Joint task offloading and resource optimization in NOMA-based vehicular edge computing: A game-theoretic DRL approach
Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited resources and massive transmission demands bring great challenges on implementing vehicular applications with stringent deadline requirements. Thi...
Saved in:
Published in | Journal of systems architecture Vol. 134; p. 102780 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited resources and massive transmission demands bring great challenges on implementing vehicular applications with stringent deadline requirements. This work presents a non-orthogonal multiple access (NOMA) based architecture in VEC, where heterogeneous edge nodes are cooperated for real-time task processing. We derive a vehicle-to-infrastructure (V2I) transmission model by considering both intra-edge and inter-edge interferences and formulate a cooperative resource optimization (CRO) problem by jointly optimizing the task offloading and resource allocation, aiming at maximizing the service ratio. Further, we decompose the CRO into two subproblems, namely, task offloading and resource allocation. In particular, the task offloading subproblem is modeled as an exact potential game (EPG), and a multi-agent distributed distributional deep deterministic policy gradient (MAD4PG) is proposed to achieve the Nash equilibrium. The resource allocation subproblem is divided into two independent convex optimization problems, and an optimal solution is proposed by using a gradient-based iterative method and KKT condition. Finally, we build the simulation model based on real-world vehicular trajectories and give a comprehensive performance evaluation, which conclusively demonstrates the superiority of the proposed solutions. |
---|---|
AbstractList | Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited resources and massive transmission demands bring great challenges on implementing vehicular applications with stringent deadline requirements. This work presents a non-orthogonal multiple access (NOMA) based architecture in VEC, where heterogeneous edge nodes are cooperated for real-time task processing. We derive a vehicle-to-infrastructure (V2I) transmission model by considering both intra-edge and inter-edge interferences and formulate a cooperative resource optimization (CRO) problem by jointly optimizing the task offloading and resource allocation, aiming at maximizing the service ratio. Further, we decompose the CRO into two subproblems, namely, task offloading and resource allocation. In particular, the task offloading subproblem is modeled as an exact potential game (EPG), and a multi-agent distributed distributional deep deterministic policy gradient (MAD4PG) is proposed to achieve the Nash equilibrium. The resource allocation subproblem is divided into two independent convex optimization problems, and an optimal solution is proposed by using a gradient-based iterative method and KKT condition. Finally, we build the simulation model based on real-world vehicular trajectories and give a comprehensive performance evaluation, which conclusively demonstrates the superiority of the proposed solutions. |
ArticleNumber | 102780 |
Author | Ren, Hualing Guo, Songtao Xu, Xincao Jin, Feiyu Dai, Penglin Liu, Kai Zhan, Choujun |
Author_xml | – sequence: 1 givenname: Xincao orcidid: 0000-0001-5057-5468 surname: Xu fullname: Xu, Xincao email: near@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 2 givenname: Kai surname: Liu fullname: Liu, Kai email: liukai0807@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 3 givenname: Penglin surname: Dai fullname: Dai, Penglin email: penglindai@swjtu.edu.cn organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China – sequence: 4 givenname: Feiyu surname: Jin fullname: Jin, Feiyu email: fyjin@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 5 givenname: Hualing surname: Ren fullname: Ren, Hualing email: renharlin@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 6 givenname: Choujun surname: Zhan fullname: Zhan, Choujun email: zchoujun2-c@my.cityu.edu.hk organization: School of Computing, South China Normal University, Guangzhou, China – sequence: 7 givenname: Songtao surname: Guo fullname: Guo, Songtao email: guosongtao@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wNQk89-FUOo_1YLoOmSSO23qzGRIMoX69E4dVy50dQ8XvgPnm6BRYxpA6JKSGSU0udrN3MEJK2eMMNa_WJqREzSmWRoGCU3iUZ_DLAzShNEzNHFuRwiJY8rGqHsyuvHYC_eBTVlWRijdbLBoFLbgTGclYNN6XetP4bVpsG7wy_p5ERTCgcJ72GrZVcJiUBvA0tRt5_uCOV7gjagh8FswFryW-OZ1hUXbWiPk9hydlqJycPFzp-j97vZt-RCs1vePy8UqkCFJfAApVUnJCqKKImEqL8s0FzlNgSpVMBrHUUQyGoo8VCROs5zFMpFxREUKuVQ5hFM0H3qlNc5ZKLnU_nuHt0JXnBJ-FMh3fBDIjwL5ILCHo19wa3Ut7OE_7HrAoB-212C5kxoaCUpbkJ4ro_8u-AInq5Bl |
CitedBy_id | crossref_primary_10_1007_s10723_025_09800_x crossref_primary_10_1109_TCE_2023_3318853 crossref_primary_10_1002_cpe_8235 crossref_primary_10_1109_JIOT_2024_3464641 crossref_primary_10_3390_math13010052 crossref_primary_10_1109_TITS_2023_3340334 crossref_primary_10_1109_ACCESS_2024_3374635 crossref_primary_10_1109_TMC_2024_3444597 crossref_primary_10_1016_j_sysarc_2024_103215 crossref_primary_10_1109_TSC_2024_3355937 crossref_primary_10_3390_a17080370 crossref_primary_10_1016_j_sysarc_2023_103048 crossref_primary_10_1109_JIOT_2023_3285950 crossref_primary_10_1016_j_iot_2023_100970 crossref_primary_10_1109_JSYST_2024_3403696 crossref_primary_10_1016_j_comnet_2024_110985 crossref_primary_10_1109_ACCESS_2024_3454810 crossref_primary_10_1016_j_swevo_2025_101878 crossref_primary_10_1109_MWC_007_2400133 crossref_primary_10_3390_math11204269 crossref_primary_10_3390_electronics14020380 crossref_primary_10_1016_j_comnet_2025_111236 crossref_primary_10_1109_TIV_2023_3321679 crossref_primary_10_3390_math12101466 crossref_primary_10_1016_j_vehcom_2025_100898 crossref_primary_10_1109_ACCESS_2024_3497137 crossref_primary_10_1016_j_swevo_2024_101704 crossref_primary_10_1002_aisy_202300151 crossref_primary_10_1007_s41060_023_00473_x crossref_primary_10_1016_j_neunet_2024_106621 crossref_primary_10_1109_ACCESS_2024_3476679 |
Cites_doi | 10.1109/TCSS.2021.3068369 10.1109/TWC.2021.3073050 10.1109/TMC.2020.2997460 10.1007/s11036-020-01591-7 10.1109/TITS.2020.3038558 10.1109/TITS.2021.3091402 10.1109/TMC.2021.3106147 10.1109/COMST.2016.2621116 10.1109/JIOT.2021.3075250 10.1109/TCST.2021.3075557 10.1109/INFOCOM42981.2021.9488886 10.1109/TVT.2019.2894851 10.1109/TITS.2020.3017172 10.1109/TVT.2021.3125109 10.1109/TNET.2015.2432804 10.1109/JIOT.2020.2997720 10.1109/TMC.2020.2973993 10.1109/TWC.2022.3160099 10.1109/TITS.2017.2748381 10.1109/MWC.2019.1800515 10.1109/TSMC.2021.3097005 10.1109/TVT.2021.3118446 10.1109/TVT.2020.3025624 10.1109/MCOM.2019.1800772 10.1109/TITS.2014.2316006 10.1109/TII.2021.3088407 10.1109/JIOT.2021.3138434 10.1609/aaai.v36i8.20908 10.1109/TWC.2021.3096881 10.1109/MCOMSTD.001.2000069 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sysarc.2022.102780 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6165 |
ExternalDocumentID | 10_1016_j_sysarc_2022_102780 S138376212200265X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 U5U UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-e71d6f2b0dbb62d9ff79a917e1ddb2155440813a93d0578925c6c541a7e9cd9e3 |
IEDL.DBID | .~1 |
ISSN | 1383-7621 |
IngestDate | Thu Apr 24 23:13:16 EDT 2025 Tue Jul 01 00:29:19 EDT 2025 Fri Feb 23 02:38:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vehicular edge computing Deep reinforcement learning Real-time task offloading Heterogeneous resource allocation Exact potential game |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-e71d6f2b0dbb62d9ff79a917e1ddb2155440813a93d0578925c6c541a7e9cd9e3 |
ORCID | 0000-0001-5057-5468 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sysarc_2022_102780 crossref_primary_10_1016_j_sysarc_2022_102780 elsevier_sciencedirect_doi_10_1016_j_sysarc_2022_102780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of systems architecture |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Liu, Xiao, Feng, Wu, Guo (b9) 2020; 25 Xu, Liu, Zhang, Jiang, Xiao, Luo (b2) 2022 Alam, Jamalipour (b27) 2022; 21 Zhou, Liu, Feng, Zhang, Mumtaz, Rodriguez (b39) 2019; 68 Nie, Zhao, Gao, Yu (b29) 2021; 70 Boyd, Boyd, Vandenberghe (b34) 2004 Zhang, Cao, Zhang (b28) 2021; 18 Papandriopoulos, Evans (b38) 2006 Liu, Lee, Ng, Chen, Son (b18) 2014; 15 Han, Tian, Sheng, Duan, Zhou, Hao, Long, Chen, Leung (b22) 2020; 22 Dai, Hu, Wu, Xing, Teng, Yu (b25) 2022; 23 Althamary, Huang, Lin (b26) 2019 Liu, Ng, Lee, Son, Stojmenovic (b20) 2016; 24 Liu, Xiao, Dai, Lee, Guo, Cao (b4) 2021; 20 Rajeswaran, Mordatch, Kumar (b32) 2020 Chew, Soong (b33) 2016 Islam, Avazov, Dobre, Kwak (b10) 2017; 19 Xu, Liu, Liu, Jiang, Guo, Wu (b19) 2021; 49 Cui, Du, Wang, Wu, Wang (b21) 2021; 70 Dai, Song, Liu, Dai, Zhou, Guo (b5) 2021 Albaba, Yildiz (b31) 2021; 30 Liu, Zhang, Long, Nallanathan, Leung (b14) 2019; 26 Liu, Liu, Guo, Xie, Lee, Son (b7) 2020; 7 L. Zheng, T. Fiez, Z. Alumbaugh, B. Chasnov, L.J. Ratliff, Stackelberg actor-critic: Game-theoretic reinforcement learning algorithms, in: Proc. AAAI Conf. Artif. Intell., Vol. 36, no. 8, AAAI, 2022, pp. 9217–9224. Xu, Yang, Wu, Zhang, Wang, Wang, Han (b23) 2021; 21 Sun, Ding, Dai, Navaie, So (b37) 2020; 69 Liu, Feng, Dai, Lee, Son, Cao (b8) 2018; 19 Liu, Xu, Chen, Liu, Wu, Lee (b3) 2019; 57 Zhu, Wu, Wu, Fan, Fan, Wang (b13) 2021; 9 G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal, N. Heess, T. Lillicrap, Distributed Distributional Deterministic Policy Gradients, in: Proc. Int. Conf. Learn. Represent., ICLR, 2018. . Zhang, Wang, Bao, Liu (b12) 2021; 8 Liu, Liu, Ren, Xu, Xie, Cao (b15) 2021 Khan, Li, Ihsan, Khan, Menon, Ahmed (b36) 2021; 23 Data source: DiDi Chuxing GAIA Open Dataset Initiative Zhang, Cao, Maharjan, Zhang (b6) 2022; 9 Liu, Dai, Xing, Yu, Zhang (b16) 2022; 52 P. Dai, K. Hu, X. Wu, H. Xing, Z. Yu, Asynchronous Deep Reinforcement Learning for Data-Driven Task Offloading in MEC-Empowered Vehicular Networks., in: Proc. IEEE Int. Conf. Comput. Commun., INFOCOM, 2021. Bagheri, Noor-A-Rahim, Liu, Lee, Pesch, Moessner, Xiao (b1) 2021; 5 Patel, Shah, Ding, Guan, Sun, Chang, Lim (b11) 2021; 20 Chen, Guo, Liu, Liao, Xiao (b17) 2020; 20 Liu (10.1016/j.sysarc.2022.102780_b8) 2018; 19 Xu (10.1016/j.sysarc.2022.102780_b19) 2021; 49 Xu (10.1016/j.sysarc.2022.102780_b23) 2021; 21 Althamary (10.1016/j.sysarc.2022.102780_b26) 2019 Liu (10.1016/j.sysarc.2022.102780_b14) 2019; 26 Zhang (10.1016/j.sysarc.2022.102780_b12) 2021; 8 Khan (10.1016/j.sysarc.2022.102780_b36) 2021; 23 Sun (10.1016/j.sysarc.2022.102780_b37) 2020; 69 Zhou (10.1016/j.sysarc.2022.102780_b39) 2019; 68 Nie (10.1016/j.sysarc.2022.102780_b29) 2021; 70 Xu (10.1016/j.sysarc.2022.102780_b9) 2020; 25 10.1016/j.sysarc.2022.102780_b30 Zhang (10.1016/j.sysarc.2022.102780_b28) 2021; 18 Rajeswaran (10.1016/j.sysarc.2022.102780_b32) 2020 Chen (10.1016/j.sysarc.2022.102780_b17) 2020; 20 Liu (10.1016/j.sysarc.2022.102780_b20) 2016; 24 10.1016/j.sysarc.2022.102780_b35 Liu (10.1016/j.sysarc.2022.102780_b4) 2021; 20 Islam (10.1016/j.sysarc.2022.102780_b10) 2017; 19 Liu (10.1016/j.sysarc.2022.102780_b3) 2019; 57 Liu (10.1016/j.sysarc.2022.102780_b16) 2022; 52 Dai (10.1016/j.sysarc.2022.102780_b25) 2022; 23 Han (10.1016/j.sysarc.2022.102780_b22) 2020; 22 Zhang (10.1016/j.sysarc.2022.102780_b6) 2022; 9 Papandriopoulos (10.1016/j.sysarc.2022.102780_b38) 2006 Xu (10.1016/j.sysarc.2022.102780_b2) 2022 Albaba (10.1016/j.sysarc.2022.102780_b31) 2021; 30 Chew (10.1016/j.sysarc.2022.102780_b33) 2016 Cui (10.1016/j.sysarc.2022.102780_b21) 2021; 70 Dai (10.1016/j.sysarc.2022.102780_b5) 2021 10.1016/j.sysarc.2022.102780_b40 Alam (10.1016/j.sysarc.2022.102780_b27) 2022; 21 Bagheri (10.1016/j.sysarc.2022.102780_b1) 2021; 5 Patel (10.1016/j.sysarc.2022.102780_b11) 2021; 20 Liu (10.1016/j.sysarc.2022.102780_b15) 2021 Liu (10.1016/j.sysarc.2022.102780_b18) 2014; 15 Zhu (10.1016/j.sysarc.2022.102780_b13) 2021; 9 Liu (10.1016/j.sysarc.2022.102780_b7) 2020; 7 10.1016/j.sysarc.2022.102780_b24 Boyd (10.1016/j.sysarc.2022.102780_b34) 2004 |
References_xml | – reference: P. Dai, K. Hu, X. Wu, H. Xing, Z. Yu, Asynchronous Deep Reinforcement Learning for Data-Driven Task Offloading in MEC-Empowered Vehicular Networks., in: Proc. IEEE Int. Conf. Comput. Commun., INFOCOM, 2021. – year: 2016 ident: b33 article-title: Potential Game Theory – volume: 19 start-page: 721 year: 2017 end-page: 742 ident: b10 article-title: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges publication-title: IEEE Commun. Surv. Tutor. – volume: 57 start-page: 41 year: 2019 end-page: 47 ident: b3 article-title: A hierarchical architecture for the future internet of vehicles publication-title: IEEE Commun. Mag. – volume: 7 start-page: 7999 year: 2020 end-page: 8011 ident: b7 article-title: Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles publication-title: IEEE Internet Things J. – volume: 9 start-page: 12770 year: 2021 end-page: 12782 ident: b13 article-title: Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning publication-title: IEEE Internet Things J. – volume: 49 start-page: 851 year: 2021 end-page: 860 ident: b19 article-title: Potential game based channel allocation for vehicular edge computing publication-title: Tien Tzu Hsueh Pao/Acta Electron. Sin. – reference: Data source: DiDi Chuxing GAIA Open Dataset Initiative, – start-page: 3270 year: 2006 end-page: 3275 ident: b38 article-title: Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks publication-title: Proc. IEEE Conf. on Commun., Vol. 7 – volume: 21 start-page: 7641 year: 2022 end-page: 7652 ident: b27 article-title: Multi-agent DRL-based hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVs) publication-title: IEEE Trans. Wirel. Commun. – volume: 19 start-page: 2420 year: 2018 end-page: 2431 ident: b8 article-title: Coding-assisted broadcast scheduling via memetic computing in SDN-based vehicular networks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 24 start-page: 1759 year: 2016 end-page: 1773 ident: b20 article-title: Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as a software defined network publication-title: IEEE/ACM Trans. Netw. – volume: 21 start-page: 461 year: 2021 end-page: 476 ident: b23 article-title: Socially driven joint optimization of communication, caching, and computing resources in vehicular networks publication-title: IEEE Trans. Wirel. Commun. – volume: 70 start-page: 13162 year: 2021 end-page: 13173 ident: b29 article-title: Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach publication-title: IEEE Trans. Veh. Technol. – reference: G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal, N. Heess, T. Lillicrap, Distributed Distributional Deterministic Policy Gradients, in: Proc. Int. Conf. Learn. Represent., ICLR, 2018. – reference: L. Zheng, T. Fiez, Z. Alumbaugh, B. Chasnov, L.J. Ratliff, Stackelberg actor-critic: Game-theoretic reinforcement learning algorithms, in: Proc. AAAI Conf. Artif. Intell., Vol. 36, no. 8, AAAI, 2022, pp. 9217–9224. – year: 2004 ident: b34 article-title: Convex Optimization – volume: 23 start-page: 22442 year: 2021 end-page: 22451 ident: b36 article-title: NOMA-enabled optimization framework for next-generation small-cell IoV networks under imperfect SIC decoding publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1154 year: 2019 end-page: 1159 ident: b26 article-title: A survey on multi-agent reinforcement learning methods for vehicular networks publication-title: Proc. Int. Wirel. Commun. Mob. Comput. – volume: 15 start-page: 2419 year: 2014 end-page: 2431 ident: b18 article-title: Temporal data dissemination in vehicular cyber-physical systems publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2021 ident: b5 article-title: Edge intelligence for adaptive multimedia streaming in heterogeneous internet of vehicles publication-title: IEEE Trans. Mob. Comput. – volume: 20 start-page: 3181 year: 2021 end-page: 3193 ident: b4 article-title: Fog computing empowered data dissemination in software defined heterogeneous vanets publication-title: IEEE Trans. Mob. Comput. – year: 2021 ident: b15 article-title: RtDS: Real-time distributed strategy for multi-period task offloading in vehicular edge computing environment publication-title: Neural. Comput. Appl. – volume: 5 start-page: 48 year: 2021 end-page: 54 ident: b1 article-title: 5G NR-V2X: Toward connected and cooperative autonomous driving publication-title: IEEE Commun. Stand. Mag. – volume: 25 start-page: 2482 year: 2020 end-page: 2494 ident: b9 article-title: Vehicular fog computing enabled real-time collision warning via trajectory calibration publication-title: Mobile Netw. Appl. – volume: 9 start-page: 239 year: 2022 end-page: 251 ident: b6 article-title: Digital twin empowered content caching in social-aware vehicular edge networks publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 52 start-page: 4388 year: 2022 end-page: 4401 ident: b16 article-title: A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing publication-title: IEEE Trans. Syst. Man Cybern. – volume: 23 start-page: 899 year: 2022 end-page: 911 ident: b25 article-title: A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 20 start-page: 2025 year: 2020 end-page: 2040 ident: b17 article-title: Robust computation offloading and resource scheduling in cloudlet-based mobile cloud computing publication-title: IEEE Trans. Mob. Comput. – reference: . – volume: 70 start-page: 13062 year: 2021 end-page: 13072 ident: b21 article-title: Reinforcement learning for joint optimization of communication and computation in vehicular networks publication-title: IEEE Trans. Veh. Technol. – volume: 8 start-page: 16522 year: 2021 end-page: 16534 ident: b12 article-title: Centralized resource allocation and distributed power control for NOMA-integrated NR V2X publication-title: IEEE Internet Things J. – start-page: 3762 year: 2022 end-page: 3767 ident: b2 article-title: Age of view: A new metric for evaluating heterogeneous information fusion in vehicular cyber-physical systems publication-title: Proc. IEEE Int. Conf. Intell. Transp. Syst. – volume: 18 start-page: 1405 year: 2021 end-page: 1413 ident: b28 article-title: Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks publication-title: IEEE Trans. Industr. Inform. – volume: 68 start-page: 3113 year: 2019 end-page: 3125 ident: b39 article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach publication-title: IEEE Trans. Veh. Technol. – volume: 30 start-page: 885 year: 2021 end-page: 892 ident: b31 article-title: Driver modeling through deep reinforcement learning and behavioral game theory publication-title: IEEE Trans. Contr. Syst. Technol. – volume: 22 start-page: 5437 year: 2020 end-page: 5446 ident: b22 article-title: Reliability-aware joint optimization for cooperative vehicular communication and computing publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 20 start-page: 6254 year: 2021 end-page: 6268 ident: b11 article-title: Performance analysis of NOMA in vehicular communications over inid nakagami-m fading channels publication-title: IEEE Trans. Wirel. Commun. – volume: 26 start-page: 88 year: 2019 end-page: 93 ident: b14 article-title: Energy-efficient subchannel matching and power allocation in NOMA autonomous driving vehicular networks publication-title: IEEE Wirel. Commun. – start-page: 7953 year: 2020 end-page: 7963 ident: b32 article-title: A game theoretic framework for model based reinforcement learning publication-title: Proc. Int. Conf. Mach. Learn. – volume: 69 start-page: 14001 year: 2020 end-page: 14006 ident: b37 article-title: Performance of downlink NOMA in vehicular communication networks: An analysis based on Poisson line cox point process publication-title: IEEE Trans. Veh. Technol. – volume: 9 start-page: 239 issue: 1 year: 2022 ident: 10.1016/j.sysarc.2022.102780_b6 article-title: Digital twin empowered content caching in social-aware vehicular edge networks publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2021.3068369 – volume: 20 start-page: 6254 issue: 10 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b11 article-title: Performance analysis of NOMA in vehicular communications over inid nakagami-m fading channels publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3073050 – volume: 20 start-page: 3181 issue: 11 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b4 article-title: Fog computing empowered data dissemination in software defined heterogeneous vanets publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2020.2997460 – volume: 25 start-page: 2482 issue: 6 year: 2020 ident: 10.1016/j.sysarc.2022.102780_b9 article-title: Vehicular fog computing enabled real-time collision warning via trajectory calibration publication-title: Mobile Netw. Appl. doi: 10.1007/s11036-020-01591-7 – ident: 10.1016/j.sysarc.2022.102780_b40 – volume: 22 start-page: 5437 issue: 8 year: 2020 ident: 10.1016/j.sysarc.2022.102780_b22 article-title: Reliability-aware joint optimization for cooperative vehicular communication and computing publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3038558 – volume: 23 start-page: 22442 issue: 11 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b36 article-title: NOMA-enabled optimization framework for next-generation small-cell IoV networks under imperfect SIC decoding publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3091402 – year: 2021 ident: 10.1016/j.sysarc.2022.102780_b5 article-title: Edge intelligence for adaptive multimedia streaming in heterogeneous internet of vehicles publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2021.3106147 – volume: 19 start-page: 721 issue: 2 year: 2017 ident: 10.1016/j.sysarc.2022.102780_b10 article-title: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2016.2621116 – volume: 8 start-page: 16522 issue: 22 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b12 article-title: Centralized resource allocation and distributed power control for NOMA-integrated NR V2X publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3075250 – volume: 30 start-page: 885 issue: 2 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b31 article-title: Driver modeling through deep reinforcement learning and behavioral game theory publication-title: IEEE Trans. Contr. Syst. Technol. doi: 10.1109/TCST.2021.3075557 – ident: 10.1016/j.sysarc.2022.102780_b35 – ident: 10.1016/j.sysarc.2022.102780_b24 doi: 10.1109/INFOCOM42981.2021.9488886 – volume: 68 start-page: 3113 issue: 4 year: 2019 ident: 10.1016/j.sysarc.2022.102780_b39 article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2894851 – volume: 23 start-page: 899 issue: 2 year: 2022 ident: 10.1016/j.sysarc.2022.102780_b25 article-title: A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3017172 – year: 2004 ident: 10.1016/j.sysarc.2022.102780_b34 – volume: 49 start-page: 851 issue: 5 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b19 article-title: Potential game based channel allocation for vehicular edge computing publication-title: Tien Tzu Hsueh Pao/Acta Electron. Sin. – volume: 70 start-page: 13062 issue: 12 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b21 article-title: Reinforcement learning for joint optimization of communication and computation in vehicular networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3125109 – start-page: 1154 year: 2019 ident: 10.1016/j.sysarc.2022.102780_b26 article-title: A survey on multi-agent reinforcement learning methods for vehicular networks – volume: 24 start-page: 1759 issue: 3 year: 2016 ident: 10.1016/j.sysarc.2022.102780_b20 article-title: Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as a software defined network publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2015.2432804 – volume: 7 start-page: 7999 issue: 9 year: 2020 ident: 10.1016/j.sysarc.2022.102780_b7 article-title: Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2997720 – volume: 20 start-page: 2025 issue: 5 year: 2020 ident: 10.1016/j.sysarc.2022.102780_b17 article-title: Robust computation offloading and resource scheduling in cloudlet-based mobile cloud computing publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2020.2973993 – volume: 21 start-page: 7641 issue: 9 year: 2022 ident: 10.1016/j.sysarc.2022.102780_b27 article-title: Multi-agent DRL-based hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVs) publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2022.3160099 – start-page: 3270 year: 2006 ident: 10.1016/j.sysarc.2022.102780_b38 article-title: Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks – year: 2021 ident: 10.1016/j.sysarc.2022.102780_b15 article-title: RtDS: Real-time distributed strategy for multi-period task offloading in vehicular edge computing environment publication-title: Neural. Comput. Appl. – volume: 19 start-page: 2420 issue: 8 year: 2018 ident: 10.1016/j.sysarc.2022.102780_b8 article-title: Coding-assisted broadcast scheduling via memetic computing in SDN-based vehicular networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2748381 – year: 2016 ident: 10.1016/j.sysarc.2022.102780_b33 – volume: 26 start-page: 88 issue: 4 year: 2019 ident: 10.1016/j.sysarc.2022.102780_b14 article-title: Energy-efficient subchannel matching and power allocation in NOMA autonomous driving vehicular networks publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2019.1800515 – start-page: 7953 year: 2020 ident: 10.1016/j.sysarc.2022.102780_b32 article-title: A game theoretic framework for model based reinforcement learning – volume: 52 start-page: 4388 issue: 7 year: 2022 ident: 10.1016/j.sysarc.2022.102780_b16 article-title: A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2021.3097005 – volume: 70 start-page: 13162 issue: 12 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b29 article-title: Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3118446 – volume: 69 start-page: 14001 issue: 11 year: 2020 ident: 10.1016/j.sysarc.2022.102780_b37 article-title: Performance of downlink NOMA in vehicular communication networks: An analysis based on Poisson line cox point process publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3025624 – volume: 57 start-page: 41 issue: 7 year: 2019 ident: 10.1016/j.sysarc.2022.102780_b3 article-title: A hierarchical architecture for the future internet of vehicles publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2019.1800772 – volume: 15 start-page: 2419 issue: 6 year: 2014 ident: 10.1016/j.sysarc.2022.102780_b18 article-title: Temporal data dissemination in vehicular cyber-physical systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2316006 – volume: 18 start-page: 1405 issue: 2 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b28 article-title: Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2021.3088407 – volume: 9 start-page: 12770 issue: 14 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b13 article-title: Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3138434 – ident: 10.1016/j.sysarc.2022.102780_b30 doi: 10.1609/aaai.v36i8.20908 – start-page: 3762 year: 2022 ident: 10.1016/j.sysarc.2022.102780_b2 article-title: Age of view: A new metric for evaluating heterogeneous information fusion in vehicular cyber-physical systems – volume: 21 start-page: 461 issue: 1 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b23 article-title: Socially driven joint optimization of communication, caching, and computing resources in vehicular networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3096881 – volume: 5 start-page: 48 issue: 1 year: 2021 ident: 10.1016/j.sysarc.2022.102780_b1 article-title: 5G NR-V2X: Toward connected and cooperative autonomous driving publication-title: IEEE Commun. Stand. Mag. doi: 10.1109/MCOMSTD.001.2000069 |
SSID | ssj0005512 |
Score | 2.5464838 |
Snippet | Vehicular edge computing (VEC) becomes a promising paradigm for the development of emerging intelligent transportation systems. Nevertheless, the limited... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102780 |
SubjectTerms | Deep reinforcement learning Exact potential game Heterogeneous resource allocation Real-time task offloading Vehicular edge computing |
Title | Joint task offloading and resource optimization in NOMA-based vehicular edge computing: A game-theoretic DRL approach |
URI | https://dx.doi.org/10.1016/j.sysarc.2022.102780 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL178FufHeAevcW3Sj9XbmI45dYI62K0kTarVrR1bJ3jxbzdp0zFBFDwVSl4oL6_vK7_3HkJnvqCUMMvFzLY4dmLPxtxybCxiKqnkMfFFgfIdeL2h0x-5oxrqVLUwGlZpdH-p0wttbd40DTeb0yRpPto6uPKU6tU4A88d6Qp2x9dSfv65AvNwyxtPtRjr1VX5XIHxmn_MlTipKJEQ3cPA180hfzJPKyanu402ja8I7fJzdlBNprtoq5rDAOa33EOLfpakOeRs_gZZHI-zAhcPLBUwM9l5yJRqmJiaS0hSGNzftbE2YQLe5UtSoFFB59YgKvZXG1xAG57ZROJlsSNcPtxC1YV8Hw27V0-dHjbjFHCk4oIcS98WXky4JTj3iNDJ2oCpaE3aQnCi_QpH-QeUBVQoJ64VEDfyItexmS-DSASSHqC1NEvlIQLKuYpDbMI9HjiEM66ONHZbgVCPluRWHdGKi2Fkeo3rkRfjsAKVvYYl70PN-7DkfR3hJdW07LXxx3q_OqDwm8yEyhz8Snn0b8pjtKEHzpdJmBO0ls8W8lS5JTlvFHLXQOvt65ve4Au-zuOx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50fdAXb_F2HnwN2yY9tr4tHqy6ruAB-1aSJtV6tLLbFfz3Jm3qAaLgU6FkQplM58o3MwD7oWSMcscn3HUE8dLAJcLxXCJTppgSKQ1lhfIdBL1b72zoD6fgsKmFMbBKq_trnV5pa_umbbnZfsmy9rVrgqtAq16DMwj84TTMmO5UfgtmuqfnvcEn0sOvLz31emIImgq6CuY1fhtridKBIqWmjUFo-kP-ZKG-WJ2TRZi37iJ26y9agimVL8NCM4oB7Z-5ApOzIstLLPn4EYs0fSoqaDzyXOLIJuix0Nrh2ZZdYpbj4PKiS4wVk_iq7rMKkIomvYZJtb_e4AC7eMefFfmod8Sjqz42jchX4fbk-OawR-xEBZLo0KAkKnRlkFLhSCECKk2-NuI6YFOulIIa18LTLgLjEZPaj-tE1E-CxPdcHqookZFia9DKi1ytAzIhdCjiUhGIyKOCC32qqd-JpH50lHA2gDVcjBPbbtxMvXiKG1zZQ1zzPja8j2vebwD5oHqp2238sT5sDij-Jjaxtgi_Um7-m3IPZns3F_24fzo434I5M3--zslsQ6scTdSO9lJKsWul8B2QvuZi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+task+offloading+and+resource+optimization+in+NOMA-based+vehicular+edge+computing%3A+A+game-theoretic+DRL+approach&rft.jtitle=Journal+of+systems+architecture&rft.au=Xu%2C+Xincao&rft.au=Liu%2C+Kai&rft.au=Dai%2C+Penglin&rft.au=Jin%2C+Feiyu&rft.date=2023-01-01&rft.issn=1383-7621&rft.volume=134&rft.spage=102780&rft_id=info:doi/10.1016%2Fj.sysarc.2022.102780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysarc_2022_102780 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon |