Pulsed laser deposition of high-transparency molybdenum oxide thin films
Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties, and layered structure. In this contribution, we employ Pulsed Laser Deposition (PLD) from stoichiometric MoO3 and metal Mo target at temperat...
Saved in:
Published in | Vacuum Vol. 194; p. 110613 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties, and layered structure. In this contribution, we employ Pulsed Laser Deposition (PLD) from stoichiometric MoO3 and metal Mo target at temperature range of 25 °C–500 °C and oxygen pressure variation of 0.1 mbar–0.4 mbar to deposit high transparency MoO3 layers. The combination of Photothermal Deflection Spectroscopy (PDS) and Spectral Ellipsometry is applied to accurately track all the optical properties. The X-ray diffraction and Scanning Electron Microscopy (SEM) are used to monitor crystallinity and surface morphology. We have observed that with increasing temperature, initially amorphous layer becomes smoother and denser, bandgap narrows and sub-gap absorption increases. This trend can be reversed by increasing oxygen pressure. Above 400 °C, the material starts crystallizing, first in monoclinic β-MoO3 phase and then in orthorhombic α-MoO3 phase. The high pressure promotes crystallinity, however increases surface roughness. Depositions form metal Mo target follow the same trends as in the case of stoichiometric MoO3 target, however the deposition from stoichiometric target produces lower sub-gap absorptance. Sub-gap absorptance centred around 1000 nm depends strongly on deposition temperature and weakly on oxygen pressure.
-Thin-film molybdenum oxide films prepared by Pulsed Laser Deposition-Optical properties given by combination of Photothermal Deflection Spectroscopy and Ellipsometry-Sub-gap absorptance tracked to find parameter regions of high transparency-Orthorhombic α-MoO3 and monoclinic β-MoO3 films observed at high temperature-Depositions from stochiometric MoO3 target and Mo metal target compared |
---|---|
AbstractList | Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties, and layered structure. In this contribution, we employ Pulsed Laser Deposition (PLD) from stoichiometric MoO3 and metal Mo target at temperature range of 25 °C–500 °C and oxygen pressure variation of 0.1 mbar–0.4 mbar to deposit high transparency MoO3 layers. The combination of Photothermal Deflection Spectroscopy (PDS) and Spectral Ellipsometry is applied to accurately track all the optical properties. The X-ray diffraction and Scanning Electron Microscopy (SEM) are used to monitor crystallinity and surface morphology. We have observed that with increasing temperature, initially amorphous layer becomes smoother and denser, bandgap narrows and sub-gap absorption increases. This trend can be reversed by increasing oxygen pressure. Above 400 °C, the material starts crystallizing, first in monoclinic β-MoO3 phase and then in orthorhombic α-MoO3 phase. The high pressure promotes crystallinity, however increases surface roughness. Depositions form metal Mo target follow the same trends as in the case of stoichiometric MoO3 target, however the deposition from stoichiometric target produces lower sub-gap absorptance. Sub-gap absorptance centred around 1000 nm depends strongly on deposition temperature and weakly on oxygen pressure.
-Thin-film molybdenum oxide films prepared by Pulsed Laser Deposition-Optical properties given by combination of Photothermal Deflection Spectroscopy and Ellipsometry-Sub-gap absorptance tracked to find parameter regions of high transparency-Orthorhombic α-MoO3 and monoclinic β-MoO3 films observed at high temperature-Depositions from stochiometric MoO3 target and Mo metal target compared |
ArticleNumber | 110613 |
Author | Holovský, Jakub Horák, Lukáš Ridzoňová, Katarína Horynová, Eva Landová, Lucie Sharma, Rupendra Kumar Remeš, Zdeněk |
Author_xml | – sequence: 1 givenname: Jakub orcidid: 0000-0002-4222-6070 surname: Holovský fullname: Holovský, Jakub email: jakub.holovsky@fel.cvut.cz organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic – sequence: 2 givenname: Eva surname: Horynová fullname: Horynová, Eva organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic – sequence: 3 givenname: Lukáš orcidid: 0000-0002-1835-9850 surname: Horák fullname: Horák, Lukáš organization: Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague, Czech Republic – sequence: 4 givenname: Katarína orcidid: 0000-0002-6490-5293 surname: Ridzoňová fullname: Ridzoňová, Katarína organization: Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic – sequence: 5 givenname: Zdeněk orcidid: 0000-0002-3512-9256 surname: Remeš fullname: Remeš, Zdeněk organization: Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic – sequence: 6 givenname: Lucie surname: Landová fullname: Landová, Lucie organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic – sequence: 7 givenname: Rupendra Kumar surname: Sharma fullname: Sharma, Rupendra Kumar organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague, Czech Republic |
BookMark | eNqFkM1Kw0AURgepYFt9AxfzAon3TtIkdSFIUSsUdKHgbphfOyXJlJmk2Lc3Ja5c6Oquzse5Z0YmrW8NIdcIKQIWN7v0IFTfNykDhikiFJidkSlW5TJhJS4mZAqQs4RB-XFBZjHuAIAVUE3J-rWvo9G0FtEEqs3eR9c531Jv6dZ9bpMuiDbuRTCtOtLG10epTds31H85bWi3dS21rm7iJTm3Ypi6-rlz8v748LZaJ5uXp-fV_SZRGRRdYkBKhnmmUVihoVjIQuaVyQZzwZi1MkPMF0uLpUBgg7SWOVMmZ5UqKmmLbE5ux10VfIzBWK5cJ07Kg6mrOQI_NeE7PjbhpyZ8bDLA-S94H1wjwvE_7G7EzPDYwZnAo3JDEKNdMKrj2ru_B74B5nCApQ |
CitedBy_id | crossref_primary_10_1007_s10854_023_10989_4 crossref_primary_10_1016_j_optmat_2023_114280 crossref_primary_10_1002_aenm_202400965 crossref_primary_10_1088_2515_7647_adbced crossref_primary_10_1088_1361_6463_ad18f6 crossref_primary_10_1116_6_0004240 crossref_primary_10_1007_s11581_023_05333_z |
Cites_doi | 10.1007/s12274-020-3029-9 10.1016/j.apsusc.2008.10.069 10.1016/j.tsf.2016.04.026 10.1039/C9NR09024J 10.1088/1361-6641/abbc42 10.1021/am4050184 10.1016/j.vacuum.2016.07.002 10.1021/acsami.6b10898 10.1039/D0MA00896F 10.1002/pssa.2211480114 10.1016/j.cplett.2006.06.117 10.1038/ncomms14903 10.1063/1.118064 10.1116/1.2747628 10.1002/adma.200800999 10.1016/j.electacta.2020.136745 10.1021/nl404389u 10.1039/C4NR03073G 10.1016/j.solmat.2015.08.028 10.1063/1.4812587 10.1007/s00339-009-5444-3 10.1039/C7CP00644F 10.1088/1361-648X/ab18e2 10.1002/adfm.201706006 10.1021/acsami.6b04425 10.1016/j.mssp.2017.11.037 10.1016/j.tsf.2019.137690 10.1021/acsami.6b14228 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.vacuum.2021.110613 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1879-2715 |
ExternalDocumentID | 10_1016_j_vacuum_2021_110613 S0042207X21005613 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD ADOJD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MAGPM MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSM SSQ SSZ T5K T9H TAE TN5 WUQ ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHDLI AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-e0bb2143d1afad065b6b48e3202a22ffb311459f17a102042db42ce428c68bf63 |
IEDL.DBID | .~1 |
ISSN | 0042-207X |
IngestDate | Thu Apr 24 23:01:22 EDT 2025 Tue Jul 01 03:43:59 EDT 2025 Fri Feb 23 02:42:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | X-ray diffraction Photothermal deflection spectroscopy Molybdenum oxide Pulsed laser deposition Spectral ellipsometry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-e0bb2143d1afad065b6b48e3202a22ffb311459f17a102042db42ce428c68bf63 |
ORCID | 0000-0002-4222-6070 0000-0002-3512-9256 0000-0002-6490-5293 0000-0002-1835-9850 |
ParticipantIDs | crossref_citationtrail_10_1016_j_vacuum_2021_110613 crossref_primary_10_1016_j_vacuum_2021_110613 elsevier_sciencedirect_doi_10_1016_j_vacuum_2021_110613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Vacuum |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Han, Gao, Wan, Li, Song, Ma (bib8) 2018; 75 Scirè, Procel, Gulino, Isabella, Zeman, Crupi (bib15) 2020; 13 Santhosh, Nanda Kumar, Kennedy, Subramanian (bib21) 2020; 354 Lin, Chen, Wang, Hsieh, Shih (bib7) 2009; 255 Al-Kuhaili, Durrani, Bakhtiari (bib17) 2010; 98 Schulz, Tiepelt, Christians, Levine, Edri, Sanehira, Hodes, Cahen, Kahn (bib6) 2016; 8 Lee, Kim, Deshpande, Parilla, Whitney, Gillaspie, Jones, Mahan, Zhang, Dillon (bib4) 2008; 20 Zhang, Li, Ma, Zhang, Bai, Yi, Liu, Han, Xi (bib22) 2017; 8 Jellison, Modine (bib28) 1996; 69 Gerling, Mahato, Morales-Vilches, Masmitja, Ortega, Voz, Alcubilla, Puigdollers (bib10) 2016; 145 Zhang, Zavabeti, Chrimes, Haque, O'Dell, Khan, Syed, Datta, Wang, Chesman, Daeneke, Kalantar-zadeh, Ou (bib2) 2018; 28 Sabhapathi, Hussain, Reddy, Reddy, Uthanna, Naidu, Reddy (bib9) 1995; 148 Cesca, Scian, Petronijevic, Leahu, Li Voti, Cesarini, Macaluso, Mosca, Sibilia, Mattei (bib25) 2020; 12 Inzani, Nematollahi, Vullum-Bruer, Grande, Reenaas, Selbach (bib20) 2017; 19 Horynová, Romanyuk, Horák, Remeš, Conrad, Peter Amalathas, Landová, Houdková, Jiříček, Finsterle, Holovský (bib26) 2020; 693 Alsaif, Field, Murdoch, Daeneke, Latham, Chrimes, Zoolfakar, Russo, Ou, Kalantar-zadeh (bib3) 2014; 6 Cauduro, dos Reis, Chen, Schmid, Méthivier, Rubahn, Bossard-Giannesini, Cruguel, Witkowski, Madsen (bib16) 2017; 9 de Melo, González, Climent-Font, Galán, Ruediger, Sánchez, Calvo-Mola, Santana, Torres-Costa (bib12) 2019; 31 Ramana, Atuchin, Pokrovsky, Becker, Julien (bib18) 2007; 25 Ramana, Julien (bib19) 2006; 428 Andron, Marichez, Jubera, Fargues, Frayret, Gaudon (bib11) 2021; 2 Battaglia, Yin, Zheng, Sharp, Chen, McDonnell, Azcatl, Carraro, Ma, Maboudian, Wallace, Javey (bib5) 2014; 14 Remes, Babchenko, Varga, Stuchlik, Jirasek, Prajzler, Nekvindova, Kromka (bib27) 2016; 618 Werner, Geissbühler, Dabirian, Nicolay, Morales-Masis, Wolf, Niesen, Ballif (bib23) 2016; 8 Pachlhofer, Jachs, Franz, Franzke, Köstenbauer, Winkler, Mitterer (bib13) 2016; 131 Boughelout, Macaluso, Crupi, Megna, Brighet, Trari, Kechouane (bib24) 2020; 36 Song, Shen, Jiang, Hu, Li, An, Zou, Chen, Qin, Hu (bib1) 2014; 6 Simchi, McCandless, Meng, Boyle, Shafarman (bib14) 2013; 114 Jellison (10.1016/j.vacuum.2021.110613_bib28) 1996; 69 Schulz (10.1016/j.vacuum.2021.110613_bib6) 2016; 8 Lin (10.1016/j.vacuum.2021.110613_bib7) 2009; 255 Simchi (10.1016/j.vacuum.2021.110613_bib14) 2013; 114 Cesca (10.1016/j.vacuum.2021.110613_bib25) 2020; 12 Zhang (10.1016/j.vacuum.2021.110613_bib22) 2017; 8 Horynová (10.1016/j.vacuum.2021.110613_bib26) 2020; 693 Song (10.1016/j.vacuum.2021.110613_bib1) 2014; 6 Gerling (10.1016/j.vacuum.2021.110613_bib10) 2016; 145 de Melo (10.1016/j.vacuum.2021.110613_bib12) 2019; 31 Cauduro (10.1016/j.vacuum.2021.110613_bib16) 2017; 9 Al-Kuhaili (10.1016/j.vacuum.2021.110613_bib17) 2010; 98 Lee (10.1016/j.vacuum.2021.110613_bib4) 2008; 20 Remes (10.1016/j.vacuum.2021.110613_bib27) 2016; 618 Han (10.1016/j.vacuum.2021.110613_bib8) 2018; 75 Zhang (10.1016/j.vacuum.2021.110613_bib2) 2018; 28 Ramana (10.1016/j.vacuum.2021.110613_bib18) 2007; 25 Sabhapathi (10.1016/j.vacuum.2021.110613_bib9) 1995; 148 Alsaif (10.1016/j.vacuum.2021.110613_bib3) 2014; 6 Scirè (10.1016/j.vacuum.2021.110613_bib15) 2020; 13 Battaglia (10.1016/j.vacuum.2021.110613_bib5) 2014; 14 Santhosh (10.1016/j.vacuum.2021.110613_bib21) 2020; 354 Inzani (10.1016/j.vacuum.2021.110613_bib20) 2017; 19 Boughelout (10.1016/j.vacuum.2021.110613_bib24) 2020; 36 Andron (10.1016/j.vacuum.2021.110613_bib11) 2021; 2 Pachlhofer (10.1016/j.vacuum.2021.110613_bib13) 2016; 131 Ramana (10.1016/j.vacuum.2021.110613_bib19) 2006; 428 Werner (10.1016/j.vacuum.2021.110613_bib23) 2016; 8 |
References_xml | – volume: 6 start-page: 12780 year: 2014 end-page: 12791 ident: bib3 article-title: Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform publication-title: Nanoscale – volume: 98 start-page: 609 year: 2010 end-page: 615 ident: bib17 article-title: Pulsed laser deposition of molybdenum oxide thin films publication-title: Appl. Phys. A – volume: 69 start-page: 371 year: 1996 ident: bib28 article-title: Parameterization of the optical functions of amorphous materials in the interband region publication-title: Appl. Phys. Lett. – volume: 8 start-page: 31491 year: 2016 end-page: 31499 ident: bib6 article-title: High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 145 start-page: 109 year: 2016 end-page: 115 ident: bib10 article-title: Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells publication-title: Sol. Energy Mater. Sol. Cell. – volume: 9 start-page: 7717 year: 2017 end-page: 7724 ident: bib16 article-title: Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices publication-title: ACS Appl. Mater. Interfaces – volume: 618 start-page: 130 year: 2016 end-page: 133 ident: bib27 article-title: Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides publication-title: Thin Solid Films – volume: 19 start-page: 9232 year: 2017 end-page: 9245 ident: bib20 article-title: Electronic properties of reduced molybdenum oxides publication-title: Phys. Chem. Chem. Phys. – volume: 75 start-page: 166 year: 2018 end-page: 172 ident: bib8 article-title: Effect of post-annealing on the properties of thermally evaporated molybdenum oxide films: interdependence of work function and oxygen to molybdenum ratio publication-title: Mater. Sci. Semicond. Process. – volume: 428 start-page: 114 year: 2006 end-page: 118 ident: bib19 article-title: Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition publication-title: Chem. Phys. Lett. – volume: 131 start-page: 246 year: 2016 end-page: 251 ident: bib13 article-title: Structure evolution in reactively sputtered molybdenum oxide thin films publication-title: Vacuum – volume: 255 start-page: 3868 year: 2009 end-page: 3874 ident: bib7 article-title: Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films publication-title: Appl. Surf. Sci. – volume: 2 start-page: 782 year: 2021 end-page: 792 ident: bib11 article-title: Improvement of the photochromism taking place on ZnO/MoO publication-title: Mater. Adv. – volume: 8 start-page: 14903 year: 2017 ident: bib22 article-title: A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy publication-title: Nat. Commun. – volume: 12 start-page: 851 year: 2020 end-page: 863 ident: bib25 article-title: Correlation between publication-title: Nanoscale – volume: 6 start-page: 3915 year: 2014 end-page: 3922 ident: bib1 article-title: Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells publication-title: ACS Appl. Mater. Interfaces – volume: 354 start-page: 136745 year: 2020 ident: bib21 article-title: Electrochromic response of pulsed laser deposited oxygen deficient monoclinic β-MoO3 thin films publication-title: Electrochim. Acta – volume: 8 start-page: 17260 year: 2016 end-page: 17267 ident: bib23 article-title: Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1166 year: 2007 end-page: 1171 ident: bib18 article-title: Structure and chemical properties of molybdenum oxide thin films publication-title: J. Vac. Sci. Technol.: Vacuum Surf. Films – volume: 14 start-page: 967 year: 2014 end-page: 971 ident: bib5 article-title: Hole selective MoOx contact for silicon solar cells publication-title: Nano Lett. – volume: 148 start-page: 167 year: 1995 end-page: 173 ident: bib9 article-title: Optical absorption studies in molybdenum trioxide thin films publication-title: Phys. Status Solidi – volume: 31 start-page: 295703 year: 2019 ident: bib12 article-title: Optical and electrical properties of MoO publication-title: J. Phys. Condens. Matter – volume: 13 start-page: 3416 year: 2020 end-page: 3424 ident: bib15 article-title: Sub-gap defect density characterization of molybdenum oxide: an annealing study for solar cell applications publication-title: Nano Res. – volume: 20 start-page: 3627 year: 2008 end-page: 3632 ident: bib4 article-title: Reversible lithium-ion insertion in molybdenum oxide nanoparticles publication-title: Adv. Mater. – volume: 36 year: 2020 ident: bib24 article-title: Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition publication-title: Semicond. Sci. Technol. – volume: 28 start-page: 1706006 year: 2018 ident: bib2 article-title: Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing publication-title: Adv. Funct. Mater. – volume: 693 start-page: 137690 year: 2020 ident: bib26 article-title: Optical characterization of low temperature amorphous MoOx, WOX, and VOx prepared by pulsed laser deposition publication-title: Thin Solid Films – volume: 114 year: 2013 ident: bib14 article-title: Characterization of reactively sputtered molybdenum oxide films for solar cell application publication-title: J. Appl. Phys. – volume: 13 start-page: 3416 year: 2020 ident: 10.1016/j.vacuum.2021.110613_bib15 article-title: Sub-gap defect density characterization of molybdenum oxide: an annealing study for solar cell applications publication-title: Nano Res. doi: 10.1007/s12274-020-3029-9 – volume: 255 start-page: 3868 year: 2009 ident: 10.1016/j.vacuum.2021.110613_bib7 article-title: Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.10.069 – volume: 618 start-page: 130 year: 2016 ident: 10.1016/j.vacuum.2021.110613_bib27 article-title: Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.04.026 – volume: 12 start-page: 851 year: 2020 ident: 10.1016/j.vacuum.2021.110613_bib25 article-title: Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO 2 thin films on sapphire publication-title: Nanoscale doi: 10.1039/C9NR09024J – volume: 36 year: 2020 ident: 10.1016/j.vacuum.2021.110613_bib24 article-title: Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/abbc42 – volume: 6 start-page: 3915 year: 2014 ident: 10.1016/j.vacuum.2021.110613_bib1 article-title: Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4050184 – volume: 131 start-page: 246 year: 2016 ident: 10.1016/j.vacuum.2021.110613_bib13 article-title: Structure evolution in reactively sputtered molybdenum oxide thin films publication-title: Vacuum doi: 10.1016/j.vacuum.2016.07.002 – volume: 8 start-page: 31491 year: 2016 ident: 10.1016/j.vacuum.2021.110613_bib6 article-title: High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10898 – volume: 2 start-page: 782 year: 2021 ident: 10.1016/j.vacuum.2021.110613_bib11 article-title: Improvement of the photochromism taking place on ZnO/MoO 3 combined material interfaces publication-title: Mater. Adv. doi: 10.1039/D0MA00896F – volume: 148 start-page: 167 year: 1995 ident: 10.1016/j.vacuum.2021.110613_bib9 article-title: Optical absorption studies in molybdenum trioxide thin films publication-title: Phys. Status Solidi doi: 10.1002/pssa.2211480114 – volume: 428 start-page: 114 year: 2006 ident: 10.1016/j.vacuum.2021.110613_bib19 article-title: Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.06.117 – volume: 8 start-page: 14903 year: 2017 ident: 10.1016/j.vacuum.2021.110613_bib22 article-title: A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy publication-title: Nat. Commun. doi: 10.1038/ncomms14903 – volume: 69 start-page: 371 year: 1996 ident: 10.1016/j.vacuum.2021.110613_bib28 article-title: Parameterization of the optical functions of amorphous materials in the interband region publication-title: Appl. Phys. Lett. doi: 10.1063/1.118064 – volume: 25 start-page: 1166 year: 2007 ident: 10.1016/j.vacuum.2021.110613_bib18 article-title: Structure and chemical properties of molybdenum oxide thin films publication-title: J. Vac. Sci. Technol.: Vacuum Surf. Films doi: 10.1116/1.2747628 – volume: 20 start-page: 3627 year: 2008 ident: 10.1016/j.vacuum.2021.110613_bib4 article-title: Reversible lithium-ion insertion in molybdenum oxide nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.200800999 – volume: 354 start-page: 136745 year: 2020 ident: 10.1016/j.vacuum.2021.110613_bib21 article-title: Electrochromic response of pulsed laser deposited oxygen deficient monoclinic β-MoO3 thin films publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136745 – volume: 14 start-page: 967 year: 2014 ident: 10.1016/j.vacuum.2021.110613_bib5 article-title: Hole selective MoOx contact for silicon solar cells publication-title: Nano Lett. doi: 10.1021/nl404389u – volume: 6 start-page: 12780 year: 2014 ident: 10.1016/j.vacuum.2021.110613_bib3 article-title: Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform publication-title: Nanoscale doi: 10.1039/C4NR03073G – volume: 145 start-page: 109 year: 2016 ident: 10.1016/j.vacuum.2021.110613_bib10 article-title: Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2015.08.028 – volume: 114 year: 2013 ident: 10.1016/j.vacuum.2021.110613_bib14 article-title: Characterization of reactively sputtered molybdenum oxide films for solar cell application publication-title: J. Appl. Phys. doi: 10.1063/1.4812587 – volume: 98 start-page: 609 year: 2010 ident: 10.1016/j.vacuum.2021.110613_bib17 article-title: Pulsed laser deposition of molybdenum oxide thin films publication-title: Appl. Phys. A doi: 10.1007/s00339-009-5444-3 – volume: 19 start-page: 9232 year: 2017 ident: 10.1016/j.vacuum.2021.110613_bib20 article-title: Electronic properties of reduced molybdenum oxides publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00644F – volume: 31 start-page: 295703 year: 2019 ident: 10.1016/j.vacuum.2021.110613_bib12 article-title: Optical and electrical properties of MoO 2 and MoO 3 thin films prepared from the chemically driven isothermal close space vapor transport technique publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab18e2 – volume: 28 start-page: 1706006 year: 2018 ident: 10.1016/j.vacuum.2021.110613_bib2 article-title: Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706006 – volume: 8 start-page: 17260 year: 2016 ident: 10.1016/j.vacuum.2021.110613_bib23 article-title: Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04425 – volume: 75 start-page: 166 year: 2018 ident: 10.1016/j.vacuum.2021.110613_bib8 article-title: Effect of post-annealing on the properties of thermally evaporated molybdenum oxide films: interdependence of work function and oxygen to molybdenum ratio publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2017.11.037 – volume: 693 start-page: 137690 year: 2020 ident: 10.1016/j.vacuum.2021.110613_bib26 article-title: Optical characterization of low temperature amorphous MoOx, WOX, and VOx prepared by pulsed laser deposition publication-title: Thin Solid Films doi: 10.1016/j.tsf.2019.137690 – volume: 9 start-page: 7717 year: 2017 ident: 10.1016/j.vacuum.2021.110613_bib16 article-title: Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14228 |
SSID | ssj0002608 |
Score | 2.3547523 |
Snippet | Molybdenum oxide is an intensively studied material, thanks to its high bandgap, high work function, and potentially also photochromism, plasmonic properties,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110613 |
SubjectTerms | Molybdenum oxide Photothermal deflection spectroscopy Pulsed laser deposition Spectral ellipsometry X-ray diffraction |
Title | Pulsed laser deposition of high-transparency molybdenum oxide thin films |
URI | https://dx.doi.org/10.1016/j.vacuum.2021.110613 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfDioyrWR9mD19hks90kx1IsUbF4sNBb2FcwUpPSJmIv_nZn86gKouAxYSeEYTLzDfm-GYQumYAqDYXRUoblQCFGLC44sxiHYiwVC1ipkLufsHBKb2eDWQuNGi2MoVXWub_K6WW2ru_0a2_2F0liNL6UENubQdNSwmCjYKeeifKr90-aB-B1fyNDgdONfK7keL1yWRRGj04cw4cvlxz8VJ6-lJzxPtqtsSIeVq9zgFo67aC9Gjfi-qtcddB2SeOUq0MUPhTwLIUBEuslVrqhZOEsxmYwsZWXs8yNAEyu8Us2XwtluPA4e0uUxvlTkuI4mb-sjtB0fP04Cq16V4IlAfTnlraFIIB9lMNjrgBXCCaor812dE5IHAsXGp9BEDsed4welihBidTQfEjmi5i5x6idZqk-QViwAdWau-aXNHU1AAoqmc2pJIGt_EB0kdu4KJL1IHGzz2IeNYyx56hybGQcG1WO7SJrY7WoBmn8cd5rvB99C4gIcv2vlqf_tjxDO-aqYquco3a-LPQFYI5c9Mqg6qGt4c1dOPkAKhDVBw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxujFB2rE5x68VmC7LHA0RFIViAdIuDX7aqwBSqAYufjbne0DNTGaeG13Ns1kdubb9PtmAK65xCqNhdHRluXAMEYcIQV3uMBirDRv8UQh1-tzb8geRvVRAdq5FsbSKrPcn-b0JFtnTyqZNyuzMLQaX0ZptTHCS0sCgzdgk-HxtWMMbt4_eR4I2JtrHQouz_VzCcnrVajl0grSac0S4pMpBz_Vpy81p7MPuxlYJLfp9xxAwUxLsJcBR5Idy0UJthIep1ocgve0xL00QUxs5kSbnJNFooDYzsROnDQztwowtSKTaLyS2pLhSfQWakPi53BKgnA8WRzBsHM3aHtONizBUYj6Y8dUpaQIfnRNBEIjsJBcsqax49EFpUEgXbz51FtBrSFqVhBLtWRUGbx9KN6UAXePoTiNpuYEiOR1Zoxw7T9p5hpEFEzxqmCKtqq62ZJlcHMX-SrrJG4HWoz9nDL24qeO9a1j_dSxZXDWVrO0k8Yf6xu59_1vEeFjsv_V8vTfllew7Q16Xb973388gx37JqWunEMxni_NBQKQWF4mAfYBL7TWlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsed+laser+deposition+of+high-transparency+molybdenum+oxide+thin+films&rft.jtitle=Vacuum&rft.au=Holovsk%C3%BD%2C+Jakub&rft.au=Horynov%C3%A1%2C+Eva&rft.au=Hor%C3%A1k%2C+Luk%C3%A1%C5%A1&rft.au=Ridzo%C5%88ov%C3%A1%2C+Katar%C3%ADna&rft.date=2021-12-01&rft.issn=0042-207X&rft.volume=194&rft.spage=110613&rft_id=info:doi/10.1016%2Fj.vacuum.2021.110613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vacuum_2021_110613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-207X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-207X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-207X&client=summon |