Distilling EEG representations via capsules for affective computing

•We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged information.•Our proposed framework performs well given the high compression rate and limited training samples.•Our framework achieves state-of-the-art r...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 171; pp. 99 - 105
Main Authors Zhang, Guangyi, Etemad, Ali
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged information.•Our proposed framework performs well given the high compression rate and limited training samples.•Our framework achieves state-of-the-art results on two public large EEG datasets. Affective computing with Electroencephalogram (EEG) is a challenging task that requires cumbersome models to effectively learn the information contained in large-scale EEG signals, causing difficulties for real-time smart-device deployment. In this paper, we propose a novel knowledge distillation pipeline to distill EEG representations via capsule-based architectures for both classification and regression tasks. Our goal is to distill information from a heavy model to a lightweight model for subject-specific tasks. To this end, we first pre-train a large model (teacher network) on large number of training samples. Then, we employ the teacher network to learn the discriminative features embedded in capsules by adopting a lightweight model (student network) to mimic the teacher using the privileged knowledge. Such privileged information learned by the teacher contain similarities among capsules and are only available during the training stage of the student network. We evaluate the proposed architecture on two large-scale public EEG datasets, showing that our framework consistently enables student networks with different compression ratios to effectively learn from the teacher, even when provided with limited training samples. Lastly, our method achieves state-of-the-art results on one of the two datasets.
AbstractList •We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged information.•Our proposed framework performs well given the high compression rate and limited training samples.•Our framework achieves state-of-the-art results on two public large EEG datasets. Affective computing with Electroencephalogram (EEG) is a challenging task that requires cumbersome models to effectively learn the information contained in large-scale EEG signals, causing difficulties for real-time smart-device deployment. In this paper, we propose a novel knowledge distillation pipeline to distill EEG representations via capsule-based architectures for both classification and regression tasks. Our goal is to distill information from a heavy model to a lightweight model for subject-specific tasks. To this end, we first pre-train a large model (teacher network) on large number of training samples. Then, we employ the teacher network to learn the discriminative features embedded in capsules by adopting a lightweight model (student network) to mimic the teacher using the privileged knowledge. Such privileged information learned by the teacher contain similarities among capsules and are only available during the training stage of the student network. We evaluate the proposed architecture on two large-scale public EEG datasets, showing that our framework consistently enables student networks with different compression ratios to effectively learn from the teacher, even when provided with limited training samples. Lastly, our method achieves state-of-the-art results on one of the two datasets.
Author Zhang, Guangyi
Etemad, Ali
Author_xml – sequence: 1
  givenname: Guangyi
  orcidid: 0000-0001-8686-8924
  surname: Zhang
  fullname: Zhang, Guangyi
  email: guangyi.zhang@queensu.ca
– sequence: 2
  givenname: Ali
  surname: Etemad
  fullname: Etemad, Ali
  email: ali.etemad@queensu.ca
BookMark eNqFj7FOwzAURT0UibbwBwz-gYTnOHFSBiRUSkGqxAKz5drPyFWaRLYbib_HVZg6wHSfdN-50lmQWdd3SMgdg5wBE_eHfFDRo84LKHgOVQ6Mzcg8VXXWiKq6JosQDgAg-KqZk_WzC9G1reu-6GazpR4HjwG7qKLru0BHp6hWQzi1GKjtPVXWoo5uRKr743CKCbwhV1a1AW9_c0k-XzYf69ds9759Wz_tMs1BxMwY0HvLmqYEBOSiLpsGC61rs0fFlRWarYS15T6dnCtWG8UQTc1LKBBWwJeknHa170PwaOXg3VH5b8lAnuXlQU7y8iwvoZJJPmEPF5h2k170yrX_wY8TjElsdOhl0A47jcal1yhN7_4e-AEoF334
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3452781
crossref_primary_10_1155_2024_6091523
crossref_primary_10_3389_fpsyg_2023_1289816
crossref_primary_10_1007_s00521_024_10207_0
crossref_primary_10_1016_j_heliyon_2024_e31485
Cites_doi 10.1016/j.neunet.2009.06.042
10.1088/1741-2552/aa5a98
10.1109/TCYB.2017.2788081
10.1109/TAMD.2015.2431497
10.1109/TNSRE.2021.3089594
10.1109/TIP.2021.3054476
10.1016/j.patrec.2020.09.010
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2023.05.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 105
ExternalDocumentID 10_1016_j_patrec_2023_05_011
S0167865523001423
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XPP
Y6R
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-dd0cbf18840e0e367488e2cc7dbea3af6c196ff4baf633a17da1eed73402e0903
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Tue Jul 01 02:40:47 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Tue Dec 03 03:45:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Electroencephalography
Capsule network
Model compression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-dd0cbf18840e0e367488e2cc7dbea3af6c196ff4baf633a17da1eed73402e0903
ORCID 0000-0001-8686-8924
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_patrec_2023_05_011
crossref_citationtrail_10_1016_j_patrec_2023_05_011
elsevier_sciencedirect_doi_10_1016_j_patrec_2023_05_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Pattern recognition letters
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tang, Lu, Lin (bib0027) 2019
Zhang, Zheng, Cui, Zong, Li (bib0009) 2018; 49
J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization
Chen, Huang, Xiao, Jing (bib0014) 2020
Li, Zheng, Wang, Zong, Cui (bib0010) 2019
(2020).
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (bib0030) 2019
Pan, Cai, Huang, Lee, Gaidon, Adeli, Niebles (bib0024) 2020
Picard (bib0001) 2000
Vapnik, Vapnik (bib0020) 1998; 1
Zhang, Cui, Xu, Zheng, Yang (bib0011) 2020
Singh, Nagpal, Singh, Vatsa (bib0016) 2019
Zheng, Lu (bib0003) 2017; 14
G. Zhang, A. Etemad, RFNet: Riemannian fusion network for EEG-based brain-computer interfaces
Tung, Mori (bib0028) 2019
Zhong, Wang, Miao (bib0012) 2020
Yun, Park, Lee, Shin (bib0025) 2020
Zhang, Etemad (bib0006) 2021; 29
Huo, Zheng, Lu (bib0008) 2016
(2015).
Afshar, Heidarian, Naderkhani, Oikonomou, Plataniotis, Mohammadi (bib0017) 2020; 138
Zhang, Li, Du, Fan, Philip (bib0013) 2019
Vapnik, Izmailov (bib0019) 2015; 16
Vapnik, Vashist (bib0018) 2009; 22
G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network
Zheng, Lu (bib0002) 2015; 7
Phuong, Lampert (bib0023) 2019
D. Lopez-Paz, L. Bottou, B. Schölkopf, V. Vapnik, Unifying distillation and privileged information
(2016).
Sepas-Moghaddam, Etemad, Pereira, Correia (bib0015) 2021; 30
Wu, Wu, Sun, Yang, Yuan, Zheng, Lu (bib0007) 2018
Sun, Cheng, Gan, Liu (bib0026) 2019
Sabour, Frosst, Hinton (bib0005) 2017
Huo (10.1016/j.patrec.2023.05.011_bib0008) 2016
Paszke (10.1016/j.patrec.2023.05.011_bib0030) 2019
Chen (10.1016/j.patrec.2023.05.011_bib0014) 2020
Sabour (10.1016/j.patrec.2023.05.011_bib0005) 2017
Vapnik (10.1016/j.patrec.2023.05.011_bib0018) 2009; 22
Afshar (10.1016/j.patrec.2023.05.011_bib0017) 2020; 138
Zheng (10.1016/j.patrec.2023.05.011_bib0002) 2015; 7
Sun (10.1016/j.patrec.2023.05.011_bib0026) 2019
Zheng (10.1016/j.patrec.2023.05.011_bib0003) 2017; 14
Phuong (10.1016/j.patrec.2023.05.011_bib0023) 2019
Tang (10.1016/j.patrec.2023.05.011_bib0027) 2019
Zhong (10.1016/j.patrec.2023.05.011_bib0012) 2020
Tung (10.1016/j.patrec.2023.05.011_bib0028) 2019
Zhang (10.1016/j.patrec.2023.05.011_bib0009) 2018; 49
Wu (10.1016/j.patrec.2023.05.011_bib0007) 2018
Vapnik (10.1016/j.patrec.2023.05.011_bib0020) 1998; 1
Singh (10.1016/j.patrec.2023.05.011_bib0016) 2019
Yun (10.1016/j.patrec.2023.05.011_bib0025) 2020
Pan (10.1016/j.patrec.2023.05.011_bib0024) 2020
Vapnik (10.1016/j.patrec.2023.05.011_bib0019) 2015; 16
Zhang (10.1016/j.patrec.2023.05.011_bib0013) 2019
10.1016/j.patrec.2023.05.011_bib0029
Li (10.1016/j.patrec.2023.05.011_bib0010) 2019
Sepas-Moghaddam (10.1016/j.patrec.2023.05.011_bib0015) 2021; 30
Zhang (10.1016/j.patrec.2023.05.011_bib0006) 2021; 29
10.1016/j.patrec.2023.05.011_bib0022
Picard (10.1016/j.patrec.2023.05.011_bib0001) 2000
10.1016/j.patrec.2023.05.011_bib0021
10.1016/j.patrec.2023.05.011_bib0004
Zhang (10.1016/j.patrec.2023.05.011_bib0011) 2020
References_xml – volume: 138
  start-page: 638
  year: 2020
  end-page: 643
  ident: bib0017
  article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images
  publication-title: Pattern Recognit. Lett..
– year: 2020
  ident: bib0012
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 4323
  year: 2019
  end-page: 4332
  ident: bib0026
  article-title: Patient knowledge distillation for BERT model compression
  publication-title: EMNLP-IJCNLP
– volume: 49
  start-page: 839
  year: 2018
  end-page: 847
  ident: bib0009
  article-title: Spatial–temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
– reference: D. Lopez-Paz, L. Bottou, B. Schölkopf, V. Vapnik, Unifying distillation and privileged information,
– start-page: 3856
  year: 2017
  end-page: 3866
  ident: bib0005
  article-title: Dynamic routing between capsules
  publication-title: NeurIPS
– start-page: 340
  year: 2019
  end-page: 349
  ident: bib0016
  article-title: Dual directed capsule network for very low resolution image recognition
  publication-title: ICCV
– year: 2020
  ident: bib0024
  article-title: Spatio-temporal graph for video captioning with knowledge distillation
  publication-title: CVPR
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: bib0002
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Mental Dev.
– volume: 1
  start-page: 624
  year: 1998
  ident: bib0020
  article-title: Statistical learning theory
  publication-title: Wiley New York
– reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network,
– reference: (2015).
– volume: 29
  start-page: 1138
  year: 2021
  end-page: 1149
  ident: bib0006
  article-title: Capsule attention for multimodal EEG-EOG representation learning with application to driver vigilance estimation
  publication-title: IEEE Trans. Neural Syst. Rehabil.Eng.
– year: 2020
  ident: bib0025
  article-title: Regularizing class-wise predictions via self-knowledge distillation
  publication-title: CVPR
– year: 2018
  ident: bib0007
  article-title: A regression method with subnetwork neurons for vigilance estimation using EOG and EEG
  publication-title: IEEE Trans. Cognit. Dev. Syst.
– volume: 16
  start-page: 2023
  year: 2015
  end-page: 2049
  ident: bib0019
  article-title: Learning using privileged information: similarity control and knowledge transfer
  publication-title: J. Mach. Learn. Res.
– reference: (2020).
– year: 2000
  ident: bib0001
  article-title: Affective Computing
– volume: 22
  start-page: 544
  year: 2009
  end-page: 557
  ident: bib0018
  article-title: A new learning paradigm: learning using privileged information
  publication-title: Neural Netw.
– start-page: 8026
  year: 2019
  end-page: 8037
  ident: bib0030
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: NeurIPS
– start-page: 2709
  year: 2020
  end-page: 2716
  ident: bib0011
  article-title: Variational pathway reasoning for EEG emotion recognition
  publication-title: AAAI
– reference: J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization,
– reference: (2016).
– volume: 14
  start-page: 026017
  year: 2017
  ident: bib0003
  article-title: A multimodal approach to estimating vigilance using EEG and forehead EOG
  publication-title: J. Neural Eng.
– reference: G. Zhang, A. Etemad, RFNet: Riemannian fusion network for EEG-based brain-computer interfaces,
– year: 2019
  ident: bib0010
  article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 897
  year: 2016
  end-page: 904
  ident: bib0008
  article-title: Driving fatigue detection with fusion of EEG and forehead EOG
  publication-title: IJCNN
– volume: 30
  start-page: 2627
  year: 2021
  end-page: 2642
  ident: bib0015
  article-title: CapsField: light field-based face and expression recognition in the wild using capsule routing
  publication-title: IEEE Trans. Image Process.
– start-page: 5259
  year: 2019
  end-page: 5267
  ident: bib0013
  article-title: Joint slot filling and intent detection via capsule neural networks
  publication-title: ACL
– start-page: 5142
  year: 2019
  end-page: 5151
  ident: bib0023
  article-title: Towards understanding knowledge distillation
  publication-title: ICML
– start-page: 1365
  year: 2019
  end-page: 1374
  ident: bib0028
  article-title: Similarity-preserving knowledge distillation
  publication-title: ICCV
– start-page: 3115
  year: 2020
  end-page: 3124
  ident: bib0014
  article-title: Hyperbolic capsule networks for multi-label classification
  publication-title: ACL
– start-page: 202
  year: 2019
  end-page: 208
  ident: bib0027
  article-title: Natural language generation for effective knowledge distillation
  publication-title: 2nd Workshop on Deep Learning Approaches for Low-Resource NLP
– volume: 22
  start-page: 544
  issue: 5–6
  year: 2009
  ident: 10.1016/j.patrec.2023.05.011_bib0018
  article-title: A new learning paradigm: learning using privileged information
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.06.042
– ident: 10.1016/j.patrec.2023.05.011_bib0029
– start-page: 340
  year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0016
  article-title: Dual directed capsule network for very low resolution image recognition
– start-page: 202
  year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0027
  article-title: Natural language generation for effective knowledge distillation
– volume: 14
  start-page: 026017
  issue: 2
  year: 2017
  ident: 10.1016/j.patrec.2023.05.011_bib0003
  article-title: A multimodal approach to estimating vigilance using EEG and forehead EOG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5a98
– year: 2018
  ident: 10.1016/j.patrec.2023.05.011_bib0007
  article-title: A regression method with subnetwork neurons for vigilance estimation using EOG and EEG
  publication-title: IEEE Trans. Cognit. Dev. Syst.
– start-page: 2709
  year: 2020
  ident: 10.1016/j.patrec.2023.05.011_bib0011
  article-title: Variational pathway reasoning for EEG emotion recognition
– ident: 10.1016/j.patrec.2023.05.011_bib0004
– ident: 10.1016/j.patrec.2023.05.011_bib0021
– year: 2020
  ident: 10.1016/j.patrec.2023.05.011_bib0024
  article-title: Spatio-temporal graph for video captioning with knowledge distillation
– year: 2020
  ident: 10.1016/j.patrec.2023.05.011_bib0025
  article-title: Regularizing class-wise predictions via self-knowledge distillation
– volume: 49
  start-page: 839
  issue: 3
  year: 2018
  ident: 10.1016/j.patrec.2023.05.011_bib0009
  article-title: Spatial–temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2788081
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.patrec.2023.05.011_bib0002
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Mental Dev.
  doi: 10.1109/TAMD.2015.2431497
– start-page: 3856
  year: 2017
  ident: 10.1016/j.patrec.2023.05.011_bib0005
  article-title: Dynamic routing between capsules
– year: 2000
  ident: 10.1016/j.patrec.2023.05.011_bib0001
– year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0010
  article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 4323
  year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0026
  article-title: Patient knowledge distillation for BERT model compression
– volume: 29
  start-page: 1138
  year: 2021
  ident: 10.1016/j.patrec.2023.05.011_bib0006
  article-title: Capsule attention for multimodal EEG-EOG representation learning with application to driver vigilance estimation
  publication-title: IEEE Trans. Neural Syst. Rehabil.Eng.
  doi: 10.1109/TNSRE.2021.3089594
– start-page: 5259
  year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0013
  article-title: Joint slot filling and intent detection via capsule neural networks
– year: 2020
  ident: 10.1016/j.patrec.2023.05.011_bib0012
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 1365
  year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0028
  article-title: Similarity-preserving knowledge distillation
– start-page: 5142
  year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0023
  article-title: Towards understanding knowledge distillation
– start-page: 897
  year: 2016
  ident: 10.1016/j.patrec.2023.05.011_bib0008
  article-title: Driving fatigue detection with fusion of EEG and forehead EOG
– ident: 10.1016/j.patrec.2023.05.011_bib0022
– start-page: 8026
  year: 2019
  ident: 10.1016/j.patrec.2023.05.011_bib0030
  article-title: Pytorch: an imperative style, high-performance deep learning library
– volume: 30
  start-page: 2627
  year: 2021
  ident: 10.1016/j.patrec.2023.05.011_bib0015
  article-title: CapsField: light field-based face and expression recognition in the wild using capsule routing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3054476
– volume: 138
  start-page: 638
  year: 2020
  ident: 10.1016/j.patrec.2023.05.011_bib0017
  article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images
  publication-title: Pattern Recognit. Lett..
  doi: 10.1016/j.patrec.2020.09.010
– volume: 1
  start-page: 624
  year: 1998
  ident: 10.1016/j.patrec.2023.05.011_bib0020
  article-title: Statistical learning theory
  publication-title: Wiley New York
– start-page: 3115
  year: 2020
  ident: 10.1016/j.patrec.2023.05.011_bib0014
  article-title: Hyperbolic capsule networks for multi-label classification
– volume: 16
  start-page: 2023
  issue: 1
  year: 2015
  ident: 10.1016/j.patrec.2023.05.011_bib0019
  article-title: Learning using privileged information: similarity control and knowledge transfer
  publication-title: J. Mach. Learn. Res.
SSID ssj0006398
Score 2.4414
Snippet •We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Capsule network
Deep learning
Electroencephalography
Model compression
Title Distilling EEG representations via capsules for affective computing
URI https://dx.doi.org/10.1016/j.patrec.2023.05.011
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvejBj6pYP8oevMYm2U3SHEttrYq9aKG3ZXezgYrEYqtHf7szSVYriIKXkISdEIadmbfLm7cA5zwyvklF5GlEB54gHlVKspVWxdamKkakRA3Od5N4PBU3s2jWgIHrhSFaZZ37q5xeZuv6Tbf2Zncxn3fviUBPbZUIohHnh6T4KURCs_zi_YvmgRW45_S9abRrnys5XrTfbEnIMOSVfmfwc3laKzmjXdiusSLrV7-zBw1btGDHncPA6rBswdaaqOA-DC4pbEupbTYcXrFSttK1GBVL9jZXzChcHD_ZJUPIylRJ6cCsx0z5aTQ8gOlo-DAYe_VRCZ5BzL_yssw3Og96uFyzvuV0gkjPhsYkmbaKqzw2GGl5LjTecq6CJFMBVseE4_LR0lbNITSL58IeAYsMT00mFEZrgNdYq1ClOlE8N0Ij-msDdx6SptYRp-MsnqQjjD3Kyq-S_Cr9SKJf2-B9Wi0qHY0_xifO-fLbfJCY6n-1PP635Qls0lNFxj2F5url1Z4h5FjpTjmnOrDRv74dTz4AIdrW6g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1APPqpife7Ba2jSzaM5ltqa2sfFFnpbdjcbqJRYbPX3O5vslgqi4CWEJBPCkJn5dvnmG4AHGkhXxn7gCEQHjq95VLGWrVQ8VCrmISIl3eA8noTJzH-eB_MKdG0vjKZVmtxf5vQiW5srTePN5mqxaL5oAr1uq0QQjTi_RfegptWpgirUOoNhMtkmZCzCbSvxrQ1sB11B89JbzkprGbZoKeHp_VyhdqpO_wSODFwknfKLTqGi8joc21EMxERmHQ53dAXPoPuoI7dQ2ya93hMplCttl1G-Jp8LTiTH9fFSrQmiVsILVgcmPiKLV6PhOcz6vWk3ccy0BEci7N84aepKkXltXLEpV1E9RKStWlJGqVCc8iyUGGxZ5gs8pZR7Uco9LJARxRWk0rs1F1DN33J1CSSQNJapzzFgPTyGgrd4LCJOM-kLBIANoNZDTBopcT3RYsksZ-yVlX5l2q_MDRj6tQHO1mpVSmn88Xxknc--_RIMs_2vllf_tryH_WQ6HrHRYDK8hgN9p-Tm3kB18_6hbhGBbMSd-cO-AIl32Zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distilling+EEG+representations+via+capsules+for+affective+computing&rft.jtitle=Pattern+recognition+letters&rft.au=Zhang%2C+Guangyi&rft.au=Etemad%2C+Ali&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.volume=171&rft.spage=99&rft.epage=105&rft_id=info:doi/10.1016%2Fj.patrec.2023.05.011&rft.externalDocID=S0167865523001423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon