Wildey, McCann, sMF-Bo-2CoGP (bib37) 2020; 20
Severson, Attia, Jin (bib4) 2019; 4
Pan, Dong, Wang (bib19) 2020; 362
Chehade, Hussein (bib23) 2020; 69
Li, Yuan, Wang (bib24) 2020; 467
Lui, Li, Downey (bib15) 2021; 485
Klein, Falkner, Bartels (bib39) 2017
Li, Wang, Lyu (bib13) 2016; 307
Li, He (bib36) 2020; 8
Li, Fan, Rizzoni (bib10) 2016; 116
Lyu, Lai, Ge (bib11) 2017; 120
Sun, Zhong, Han (bib22) 2021; 170
Li, Liu, Wu (bib33) 2020; 166
Hansen, Stokholm-Bjerregaard, Durdevic (bib43) 2022; 160
Sadabadi, Jin, Rizzoni (bib17) 2021; 481
Chang, Fang, Zhang (bib27) 2017; 206
Liu, Wang, Chen (bib3) 2019; 166
Kong, Wang, Ping (bib40) 2022; 46
Bartlett, Marcicki, Onori (bib12) 2015; 24
Olivares, Munoz, Orchard (bib29) 2012; 62
Ma, Chen, Zhou (bib18) 2018; 27
Jaeger, Haas (bib35) 2004
Chen, Shi, Ji (bib28) 2021; 234
Cabrera, Guamán, Zhang (bib44) 2020; 380
Thoppil, Vasu, Rao (bib38) 2022; 22
Wu, Han, Shin (bib20) 2018; 395
Bounoua, Benkara, Kouadri (bib42) 2020; 42
Dragomiretskiy, Zosso (bib34) 2013; 62
Li (10.1016/j.energy.2023.128984_bib31) 2021; 482
Ma (10.1016/j.energy.2023.128984_bib18) 2018; 27
Bartlett (10.1016/j.energy.2023.128984_bib12) 2015; 24
Liu (10.1016/j.energy.2023.128984_bib3) 2019; 166
Cabrera (10.1016/j.energy.2023.128984_bib44) 2020; 380
Gou (10.1016/j.energy.2023.128984_bib25) 2020; 69
Li (10.1016/j.energy.2023.128984_bib10) 2016; 116
Chang (10.1016/j.energy.2023.128984_bib27) 2017; 206
Ma (10.1016/j.energy.2023.128984_bib9) 2019; 253
Li (10.1016/j.energy.2023.128984_bib33) 2020; 166
Landini (10.1016/j.energy.2023.128984_bib5) 2021; 214
Bounoua (10.1016/j.energy.2023.128984_bib42) 2020; 42
Sadabadi (10.1016/j.energy.2023.128984_bib17) 2021; 481
Thoppil (10.1016/j.energy.2023.128984_bib38) 2022; 22
Shen (10.1016/j.energy.2023.128984_bib6) 2019; 43
Zhao (10.1016/j.energy.2023.128984_bib8) 2019; 146
Olivares (10.1016/j.energy.2023.128984_bib29) 2012; 62
Ren (10.1016/j.energy.2023.128984_bib32) 2020; 17
Jaeger (10.1016/j.energy.2023.128984_bib35) 2004
Guha (10.1016/j.energy.2023.128984_bib14) 2018; 67
Zhang (10.1016/j.energy.2023.128984_bib26) 2018; 81
Lui (10.1016/j.energy.2023.128984_bib15) 2021; 485
Hansen (10.1016/j.energy.2023.128984_bib43) 2022; 160
Pan (10.1016/j.energy.2023.128984_bib19) 2020; 362
Sun (10.1016/j.energy.2023.128984_bib22) 2021; 170
Hu (10.1016/j.energy.2023.128984_bib7) 2020; 4
Wu (10.1016/j.energy.2023.128984_bib20) 2018; 395
Deng (10.1016/j.energy.2023.128984_bib30) 2021; 33
Li (10.1016/j.energy.2023.128984_bib36) 2020; 8
Li (10.1016/j.energy.2023.128984_bib2) 2021; 214
Lyu (10.1016/j.energy.2023.128984_bib11) 2017; 120
Guha (10.1016/j.energy.2023.128984_bib16) 2017; 4
Klein (10.1016/j.energy.2023.128984_bib39) 2017
Chehade (10.1016/j.energy.2023.128984_bib23) 2020; 69
Kong (10.1016/j.energy.2023.128984_bib40) 2022; 46
Hershey (10.1016/j.energy.2023.128984_bib41) 2007; 4
Hu (10.1016/j.energy.2023.128984_bib1) 2019; 114
Tran (10.1016/j.energy.2023.128984_bib37) 2020; 20
Wang (10.1016/j.energy.2023.128984_bib21) 2019; 7
Chen (10.1016/j.energy.2023.128984_bib28) 2021; 234
Severson (10.1016/j.energy.2023.128984_bib4) 2019; 4
Li (10.1016/j.energy.2023.128984_bib13) 2016; 307
Li (10.1016/j.energy.2023.128984_bib24) 2020; 467
Dragomiretskiy (10.1016/j.energy.2023.128984_bib34) 2013; 62
References_xml – volume: 481
  year: 2021
  ident: bib17
  article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]
  publication-title: J Power Sources
  contributor:
    fullname: Rizzoni
– volume: 62
  start-page: 364
  year: 2012
  end-page: 376
  ident: bib29
  article-title: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena[J]
  publication-title: IEEE Trans Instrum Meas
  contributor:
    fullname: Orchard
– volume: 467
  year: 2020
  ident: bib24
  article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]
  publication-title: J Power Sources
  contributor:
    fullname: Wang
– volume: 485
  year: 2021
  ident: bib15
  article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction[J]
  publication-title: J Power Sources
  contributor:
    fullname: Downey
– volume: 253
  year: 2019
  ident: bib9
  article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]
  publication-title: Appl Energy
  contributor:
    fullname: Cheng
– volume: 67
  start-page: 1836
  year: 2018
  end-page: 1849
  ident: bib14
  article-title: Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J]
  publication-title: IEEE Trans Instrum Meas
  contributor:
    fullname: Patra
– volume: 17
  start-page: 3478
  year: 2020
  end-page: 3487
  ident: bib32
  article-title: A data-driven auto-cnn-lstm prediction model for lithium-ion battery remaining useful life[J]
  publication-title: IEEE Trans Ind Inf
  contributor:
    fullname: Wang
– volume: 33
  start-page: 2035
  year: 2021
  end-page: 2046
  ident: bib30
  article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery[J]
  publication-title: Neural Comput Appl
  contributor:
    fullname: Wang
– volume: 120
  start-page: 975
  year: 2017
  end-page: 984
  ident: bib11
  article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework[J]
  publication-title: Energy
  contributor:
    fullname: Ge
– volume: 20
  year: 2020
  ident: bib37
  article-title: A sequential multi-fidelity constrained Bayesian optimization framework for design applications[J]
  publication-title: J Comput Inf Sci Eng
  contributor:
    fullname: sMF-Bo-2CoGP
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: bib4
  article-title: Data-driven prediction of battery cycle life before capacity degradation[J]
  publication-title: Nat Energy
  contributor:
    fullname: Jin
– volume: 4
  year: 2007
  ident: bib41
  article-title: Approximating the Kullback leibler divergence between Gaussian mixture models[C]//2007 IEEE international conference on acoustics, speech and signal processing-icassp'07
  publication-title: IEEE
  contributor:
    fullname: Olsen
– volume: 166
  year: 2020
  ident: bib33
  article-title: An optimized VMD method and its applications in bearing fault diagnosis[J]
  publication-title: Measurement
  contributor:
    fullname: Wu
– volume: 81
  start-page: 288
  year: 2018
  end-page: 298
  ident: bib26
  article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]
  publication-title: Microelectron Reliab
  contributor:
    fullname: Zhang
– volume: 206
  start-page: 1564
  year: 2017
  end-page: 1578
  ident: bib27
  article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery[J]
  publication-title: Appl Energy
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 41482
  year: 2020
  end-page: 41501
  ident: bib36
  article-title: A Bayesian optimization AdaBN-DCNN method with self-optimized structure and hyperparameters for domain adaptation remaining useful life prediction[J]
  publication-title: IEEE Access
  contributor:
    fullname: He
– volume: 214
  year: 2021
  ident: bib5
  article-title: Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions[J]
  publication-title: Energy
  contributor:
    fullname: O'Donovan
– volume: 46
  start-page: 6081
  year: 2022
  end-page: 6098
  ident: bib40
  article-title: State‐of‐health estimation and remaining useful life for lithium‐ion battery based on deep learning with Bayesian hyperparameter optimization[J]
  publication-title: Int J Energy Res
  contributor:
    fullname: Ping
– volume: 24
  start-page: 384
  year: 2015
  end-page: 399
  ident: bib12
  article-title: Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery[J]
  publication-title: IEEE Trans Control Syst Technol
  contributor:
    fullname: Onori
– year: 2004
  ident: bib35
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J]
  publication-title: Science
  contributor:
    fullname: Haas
– volume: 307
  start-page: 220
  year: 2016
  end-page: 230
  ident: bib13
  article-title: New method for parameter estimation of an electrochemical-thermal coupling model for LiCoO2 battery[J]
  publication-title: J Power Sources
  contributor:
    fullname: Lyu
– volume: 170
  year: 2021
  ident: bib22
  article-title: A hybrid prognostic strategy with unscented particle filter and optimized multiple kernel relevance vector machine for lithium-ion battery[J]
  publication-title: Measurement
  contributor:
    fullname: Han
– volume: 42
  start-page: 1225
  year: 2020
  end-page: 1238
  ident: bib42
  article-title: Online monitoring scheme using principal component analysis through Kullback-Leibler divergence analysis technique for fault detection[J]
  publication-title: Trans Inst Meas Control
  contributor:
    fullname: Kouadri
– volume: 362
  year: 2020
  ident: bib19
  article-title: Aging mechanism diagnosis of lithium ion battery by open circuit voltage analysis[J]
  publication-title: Electrochim Acta
  contributor:
    fullname: Wang
– volume: 69
  start-page: 10854
  year: 2020
  end-page: 10867
  ident: bib25
  article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J]
  publication-title: IEEE Trans Veh Technol
  contributor:
    fullname: Feng
– volume: 69
  start-page: 9542
  year: 2020
  end-page: 9552
  ident: bib23
  article-title: A collaborative Gaussian process regression model for transfer learning of capacity trends between li-ion battery cells[J]
  publication-title: IEEE Trans Veh Technol
  contributor:
    fullname: Hussein
– volume: 116
  start-page: 154
  year: 2016
  end-page: 169
  ident: bib10
  article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization[J]
  publication-title: Energy
  contributor:
    fullname: Rizzoni
– volume: 62
  start-page: 531
  year: 2013
  end-page: 544
  ident: bib34
  article-title: Variational mode decomposition[J]
  publication-title: IEEE Trans Signal Process
  contributor:
    fullname: Zosso
– volume: 22
  year: 2022
  ident: bib38
  article-title: Bayesian optimization LSTM/bi-LSTM network with self-optimized structure and hyperparameters for remaining useful life estimation of lathe spindle unit[J]
  publication-title: J Comput Inf Sci Eng
  contributor:
    fullname: Rao
– volume: 234
  year: 2021
  ident: bib28
  article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]
  publication-title: Energy
  contributor:
    fullname: Ji
– volume: 43
  start-page: 5042
  year: 2019
  end-page: 5075
  ident: bib6
  article-title: A review on battery management system from the modeling efforts to its multiapplication and integration[J]
  publication-title: Int J Energy Res
  contributor:
    fullname: Gao
– volume: 4
  start-page: 135
  year: 2017
  end-page: 146
  ident: bib16
  article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]
  publication-title: IEEE Transactions on Transportation Electrification
  contributor:
    fullname: Patra
– volume: 146
  start-page: 279
  year: 2019
  end-page: 288
  ident: bib8
  article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
  publication-title: J]. Measurement
  contributor:
    fullname: Wang
– volume: 27
  start-page: 1788
  year: 2018
  end-page: 1795
  ident: bib18
  article-title: Remaining useful life prediction of lithium-ion battery based on Gauss–Hermite particle filter[J]
  publication-title: IEEE Trans Control Syst Technol
  contributor:
    fullname: Zhou
– volume: 4
  start-page: 310
  year: 2020
  end-page: 346
  ident: bib7
  article-title: Battery lifetime prognostics[J]
  publication-title: Joule
  contributor:
    fullname: Lin
– volume: 7
  start-page: 2797
  year: 2019
  end-page: 2813
  ident: bib21
  article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries[J]
  publication-title: Energy Sci Eng
  contributor:
    fullname: Li
– volume: 214
  year: 2021
  ident: bib2
  article-title: State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy[J]
  publication-title: Energy
  contributor:
    fullname: Hong
– start-page: 528
  year: 2017
  end-page: 536
  ident: bib39
  article-title: Fast bayesian optimization of machine learning hyperparameters on large datasets[C]//Artificial intelligence and statistics
  publication-title: PMLR
  contributor:
    fullname: Bartels
– volume: 380
  start-page: 51
  year: 2020
  end-page: 66
  ident: bib44
  article-title: Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor[J]
  publication-title: Neurocomputing
  contributor:
    fullname: Zhang
– volume: 160
  year: 2022
  ident: bib43
  article-title: Modeling phosphorous dynamics in a wastewater treatment process using Bayesian optimized LSTM[J]
  publication-title: Comput Chem Eng
  contributor:
    fullname: Durdevic
– volume: 114
  year: 2019
  ident: bib1
  article-title: State estimation for advanced battery management: key challenges and future trends[J]
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Liu
– volume: 482
  year: 2021
  ident: bib31
  article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]
  publication-title: J Power Sources
  contributor:
    fullname: Dechent
– volume: 166
  start-page: 796
  year: 2019
  end-page: 806
  ident: bib3
  article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]
  publication-title: Energy
  contributor:
    fullname: Chen
– volume: 395
  start-page: 128
  year: 2018
  end-page: 136
  ident: bib20
  article-title: Application of artificial neural networks in design of lithium-ion batteries[J]
  publication-title: J Power Sources
  contributor:
    fullname: Shin
– volume: 485
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib15
  article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction[J]
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.229327
  contributor:
    fullname: Lui
– volume: 362
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib19
  article-title: Aging mechanism diagnosis of lithium ion battery by open circuit voltage analysis[J]
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2020.137101
  contributor:
    fullname: Pan
– volume: 4
  start-page: 310
  issue: 2
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib7
  article-title: Battery lifetime prognostics[J]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.018
  contributor:
    fullname: Hu
– volume: 116
  start-page: 154
  year: 2016
  ident: 10.1016/j.energy.2023.128984_bib10
  article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.099
  contributor:
    fullname: Li
– volume: 62
  start-page: 364
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2023.128984_bib29
  article-title: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena[J]
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2215142
  contributor:
    fullname: Olivares
– volume: 81
  start-page: 288
  year: 2018
  ident: 10.1016/j.energy.2023.128984_bib26
  article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2017.12.036
  contributor:
    fullname: Zhang
– volume: 69
  start-page: 9542
  issue: 9
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib23
  article-title: A collaborative Gaussian process regression model for transfer learning of capacity trends between li-ion battery cells[J]
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3000970
  contributor:
    fullname: Chehade
– volume: 7
  start-page: 2797
  issue: 6
  year: 2019
  ident: 10.1016/j.energy.2023.128984_bib21
  article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries[J]
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.460
  contributor:
    fullname: Wang
– volume: 166
  start-page: 796
  year: 2019
  ident: 10.1016/j.energy.2023.128984_bib3
  article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.131
  contributor:
    fullname: Liu
– volume: 467
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib24
  article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228358
  contributor:
    fullname: Li
– volume: 42
  start-page: 1225
  issue: 6
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib42
  article-title: Online monitoring scheme using principal component analysis through Kullback-Leibler divergence analysis technique for fault detection[J]
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331219888370
  contributor:
    fullname: Bounoua
– volume: 234
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib28
  article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121269
  contributor:
    fullname: Chen
– volume: 114
  year: 2019
  ident: 10.1016/j.energy.2023.128984_bib1
  article-title: State estimation for advanced battery management: key challenges and future trends[J]
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109334
  contributor:
    fullname: Hu
– volume: 27
  start-page: 1788
  issue: 4
  year: 2018
  ident: 10.1016/j.energy.2023.128984_bib18
  article-title: Remaining useful life prediction of lithium-ion battery based on Gauss–Hermite particle filter[J]
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2018.2819965
  contributor:
    fullname: Ma
– volume: 170
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib22
  article-title: A hybrid prognostic strategy with unscented particle filter and optimized multiple kernel relevance vector machine for lithium-ion battery[J]
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108679
  contributor:
    fullname: Sun
– volume: 481
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib17
  article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]
  publication-title: J Power Sources
  contributor:
    fullname: Sadabadi
– volume: 24
  start-page: 384
  issue: 2
  year: 2015
  ident: 10.1016/j.energy.2023.128984_bib12
  article-title: Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery[J]
  publication-title: IEEE Trans Control Syst Technol
  contributor:
    fullname: Bartlett
– volume: 22
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2023.128984_bib38
  article-title: Bayesian optimization LSTM/bi-LSTM network with self-optimized structure and hyperparameters for remaining useful life estimation of lathe spindle unit[J]
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4052838
  contributor:
    fullname: Thoppil
– volume: 17
  start-page: 3478
  issue: 5
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib32
  article-title: A data-driven auto-cnn-lstm prediction model for lithium-ion battery remaining useful life[J]
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.3008223
  contributor:
    fullname: Ren
– volume: 214
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib5
  article-title: Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118965
  contributor:
    fullname: Landini
– volume: 206
  start-page: 1564
  year: 2017
  ident: 10.1016/j.energy.2023.128984_bib27
  article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery[J]
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.106
  contributor:
    fullname: Chang
– volume: 4
  start-page: 135
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2023.128984_bib16
  article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]
  publication-title: IEEE Transactions on Transportation Electrification
  doi: 10.1109/TTE.2017.2776558
  contributor:
    fullname: Guha
– volume: 46
  start-page: 6081
  issue: 5
  year: 2022
  ident: 10.1016/j.energy.2023.128984_bib40
  article-title: State‐of‐health estimation and remaining useful life for lithium‐ion battery based on deep learning with Bayesian hyperparameter optimization[J]
  publication-title: Int J Energy Res
  doi: 10.1002/er.7548
  contributor:
    fullname: Kong
– year: 2004
  ident: 10.1016/j.energy.2023.128984_bib35
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J]
  publication-title: Science
  doi: 10.1126/science.1091277
  contributor:
    fullname: Jaeger
– volume: 146
  start-page: 279
  year: 2019
  ident: 10.1016/j.energy.2023.128984_bib8
  article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
  publication-title: J]. Measurement
  doi: 10.1016/j.measurement.2019.06.004
  contributor:
    fullname: Zhao
– volume: 67
  start-page: 1836
  issue: 8
  year: 2018
  ident: 10.1016/j.energy.2023.128984_bib14
  article-title: Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J]
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2809138
  contributor:
    fullname: Guha
– volume: 33
  start-page: 2035
  issue: 6
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib30
  article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery[J]
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05105-0
  contributor:
    fullname: Deng
– volume: 43
  start-page: 5042
  issue: 10
  year: 2019
  ident: 10.1016/j.energy.2023.128984_bib6
  article-title: A review on battery management system from the modeling efforts to its multiapplication and integration[J]
  publication-title: Int J Energy Res
  doi: 10.1002/er.4433
  contributor:
    fullname: Shen
– volume: 69
  start-page: 10854
  issue: 10
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib25
  article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J]
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3014932
  contributor:
    fullname: Gou
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 10.1016/j.energy.2023.128984_bib34
  article-title: Variational mode decomposition[J]
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
  contributor:
    fullname: Dragomiretskiy
– volume: 8
  start-page: 41482
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib36
  article-title: A Bayesian optimization AdaBN-DCNN method with self-optimized structure and hyperparameters for domain adaptation remaining useful life prediction[J]
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976595
  contributor:
    fullname: Li
– volume: 4
  year: 2007
  ident: 10.1016/j.energy.2023.128984_bib41
  article-title: Approximating the Kullback leibler divergence between Gaussian mixture models[C]//2007 IEEE international conference on acoustics, speech and signal processing-icassp'07
  publication-title: IEEE
  contributor:
    fullname: Hershey
– start-page: 528
  year: 2017
  ident: 10.1016/j.energy.2023.128984_bib39
  article-title: Fast bayesian optimization of machine learning hyperparameters on large datasets[C]//Artificial intelligence and statistics
  publication-title: PMLR
  contributor:
    fullname: Klein
– volume: 166
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib33
  article-title: An optimized VMD method and its applications in bearing fault diagnosis[J]
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108185
  contributor:
    fullname: Li
– volume: 20
  issue: 3
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib37
  article-title: A sequential multi-fidelity constrained Bayesian optimization framework for design applications[J]
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4046697
  contributor:
    fullname: Tran
– volume: 120
  start-page: 975
  year: 2017
  ident: 10.1016/j.energy.2023.128984_bib11
  article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.004
  contributor:
    fullname: Lyu
– volume: 482
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib31
  article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228863
  contributor:
    fullname: Li
– volume: 395
  start-page: 128
  year: 2018
  ident: 10.1016/j.energy.2023.128984_bib20
  article-title: Application of artificial neural networks in design of lithium-ion batteries[J]
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.05.040
  contributor:
    fullname: Wu
– volume: 160
  year: 2022
  ident: 10.1016/j.energy.2023.128984_bib43
  article-title: Modeling phosphorous dynamics in a wastewater treatment process using Bayesian optimized LSTM[J]
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2022.107738
  contributor:
    fullname: Hansen
– volume: 4
  start-page: 383
  issue: 5
  year: 2019
  ident: 10.1016/j.energy.2023.128984_bib4
  article-title: Data-driven prediction of battery cycle life before capacity degradation[J]
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0356-8
  contributor:
    fullname: Severson
– volume: 380
  start-page: 51
  year: 2020
  ident: 10.1016/j.energy.2023.128984_bib44
  article-title: Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.006
  contributor:
    fullname: Cabrera
– volume: 253
  year: 2019
  ident: 10.1016/j.energy.2023.128984_bib9
  article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113626
  contributor:
    fullname: Ma
– volume: 307
  start-page: 220
  year: 2016
  ident: 10.1016/j.energy.2023.128984_bib13
  article-title: New method for parameter estimation of an electrochemical-thermal coupling model for LiCoO2 battery[J]
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.12.058
  contributor:
    fullname: Li
– volume: 214
  year: 2021
  ident: 10.1016/j.energy.2023.128984_bib2
  article-title: State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118858
  contributor:
    fullname: Li
SSID ssj0005899
Score 2.4974167
Snippet A common method based on variational modal decomposition (VMD) and an integrated depth model is proposed to address the problem that it is difficult to...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 128984
SubjectTerms Echo state network
Lithium-ion battery
Long-short-term memory
Remaining useful life
Variational modal decomposition
Title Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach
URI https://dx.doi.org/10.1016/j.energy.2023.128984
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPOjFKErEB9mD14W2W_o4EgJBjRxUEm5Nu53VGigEikd_hL_Y2e5WMTEevDTpdjZpdrbzzWznmyHkmnPhW9IXTNqxz1wRJiwOXYthLNGzAws8za-4n3jjqXs7681qZFBxYVRapbH92qaX1tqMdM1qdldZ1n1E24v-hov4hriDQKcY7Ah_uKc77ztpHkHZQ1IJMyVd0efKHC8o-XUd1UK8g4Y6DNzf4WkHckZH5ND4irSvX-eY1CBvkP2KSrxpkObwm6aGguY73ZyQjwdY6NYPdLsBuZ3TeSaBrtbqt4xSBdWdo-lS4pPiJdsumBpNymqbGDzTbEMVwKFETt8wnjZnhnSxTPGagkpFN_leNM5THIEVNS0onulXEYqUVkXLT8l0NHwajJnpvsAEhhEFA1-IgIswhMSzA2G7QngueLHDZeCgVZS48KntpAlw7vMwscDqCYfHHFQJHfB4k9TzZQ5nhKbCgkCK2PJS31XVCHyJjqcHAs1L7IigRVi16NFKF9mIquyz10grKVJKirSSWsSvNBP92CwR4sCfM8__PfOCHKg7TUO8JPVivYUr9EeKpF1uuDbZ69_cjSefc0LkDA
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHOCCeIo3OXANa5uuj-OEQBt7HHhI3Ko2daCIddMe_BB-MU6TMpAQBy49JI5UxYk_u_VnA1wIIUNHhZIrNw25L-OMp7HvcIolWm7kYGD4FYNh0Hn0b59aTw24qrkwOq3S2n5j0ytrbUeadjebk6Jo3pPtJX_DJ3wj3CGgW4E18gZiup1r7W6vM1xmekRVG0ktz_WCmkFXpXlhRbG71F3EL8lWx5H_O0J9Q52bLdi07iJrmzfahgaWO7Bes4lnO7B_vWSqkaC9qrNd-LjDken-wBYzVIs39lYoZJOp_jOjtcFM82g2VjQzfykWI65Hs6rgJsXPrJgxjXEkUbJ3CqntZ0M2Guf0zFFno9uUL5aWOY3ghNkuFM_sqw5Fzuq65XvweHP9cNXhtgEDlxRJzDmGUkZCxjFmgRtJ15cy8DFIPaEijwyjor3PXS_PUIhQxJmDTkt6IhWoq-hgIPZhtRyXeAAslw5GSqZOkIe-LkgQKvI9A5RkYVJPRofA601PJqbORlInoL0mRkmJVlJilHQIYa2Z5Md5SQgK_lx59O-V57DeeRj0k3532DuGDT1jWIknsDqfLvCU3JN5dmaP3ydHD-bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prediction+method+of+lithium-ion+batteries+is+based+on+variational+modal+decomposition+and+deep+learning+integrated+approach&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Shuai&rft.au=Ma%2C+Hongyan&rft.au=Zhang%2C+Yingda&rft.au=Li%2C+Shengyan&rft.date=2023-11-01&rft.issn=0360-5442&rft.volume=282&rft.spage=128984&rft_id=info:doi/10.1016%2Fj.energy.2023.128984&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_128984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon