Pulsed laser deposition of high-transparency molybdenum oxide thin films

Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties, and layered structure. In this contribution, we employ Pulsed Laser Deposition (PLD) from stoichiometric MoO3 and metal Mo target at temperat...

Full description

Saved in:
Bibliographic Details
Published inVacuum Vol. 194; p. 110613
Main Authors Holovský, Jakub, Horynová, Eva, Horák, Lukáš, Ridzoňová, Katarína, Remeš, Zdeněk, Landová, Lucie, Sharma, Rupendra Kumar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties, and layered structure. In this contribution, we employ Pulsed Laser Deposition (PLD) from stoichiometric MoO3 and metal Mo target at temperature range of 25 °C–500 °C and oxygen pressure variation of 0.1 mbar–0.4 mbar to deposit high transparency MoO3 layers. The combination of Photothermal Deflection Spectroscopy (PDS) and Spectral Ellipsometry is applied to accurately track all the optical properties. The X-ray diffraction and Scanning Electron Microscopy (SEM) are used to monitor crystallinity and surface morphology. We have observed that with increasing temperature, initially amorphous layer becomes smoother and denser, bandgap narrows and sub-gap absorption increases. This trend can be reversed by increasing oxygen pressure. Above 400 °C, the material starts crystallizing, first in monoclinic β-MoO3 phase and then in orthorhombic α-MoO3 phase. The high pressure promotes crystallinity, however increases surface roughness. Depositions form metal Mo target follow the same trends as in the case of stoichiometric MoO3 target, however the deposition from stoichiometric target produces lower sub-gap absorptance. Sub-gap absorptance centred around 1000 nm depends strongly on deposition temperature and weakly on oxygen pressure. -Thin-film molybdenum oxide films prepared by Pulsed Laser Deposition-Optical properties given by combination of Photothermal Deflection Spectroscopy and Ellipsometry-Sub-gap absorptance tracked to find parameter regions of high transparency-Orthorhombic α-MoO3 and monoclinic β-MoO3 films observed at high temperature-Depositions from stochiometric MoO3 target and Mo metal target compared
AbstractList Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties, and layered structure. In this contribution, we employ Pulsed Laser Deposition (PLD) from stoichiometric MoO3 and metal Mo target at temperature range of 25 °C–500 °C and oxygen pressure variation of 0.1 mbar–0.4 mbar to deposit high transparency MoO3 layers. The combination of Photothermal Deflection Spectroscopy (PDS) and Spectral Ellipsometry is applied to accurately track all the optical properties. The X-ray diffraction and Scanning Electron Microscopy (SEM) are used to monitor crystallinity and surface morphology. We have observed that with increasing temperature, initially amorphous layer becomes smoother and denser, bandgap narrows and sub-gap absorption increases. This trend can be reversed by increasing oxygen pressure. Above 400 °C, the material starts crystallizing, first in monoclinic β-MoO3 phase and then in orthorhombic α-MoO3 phase. The high pressure promotes crystallinity, however increases surface roughness. Depositions form metal Mo target follow the same trends as in the case of stoichiometric MoO3 target, however the deposition from stoichiometric target produces lower sub-gap absorptance. Sub-gap absorptance centred around 1000 nm depends strongly on deposition temperature and weakly on oxygen pressure. -Thin-film molybdenum oxide films prepared by Pulsed Laser Deposition-Optical properties given by combination of Photothermal Deflection Spectroscopy and Ellipsometry-Sub-gap absorptance tracked to find parameter regions of high transparency-Orthorhombic α-MoO3 and monoclinic β-MoO3 films observed at high temperature-Depositions from stochiometric MoO3 target and Mo metal target compared
ArticleNumber 110613
Author Holovský, Jakub
Horák, Lukáš
Ridzoňová, Katarína
Horynová, Eva
Landová, Lucie
Sharma, Rupendra Kumar
Remeš, Zdeněk
Author_xml – sequence: 1
  givenname: Jakub
  orcidid: 0000-0002-4222-6070
  surname: Holovský
  fullname: Holovský, Jakub
  email: jakub.holovsky@fel.cvut.cz
  organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic
– sequence: 2
  givenname: Eva
  surname: Horynová
  fullname: Horynová, Eva
  organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic
– sequence: 3
  givenname: Lukáš
  orcidid: 0000-0002-1835-9850
  surname: Horák
  fullname: Horák, Lukáš
  organization: Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague, Czech Republic
– sequence: 4
  givenname: Katarína
  orcidid: 0000-0002-6490-5293
  surname: Ridzoňová
  fullname: Ridzoňová, Katarína
  organization: Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
– sequence: 5
  givenname: Zdeněk
  orcidid: 0000-0002-3512-9256
  surname: Remeš
  fullname: Remeš, Zdeněk
  organization: Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
– sequence: 6
  givenname: Lucie
  surname: Landová
  fullname: Landová, Lucie
  organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic
– sequence: 7
  givenname: Rupendra Kumar
  surname: Sharma
  fullname: Sharma, Rupendra Kumar
  organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic
BookMark eNqFkM1Kw0AURgepYFt9AxfzAon3TtIkdSFIUSsUdKHgbphfOyXJlJmk2Lc3Ja5c6Oquzse5Z0YmrW8NIdcIKQIWN7v0IFTfNykDhikiFJidkSlW5TJhJS4mZAqQs4RB-XFBZjHuAIAVUE3J-rWvo9G0FtEEqs3eR9c531Jv6dZ9bpMuiDbuRTCtOtLG10epTds31H85bWi3dS21rm7iJTm3Ypi6-rlz8v748LZaJ5uXp-fV_SZRGRRdYkBKhnmmUVihoVjIQuaVyQZzwZi1MkPMF0uLpUBgg7SWOVMmZ5UqKmmLbE5ux10VfIzBWK5cJ07Kg6mrOQI_NeE7PjbhpyZ8bDLA-S94H1wjwvE_7G7EzPDYwZnAo3JDEKNdMKrj2ru_B74B5nCApQ
CitedBy_id crossref_primary_10_1007_s10854_023_10989_4
crossref_primary_10_1016_j_optmat_2023_114280
crossref_primary_10_1002_aenm_202400965
crossref_primary_10_1088_2515_7647_adbced
crossref_primary_10_1088_1361_6463_ad18f6
crossref_primary_10_1116_6_0004240
crossref_primary_10_1007_s11581_023_05333_z
Cites_doi 10.1007/s12274-020-3029-9
10.1016/j.apsusc.2008.10.069
10.1016/j.tsf.2016.04.026
10.1039/C9NR09024J
10.1088/1361-6641/abbc42
10.1021/am4050184
10.1016/j.vacuum.2016.07.002
10.1021/acsami.6b10898
10.1039/D0MA00896F
10.1002/pssa.2211480114
10.1016/j.cplett.2006.06.117
10.1038/ncomms14903
10.1063/1.118064
10.1116/1.2747628
10.1002/adma.200800999
10.1016/j.electacta.2020.136745
10.1021/nl404389u
10.1039/C4NR03073G
10.1016/j.solmat.2015.08.028
10.1063/1.4812587
10.1007/s00339-009-5444-3
10.1039/C7CP00644F
10.1088/1361-648X/ab18e2
10.1002/adfm.201706006
10.1021/acsami.6b04425
10.1016/j.mssp.2017.11.037
10.1016/j.tsf.2019.137690
10.1021/acsami.6b14228
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.vacuum.2021.110613
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1879-2715
ExternalDocumentID 10_1016_j_vacuum_2021_110613
S0042207X21005613
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADOJD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MAGPM
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
T9H
TAE
TN5
WUQ
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHDLI
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-e0bb2143d1afad065b6b48e3202a22ffb311459f17a102042db42ce428c68bf63
IEDL.DBID .~1
ISSN 0042-207X
IngestDate Thu Apr 24 23:01:22 EDT 2025
Tue Jul 01 03:43:59 EDT 2025
Fri Feb 23 02:42:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords X-ray diffraction
Photothermal deflection spectroscopy
Molybdenum oxide
Pulsed laser deposition
Spectral ellipsometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e0bb2143d1afad065b6b48e3202a22ffb311459f17a102042db42ce428c68bf63
ORCID 0000-0002-4222-6070
0000-0002-3512-9256
0000-0002-6490-5293
0000-0002-1835-9850
ParticipantIDs crossref_citationtrail_10_1016_j_vacuum_2021_110613
crossref_primary_10_1016_j_vacuum_2021_110613
elsevier_sciencedirect_doi_10_1016_j_vacuum_2021_110613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Vacuum
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Gao, Wan, Li, Song, Ma (bib8) 2018; 75
Scirè, Procel, Gulino, Isabella, Zeman, Crupi (bib15) 2020; 13
Santhosh, Nanda Kumar, Kennedy, Subramanian (bib21) 2020; 354
Lin, Chen, Wang, Hsieh, Shih (bib7) 2009; 255
Al-Kuhaili, Durrani, Bakhtiari (bib17) 2010; 98
Schulz, Tiepelt, Christians, Levine, Edri, Sanehira, Hodes, Cahen, Kahn (bib6) 2016; 8
Lee, Kim, Deshpande, Parilla, Whitney, Gillaspie, Jones, Mahan, Zhang, Dillon (bib4) 2008; 20
Zhang, Li, Ma, Zhang, Bai, Yi, Liu, Han, Xi (bib22) 2017; 8
Jellison, Modine (bib28) 1996; 69
Gerling, Mahato, Morales-Vilches, Masmitja, Ortega, Voz, Alcubilla, Puigdollers (bib10) 2016; 145
Zhang, Zavabeti, Chrimes, Haque, O'Dell, Khan, Syed, Datta, Wang, Chesman, Daeneke, Kalantar-zadeh, Ou (bib2) 2018; 28
Sabhapathi, Hussain, Reddy, Reddy, Uthanna, Naidu, Reddy (bib9) 1995; 148
Cesca, Scian, Petronijevic, Leahu, Li Voti, Cesarini, Macaluso, Mosca, Sibilia, Mattei (bib25) 2020; 12
Inzani, Nematollahi, Vullum-Bruer, Grande, Reenaas, Selbach (bib20) 2017; 19
Horynová, Romanyuk, Horák, Remeš, Conrad, Peter Amalathas, Landová, Houdková, Jiříček, Finsterle, Holovský (bib26) 2020; 693
Alsaif, Field, Murdoch, Daeneke, Latham, Chrimes, Zoolfakar, Russo, Ou, Kalantar-zadeh (bib3) 2014; 6
Cauduro, dos Reis, Chen, Schmid, Méthivier, Rubahn, Bossard-Giannesini, Cruguel, Witkowski, Madsen (bib16) 2017; 9
de Melo, González, Climent-Font, Galán, Ruediger, Sánchez, Calvo-Mola, Santana, Torres-Costa (bib12) 2019; 31
Ramana, Atuchin, Pokrovsky, Becker, Julien (bib18) 2007; 25
Ramana, Julien (bib19) 2006; 428
Andron, Marichez, Jubera, Fargues, Frayret, Gaudon (bib11) 2021; 2
Battaglia, Yin, Zheng, Sharp, Chen, McDonnell, Azcatl, Carraro, Ma, Maboudian, Wallace, Javey (bib5) 2014; 14
Remes, Babchenko, Varga, Stuchlik, Jirasek, Prajzler, Nekvindova, Kromka (bib27) 2016; 618
Werner, Geissbühler, Dabirian, Nicolay, Morales-Masis, Wolf, Niesen, Ballif (bib23) 2016; 8
Pachlhofer, Jachs, Franz, Franzke, Köstenbauer, Winkler, Mitterer (bib13) 2016; 131
Boughelout, Macaluso, Crupi, Megna, Brighet, Trari, Kechouane (bib24) 2020; 36
Song, Shen, Jiang, Hu, Li, An, Zou, Chen, Qin, Hu (bib1) 2014; 6
Simchi, McCandless, Meng, Boyle, Shafarman (bib14) 2013; 114
Jellison (10.1016/j.vacuum.2021.110613_bib28) 1996; 69
Schulz (10.1016/j.vacuum.2021.110613_bib6) 2016; 8
Lin (10.1016/j.vacuum.2021.110613_bib7) 2009; 255
Simchi (10.1016/j.vacuum.2021.110613_bib14) 2013; 114
Cesca (10.1016/j.vacuum.2021.110613_bib25) 2020; 12
Zhang (10.1016/j.vacuum.2021.110613_bib22) 2017; 8
Horynová (10.1016/j.vacuum.2021.110613_bib26) 2020; 693
Song (10.1016/j.vacuum.2021.110613_bib1) 2014; 6
Gerling (10.1016/j.vacuum.2021.110613_bib10) 2016; 145
de Melo (10.1016/j.vacuum.2021.110613_bib12) 2019; 31
Cauduro (10.1016/j.vacuum.2021.110613_bib16) 2017; 9
Al-Kuhaili (10.1016/j.vacuum.2021.110613_bib17) 2010; 98
Lee (10.1016/j.vacuum.2021.110613_bib4) 2008; 20
Remes (10.1016/j.vacuum.2021.110613_bib27) 2016; 618
Han (10.1016/j.vacuum.2021.110613_bib8) 2018; 75
Zhang (10.1016/j.vacuum.2021.110613_bib2) 2018; 28
Ramana (10.1016/j.vacuum.2021.110613_bib18) 2007; 25
Sabhapathi (10.1016/j.vacuum.2021.110613_bib9) 1995; 148
Alsaif (10.1016/j.vacuum.2021.110613_bib3) 2014; 6
Scirè (10.1016/j.vacuum.2021.110613_bib15) 2020; 13
Battaglia (10.1016/j.vacuum.2021.110613_bib5) 2014; 14
Santhosh (10.1016/j.vacuum.2021.110613_bib21) 2020; 354
Inzani (10.1016/j.vacuum.2021.110613_bib20) 2017; 19
Boughelout (10.1016/j.vacuum.2021.110613_bib24) 2020; 36
Andron (10.1016/j.vacuum.2021.110613_bib11) 2021; 2
Pachlhofer (10.1016/j.vacuum.2021.110613_bib13) 2016; 131
Ramana (10.1016/j.vacuum.2021.110613_bib19) 2006; 428
Werner (10.1016/j.vacuum.2021.110613_bib23) 2016; 8
References_xml – volume: 6
  start-page: 12780
  year: 2014
  end-page: 12791
  ident: bib3
  article-title: Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform
  publication-title: Nanoscale
– volume: 98
  start-page: 609
  year: 2010
  end-page: 615
  ident: bib17
  article-title: Pulsed laser deposition of molybdenum oxide thin films
  publication-title: Appl. Phys. A
– volume: 69
  start-page: 371
  year: 1996
  ident: bib28
  article-title: Parameterization of the optical functions of amorphous materials in the interband region
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 31491
  year: 2016
  end-page: 31499
  ident: bib6
  article-title: High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 145
  start-page: 109
  year: 2016
  end-page: 115
  ident: bib10
  article-title: Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 9
  start-page: 7717
  year: 2017
  end-page: 7724
  ident: bib16
  article-title: Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices
  publication-title: ACS Appl. Mater. Interfaces
– volume: 618
  start-page: 130
  year: 2016
  end-page: 133
  ident: bib27
  article-title: Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides
  publication-title: Thin Solid Films
– volume: 19
  start-page: 9232
  year: 2017
  end-page: 9245
  ident: bib20
  article-title: Electronic properties of reduced molybdenum oxides
  publication-title: Phys. Chem. Chem. Phys.
– volume: 75
  start-page: 166
  year: 2018
  end-page: 172
  ident: bib8
  article-title: Effect of post-annealing on the properties of thermally evaporated molybdenum oxide films: interdependence of work function and oxygen to molybdenum ratio
  publication-title: Mater. Sci. Semicond. Process.
– volume: 428
  start-page: 114
  year: 2006
  end-page: 118
  ident: bib19
  article-title: Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition
  publication-title: Chem. Phys. Lett.
– volume: 131
  start-page: 246
  year: 2016
  end-page: 251
  ident: bib13
  article-title: Structure evolution in reactively sputtered molybdenum oxide thin films
  publication-title: Vacuum
– volume: 255
  start-page: 3868
  year: 2009
  end-page: 3874
  ident: bib7
  article-title: Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 782
  year: 2021
  end-page: 792
  ident: bib11
  article-title: Improvement of the photochromism taking place on ZnO/MoO
  publication-title: Mater. Adv.
– volume: 8
  start-page: 14903
  year: 2017
  ident: bib22
  article-title: A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy
  publication-title: Nat. Commun.
– volume: 12
  start-page: 851
  year: 2020
  end-page: 863
  ident: bib25
  article-title: Correlation between
  publication-title: Nanoscale
– volume: 6
  start-page: 3915
  year: 2014
  end-page: 3922
  ident: bib1
  article-title: Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 354
  start-page: 136745
  year: 2020
  ident: bib21
  article-title: Electrochromic response of pulsed laser deposited oxygen deficient monoclinic β-MoO3 thin films
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 17260
  year: 2016
  end-page: 17267
  ident: bib23
  article-title: Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1166
  year: 2007
  end-page: 1171
  ident: bib18
  article-title: Structure and chemical properties of molybdenum oxide thin films
  publication-title: J. Vac. Sci. Technol.: Vacuum Surf. Films
– volume: 14
  start-page: 967
  year: 2014
  end-page: 971
  ident: bib5
  article-title: Hole selective MoOx contact for silicon solar cells
  publication-title: Nano Lett.
– volume: 148
  start-page: 167
  year: 1995
  end-page: 173
  ident: bib9
  article-title: Optical absorption studies in molybdenum trioxide thin films
  publication-title: Phys. Status Solidi
– volume: 31
  start-page: 295703
  year: 2019
  ident: bib12
  article-title: Optical and electrical properties of MoO
  publication-title: J. Phys. Condens. Matter
– volume: 13
  start-page: 3416
  year: 2020
  end-page: 3424
  ident: bib15
  article-title: Sub-gap defect density characterization of molybdenum oxide: an annealing study for solar cell applications
  publication-title: Nano Res.
– volume: 20
  start-page: 3627
  year: 2008
  end-page: 3632
  ident: bib4
  article-title: Reversible lithium-ion insertion in molybdenum oxide nanoparticles
  publication-title: Adv. Mater.
– volume: 36
  year: 2020
  ident: bib24
  article-title: Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition
  publication-title: Semicond. Sci. Technol.
– volume: 28
  start-page: 1706006
  year: 2018
  ident: bib2
  article-title: Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing
  publication-title: Adv. Funct. Mater.
– volume: 693
  start-page: 137690
  year: 2020
  ident: bib26
  article-title: Optical characterization of low temperature amorphous MoOx, WOX, and VOx prepared by pulsed laser deposition
  publication-title: Thin Solid Films
– volume: 114
  year: 2013
  ident: bib14
  article-title: Characterization of reactively sputtered molybdenum oxide films for solar cell application
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 3416
  year: 2020
  ident: 10.1016/j.vacuum.2021.110613_bib15
  article-title: Sub-gap defect density characterization of molybdenum oxide: an annealing study for solar cell applications
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3029-9
– volume: 255
  start-page: 3868
  year: 2009
  ident: 10.1016/j.vacuum.2021.110613_bib7
  article-title: Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.10.069
– volume: 618
  start-page: 130
  year: 2016
  ident: 10.1016/j.vacuum.2021.110613_bib27
  article-title: Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.04.026
– volume: 12
  start-page: 851
  year: 2020
  ident: 10.1016/j.vacuum.2021.110613_bib25
  article-title: Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO 2 thin films on sapphire
  publication-title: Nanoscale
  doi: 10.1039/C9NR09024J
– volume: 36
  year: 2020
  ident: 10.1016/j.vacuum.2021.110613_bib24
  article-title: Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/abbc42
– volume: 6
  start-page: 3915
  year: 2014
  ident: 10.1016/j.vacuum.2021.110613_bib1
  article-title: Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4050184
– volume: 131
  start-page: 246
  year: 2016
  ident: 10.1016/j.vacuum.2021.110613_bib13
  article-title: Structure evolution in reactively sputtered molybdenum oxide thin films
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.07.002
– volume: 8
  start-page: 31491
  year: 2016
  ident: 10.1016/j.vacuum.2021.110613_bib6
  article-title: High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10898
– volume: 2
  start-page: 782
  year: 2021
  ident: 10.1016/j.vacuum.2021.110613_bib11
  article-title: Improvement of the photochromism taking place on ZnO/MoO 3 combined material interfaces
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00896F
– volume: 148
  start-page: 167
  year: 1995
  ident: 10.1016/j.vacuum.2021.110613_bib9
  article-title: Optical absorption studies in molybdenum trioxide thin films
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.2211480114
– volume: 428
  start-page: 114
  year: 2006
  ident: 10.1016/j.vacuum.2021.110613_bib19
  article-title: Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.06.117
– volume: 8
  start-page: 14903
  year: 2017
  ident: 10.1016/j.vacuum.2021.110613_bib22
  article-title: A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14903
– volume: 69
  start-page: 371
  year: 1996
  ident: 10.1016/j.vacuum.2021.110613_bib28
  article-title: Parameterization of the optical functions of amorphous materials in the interband region
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118064
– volume: 25
  start-page: 1166
  year: 2007
  ident: 10.1016/j.vacuum.2021.110613_bib18
  article-title: Structure and chemical properties of molybdenum oxide thin films
  publication-title: J. Vac. Sci. Technol.: Vacuum Surf. Films
  doi: 10.1116/1.2747628
– volume: 20
  start-page: 3627
  year: 2008
  ident: 10.1016/j.vacuum.2021.110613_bib4
  article-title: Reversible lithium-ion insertion in molybdenum oxide nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800999
– volume: 354
  start-page: 136745
  year: 2020
  ident: 10.1016/j.vacuum.2021.110613_bib21
  article-title: Electrochromic response of pulsed laser deposited oxygen deficient monoclinic β-MoO3 thin films
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136745
– volume: 14
  start-page: 967
  year: 2014
  ident: 10.1016/j.vacuum.2021.110613_bib5
  article-title: Hole selective MoOx contact for silicon solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl404389u
– volume: 6
  start-page: 12780
  year: 2014
  ident: 10.1016/j.vacuum.2021.110613_bib3
  article-title: Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform
  publication-title: Nanoscale
  doi: 10.1039/C4NR03073G
– volume: 145
  start-page: 109
  year: 2016
  ident: 10.1016/j.vacuum.2021.110613_bib10
  article-title: Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2015.08.028
– volume: 114
  year: 2013
  ident: 10.1016/j.vacuum.2021.110613_bib14
  article-title: Characterization of reactively sputtered molybdenum oxide films for solar cell application
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4812587
– volume: 98
  start-page: 609
  year: 2010
  ident: 10.1016/j.vacuum.2021.110613_bib17
  article-title: Pulsed laser deposition of molybdenum oxide thin films
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-009-5444-3
– volume: 19
  start-page: 9232
  year: 2017
  ident: 10.1016/j.vacuum.2021.110613_bib20
  article-title: Electronic properties of reduced molybdenum oxides
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00644F
– volume: 31
  start-page: 295703
  year: 2019
  ident: 10.1016/j.vacuum.2021.110613_bib12
  article-title: Optical and electrical properties of MoO 2 and MoO 3 thin films prepared from the chemically driven isothermal close space vapor transport technique
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab18e2
– volume: 28
  start-page: 1706006
  year: 2018
  ident: 10.1016/j.vacuum.2021.110613_bib2
  article-title: Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706006
– volume: 8
  start-page: 17260
  year: 2016
  ident: 10.1016/j.vacuum.2021.110613_bib23
  article-title: Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04425
– volume: 75
  start-page: 166
  year: 2018
  ident: 10.1016/j.vacuum.2021.110613_bib8
  article-title: Effect of post-annealing on the properties of thermally evaporated molybdenum oxide films: interdependence of work function and oxygen to molybdenum ratio
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2017.11.037
– volume: 693
  start-page: 137690
  year: 2020
  ident: 10.1016/j.vacuum.2021.110613_bib26
  article-title: Optical characterization of low temperature amorphous MoOx, WOX, and VOx prepared by pulsed laser deposition
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2019.137690
– volume: 9
  start-page: 7717
  year: 2017
  ident: 10.1016/j.vacuum.2021.110613_bib16
  article-title: Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14228
SSID ssj0002608
Score 2.3547523
Snippet Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110613
SubjectTerms Molybdenum oxide
Photothermal deflection spectroscopy
Pulsed laser deposition
Spectral ellipsometry
X-ray diffraction
Title Pulsed laser deposition of high-transparency molybdenum oxide thin films
URI https://dx.doi.org/10.1016/j.vacuum.2021.110613
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfDioyrWR9mD19hks90kx1IsUbF4sNBb2FcwUpPSJmIv_nZn86gKouAxYSeEYTLzDfm-GYQumYAqDYXRUoblQCFGLC44sxiHYiwVC1ipkLufsHBKb2eDWQuNGi2MoVXWub_K6WW2ru_0a2_2F0liNL6UENubQdNSwmCjYKeeifKr90-aB-B1fyNDgdONfK7keL1yWRRGj04cw4cvlxz8VJ6-lJzxPtqtsSIeVq9zgFo67aC9Gjfi-qtcddB2SeOUq0MUPhTwLIUBEuslVrqhZOEsxmYwsZWXs8yNAEyu8Us2XwtluPA4e0uUxvlTkuI4mb-sjtB0fP04Cq16V4IlAfTnlraFIIB9lMNjrgBXCCaor812dE5IHAsXGp9BEDsed4welihBidTQfEjmi5i5x6idZqk-QViwAdWau-aXNHU1AAoqmc2pJIGt_EB0kdu4KJL1IHGzz2IeNYyx56hybGQcG1WO7SJrY7WoBmn8cd5rvB99C4gIcv2vlqf_tjxDO-aqYquco3a-LPQFYI5c9Mqg6qGt4c1dOPkAKhDVBw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxujFB2rE5x68VmC7LHA0RFIViAdIuDX7aqwBSqAYufjbne0DNTGaeG13Ns1kdubb9PtmAK65xCqNhdHRluXAMEYcIQV3uMBirDRv8UQh1-tzb8geRvVRAdq5FsbSKrPcn-b0JFtnTyqZNyuzMLQaX0ZptTHCS0sCgzdgk-HxtWMMbt4_eR4I2JtrHQouz_VzCcnrVajl0grSac0S4pMpBz_Vpy81p7MPuxlYJLfp9xxAwUxLsJcBR5Idy0UJthIep1ocgve0xL00QUxs5kSbnJNFooDYzsROnDQztwowtSKTaLyS2pLhSfQWakPi53BKgnA8WRzBsHM3aHtONizBUYj6Y8dUpaQIfnRNBEIjsJBcsqax49EFpUEgXbz51FtBrSFqVhBLtWRUGbx9KN6UAXePoTiNpuYEiOR1Zoxw7T9p5hpEFEzxqmCKtqq62ZJlcHMX-SrrJG4HWoz9nDL24qeO9a1j_dSxZXDWVrO0k8Yf6xu59_1vEeFjsv_V8vTfllew7Q16Xb973388gx37JqWunEMxni_NBQKQWF4mAfYBL7TWlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsed+laser+deposition+of+high-transparency+molybdenum+oxide+thin+films&rft.jtitle=Vacuum&rft.au=Holovsk%C3%BD%2C+Jakub&rft.au=Horynov%C3%A1%2C+Eva&rft.au=Hor%C3%A1k%2C+Luk%C3%A1%C5%A1&rft.au=Ridzo%C5%88ov%C3%A1%2C+Katar%C3%ADna&rft.date=2021-12-01&rft.issn=0042-207X&rft.volume=194&rft.spage=110613&rft_id=info:doi/10.1016%2Fj.vacuum.2021.110613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vacuum_2021_110613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-207X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-207X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-207X&client=summon