A comprehensive empirical study on bug characteristics of deep learning frameworks

Deep Learning (DL) frameworks enable developers to build DNN models without learning the underlying algorithms and models. While some of these DL-based software systems have been deployed in safety-critical areas, such as self-driving cars and medical diagnostics, for DL frameworks, characterizing t...

Full description

Saved in:
Bibliographic Details
Published inInformation and software technology Vol. 151; p. 107004
Main Authors Yang, Yilin, He, Tianxing, Xia, Zhilong, Feng, Yang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN0950-5849
1873-6025
DOI10.1016/j.infsof.2022.107004

Cover

Abstract Deep Learning (DL) frameworks enable developers to build DNN models without learning the underlying algorithms and models. While some of these DL-based software systems have been deployed in safety-critical areas, such as self-driving cars and medical diagnostics, for DL frameworks, characterizing their bugs and thus helping researchers to design specific quality assurance techniques become desperately needed. Our research aims to characterize bugs typical of DL frameworks at the source code level for an in-depth analysis of bug symptoms, root causes, and bug fixes. In this way, we hope to provide insights for researchers to design automatic quality assurance techniques, such as automatic repair techniques and fault location techniques, applicable to DL frameworks and DL-based software systems. We started by summarizing the DL framework reference architecture and proposing the DL framework bug taxonomy. Then, we mined 1,127 DL framework bug reports from eight popular DL frameworks and labeled the bug types, root causes, and symptoms. Finally, we discussed the bug characteristics and explored how developers could possibly deal with these bugs. Our main findings are: (i) DNN model building bugs and general type bugs accounted for one-third of the total defects. (ii) DNN model building bugs are more prone to algorithm logic constraints, internal API errors, and data/numerical errors. (iii) Fifteen bug-fixing patterns are summarized, providing reference for common DL framework bug repair and future research on the development of automatic DL framework bug detection tools. By analyzing the bug-fixing changes, we characterize the occurrences, root causes, symptoms, and fixing of these bugs. The study results have provided researchers with insights into how to ensure DL framework quality and presented actionable suggestions for DL framework developers to improve their code quality.
AbstractList Deep Learning (DL) frameworks enable developers to build DNN models without learning the underlying algorithms and models. While some of these DL-based software systems have been deployed in safety-critical areas, such as self-driving cars and medical diagnostics, for DL frameworks, characterizing their bugs and thus helping researchers to design specific quality assurance techniques become desperately needed. Our research aims to characterize bugs typical of DL frameworks at the source code level for an in-depth analysis of bug symptoms, root causes, and bug fixes. In this way, we hope to provide insights for researchers to design automatic quality assurance techniques, such as automatic repair techniques and fault location techniques, applicable to DL frameworks and DL-based software systems. We started by summarizing the DL framework reference architecture and proposing the DL framework bug taxonomy. Then, we mined 1,127 DL framework bug reports from eight popular DL frameworks and labeled the bug types, root causes, and symptoms. Finally, we discussed the bug characteristics and explored how developers could possibly deal with these bugs. Our main findings are: (i) DNN model building bugs and general type bugs accounted for one-third of the total defects. (ii) DNN model building bugs are more prone to algorithm logic constraints, internal API errors, and data/numerical errors. (iii) Fifteen bug-fixing patterns are summarized, providing reference for common DL framework bug repair and future research on the development of automatic DL framework bug detection tools. By analyzing the bug-fixing changes, we characterize the occurrences, root causes, symptoms, and fixing of these bugs. The study results have provided researchers with insights into how to ensure DL framework quality and presented actionable suggestions for DL framework developers to improve their code quality.
ArticleNumber 107004
Author Feng, Yang
He, Tianxing
Xia, Zhilong
Yang, Yilin
Author_xml – sequence: 1
  givenname: Yilin
  orcidid: 0000-0003-4746-8017
  surname: Yang
  fullname: Yang, Yilin
  email: yilin.yang@smail.nju.edu.cn
– sequence: 2
  givenname: Tianxing
  surname: He
  fullname: He, Tianxing
– sequence: 3
  givenname: Zhilong
  surname: Xia
  fullname: Xia, Zhilong
– sequence: 4
  givenname: Yang
  surname: Feng
  fullname: Feng, Yang
  email: fengyang@nju.edu.cn
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNT8zEw6LoRS_ANBEF2HTOamTZ1JhiSt9O2dMq5c6OrCge9w7jdDE-cdIHRNyYISWt7sFtaZ6M2CEcaGSBCSn6EpXQqelYQVEzQlVUGyYplXF2gW444QKggnU_S2wtp3fYAtuGgPgKHrbbBatTimfXPE3uF6v8F6q4LSCYKNyeqIvcENQI9bUMFZt8EmqA6-fPiMl-jcqDbC1c-do4-H-_f1U_by-vi8Xr1kmpMyZZAzMewtFGMUqDE1q0WlhplCV9zUQuU6b8paFKLIyyUFA6qqBOe0qVVNFeFzdDv26uBjDGCktkkl610KyraSEnmyI3dytCNPduRoZ4DzX3AfbKfC8T_sbsRgeOxgIcioLTgNjQ2gk2y8_bvgG36hhDE
CitedBy_id crossref_primary_10_1109_TSE_2024_3461657
crossref_primary_10_1016_j_jss_2023_111681
crossref_primary_10_1145_3640336
crossref_primary_10_1016_j_infsof_2024_107656
crossref_primary_10_1007_s10664_024_10579_w
crossref_primary_10_1145_3583566
crossref_primary_10_1016_j_knosys_2024_112588
crossref_primary_10_1007_s11219_024_09675_3
crossref_primary_10_1145_3716497
Cites_doi 10.1109/TVCG.2017.2744878
10.20982/tqmp.08.1.p023
10.1016/j.jss.2021.110935
10.1109/TSE.2014.2357438
10.1145/1134285.1134336
10.1145/3447556.3447567
10.1001/jama.2016.17563
10.1016/j.infsof.2014.11.001
10.1145/1463788.1463819
10.1145/3368089.3409720
10.1145/2931037.2931061
10.1177/1094428110375002
10.14778/3342263.3342633
10.1007/s10664-015-9402-8
10.1145/3338906.3338955
10.1109/TPDS.2020.3030548
10.1145/3395363.3397357
10.1145/1958824.1958887
10.1145/3213846.3213866
10.1037/0033-2909.86.2.420
10.1145/3460319.3464843
10.1001/jama.2016.17216
10.14778/3467861.3467869
10.1145/1242524.1242526
10.1145/3102980.3102995
10.1145/3377811.3380395
10.1007/s10664-013-9258-8
10.1109/TDSC.2004.2
10.1145/3368089.3417050
10.1145/3236024.3236030
10.4271/2016-01-0128
10.1145/1330017.1330019
10.1177/001316447303300309
10.1145/3340544
10.1109/TSE.2016.2576454
10.1145/2000791.2000794
10.1145/2345156.2254075
10.1007/s10664-020-09825-8
10.1145/3126908.3126964
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.infsof.2022.107004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-6025
ExternalDocumentID 10_1016_j_infsof_2022_107004
S0950584922001306
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TWZ
UHS
UNMZH
WH7
WUQ
XFK
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-e4272025a221e1ffb2b79a9507c93fb7a4c4d6b75754681efea997331dbab1a03
IEDL.DBID AIKHN
ISSN 0950-5849
IngestDate Thu Apr 24 23:09:55 EDT 2025
Tue Jul 01 02:22:04 EDT 2025
Fri Feb 23 02:38:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning framework
Bug detection
Bug characteristics
Empirical study
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e4272025a221e1ffb2b79a9507c93fb7a4c4d6b75754681efea997331dbab1a03
ORCID 0000-0003-4746-8017
ParticipantIDs crossref_citationtrail_10_1016_j_infsof_2022_107004
crossref_primary_10_1016_j_infsof_2022_107004
elsevier_sciencedirect_doi_10_1016_j_infsof_2022_107004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Information and software technology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shrout, Fleiss (b74) 1979; 86
Guo, Chen, Xie, Ma, Hu, Liu, Liu, Zhao, Li (b92) 2019
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-scale machine learning, in: 12th {USENIX} Symposium on Operating Systems Design and Implementation, {OSDI} 16, 2016, pp. 265–283.
G. Li, S.K.S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, S.W. Keckler, Understanding error propagation in deep learning neural network (DNN) accelerators and applications, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2017, pp. 1–12.
Collobert, Bengio, Mariéthoz (b43) 2002
Al-Rfou, Alain, Almahairi, Angermueller, Bahdanau, Ballas, Bastien, Bayer, Belikov, Belopolsky (b24) 2016
Tan, Liu, Li, Wang, Zhou, Zhai (b32) 2014; 19
Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, Z. Chen, DeepGini: prioritizing massive tests to enhance the robustness of deep neural networks, in: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020, pp. 177–188.
Blei, Ng, Jordan (b64) 2003; 3
Chen, Thomas, Hassan (b66) 2016; 21
Avizienis, Laprie, Randell, Landwehr (b37) 2004; 1
Thung, Lo, Jiang (b87) 2013
Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.C. Cheung, T. Xie, Detecting numerical bugs in neural network architectures, in: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 826–837.
Pickerill, Jungen, Ochodek, Maćkowiak, Staron (b59) 2020; 25
J. Anvik, L. Hiew, G.C. Murphy, Who should fix this bug?, in: Proceedings of the 28th International Conference on Software Engineering, 2006, pp. 361–370.
P.J. Guo, T. Zimmermann, N. Nagappan, B. Murphy, “ Not my bug!” and other reasons for software bug report reassignments, in: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, 2011, pp. 395–404.
Jin, Song, Shi, Scherpelz, Lu (b31) 2012; 47
Shi, Wang, Chu (b48) 2018
Chen, Li, Li, Lin, Wang, Wang, Xiao, Xu, Zhang, Zhang (b20) 2015
TensorFlow, TensorBoard visualisation kit for TensorFlow. Retrieved from A Github Inc. [Online]. Available
Seaman, Shull, Regardie, Elbert, Feldmann, Guo, Godfrey (b30) 2008
Li, Liu, Liu, Sun, You, Yang, Luan, Gan, Yang, Qian (b49) 2020; 32
Zhang, Ma, Niu, Gao, Song (b65) 2012
Dagenais, Ossher, Bellamy, Robillard, De Vries (b89) 2010
Wan, Lo, Xia, Cai (b93) 2017
Sun, Zhou, Li, Hu, Yang, Li (b8) 2017
Seide, Agarwal (b23) 2016
Saha (b79) 2019
Islam, Pan, Nguyen, Rajan (b11) 2020
Hata, Kula, Ishio, Treude (b60) 2021
Wong, Bressler (b2) 2016; 316
Chollet (b26) 2018
Hassan, Holt (b14) 2000
Hallgren (b75) 2012; 8
Zhou, Roy, Abdolrashidi, Wong, Ma, Xu, Liu, Phothilimtha, Wang, Goldie (b46) 2020; 33
G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y.G. Guéhéneuc, Is it a bug or an enhancement? A text-based approach to classify change requests, in: Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting of Minds, 2008, pp. 304–318.
Buduma, Locascio (b54) 2017
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (b1) 2016; 316
Di Franco, Guo, Rubio-González (b29) 2017
M.J. Islam, G. Nguyen, R. Pan, H. Rajan, A comprehensive study on deep learning bug characteristics, in: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2019, pp. 510–520.
.
L. Nguyen, P. Yu, M. Chowdhury, No! Not another deep learning framework, in: Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017, pp. 88–93.
S. Tokui, K. Oono, S. Hido, J. Clayton, Chainer: a next-generation open source framework for deep learning, in: Proceedings of Workshop on Machine Learning Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Information Processing Systems, Vol. 5, NIPS, 2015, pp. 1–6.
Steinmacher, Silva, Gerosa, Redmiles (b36) 2015; 59
Wongsuphasawat, Smilkov, Wexler, Wilson, Mane, Fritz, Krishnan, Viégas, Wattenberg (b51) 2017; 24
Tufano, Watson, Bavota, Penta, White, Poshyvanyk (b77) 2019; 28
A. Goffi, A. Gorla, M.D. Ernst, M. Pezzè, Automatic generation of oracles for exceptional behaviors, in: Proceedings of the 25th International Symposium on Software Testing and Analysis, 2016, pp. 213–224.
X.H. Phan, C.T. Nguyen, GibbsLDA++: AC/C++ Implementation of Latent Dirichlet Allocation (LDA), Tech. Rep., 2007.
Murphy-Hill, Zimmermann, Bird, Nagappan (b70) 2014; 41
Qureshi, Fang (b88) 2011; 14
Jia, Zhong, Wang, Huang, Lu (b13) 2021; 177
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (b18) 2014
Han, Deng, Xia, Wang, Yin (b58) 2019
Pei, Cao, Yang, Jana (b5) 2017
Huval, Wang, Tandon, Kiske, Song, Pazhayampallil, Andriluka, Rajpurkar, Migimatsu, Cheng-Yue (b4) 2015
Herzig, Just, Zeller (b69) 2013
Noda, Nemoto, Hotta, Tanida, Kikuchi (b80) 2020
Koopman, Wagner (b84) 2016; 4
Maetschke, Tennakoon, Vecchiola, Garnavi (b17) 2017
Chetlur, Woolley, Vandermersch, Cohen, Tran, Catanzaro, Shelhamer (b19) 2014
Vasilescu, Yu, Wang, Devanbu, Filkov (b55) 2015
Cotroneo, De Simone, Iannillo, Natella, Rosiello, Bidokhti (b78) 2019
Grosskurth, Godfrey (b15) 2005
Bojarski, Del Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang (b3) 2016
Thung, Wang, Lo, Jiang (b7) 2012
Chaudhuri, Das, Narasayya (b56) 2007; 32
Xia, Lo, Ding, Al-Kofahi, Nguyen, Wang (b63) 2016; 43
Anvik, Murphy (b61) 2011; 20
N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, P. Tonella, Taxonomy of real faults in deep learning systems, in: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp. 1110–1121.
Weimer, Necula (b83) 2008; 30
Ma, Zhang, Sun, Xue, Li, Juefei-Xu, Xie, Li, Liu, Zhao (b33) 2018
Tian, Pei, Jana, Ray (b34) 2018
Maalej, Nabil (b62) 2015
Cosentino, Izquierdo, Cabot (b57) 2016
X. Zhang, N. Sun, C. Fang, J. Liu, J. Liu, D. Chai, J. Wang, Z. Chen, Predoo: precision testing of deep learning operators, in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021, pp. 400–412.
Chen, Song, Hu (b42) 2021; 22
Mirhoseini, Goldie, Yazgan, Jiang, Songhori, Wang, Lee, Johnson, Pathak, Bae (b47) 2020
pluskid, Mocha: a pluskid repo. Retrieved from A Github Inc. [Online]. Available
Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, M. Yang, Estimating gpu memory consumption of deep learning models, in: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 1342–1352.
Li, Tan, Wang, Lu, Zhou, Zhai (b90) 2006
Nicholson, Gibson (b25) 2017
Wang, Feng, Wang, Jones, Redmiles (b76) 2020; 29
Y. Zhang, Y. Chen, S.C. Cheung, Y. Xiong, L. Zhang, An empirical study on TensorFlow program bugs, in: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2018, pp. 129–140.
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b27) 2019; 32
Kunft, Katsifodimos, Schelter, Breß, Rabl, Markl (b40) 2019; 12
Amodei, Olah, Steinhardt, Christiano, Schulman, Mané (b38) 2016
Y. Gao, W. Dou, F. Qin, C. Gao, D. Wang, J. Wei, R. Huang, L. Zhou, Y. Wu, An empirical study on crash recovery bugs in large-scale distributed systems, in: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2018, pp. 539–550.
Looks, Herreshoff, Hutchins, Norvig (b50) 2017
Matter, Kuhn, Nierstrasz (b72) 2009
Fleiss, Cohen (b73) 1973; 33
Hapke, Nelson (b41) 2020
Koutsoukos, Nakandala, Karanasos, Saur, Alonso, Interlandi (b52) 2021; 14
Katz, Barrett, Dill, Julian, Kochenderfer (b6) 2017
Ma, Yu, Wu, Wang (b39) 2019; 1
Matter (10.1016/j.infsof.2022.107004_b72) 2009
Noda (10.1016/j.infsof.2022.107004_b80) 2020
Avizienis (10.1016/j.infsof.2022.107004_b37) 2004; 1
Shrout (10.1016/j.infsof.2022.107004_b74) 1979; 86
10.1016/j.infsof.2022.107004_b9
Chetlur (10.1016/j.infsof.2022.107004_b19) 2014
Hata (10.1016/j.infsof.2022.107004_b60) 2021
Nicholson (10.1016/j.infsof.2022.107004_b25) 2017
Mirhoseini (10.1016/j.infsof.2022.107004_b47) 2020
Jia (10.1016/j.infsof.2022.107004_b18) 2014
10.1016/j.infsof.2022.107004_b44
10.1016/j.infsof.2022.107004_b45
Hapke (10.1016/j.infsof.2022.107004_b41) 2020
10.1016/j.infsof.2022.107004_b86
Gulshan (10.1016/j.infsof.2022.107004_b1) 2016; 316
10.1016/j.infsof.2022.107004_b85
Collobert (10.1016/j.infsof.2022.107004_b43) 2002
10.1016/j.infsof.2022.107004_b82
10.1016/j.infsof.2022.107004_b81
Buduma (10.1016/j.infsof.2022.107004_b54) 2017
Tan (10.1016/j.infsof.2022.107004_b32) 2014; 19
Wongsuphasawat (10.1016/j.infsof.2022.107004_b51) 2017; 24
Fleiss (10.1016/j.infsof.2022.107004_b73) 1973; 33
Thung (10.1016/j.infsof.2022.107004_b87) 2013
Bojarski (10.1016/j.infsof.2022.107004_b3) 2016
Jia (10.1016/j.infsof.2022.107004_b13) 2021; 177
Hassan (10.1016/j.infsof.2022.107004_b14) 2000
Blei (10.1016/j.infsof.2022.107004_b64) 2003; 3
Ma (10.1016/j.infsof.2022.107004_b33) 2018
Grosskurth (10.1016/j.infsof.2022.107004_b15) 2005
Pickerill (10.1016/j.infsof.2022.107004_b59) 2020; 25
Guo (10.1016/j.infsof.2022.107004_b92) 2019
Wong (10.1016/j.infsof.2022.107004_b2) 2016; 316
Zhou (10.1016/j.infsof.2022.107004_b46) 2020; 33
Looks (10.1016/j.infsof.2022.107004_b50) 2017
Cotroneo (10.1016/j.infsof.2022.107004_b78) 2019
Kunft (10.1016/j.infsof.2022.107004_b40) 2019; 12
10.1016/j.infsof.2022.107004_b16
Jin (10.1016/j.infsof.2022.107004_b31) 2012; 47
Dagenais (10.1016/j.infsof.2022.107004_b89) 2010
10.1016/j.infsof.2022.107004_b12
Li (10.1016/j.infsof.2022.107004_b49) 2020; 32
10.1016/j.infsof.2022.107004_b53
10.1016/j.infsof.2022.107004_b10
Wang (10.1016/j.infsof.2022.107004_b76) 2020; 29
Tufano (10.1016/j.infsof.2022.107004_b77) 2019; 28
10.1016/j.infsof.2022.107004_b91
Chen (10.1016/j.infsof.2022.107004_b20) 2015
Katz (10.1016/j.infsof.2022.107004_b6) 2017
Sun (10.1016/j.infsof.2022.107004_b8) 2017
Chollet (10.1016/j.infsof.2022.107004_b26) 2018
Vasilescu (10.1016/j.infsof.2022.107004_b55) 2015
Di Franco (10.1016/j.infsof.2022.107004_b29) 2017
Saha (10.1016/j.infsof.2022.107004_b79) 2019
Al-Rfou (10.1016/j.infsof.2022.107004_b24) 2016
Zhang (10.1016/j.infsof.2022.107004_b65) 2012
10.1016/j.infsof.2022.107004_b28
Cosentino (10.1016/j.infsof.2022.107004_b57) 2016
Hallgren (10.1016/j.infsof.2022.107004_b75) 2012; 8
Chen (10.1016/j.infsof.2022.107004_b66) 2016; 21
10.1016/j.infsof.2022.107004_b68
Huval (10.1016/j.infsof.2022.107004_b4) 2015
Tian (10.1016/j.infsof.2022.107004_b34) 2018
Amodei (10.1016/j.infsof.2022.107004_b38) 2016
10.1016/j.infsof.2022.107004_b22
10.1016/j.infsof.2022.107004_b67
10.1016/j.infsof.2022.107004_b21
Seaman (10.1016/j.infsof.2022.107004_b30) 2008
Chaudhuri (10.1016/j.infsof.2022.107004_b56) 2007; 32
Li (10.1016/j.infsof.2022.107004_b90) 2006
Islam (10.1016/j.infsof.2022.107004_b11) 2020
Koopman (10.1016/j.infsof.2022.107004_b84) 2016; 4
Pei (10.1016/j.infsof.2022.107004_b5) 2017
Han (10.1016/j.infsof.2022.107004_b58) 2019
Paszke (10.1016/j.infsof.2022.107004_b27) 2019; 32
Qureshi (10.1016/j.infsof.2022.107004_b88) 2011; 14
Maetschke (10.1016/j.infsof.2022.107004_b17) 2017
Anvik (10.1016/j.infsof.2022.107004_b61) 2011; 20
Ma (10.1016/j.infsof.2022.107004_b39) 2019; 1
Shi (10.1016/j.infsof.2022.107004_b48) 2018
Herzig (10.1016/j.infsof.2022.107004_b69) 2013
Murphy-Hill (10.1016/j.infsof.2022.107004_b70) 2014; 41
Thung (10.1016/j.infsof.2022.107004_b7) 2012
10.1016/j.infsof.2022.107004_b35
Chen (10.1016/j.infsof.2022.107004_b42) 2021; 22
Steinmacher (10.1016/j.infsof.2022.107004_b36) 2015; 59
Koutsoukos (10.1016/j.infsof.2022.107004_b52) 2021; 14
Weimer (10.1016/j.infsof.2022.107004_b83) 2008; 30
Maalej (10.1016/j.infsof.2022.107004_b62) 2015
Xia (10.1016/j.infsof.2022.107004_b63) 2016; 43
10.1016/j.infsof.2022.107004_b71
Wan (10.1016/j.infsof.2022.107004_b93) 2017
Seide (10.1016/j.infsof.2022.107004_b23) 2016
References_xml – start-page: 149
  year: 2008
  end-page: 157
  ident: b30
  article-title: Defect categorization: making use of a decade of widely varying historical data
  publication-title: Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement
– volume: 33
  start-page: 13844
  year: 2020
  end-page: 13855
  ident: b46
  article-title: Transferable graph optimizers for ml compilers
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: P.J. Guo, T. Zimmermann, N. Nagappan, B. Murphy, “ Not my bug!” and other reasons for software bug report reassignments, in: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, 2011, pp. 395–404.
– volume: 1
  start-page: 105
  year: 2019
  end-page: 115
  ident: b39
  article-title: PaddlePaddle: An open-source deep learning platform from industrial practice
  publication-title: Front. Data Domput.
– year: 2017
  ident: b50
  article-title: Deep learning with dynamic computation graphs
– start-page: 2135
  year: 2016
  ident: b23
  article-title: CNTK: Microsoft’s open-source deep-learning toolkit
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2020
  ident: b47
  article-title: Chip placement with deep reinforcement learning
– start-page: 1
  year: 2017
  end-page: 18
  ident: b5
  article-title: Deepxplore: Automated whitebox testing of deep learning systems
  publication-title: Proceedings of the 26th Symposium on Operating Systems Principles
– year: 2015
  ident: b4
  article-title: An empirical evaluation of deep learning on highway driving
– volume: 1
  start-page: 11
  year: 2004
  end-page: 33
  ident: b37
  article-title: Basic concepts and taxonomy of dependable and secure computing
  publication-title: IEEE Trans. Dependable Secure Comput.
– start-page: 275
  year: 2010
  end-page: 284
  ident: b89
  article-title: Moving into a new software project landscape
  publication-title: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1
– start-page: 116
  year: 2015
  end-page: 125
  ident: b62
  article-title: Bug report, feature request, or simply praise? on automatically classifying app reviews
  publication-title: 2015 IEEE 23rd International Requirements Engineering Conference
– reference: Y. Gao, W. Dou, F. Qin, C. Gao, D. Wang, J. Wei, R. Huang, L. Zhou, Y. Wu, An empirical study on crash recovery bugs in large-scale distributed systems, in: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2018, pp. 539–550.
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: b1
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– reference: G. Li, S.K.S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, S.W. Keckler, Understanding error propagation in deep learning neural network (DNN) accelerators and applications, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2017, pp. 1–12.
– start-page: 773
  year: 2021
  end-page: 784
  ident: b60
  article-title: Same file, different changes: the potential of meta-maintenance on GitHub
  publication-title: 2021 IEEE/ACM 43rd International Conference on Software Engineering
– volume: 29
  start-page: 1
  year: 2020
  end-page: 35
  ident: b76
  article-title: Unveiling elite developers’ activities in open source projects
  publication-title: ACM Trans. Softw. Eng. Methodol.
– reference: G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y.G. Guéhéneuc, Is it a bug or an enhancement? A text-based approach to classify change requests, in: Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting of Minds, 2008, pp. 304–318.
– year: 2015
  ident: b20
  article-title: Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems
– volume: 22
  start-page: 35
  year: 2021
  end-page: 50
  ident: b42
  article-title: Techniques for automated machine learning
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 43
  start-page: 272
  year: 2016
  end-page: 297
  ident: b63
  article-title: Improving automated bug triaging with specialized topic model
  publication-title: IEEE Trans. Softw. Eng.
– reference: A. Goffi, A. Gorla, M.D. Ernst, M. Pezzè, Automatic generation of oracles for exceptional behaviors, in: Proceedings of the 25th International Symposium on Software Testing and Analysis, 2016, pp. 213–224.
– year: 2002
  ident: b43
  article-title: Torch: A Modular Machine Learning Software Library
– start-page: 1135
  year: 2020
  end-page: 1146
  ident: b11
  article-title: Repairing deep neural networks: Fix patterns and challenges
  publication-title: 2020 IEEE/ACM 42nd International Conference on Software Engineering
– start-page: 334
  year: 2019
  end-page: 345
  ident: b78
  article-title: Analyzing the context of bug-fixing changes in the openstack cloud computing platform
  publication-title: 2019 IEEE 30th International Symposium on Software Reliability Engineering
– start-page: 661
  year: 2005
  end-page: 664
  ident: b15
  article-title: A reference architecture for web browsers
  publication-title: 21st IEEE International Conference on Software Maintenance
– reference: . pluskid, Mocha: a pluskid repo. Retrieved from A Github Inc. [Online]. Available:
– volume: 32
  start-page: 9
  year: 2007
  end-page: es
  ident: b56
  article-title: Optimized stratified sampling for approximate query processing
  publication-title: ACM Trans. Database Syst.
– year: 2016
  ident: b3
  article-title: End to end learning for self-driving cars
– start-page: 21
  year: 2019
  end-page: 26
  ident: b58
  article-title: Characterization and prediction of popular projects on github
  publication-title: 2019 IEEE 43rd Annual Computer Software and Applications Conference, Vol. 1
– start-page: 150
  year: 2000
  end-page: 159
  ident: b14
  article-title: A reference architecture for web servers
  publication-title: Proceedings Seventh Working Conference on Reverse Engineering
– start-page: 810
  year: 2019
  end-page: 822
  ident: b92
  article-title: An empirical study towards characterizing deep learning development and deployment across different frameworks and platforms
  publication-title: 2019 34th IEEE/ACM International Conference on Automated Software Engineering
– start-page: 392
  year: 2013
  end-page: 401
  ident: b69
  article-title: It’s not a bug, it’s a feature: how misclassification impacts bug prediction
  publication-title: 2013 35th International Conference on Software Engineering
– reference: N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, P. Tonella, Taxonomy of real faults in deep learning systems, in: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp. 1110–1121.
– start-page: 100
  year: 2018
  end-page: 111
  ident: b33
  article-title: Deepmutation: Mutation testing of deep learning systems
  publication-title: 2018 IEEE 29th International Symposium on Software Reliability Engineering
– volume: 25
  start-page: 2897
  year: 2020
  end-page: 2929
  ident: b59
  article-title: PHANTOM: Curating GitHub for engineered software projects using time-series clustering
  publication-title: Empir. Softw. Eng.
– year: 2016
  ident: b38
  article-title: Concrete problems in AI safety
– start-page: 509
  year: 2017
  end-page: 519
  ident: b29
  article-title: A comprehensive study of real-world numerical bug characteristics
  publication-title: Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering
– volume: 20
  start-page: 1
  year: 2011
  end-page: 35
  ident: b61
  article-title: Reducing the effort of bug report triage: Recommenders for development-oriented decisions
  publication-title: ACM Trans. Softw. Eng. Methodol.
– reference: M.J. Islam, G. Nguyen, R. Pan, H. Rajan, A comprehensive study on deep learning bug characteristics, in: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2019, pp. 510–520.
– volume: 47
  start-page: 77
  year: 2012
  end-page: 88
  ident: b31
  article-title: Understanding and detecting real-world performance bugs
  publication-title: ACM SIGPLAN Not.
– reference: Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, Z. Chen, DeepGini: prioritizing massive tests to enhance the robustness of deep neural networks, in: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020, pp. 177–188.
– start-page: 675
  year: 2014
  end-page: 678
  ident: b18
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
– volume: 21
  start-page: 1843
  year: 2016
  end-page: 1919
  ident: b66
  article-title: A survey on the use of topic models when mining software repositories
  publication-title: Empir. Softw. Eng.
– start-page: 348
  year: 2017
  end-page: 357
  ident: b8
  article-title: An empirical study on real bugs for machine learning programs
  publication-title: 2017 24th Asia-Pacific Software Engineering Conference
– volume: 30
  start-page: 1
  year: 2008
  end-page: 51
  ident: b83
  article-title: Exceptional situations and program reliability
  publication-title: ACM Trans. Program. Lang. Syst.
– year: 2014
  ident: b19
  article-title: cudnn: Efficient primitives for deep learning
– reference: S. Tokui, K. Oono, S. Hido, J. Clayton, Chainer: a next-generation open source framework for deep learning, in: Proceedings of Workshop on Machine Learning Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Information Processing Systems, Vol. 5, NIPS, 2015, pp. 1–6.
– year: 2017
  ident: b25
  article-title: Deeplearning4j: Open-source, Distributed Deep Learning for the JVM
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: b64
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– start-page: 805
  year: 2015
  end-page: 816
  ident: b55
  article-title: Quality and productivity outcomes relating to continuous integration in GitHub
  publication-title: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
– year: 2017
  ident: b54
  article-title: Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms
– volume: 28
  start-page: 1
  year: 2019
  end-page: 29
  ident: b77
  article-title: An empirical study on learning bug-fixing patches in the wild via neural machine translation
  publication-title: ACM Trans. Softw. Eng. Methodol.
– reference: Y. Zhang, Y. Chen, S.C. Cheung, Y. Xiong, L. Zhang, An empirical study on TensorFlow program bugs, in: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2018, pp. 129–140.
– volume: 8
  start-page: 23
  year: 2012
  ident: b75
  article-title: Computing inter-rater reliability for observational data: an overview and tutorial
  publication-title: Tutor. Quant. Methods Psychol.
– start-page: 612
  year: 2020
  end-page: 616
  ident: b80
  article-title: Experience report: how effective is automated program repair for industrial software?
  publication-title: 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering
– volume: 316
  start-page: 2366
  year: 2016
  end-page: 2367
  ident: b2
  article-title: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
  publication-title: JAMA
– reference: . TensorFlow, TensorBoard visualisation kit for TensorFlow. Retrieved from A Github Inc. [Online]. Available:
– reference: X.H. Phan, C.T. Nguyen, GibbsLDA++: AC/C++ Implementation of Latent Dirichlet Allocation (LDA), Tech. Rep., 2007.
– start-page: 97
  year: 2017
  end-page: 117
  ident: b6
  article-title: Reluplex: An efficient SMT solver for verifying deep neural networks
  publication-title: International Conference on Computer Aided Verification
– volume: 12
  start-page: 1553
  year: 2019
  end-page: 1567
  ident: b40
  article-title: An intermediate representation for optimizing machine learning pipelines
  publication-title: Proc. VLDB Endow.
– year: 2018
  ident: b26
  article-title: Keras: The Python Deep Learning Library
– volume: 41
  start-page: 65
  year: 2014
  end-page: 81
  ident: b70
  article-title: The design space of bug fixes and how developers navigate it
  publication-title: IEEE Trans. Softw. Eng.
– volume: 33
  start-page: 613
  year: 1973
  end-page: 619
  ident: b73
  article-title: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability
  publication-title: Educ. Psychol. Meas.
– reference: L. Nguyen, P. Yu, M. Chowdhury, No! Not another deep learning framework, in: Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017, pp. 88–93.
– start-page: 413
  year: 2017
  end-page: 424
  ident: b93
  article-title: Bug characteristics in blockchain systems: a large-scale empirical study
  publication-title: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
– volume: 4
  start-page: 15
  year: 2016
  end-page: 24
  ident: b84
  article-title: Challenges in autonomous vehicle testing and validation
  publication-title: SAE Int. J. Transp. Saf.
– year: 2020
  ident: b41
  article-title: Building Machine Learning Pipelines
– volume: 19
  start-page: 1665
  year: 2014
  end-page: 1705
  ident: b32
  article-title: Bug characteristics in open source software
  publication-title: Empir. Softw. Eng.
– reference: X. Zhang, N. Sun, C. Fang, J. Liu, J. Liu, D. Chai, J. Wang, Z. Chen, Predoo: precision testing of deep learning operators, in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021, pp. 400–412.
– volume: 14
  start-page: 1797
  year: 2021
  end-page: 1804
  ident: b52
  article-title: Tensors: An abstraction for general data processing
  publication-title: Proc. VLDB Endow.
– start-page: 1309
  year: 2012
  end-page: 1314
  ident: b65
  article-title: Multi-document summarization of product reviews
  publication-title: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery
– start-page: 949
  year: 2018
  end-page: 957
  ident: b48
  article-title: Performance modeling and evaluation of distributed deep learning frameworks on gpus
  publication-title: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress
– start-page: 303
  year: 2018
  end-page: 314
  ident: b34
  article-title: Deeptest: Automated testing of deep-neural-network-driven autonomous cars
  publication-title: Proceedings of the 40th International Conference on Software Engineering
– reference: Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, M. Yang, Estimating gpu memory consumption of deep learning models, in: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 1342–1352.
– volume: 24
  start-page: 1
  year: 2017
  end-page: 12
  ident: b51
  article-title: Visualizing dataflow graphs of deep learning models in tensorflow
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 177
  year: 2021
  ident: b13
  article-title: The symptoms, causes, and repairs of bugs inside a deep learning library
  publication-title: J. Syst. Softw.
– volume: 32
  start-page: 708
  year: 2020
  end-page: 727
  ident: b49
  article-title: The deep learning compiler: A comprehensive survey
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– year: 2016
  ident: b24
  article-title: Theano: A Python framework for fast computation of mathematical expressions
– volume: 59
  start-page: 67
  year: 2015
  end-page: 85
  ident: b36
  article-title: A systematic literature review on the barriers faced by newcomers to open source software projects
  publication-title: Inf. Softw. Technol.
– start-page: 131
  year: 2009
  end-page: 140
  ident: b72
  article-title: Assigning bug reports using a vocabulary-based expertise model of developers
  publication-title: 2009 6th IEEE International Working Conference on Mining Software Repositories
– volume: 14
  start-page: 208
  year: 2011
  end-page: 238
  ident: b88
  article-title: Socialization in open source software projects: A growth mixture modeling approach
  publication-title: Organ. Res. Methods
– volume: 32
  start-page: 8026
  year: 2019
  end-page: 8037
  ident: b27
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: .
– start-page: 271
  year: 2012
  end-page: 280
  ident: b7
  article-title: An empirical study of bugs in machine learning systems
  publication-title: 2012 IEEE 23rd International Symposium on Software Reliability Engineering
– year: 2017
  ident: b17
  article-title: nuts-flow/ml: data pre-processing for deep learning
– start-page: 137
  year: 2016
  end-page: 141
  ident: b57
  article-title: Findings from GitHub: methods, datasets and limitations
  publication-title: 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
– reference: J. Anvik, L. Hiew, G.C. Murphy, Who should fix this bug?, in: Proceedings of the 28th International Conference on Software Engineering, 2006, pp. 361–370.
– reference: Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.C. Cheung, T. Xie, Detecting numerical bugs in neural network architectures, in: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 826–837.
– start-page: 25
  year: 2006
  end-page: 33
  ident: b90
  article-title: Have things changed now?: an empirical study of bug characteristics in modern open source software
  publication-title: Proceedings of the 1st Workshop on Architectural and System Support for Improving Software Dependability
– volume: 86
  start-page: 420
  year: 1979
  ident: b74
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-scale machine learning, in: 12th {USENIX} Symposium on Operating Systems Design and Implementation, {OSDI} 16, 2016, pp. 265–283.
– start-page: 92
  year: 2013
  end-page: 101
  ident: b87
  article-title: Automatic recovery of root causes from bug-fixing changes
  publication-title: 2013 20th Working Conference on Reverse Engineering
– start-page: 13
  year: 2019
  end-page: 24
  ident: b79
  article-title: Harnessing evolution for multi-hunk program repair
  publication-title: 2019 IEEE/ACM 41st International Conference on Software Engineering
– start-page: 303
  year: 2018
  ident: 10.1016/j.infsof.2022.107004_b34
  article-title: Deeptest: Automated testing of deep-neural-network-driven autonomous cars
– volume: 24
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.infsof.2022.107004_b51
  article-title: Visualizing dataflow graphs of deep learning models in tensorflow
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2017.2744878
– ident: 10.1016/j.infsof.2022.107004_b22
– volume: 32
  start-page: 8026
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b27
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 334
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b78
  article-title: Analyzing the context of bug-fixing changes in the openstack cloud computing platform
– start-page: 773
  year: 2021
  ident: 10.1016/j.infsof.2022.107004_b60
  article-title: Same file, different changes: the potential of meta-maintenance on GitHub
– ident: 10.1016/j.infsof.2022.107004_b45
– start-page: 392
  year: 2013
  ident: 10.1016/j.infsof.2022.107004_b69
  article-title: It’s not a bug, it’s a feature: how misclassification impacts bug prediction
– year: 2014
  ident: 10.1016/j.infsof.2022.107004_b19
– start-page: 137
  year: 2016
  ident: 10.1016/j.infsof.2022.107004_b57
  article-title: Findings from GitHub: methods, datasets and limitations
– year: 2017
  ident: 10.1016/j.infsof.2022.107004_b25
– volume: 8
  start-page: 23
  issue: 1
  year: 2012
  ident: 10.1016/j.infsof.2022.107004_b75
  article-title: Computing inter-rater reliability for observational data: an overview and tutorial
  publication-title: Tutor. Quant. Methods Psychol.
  doi: 10.20982/tqmp.08.1.p023
– volume: 177
  year: 2021
  ident: 10.1016/j.infsof.2022.107004_b13
  article-title: The symptoms, causes, and repairs of bugs inside a deep learning library
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2021.110935
– volume: 1
  start-page: 105
  issue: 1
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b39
  article-title: PaddlePaddle: An open-source deep learning platform from industrial practice
  publication-title: Front. Data Domput.
– volume: 41
  start-page: 65
  issue: 1
  year: 2014
  ident: 10.1016/j.infsof.2022.107004_b70
  article-title: The design space of bug fixes and how developers navigate it
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2014.2357438
– ident: 10.1016/j.infsof.2022.107004_b71
  doi: 10.1145/1134285.1134336
– start-page: 150
  year: 2000
  ident: 10.1016/j.infsof.2022.107004_b14
  article-title: A reference architecture for web servers
– volume: 22
  start-page: 35
  issue: 2
  year: 2021
  ident: 10.1016/j.infsof.2022.107004_b42
  article-title: Techniques for automated machine learning
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/3447556.3447567
– year: 2016
  ident: 10.1016/j.infsof.2022.107004_b3
– start-page: 131
  year: 2009
  ident: 10.1016/j.infsof.2022.107004_b72
  article-title: Assigning bug reports using a vocabulary-based expertise model of developers
– volume: 316
  start-page: 2366
  issue: 22
  year: 2016
  ident: 10.1016/j.infsof.2022.107004_b2
  article-title: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
  publication-title: JAMA
  doi: 10.1001/jama.2016.17563
– start-page: 13
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b79
  article-title: Harnessing evolution for multi-hunk program repair
– volume: 59
  start-page: 67
  year: 2015
  ident: 10.1016/j.infsof.2022.107004_b36
  article-title: A systematic literature review on the barriers faced by newcomers to open source software projects
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2014.11.001
– start-page: 100
  year: 2018
  ident: 10.1016/j.infsof.2022.107004_b33
  article-title: Deepmutation: Mutation testing of deep learning systems
– start-page: 116
  year: 2015
  ident: 10.1016/j.infsof.2022.107004_b62
  article-title: Bug report, feature request, or simply praise? on automatically classifying app reviews
– ident: 10.1016/j.infsof.2022.107004_b68
  doi: 10.1145/1463788.1463819
– start-page: 25
  year: 2006
  ident: 10.1016/j.infsof.2022.107004_b90
  article-title: Have things changed now?: an empirical study of bug characteristics in modern open source software
– start-page: 2135
  year: 2016
  ident: 10.1016/j.infsof.2022.107004_b23
  article-title: CNTK: Microsoft’s open-source deep-learning toolkit
– start-page: 149
  year: 2008
  ident: 10.1016/j.infsof.2022.107004_b30
  article-title: Defect categorization: making use of a decade of widely varying historical data
– ident: 10.1016/j.infsof.2022.107004_b82
  doi: 10.1145/3368089.3409720
– start-page: 805
  year: 2015
  ident: 10.1016/j.infsof.2022.107004_b55
  article-title: Quality and productivity outcomes relating to continuous integration in GitHub
– ident: 10.1016/j.infsof.2022.107004_b44
– ident: 10.1016/j.infsof.2022.107004_b85
  doi: 10.1145/2931037.2931061
– year: 2020
  ident: 10.1016/j.infsof.2022.107004_b41
– volume: 14
  start-page: 208
  issue: 1
  year: 2011
  ident: 10.1016/j.infsof.2022.107004_b88
  article-title: Socialization in open source software projects: A growth mixture modeling approach
  publication-title: Organ. Res. Methods
  doi: 10.1177/1094428110375002
– start-page: 97
  year: 2017
  ident: 10.1016/j.infsof.2022.107004_b6
  article-title: Reluplex: An efficient SMT solver for verifying deep neural networks
– start-page: 661
  year: 2005
  ident: 10.1016/j.infsof.2022.107004_b15
  article-title: A reference architecture for web browsers
– volume: 12
  start-page: 1553
  issue: 11
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b40
  article-title: An intermediate representation for optimizing machine learning pipelines
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3342263.3342633
– start-page: 413
  year: 2017
  ident: 10.1016/j.infsof.2022.107004_b93
  article-title: Bug characteristics in blockchain systems: a large-scale empirical study
– volume: 21
  start-page: 1843
  issue: 5
  year: 2016
  ident: 10.1016/j.infsof.2022.107004_b66
  article-title: A survey on the use of topic models when mining software repositories
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-015-9402-8
– ident: 10.1016/j.infsof.2022.107004_b10
  doi: 10.1145/3338906.3338955
– volume: 32
  start-page: 708
  issue: 3
  year: 2020
  ident: 10.1016/j.infsof.2022.107004_b49
  article-title: The deep learning compiler: A comprehensive survey
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2020.3030548
– start-page: 271
  year: 2012
  ident: 10.1016/j.infsof.2022.107004_b7
  article-title: An empirical study of bugs in machine learning systems
– start-page: 949
  year: 2018
  ident: 10.1016/j.infsof.2022.107004_b48
  article-title: Performance modeling and evaluation of distributed deep learning frameworks on gpus
– ident: 10.1016/j.infsof.2022.107004_b35
  doi: 10.1145/3395363.3397357
– ident: 10.1016/j.infsof.2022.107004_b86
  doi: 10.1145/1958824.1958887
– start-page: 1
  year: 2017
  ident: 10.1016/j.infsof.2022.107004_b5
  article-title: Deepxplore: Automated whitebox testing of deep learning systems
– start-page: 509
  year: 2017
  ident: 10.1016/j.infsof.2022.107004_b29
  article-title: A comprehensive study of real-world numerical bug characteristics
– start-page: 92
  year: 2013
  ident: 10.1016/j.infsof.2022.107004_b87
  article-title: Automatic recovery of root causes from bug-fixing changes
– start-page: 675
  year: 2014
  ident: 10.1016/j.infsof.2022.107004_b18
  article-title: Caffe: Convolutional architecture for fast feature embedding
– start-page: 1309
  year: 2012
  ident: 10.1016/j.infsof.2022.107004_b65
  article-title: Multi-document summarization of product reviews
– start-page: 1135
  year: 2020
  ident: 10.1016/j.infsof.2022.107004_b11
  article-title: Repairing deep neural networks: Fix patterns and challenges
– start-page: 348
  year: 2017
  ident: 10.1016/j.infsof.2022.107004_b8
  article-title: An empirical study on real bugs for machine learning programs
– ident: 10.1016/j.infsof.2022.107004_b9
  doi: 10.1145/3213846.3213866
– start-page: 810
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b92
  article-title: An empirical study towards characterizing deep learning development and deployment across different frameworks and platforms
– volume: 86
  start-page: 420
  issue: 2
  year: 1979
  ident: 10.1016/j.infsof.2022.107004_b74
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– year: 2015
  ident: 10.1016/j.infsof.2022.107004_b20
– volume: 33
  start-page: 13844
  year: 2020
  ident: 10.1016/j.infsof.2022.107004_b46
  article-title: Transferable graph optimizers for ml compilers
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.infsof.2022.107004_b81
  doi: 10.1145/3460319.3464843
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 10.1016/j.infsof.2022.107004_b1
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– start-page: 275
  year: 2010
  ident: 10.1016/j.infsof.2022.107004_b89
  article-title: Moving into a new software project landscape
– year: 2017
  ident: 10.1016/j.infsof.2022.107004_b50
– volume: 14
  start-page: 1797
  issue: 10
  year: 2021
  ident: 10.1016/j.infsof.2022.107004_b52
  article-title: Tensors: An abstraction for general data processing
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3467861.3467869
– volume: 32
  start-page: 9
  issue: 2
  year: 2007
  ident: 10.1016/j.infsof.2022.107004_b56
  article-title: Optimized stratified sampling for approximate query processing
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/1242524.1242526
– ident: 10.1016/j.infsof.2022.107004_b16
  doi: 10.1145/3102980.3102995
– ident: 10.1016/j.infsof.2022.107004_b12
  doi: 10.1145/3377811.3380395
– volume: 19
  start-page: 1665
  issue: 6
  year: 2014
  ident: 10.1016/j.infsof.2022.107004_b32
  article-title: Bug characteristics in open source software
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-013-9258-8
– volume: 1
  start-page: 11
  issue: 1
  year: 2004
  ident: 10.1016/j.infsof.2022.107004_b37
  article-title: Basic concepts and taxonomy of dependable and secure computing
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/TDSC.2004.2
– year: 2020
  ident: 10.1016/j.infsof.2022.107004_b47
– start-page: 21
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b58
  article-title: Characterization and prediction of popular projects on github
– year: 2016
  ident: 10.1016/j.infsof.2022.107004_b38
– ident: 10.1016/j.infsof.2022.107004_b67
– ident: 10.1016/j.infsof.2022.107004_b21
– ident: 10.1016/j.infsof.2022.107004_b53
  doi: 10.1145/3368089.3417050
– ident: 10.1016/j.infsof.2022.107004_b91
  doi: 10.1145/3236024.3236030
– volume: 4
  start-page: 15
  issue: 1
  year: 2016
  ident: 10.1016/j.infsof.2022.107004_b84
  article-title: Challenges in autonomous vehicle testing and validation
  publication-title: SAE Int. J. Transp. Saf.
  doi: 10.4271/2016-01-0128
– volume: 30
  start-page: 1
  issue: 2
  year: 2008
  ident: 10.1016/j.infsof.2022.107004_b83
  article-title: Exceptional situations and program reliability
  publication-title: ACM Trans. Program. Lang. Syst.
  doi: 10.1145/1330017.1330019
– start-page: 612
  year: 2020
  ident: 10.1016/j.infsof.2022.107004_b80
  article-title: Experience report: how effective is automated program repair for industrial software?
– volume: 33
  start-page: 613
  issue: 3
  year: 1973
  ident: 10.1016/j.infsof.2022.107004_b73
  article-title: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316447303300309
– year: 2002
  ident: 10.1016/j.infsof.2022.107004_b43
– year: 2017
  ident: 10.1016/j.infsof.2022.107004_b54
– year: 2017
  ident: 10.1016/j.infsof.2022.107004_b17
– volume: 28
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.infsof.2022.107004_b77
  article-title: An empirical study on learning bug-fixing patches in the wild via neural machine translation
  publication-title: ACM Trans. Softw. Eng. Methodol.
  doi: 10.1145/3340544
– volume: 43
  start-page: 272
  issue: 3
  year: 2016
  ident: 10.1016/j.infsof.2022.107004_b63
  article-title: Improving automated bug triaging with specialized topic model
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2016.2576454
– year: 2016
  ident: 10.1016/j.infsof.2022.107004_b24
– year: 2018
  ident: 10.1016/j.infsof.2022.107004_b26
– year: 2015
  ident: 10.1016/j.infsof.2022.107004_b4
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.infsof.2022.107004_b64
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.infsof.2022.107004_b61
  article-title: Reducing the effort of bug report triage: Recommenders for development-oriented decisions
  publication-title: ACM Trans. Softw. Eng. Methodol.
  doi: 10.1145/2000791.2000794
– volume: 47
  start-page: 77
  issue: 6
  year: 2012
  ident: 10.1016/j.infsof.2022.107004_b31
  article-title: Understanding and detecting real-world performance bugs
  publication-title: ACM SIGPLAN Not.
  doi: 10.1145/2345156.2254075
– volume: 29
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.infsof.2022.107004_b76
  article-title: Unveiling elite developers’ activities in open source projects
  publication-title: ACM Trans. Softw. Eng. Methodol.
– volume: 25
  start-page: 2897
  year: 2020
  ident: 10.1016/j.infsof.2022.107004_b59
  article-title: PHANTOM: Curating GitHub for engineered software projects using time-series clustering
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-020-09825-8
– ident: 10.1016/j.infsof.2022.107004_b28
  doi: 10.1145/3126908.3126964
SSID ssj0017030
Score 2.494803
Snippet Deep Learning (DL) frameworks enable developers to build DNN models without learning the underlying algorithms and models. While some of these DL-based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107004
SubjectTerms Bug characteristics
Bug detection
Deep learning framework
Empirical study
Title A comprehensive empirical study on bug characteristics of deep learning frameworks
URI https://dx.doi.org/10.1016/j.infsof.2022.107004
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76APEiPrE-yh68rk120yR7LMVSFXtQC72FfaVWNAl9XP3t7mYTsSAKHrPshOzsZGZgvvkG4EpTKjyWKsyp1DhgxPxSQnk4pYqoWPkyLHkKHibheBrczfqzBgzrXhgLq6x8v_PppbeuVnqVNnvFYtF7MsmBZ8InI6Qsv4VNaBPKwn4L2oPb-_Hkq5hgjdpR7nnYCtQddCXMy9zjKrdcnoSYJUv2_nOE-hZ1RvuwV6WLaOC-6AAaOjuEnRqtfgSPA2RB4Uv94oDoSL8Xi5L1A5XEsSjPkNjMkdzmZUZ5ipTWBaqGRsxRWoO0VscwHd08D8e4GpOApTn1GuvA1lJJnxPiaz9NBRER4-awkWQ0FREPZKBCEZnELAhjX6eaM2ZHNSrBhc89egKtLM_0KSCfmhcEivk8Mqme2RcLFgdc8jiSmnPRAVqrJpEVh7gdZfGW1GCx18QpNLEKTZxCO4C_pArHofHH_qjWerJlC4lx879Knv1b8hx27ZPrMryA1nq50Zcm3ViLLjSvP_xuZVSfR17VpA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GkIAL4inGMweuYW2Stc1xmpgGbDvAJu0W5dUxBG21x5XfTtLHxCQEEtfUrhrHtS3l82cAbg0h0mOxRoIogyjD9peS2kMx0VhH2ldBzlMwGAa9MX2ctCY10Kl6YRyssoz9RUzPo3W50iyt2cxms-aLLQ48mz4Zxvn1W7AFtmmLhA7Xd_e5xnn4zqULwj0POfGqfy4HedlTXKSOyRNju-So3n_OT99yTvcA7JfFImwX33MIaiY5AjsVVv0YPLehg4TPzWsBQ4fmI5vlnB8wp42FaQLlagrVJiszTGOojclgOTJiCuMKorU4AePu_ajTQ-WQBKTsnpfIUHeTilsCY9_4cSyxDJmwmw0VI7EMBVVUBzK0ZRkNIt_ERjDmBjVqKaQvPHIK6kmamDMAfWJfQDXzRWgLPSsXSRZRoUQUKiOEbABSmYarkkHcDbJ45xVU7I0XBuXOoLwwaAOgtVZWMGj8IR9WVucbnsBtkP9V8_zfmjdgtzca9Hn_Yfh0Afbck6Lf8BLUl_OVubKFx1Je5471BROK1m8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+empirical+study+on+bug+characteristics+of+deep+learning+frameworks&rft.jtitle=Information+and+software+technology&rft.au=Yang%2C+Yilin&rft.au=He%2C+Tianxing&rft.au=Xia%2C+Zhilong&rft.au=Feng%2C+Yang&rft.date=2022-11-01&rft.issn=0950-5849&rft.volume=151&rft.spage=107004&rft_id=info:doi/10.1016%2Fj.infsof.2022.107004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infsof_2022_107004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon