Joint task offloading and resource optimization in NOMA-based vehicular edge computing: A game-theoretic DRL approach

Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited resources and massive transmission demands bring great challenges on implementing vehicular applications with stringent deadline requirements. Thi...

Full description

Saved in:
Bibliographic Details
Published inJournal of systems architecture Vol. 134; p. 102780
Main Authors Xu, Xincao, Liu, Kai, Dai, Penglin, Jin, Feiyu, Ren, Hualing, Zhan, Choujun, Guo, Songtao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited resources and massive transmission demands bring great challenges on implementing vehicular applications with stringent deadline requirements. This work presents a non-orthogonal multiple access (NOMA) based architecture in VEC, where heterogeneous edge nodes are cooperated for real-time task processing. We derive a vehicle-to-infrastructure (V2I) transmission model by considering both intra-edge and inter-edge interferences and formulate a cooperative resource optimization (CRO) problem by jointly optimizing the task offloading and resource allocation, aiming at maximizing the service ratio. Further, we decompose the CRO into two subproblems, namely, task offloading and resource allocation. In particular, the task offloading subproblem is modeled as an exact potential game (EPG), and a multi-agent distributed distributional deep deterministic policy gradient (MAD4PG) is proposed to achieve the Nash equilibrium. The resource allocation subproblem is divided into two independent convex optimization problems, and an optimal solution is proposed by using a gradient-based iterative method and KKT condition. Finally, we build the simulation model based on real-world vehicular trajectories and give a comprehensive performance evaluation, which conclusively demonstrates the superiority of the proposed solutions.
AbstractList Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited resources and massive transmission demands bring great challenges on implementing vehicular applications with stringent deadline requirements. This work presents a non-orthogonal multiple access (NOMA) based architecture in VEC, where heterogeneous edge nodes are cooperated for real-time task processing. We derive a vehicle-to-infrastructure (V2I) transmission model by considering both intra-edge and inter-edge interferences and formulate a cooperative resource optimization (CRO) problem by jointly optimizing the task offloading and resource allocation, aiming at maximizing the service ratio. Further, we decompose the CRO into two subproblems, namely, task offloading and resource allocation. In particular, the task offloading subproblem is modeled as an exact potential game (EPG), and a multi-agent distributed distributional deep deterministic policy gradient (MAD4PG) is proposed to achieve the Nash equilibrium. The resource allocation subproblem is divided into two independent convex optimization problems, and an optimal solution is proposed by using a gradient-based iterative method and KKT condition. Finally, we build the simulation model based on real-world vehicular trajectories and give a comprehensive performance evaluation, which conclusively demonstrates the superiority of the proposed solutions.
ArticleNumber 102780
Author Ren, Hualing
Guo, Songtao
Xu, Xincao
Jin, Feiyu
Dai, Penglin
Liu, Kai
Zhan, Choujun
Author_xml – sequence: 1
  givenname: Xincao
  orcidid: 0000-0001-5057-5468
  surname: Xu
  fullname: Xu, Xincao
  email: near@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
  email: liukai0807@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Penglin
  surname: Dai
  fullname: Dai, Penglin
  email: penglindai@swjtu.edu.cn
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China
– sequence: 4
  givenname: Feiyu
  surname: Jin
  fullname: Jin, Feiyu
  email: fyjin@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 5
  givenname: Hualing
  surname: Ren
  fullname: Ren, Hualing
  email: renharlin@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 6
  givenname: Choujun
  surname: Zhan
  fullname: Zhan, Choujun
  email: zchoujun2-c@my.cityu.edu.hk
  organization: School of Computing, South China Normal University, Guangzhou, China
– sequence: 7
  givenname: Songtao
  surname: Guo
  fullname: Guo, Songtao
  email: guosongtao@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNQk89-FUOo_1YLoOmSSO23qzGRIMoX69E4dVy50dQ8XvgPnm6BRYxpA6JKSGSU0udrN3MEJK2eMMNa_WJqREzSmWRoGCU3iUZ_DLAzShNEzNHFuRwiJY8rGqHsyuvHYC_eBTVlWRijdbLBoFLbgTGclYNN6XetP4bVpsG7wy_p5ERTCgcJ72GrZVcJiUBvA0tRt5_uCOV7gjagh8FswFryW-OZ1hUXbWiPk9hydlqJycPFzp-j97vZt-RCs1vePy8UqkCFJfAApVUnJCqKKImEqL8s0FzlNgSpVMBrHUUQyGoo8VCROs5zFMpFxREUKuVQ5hFM0H3qlNc5ZKLnU_nuHt0JXnBJ-FMh3fBDIjwL5ILCHo19wa3Ut7OE_7HrAoB-212C5kxoaCUpbkJ4ro_8u-AInq5Bl
CitedBy_id crossref_primary_10_1007_s10723_025_09800_x
crossref_primary_10_1109_TCE_2023_3318853
crossref_primary_10_1002_cpe_8235
crossref_primary_10_1109_JIOT_2024_3464641
crossref_primary_10_3390_math13010052
crossref_primary_10_1109_TITS_2023_3340334
crossref_primary_10_1109_ACCESS_2024_3374635
crossref_primary_10_1109_TMC_2024_3444597
crossref_primary_10_1016_j_sysarc_2024_103215
crossref_primary_10_1109_TSC_2024_3355937
crossref_primary_10_3390_a17080370
crossref_primary_10_1016_j_sysarc_2023_103048
crossref_primary_10_1109_JIOT_2023_3285950
crossref_primary_10_1016_j_iot_2023_100970
crossref_primary_10_1109_JSYST_2024_3403696
crossref_primary_10_1016_j_comnet_2024_110985
crossref_primary_10_1109_ACCESS_2024_3454810
crossref_primary_10_1016_j_swevo_2025_101878
crossref_primary_10_1109_MWC_007_2400133
crossref_primary_10_3390_math11204269
crossref_primary_10_3390_electronics14020380
crossref_primary_10_1016_j_comnet_2025_111236
crossref_primary_10_1109_TIV_2023_3321679
crossref_primary_10_3390_math12101466
crossref_primary_10_1016_j_vehcom_2025_100898
crossref_primary_10_1109_ACCESS_2024_3497137
crossref_primary_10_1016_j_swevo_2024_101704
crossref_primary_10_1002_aisy_202300151
crossref_primary_10_1007_s41060_023_00473_x
crossref_primary_10_1016_j_neunet_2024_106621
crossref_primary_10_1109_ACCESS_2024_3476679
Cites_doi 10.1109/TCSS.2021.3068369
10.1109/TWC.2021.3073050
10.1109/TMC.2020.2997460
10.1007/s11036-020-01591-7
10.1109/TITS.2020.3038558
10.1109/TITS.2021.3091402
10.1109/TMC.2021.3106147
10.1109/COMST.2016.2621116
10.1109/JIOT.2021.3075250
10.1109/TCST.2021.3075557
10.1109/INFOCOM42981.2021.9488886
10.1109/TVT.2019.2894851
10.1109/TITS.2020.3017172
10.1109/TVT.2021.3125109
10.1109/TNET.2015.2432804
10.1109/JIOT.2020.2997720
10.1109/TMC.2020.2973993
10.1109/TWC.2022.3160099
10.1109/TITS.2017.2748381
10.1109/MWC.2019.1800515
10.1109/TSMC.2021.3097005
10.1109/TVT.2021.3118446
10.1109/TVT.2020.3025624
10.1109/MCOM.2019.1800772
10.1109/TITS.2014.2316006
10.1109/TII.2021.3088407
10.1109/JIOT.2021.3138434
10.1609/aaai.v36i8.20908
10.1109/TWC.2021.3096881
10.1109/MCOMSTD.001.2000069
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysarc.2022.102780
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6165
ExternalDocumentID 10_1016_j_sysarc_2022_102780
S138376212200265X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
U5U
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-e71d6f2b0dbb62d9ff79a917e1ddb2155440813a93d0578925c6c541a7e9cd9e3
IEDL.DBID .~1
ISSN 1383-7621
IngestDate Thu Apr 24 23:13:16 EDT 2025
Tue Jul 01 00:29:19 EDT 2025
Fri Feb 23 02:38:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vehicular edge computing
Deep reinforcement learning
Real-time task offloading
Heterogeneous resource allocation
Exact potential game
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e71d6f2b0dbb62d9ff79a917e1ddb2155440813a93d0578925c6c541a7e9cd9e3
ORCID 0000-0001-5057-5468
ParticipantIDs crossref_citationtrail_10_1016_j_sysarc_2022_102780
crossref_primary_10_1016_j_sysarc_2022_102780
elsevier_sciencedirect_doi_10_1016_j_sysarc_2022_102780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Journal of systems architecture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Liu, Xiao, Feng, Wu, Guo (b9) 2020; 25
Xu, Liu, Zhang, Jiang, Xiao, Luo (b2) 2022
Alam, Jamalipour (b27) 2022; 21
Zhou, Liu, Feng, Zhang, Mumtaz, Rodriguez (b39) 2019; 68
Nie, Zhao, Gao, Yu (b29) 2021; 70
Boyd, Boyd, Vandenberghe (b34) 2004
Zhang, Cao, Zhang (b28) 2021; 18
Papandriopoulos, Evans (b38) 2006
Liu, Lee, Ng, Chen, Son (b18) 2014; 15
Han, Tian, Sheng, Duan, Zhou, Hao, Long, Chen, Leung (b22) 2020; 22
Dai, Hu, Wu, Xing, Teng, Yu (b25) 2022; 23
Althamary, Huang, Lin (b26) 2019
Liu, Ng, Lee, Son, Stojmenovic (b20) 2016; 24
Liu, Xiao, Dai, Lee, Guo, Cao (b4) 2021; 20
Rajeswaran, Mordatch, Kumar (b32) 2020
Chew, Soong (b33) 2016
Islam, Avazov, Dobre, Kwak (b10) 2017; 19
Xu, Liu, Liu, Jiang, Guo, Wu (b19) 2021; 49
Cui, Du, Wang, Wu, Wang (b21) 2021; 70
Dai, Song, Liu, Dai, Zhou, Guo (b5) 2021
Albaba, Yildiz (b31) 2021; 30
Liu, Zhang, Long, Nallanathan, Leung (b14) 2019; 26
Liu, Liu, Guo, Xie, Lee, Son (b7) 2020; 7
L. Zheng, T. Fiez, Z. Alumbaugh, B. Chasnov, L.J. Ratliff, Stackelberg actor-critic: Game-theoretic reinforcement learning algorithms, in: Proc. AAAI Conf. Artif. Intell., Vol. 36, no. 8, AAAI, 2022, pp. 9217–9224.
Xu, Yang, Wu, Zhang, Wang, Wang, Han (b23) 2021; 21
Sun, Ding, Dai, Navaie, So (b37) 2020; 69
Liu, Feng, Dai, Lee, Son, Cao (b8) 2018; 19
Liu, Xu, Chen, Liu, Wu, Lee (b3) 2019; 57
Zhu, Wu, Wu, Fan, Fan, Wang (b13) 2021; 9
G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal, N. Heess, T. Lillicrap, Distributed Distributional Deterministic Policy Gradients, in: Proc. Int. Conf. Learn. Represent., ICLR, 2018.
.
Zhang, Wang, Bao, Liu (b12) 2021; 8
Liu, Liu, Ren, Xu, Xie, Cao (b15) 2021
Khan, Li, Ihsan, Khan, Menon, Ahmed (b36) 2021; 23
Data source: DiDi Chuxing GAIA Open Dataset Initiative
Zhang, Cao, Maharjan, Zhang (b6) 2022; 9
Liu, Dai, Xing, Yu, Zhang (b16) 2022; 52
P. Dai, K. Hu, X. Wu, H. Xing, Z. Yu, Asynchronous Deep Reinforcement Learning for Data-Driven Task Offloading in MEC-Empowered Vehicular Networks., in: Proc. IEEE Int. Conf. Comput. Commun., INFOCOM, 2021.
Bagheri, Noor-A-Rahim, Liu, Lee, Pesch, Moessner, Xiao (b1) 2021; 5
Patel, Shah, Ding, Guan, Sun, Chang, Lim (b11) 2021; 20
Chen, Guo, Liu, Liao, Xiao (b17) 2020; 20
Liu (10.1016/j.sysarc.2022.102780_b8) 2018; 19
Xu (10.1016/j.sysarc.2022.102780_b19) 2021; 49
Xu (10.1016/j.sysarc.2022.102780_b23) 2021; 21
Althamary (10.1016/j.sysarc.2022.102780_b26) 2019
Liu (10.1016/j.sysarc.2022.102780_b14) 2019; 26
Zhang (10.1016/j.sysarc.2022.102780_b12) 2021; 8
Khan (10.1016/j.sysarc.2022.102780_b36) 2021; 23
Sun (10.1016/j.sysarc.2022.102780_b37) 2020; 69
Zhou (10.1016/j.sysarc.2022.102780_b39) 2019; 68
Nie (10.1016/j.sysarc.2022.102780_b29) 2021; 70
Xu (10.1016/j.sysarc.2022.102780_b9) 2020; 25
10.1016/j.sysarc.2022.102780_b30
Zhang (10.1016/j.sysarc.2022.102780_b28) 2021; 18
Rajeswaran (10.1016/j.sysarc.2022.102780_b32) 2020
Chen (10.1016/j.sysarc.2022.102780_b17) 2020; 20
Liu (10.1016/j.sysarc.2022.102780_b20) 2016; 24
10.1016/j.sysarc.2022.102780_b35
Liu (10.1016/j.sysarc.2022.102780_b4) 2021; 20
Islam (10.1016/j.sysarc.2022.102780_b10) 2017; 19
Liu (10.1016/j.sysarc.2022.102780_b3) 2019; 57
Liu (10.1016/j.sysarc.2022.102780_b16) 2022; 52
Dai (10.1016/j.sysarc.2022.102780_b25) 2022; 23
Han (10.1016/j.sysarc.2022.102780_b22) 2020; 22
Zhang (10.1016/j.sysarc.2022.102780_b6) 2022; 9
Papandriopoulos (10.1016/j.sysarc.2022.102780_b38) 2006
Xu (10.1016/j.sysarc.2022.102780_b2) 2022
Albaba (10.1016/j.sysarc.2022.102780_b31) 2021; 30
Chew (10.1016/j.sysarc.2022.102780_b33) 2016
Cui (10.1016/j.sysarc.2022.102780_b21) 2021; 70
Dai (10.1016/j.sysarc.2022.102780_b5) 2021
10.1016/j.sysarc.2022.102780_b40
Alam (10.1016/j.sysarc.2022.102780_b27) 2022; 21
Bagheri (10.1016/j.sysarc.2022.102780_b1) 2021; 5
Patel (10.1016/j.sysarc.2022.102780_b11) 2021; 20
Liu (10.1016/j.sysarc.2022.102780_b15) 2021
Liu (10.1016/j.sysarc.2022.102780_b18) 2014; 15
Zhu (10.1016/j.sysarc.2022.102780_b13) 2021; 9
Liu (10.1016/j.sysarc.2022.102780_b7) 2020; 7
10.1016/j.sysarc.2022.102780_b24
Boyd (10.1016/j.sysarc.2022.102780_b34) 2004
References_xml – reference: P. Dai, K. Hu, X. Wu, H. Xing, Z. Yu, Asynchronous Deep Reinforcement Learning for Data-Driven Task Offloading in MEC-Empowered Vehicular Networks., in: Proc. IEEE Int. Conf. Comput. Commun., INFOCOM, 2021.
– year: 2016
  ident: b33
  article-title: Potential Game Theory
– volume: 19
  start-page: 721
  year: 2017
  end-page: 742
  ident: b10
  article-title: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 57
  start-page: 41
  year: 2019
  end-page: 47
  ident: b3
  article-title: A hierarchical architecture for the future internet of vehicles
  publication-title: IEEE Commun. Mag.
– volume: 7
  start-page: 7999
  year: 2020
  end-page: 8011
  ident: b7
  article-title: Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles
  publication-title: IEEE Internet Things J.
– volume: 9
  start-page: 12770
  year: 2021
  end-page: 12782
  ident: b13
  article-title: Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning
  publication-title: IEEE Internet Things J.
– volume: 49
  start-page: 851
  year: 2021
  end-page: 860
  ident: b19
  article-title: Potential game based channel allocation for vehicular edge computing
  publication-title: Tien Tzu Hsueh Pao/Acta Electron. Sin.
– reference: Data source: DiDi Chuxing GAIA Open Dataset Initiative,
– start-page: 3270
  year: 2006
  end-page: 3275
  ident: b38
  article-title: Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks
  publication-title: Proc. IEEE Conf. on Commun., Vol. 7
– volume: 21
  start-page: 7641
  year: 2022
  end-page: 7652
  ident: b27
  article-title: Multi-agent DRL-based hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVs)
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 19
  start-page: 2420
  year: 2018
  end-page: 2431
  ident: b8
  article-title: Coding-assisted broadcast scheduling via memetic computing in SDN-based vehicular networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 24
  start-page: 1759
  year: 2016
  end-page: 1773
  ident: b20
  article-title: Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as a software defined network
  publication-title: IEEE/ACM Trans. Netw.
– volume: 21
  start-page: 461
  year: 2021
  end-page: 476
  ident: b23
  article-title: Socially driven joint optimization of communication, caching, and computing resources in vehicular networks
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 70
  start-page: 13162
  year: 2021
  end-page: 13173
  ident: b29
  article-title: Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach
  publication-title: IEEE Trans. Veh. Technol.
– reference: G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal, N. Heess, T. Lillicrap, Distributed Distributional Deterministic Policy Gradients, in: Proc. Int. Conf. Learn. Represent., ICLR, 2018.
– reference: L. Zheng, T. Fiez, Z. Alumbaugh, B. Chasnov, L.J. Ratliff, Stackelberg actor-critic: Game-theoretic reinforcement learning algorithms, in: Proc. AAAI Conf. Artif. Intell., Vol. 36, no. 8, AAAI, 2022, pp. 9217–9224.
– year: 2004
  ident: b34
  article-title: Convex Optimization
– volume: 23
  start-page: 22442
  year: 2021
  end-page: 22451
  ident: b36
  article-title: NOMA-enabled optimization framework for next-generation small-cell IoV networks under imperfect SIC decoding
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1154
  year: 2019
  end-page: 1159
  ident: b26
  article-title: A survey on multi-agent reinforcement learning methods for vehicular networks
  publication-title: Proc. Int. Wirel. Commun. Mob. Comput.
– volume: 15
  start-page: 2419
  year: 2014
  end-page: 2431
  ident: b18
  article-title: Temporal data dissemination in vehicular cyber-physical systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2021
  ident: b5
  article-title: Edge intelligence for adaptive multimedia streaming in heterogeneous internet of vehicles
  publication-title: IEEE Trans. Mob. Comput.
– volume: 20
  start-page: 3181
  year: 2021
  end-page: 3193
  ident: b4
  article-title: Fog computing empowered data dissemination in software defined heterogeneous vanets
  publication-title: IEEE Trans. Mob. Comput.
– year: 2021
  ident: b15
  article-title: RtDS: Real-time distributed strategy for multi-period task offloading in vehicular edge computing environment
  publication-title: Neural. Comput. Appl.
– volume: 5
  start-page: 48
  year: 2021
  end-page: 54
  ident: b1
  article-title: 5G NR-V2X: Toward connected and cooperative autonomous driving
  publication-title: IEEE Commun. Stand. Mag.
– volume: 25
  start-page: 2482
  year: 2020
  end-page: 2494
  ident: b9
  article-title: Vehicular fog computing enabled real-time collision warning via trajectory calibration
  publication-title: Mobile Netw. Appl.
– volume: 9
  start-page: 239
  year: 2022
  end-page: 251
  ident: b6
  article-title: Digital twin empowered content caching in social-aware vehicular edge networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 52
  start-page: 4388
  year: 2022
  end-page: 4401
  ident: b16
  article-title: A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 23
  start-page: 899
  year: 2022
  end-page: 911
  ident: b25
  article-title: A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 20
  start-page: 2025
  year: 2020
  end-page: 2040
  ident: b17
  article-title: Robust computation offloading and resource scheduling in cloudlet-based mobile cloud computing
  publication-title: IEEE Trans. Mob. Comput.
– reference: .
– volume: 70
  start-page: 13062
  year: 2021
  end-page: 13072
  ident: b21
  article-title: Reinforcement learning for joint optimization of communication and computation in vehicular networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 8
  start-page: 16522
  year: 2021
  end-page: 16534
  ident: b12
  article-title: Centralized resource allocation and distributed power control for NOMA-integrated NR V2X
  publication-title: IEEE Internet Things J.
– start-page: 3762
  year: 2022
  end-page: 3767
  ident: b2
  article-title: Age of view: A new metric for evaluating heterogeneous information fusion in vehicular cyber-physical systems
  publication-title: Proc. IEEE Int. Conf. Intell. Transp. Syst.
– volume: 18
  start-page: 1405
  year: 2021
  end-page: 1413
  ident: b28
  article-title: Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks
  publication-title: IEEE Trans. Industr. Inform.
– volume: 68
  start-page: 3113
  year: 2019
  end-page: 3125
  ident: b39
  article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach
  publication-title: IEEE Trans. Veh. Technol.
– volume: 30
  start-page: 885
  year: 2021
  end-page: 892
  ident: b31
  article-title: Driver modeling through deep reinforcement learning and behavioral game theory
  publication-title: IEEE Trans. Contr. Syst. Technol.
– volume: 22
  start-page: 5437
  year: 2020
  end-page: 5446
  ident: b22
  article-title: Reliability-aware joint optimization for cooperative vehicular communication and computing
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 20
  start-page: 6254
  year: 2021
  end-page: 6268
  ident: b11
  article-title: Performance analysis of NOMA in vehicular communications over inid nakagami-m fading channels
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 26
  start-page: 88
  year: 2019
  end-page: 93
  ident: b14
  article-title: Energy-efficient subchannel matching and power allocation in NOMA autonomous driving vehicular networks
  publication-title: IEEE Wirel. Commun.
– start-page: 7953
  year: 2020
  end-page: 7963
  ident: b32
  article-title: A game theoretic framework for model based reinforcement learning
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 69
  start-page: 14001
  year: 2020
  end-page: 14006
  ident: b37
  article-title: Performance of downlink NOMA in vehicular communication networks: An analysis based on Poisson line cox point process
  publication-title: IEEE Trans. Veh. Technol.
– volume: 9
  start-page: 239
  issue: 1
  year: 2022
  ident: 10.1016/j.sysarc.2022.102780_b6
  article-title: Digital twin empowered content caching in social-aware vehicular edge networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2021.3068369
– volume: 20
  start-page: 6254
  issue: 10
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b11
  article-title: Performance analysis of NOMA in vehicular communications over inid nakagami-m fading channels
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3073050
– volume: 20
  start-page: 3181
  issue: 11
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b4
  article-title: Fog computing empowered data dissemination in software defined heterogeneous vanets
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2020.2997460
– volume: 25
  start-page: 2482
  issue: 6
  year: 2020
  ident: 10.1016/j.sysarc.2022.102780_b9
  article-title: Vehicular fog computing enabled real-time collision warning via trajectory calibration
  publication-title: Mobile Netw. Appl.
  doi: 10.1007/s11036-020-01591-7
– ident: 10.1016/j.sysarc.2022.102780_b40
– volume: 22
  start-page: 5437
  issue: 8
  year: 2020
  ident: 10.1016/j.sysarc.2022.102780_b22
  article-title: Reliability-aware joint optimization for cooperative vehicular communication and computing
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3038558
– volume: 23
  start-page: 22442
  issue: 11
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b36
  article-title: NOMA-enabled optimization framework for next-generation small-cell IoV networks under imperfect SIC decoding
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3091402
– year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b5
  article-title: Edge intelligence for adaptive multimedia streaming in heterogeneous internet of vehicles
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2021.3106147
– volume: 19
  start-page: 721
  issue: 2
  year: 2017
  ident: 10.1016/j.sysarc.2022.102780_b10
  article-title: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2016.2621116
– volume: 8
  start-page: 16522
  issue: 22
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b12
  article-title: Centralized resource allocation and distributed power control for NOMA-integrated NR V2X
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3075250
– volume: 30
  start-page: 885
  issue: 2
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b31
  article-title: Driver modeling through deep reinforcement learning and behavioral game theory
  publication-title: IEEE Trans. Contr. Syst. Technol.
  doi: 10.1109/TCST.2021.3075557
– ident: 10.1016/j.sysarc.2022.102780_b35
– ident: 10.1016/j.sysarc.2022.102780_b24
  doi: 10.1109/INFOCOM42981.2021.9488886
– volume: 68
  start-page: 3113
  issue: 4
  year: 2019
  ident: 10.1016/j.sysarc.2022.102780_b39
  article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2894851
– volume: 23
  start-page: 899
  issue: 2
  year: 2022
  ident: 10.1016/j.sysarc.2022.102780_b25
  article-title: A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3017172
– year: 2004
  ident: 10.1016/j.sysarc.2022.102780_b34
– volume: 49
  start-page: 851
  issue: 5
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b19
  article-title: Potential game based channel allocation for vehicular edge computing
  publication-title: Tien Tzu Hsueh Pao/Acta Electron. Sin.
– volume: 70
  start-page: 13062
  issue: 12
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b21
  article-title: Reinforcement learning for joint optimization of communication and computation in vehicular networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3125109
– start-page: 1154
  year: 2019
  ident: 10.1016/j.sysarc.2022.102780_b26
  article-title: A survey on multi-agent reinforcement learning methods for vehicular networks
– volume: 24
  start-page: 1759
  issue: 3
  year: 2016
  ident: 10.1016/j.sysarc.2022.102780_b20
  article-title: Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as a software defined network
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2015.2432804
– volume: 7
  start-page: 7999
  issue: 9
  year: 2020
  ident: 10.1016/j.sysarc.2022.102780_b7
  article-title: Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2997720
– volume: 20
  start-page: 2025
  issue: 5
  year: 2020
  ident: 10.1016/j.sysarc.2022.102780_b17
  article-title: Robust computation offloading and resource scheduling in cloudlet-based mobile cloud computing
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2020.2973993
– volume: 21
  start-page: 7641
  issue: 9
  year: 2022
  ident: 10.1016/j.sysarc.2022.102780_b27
  article-title: Multi-agent DRL-based hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVs)
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2022.3160099
– start-page: 3270
  year: 2006
  ident: 10.1016/j.sysarc.2022.102780_b38
  article-title: Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks
– year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b15
  article-title: RtDS: Real-time distributed strategy for multi-period task offloading in vehicular edge computing environment
  publication-title: Neural. Comput. Appl.
– volume: 19
  start-page: 2420
  issue: 8
  year: 2018
  ident: 10.1016/j.sysarc.2022.102780_b8
  article-title: Coding-assisted broadcast scheduling via memetic computing in SDN-based vehicular networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2748381
– year: 2016
  ident: 10.1016/j.sysarc.2022.102780_b33
– volume: 26
  start-page: 88
  issue: 4
  year: 2019
  ident: 10.1016/j.sysarc.2022.102780_b14
  article-title: Energy-efficient subchannel matching and power allocation in NOMA autonomous driving vehicular networks
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2019.1800515
– start-page: 7953
  year: 2020
  ident: 10.1016/j.sysarc.2022.102780_b32
  article-title: A game theoretic framework for model based reinforcement learning
– volume: 52
  start-page: 4388
  issue: 7
  year: 2022
  ident: 10.1016/j.sysarc.2022.102780_b16
  article-title: A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2021.3097005
– volume: 70
  start-page: 13162
  issue: 12
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b29
  article-title: Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3118446
– volume: 69
  start-page: 14001
  issue: 11
  year: 2020
  ident: 10.1016/j.sysarc.2022.102780_b37
  article-title: Performance of downlink NOMA in vehicular communication networks: An analysis based on Poisson line cox point process
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3025624
– volume: 57
  start-page: 41
  issue: 7
  year: 2019
  ident: 10.1016/j.sysarc.2022.102780_b3
  article-title: A hierarchical architecture for the future internet of vehicles
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2019.1800772
– volume: 15
  start-page: 2419
  issue: 6
  year: 2014
  ident: 10.1016/j.sysarc.2022.102780_b18
  article-title: Temporal data dissemination in vehicular cyber-physical systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2316006
– volume: 18
  start-page: 1405
  issue: 2
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b28
  article-title: Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2021.3088407
– volume: 9
  start-page: 12770
  issue: 14
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b13
  article-title: Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3138434
– ident: 10.1016/j.sysarc.2022.102780_b30
  doi: 10.1609/aaai.v36i8.20908
– start-page: 3762
  year: 2022
  ident: 10.1016/j.sysarc.2022.102780_b2
  article-title: Age of view: A new metric for evaluating heterogeneous information fusion in vehicular cyber-physical systems
– volume: 21
  start-page: 461
  issue: 1
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b23
  article-title: Socially driven joint optimization of communication, caching, and computing resources in vehicular networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3096881
– volume: 5
  start-page: 48
  issue: 1
  year: 2021
  ident: 10.1016/j.sysarc.2022.102780_b1
  article-title: 5G NR-V2X: Toward connected and cooperative autonomous driving
  publication-title: IEEE Commun. Stand. Mag.
  doi: 10.1109/MCOMSTD.001.2000069
SSID ssj0005512
Score 2.5464838
Snippet Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102780
SubjectTerms Deep reinforcement learning
Exact potential game
Heterogeneous resource allocation
Real-time task offloading
Vehicular edge computing
Title Joint task offloading and resource optimization in NOMA-based vehicular edge computing: A game-theoretic DRL approach
URI https://dx.doi.org/10.1016/j.sysarc.2022.102780
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL178FufHeAevcW3Sj9XbmI45dYI62K0kTarVrR1bJ3jxbzdp0zFBFDwVSl4oL6_vK7_3HkJnvqCUMMvFzLY4dmLPxtxybCxiKqnkMfFFgfIdeL2h0x-5oxrqVLUwGlZpdH-p0wttbd40DTeb0yRpPto6uPKU6tU4A88d6Qp2x9dSfv65AvNwyxtPtRjr1VX5XIHxmn_MlTipKJEQ3cPA180hfzJPKyanu402ja8I7fJzdlBNprtoq5rDAOa33EOLfpakOeRs_gZZHI-zAhcPLBUwM9l5yJRqmJiaS0hSGNzftbE2YQLe5UtSoFFB59YgKvZXG1xAG57ZROJlsSNcPtxC1YV8Hw27V0-dHjbjFHCk4oIcS98WXky4JTj3iNDJ2oCpaE3aQnCi_QpH-QeUBVQoJ64VEDfyItexmS-DSASSHqC1NEvlIQLKuYpDbMI9HjiEM66ONHZbgVCPluRWHdGKi2Fkeo3rkRfjsAKVvYYl70PN-7DkfR3hJdW07LXxx3q_OqDwm8yEyhz8Snn0b8pjtKEHzpdJmBO0ls8W8lS5JTlvFHLXQOvt65ve4Au-zuOx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50fdAXb_F2HnwN2yY9tr4tHqy6ruAB-1aSJtV6tLLbFfz3Jm3qAaLgU6FkQplM58o3MwD7oWSMcscn3HUE8dLAJcLxXCJTppgSKQ1lhfIdBL1b72zoD6fgsKmFMbBKq_trnV5pa_umbbnZfsmy9rVrgqtAq16DMwj84TTMmO5UfgtmuqfnvcEn0sOvLz31emIImgq6CuY1fhtridKBIqWmjUFo-kP-ZKG-WJ2TRZi37iJ26y9agimVL8NCM4oB7Z-5ApOzIstLLPn4EYs0fSoqaDzyXOLIJuix0Nrh2ZZdYpbj4PKiS4wVk_iq7rMKkIomvYZJtb_e4AC7eMefFfmod8Sjqz42jchX4fbk-OawR-xEBZLo0KAkKnRlkFLhSCECKk2-NuI6YFOulIIa18LTLgLjEZPaj-tE1E-CxPdcHqookZFia9DKi1ytAzIhdCjiUhGIyKOCC32qqd-JpH50lHA2gDVcjBPbbtxMvXiKG1zZQ1zzPja8j2vebwD5oHqp2238sT5sDij-Jjaxtgi_Um7-m3IPZns3F_24fzo434I5M3--zslsQ6scTdSO9lJKsWul8B2QvuZi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+task+offloading+and+resource+optimization+in+NOMA-based+vehicular+edge+computing%3A+A+game-theoretic+DRL+approach&rft.jtitle=Journal+of+systems+architecture&rft.au=Xu%2C+Xincao&rft.au=Liu%2C+Kai&rft.au=Dai%2C+Penglin&rft.au=Jin%2C+Feiyu&rft.date=2023-01-01&rft.issn=1383-7621&rft.volume=134&rft.spage=102780&rft_id=info:doi/10.1016%2Fj.sysarc.2022.102780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysarc_2022_102780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon