Distilling EEG representations via capsules for affective computing
•We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged information.•Our proposed framework performs well given the high compression rate and limited training samples.•Our framework achieves state-of-the-art r...
Saved in:
Published in | Pattern recognition letters Vol. 171; pp. 99 - 105 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged information.•Our proposed framework performs well given the high compression rate and limited training samples.•Our framework achieves state-of-the-art results on two public large EEG datasets.
Affective computing with Electroencephalogram (EEG) is a challenging task that requires cumbersome models to effectively learn the information contained in large-scale EEG signals, causing difficulties for real-time smart-device deployment. In this paper, we propose a novel knowledge distillation pipeline to distill EEG representations via capsule-based architectures for both classification and regression tasks. Our goal is to distill information from a heavy model to a lightweight model for subject-specific tasks. To this end, we first pre-train a large model (teacher network) on large number of training samples. Then, we employ the teacher network to learn the discriminative features embedded in capsules by adopting a lightweight model (student network) to mimic the teacher using the privileged knowledge. Such privileged information learned by the teacher contain similarities among capsules and are only available during the training stage of the student network. We evaluate the proposed architecture on two large-scale public EEG datasets, showing that our framework consistently enables student networks with different compression ratios to effectively learn from the teacher, even when provided with limited training samples. Lastly, our method achieves state-of-the-art results on one of the two datasets. |
---|---|
AbstractList | •We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged information.•Our proposed framework performs well given the high compression rate and limited training samples.•Our framework achieves state-of-the-art results on two public large EEG datasets.
Affective computing with Electroencephalogram (EEG) is a challenging task that requires cumbersome models to effectively learn the information contained in large-scale EEG signals, causing difficulties for real-time smart-device deployment. In this paper, we propose a novel knowledge distillation pipeline to distill EEG representations via capsule-based architectures for both classification and regression tasks. Our goal is to distill information from a heavy model to a lightweight model for subject-specific tasks. To this end, we first pre-train a large model (teacher network) on large number of training samples. Then, we employ the teacher network to learn the discriminative features embedded in capsules by adopting a lightweight model (student network) to mimic the teacher using the privileged knowledge. Such privileged information learned by the teacher contain similarities among capsules and are only available during the training stage of the student network. We evaluate the proposed architecture on two large-scale public EEG datasets, showing that our framework consistently enables student networks with different compression ratios to effectively learn from the teacher, even when provided with limited training samples. Lastly, our method achieves state-of-the-art results on one of the two datasets. |
Author | Zhang, Guangyi Etemad, Ali |
Author_xml | – sequence: 1 givenname: Guangyi orcidid: 0000-0001-8686-8924 surname: Zhang fullname: Zhang, Guangyi email: guangyi.zhang@queensu.ca – sequence: 2 givenname: Ali surname: Etemad fullname: Etemad, Ali email: ali.etemad@queensu.ca |
BookMark | eNqFj7FOwzAURT0UibbwBwz-gYTnOHFSBiRUSkGqxAKz5drPyFWaRLYbib_HVZg6wHSfdN-50lmQWdd3SMgdg5wBE_eHfFDRo84LKHgOVQ6Mzcg8VXXWiKq6JosQDgAg-KqZk_WzC9G1reu-6GazpR4HjwG7qKLru0BHp6hWQzi1GKjtPVXWoo5uRKr743CKCbwhV1a1AW9_c0k-XzYf69ds9759Wz_tMs1BxMwY0HvLmqYEBOSiLpsGC61rs0fFlRWarYS15T6dnCtWG8UQTc1LKBBWwJeknHa170PwaOXg3VH5b8lAnuXlQU7y8iwvoZJJPmEPF5h2k170yrX_wY8TjElsdOhl0A47jcal1yhN7_4e-AEoF334 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3452781 crossref_primary_10_1155_2024_6091523 crossref_primary_10_3389_fpsyg_2023_1289816 crossref_primary_10_1007_s00521_024_10207_0 crossref_primary_10_1016_j_heliyon_2024_e31485 |
Cites_doi | 10.1016/j.neunet.2009.06.042 10.1088/1741-2552/aa5a98 10.1109/TCYB.2017.2788081 10.1109/TAMD.2015.2431497 10.1109/TNSRE.2021.3089594 10.1109/TIP.2021.3054476 10.1016/j.patrec.2020.09.010 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patrec.2023.05.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EndPage | 105 |
ExternalDocumentID | 10_1016_j_patrec_2023_05_011 S0167865523001423 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XPP Y6R ZMT ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-dd0cbf18840e0e367488e2cc7dbea3af6c196ff4baf633a17da1eed73402e0903 |
IEDL.DBID | .~1 |
ISSN | 0167-8655 |
IngestDate | Tue Jul 01 02:40:47 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Tue Dec 03 03:45:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Electroencephalography Capsule network Model compression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-dd0cbf18840e0e367488e2cc7dbea3af6c196ff4baf633a17da1eed73402e0903 |
ORCID | 0000-0001-8686-8924 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_patrec_2023_05_011 crossref_citationtrail_10_1016_j_patrec_2023_05_011 elsevier_sciencedirect_doi_10_1016_j_patrec_2023_05_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tang, Lu, Lin (bib0027) 2019 Zhang, Zheng, Cui, Zong, Li (bib0009) 2018; 49 J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization Chen, Huang, Xiao, Jing (bib0014) 2020 Li, Zheng, Wang, Zong, Cui (bib0010) 2019 (2020). Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (bib0030) 2019 Pan, Cai, Huang, Lee, Gaidon, Adeli, Niebles (bib0024) 2020 Picard (bib0001) 2000 Vapnik, Vapnik (bib0020) 1998; 1 Zhang, Cui, Xu, Zheng, Yang (bib0011) 2020 Singh, Nagpal, Singh, Vatsa (bib0016) 2019 Zheng, Lu (bib0003) 2017; 14 G. Zhang, A. Etemad, RFNet: Riemannian fusion network for EEG-based brain-computer interfaces Tung, Mori (bib0028) 2019 Zhong, Wang, Miao (bib0012) 2020 Yun, Park, Lee, Shin (bib0025) 2020 Zhang, Etemad (bib0006) 2021; 29 Huo, Zheng, Lu (bib0008) 2016 (2015). Afshar, Heidarian, Naderkhani, Oikonomou, Plataniotis, Mohammadi (bib0017) 2020; 138 Zhang, Li, Du, Fan, Philip (bib0013) 2019 Vapnik, Izmailov (bib0019) 2015; 16 Vapnik, Vashist (bib0018) 2009; 22 G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network Zheng, Lu (bib0002) 2015; 7 Phuong, Lampert (bib0023) 2019 D. Lopez-Paz, L. Bottou, B. Schölkopf, V. Vapnik, Unifying distillation and privileged information (2016). Sepas-Moghaddam, Etemad, Pereira, Correia (bib0015) 2021; 30 Wu, Wu, Sun, Yang, Yuan, Zheng, Lu (bib0007) 2018 Sun, Cheng, Gan, Liu (bib0026) 2019 Sabour, Frosst, Hinton (bib0005) 2017 Huo (10.1016/j.patrec.2023.05.011_bib0008) 2016 Paszke (10.1016/j.patrec.2023.05.011_bib0030) 2019 Chen (10.1016/j.patrec.2023.05.011_bib0014) 2020 Sabour (10.1016/j.patrec.2023.05.011_bib0005) 2017 Vapnik (10.1016/j.patrec.2023.05.011_bib0018) 2009; 22 Afshar (10.1016/j.patrec.2023.05.011_bib0017) 2020; 138 Zheng (10.1016/j.patrec.2023.05.011_bib0002) 2015; 7 Sun (10.1016/j.patrec.2023.05.011_bib0026) 2019 Zheng (10.1016/j.patrec.2023.05.011_bib0003) 2017; 14 Phuong (10.1016/j.patrec.2023.05.011_bib0023) 2019 Tang (10.1016/j.patrec.2023.05.011_bib0027) 2019 Zhong (10.1016/j.patrec.2023.05.011_bib0012) 2020 Tung (10.1016/j.patrec.2023.05.011_bib0028) 2019 Zhang (10.1016/j.patrec.2023.05.011_bib0009) 2018; 49 Wu (10.1016/j.patrec.2023.05.011_bib0007) 2018 Vapnik (10.1016/j.patrec.2023.05.011_bib0020) 1998; 1 Singh (10.1016/j.patrec.2023.05.011_bib0016) 2019 Yun (10.1016/j.patrec.2023.05.011_bib0025) 2020 Pan (10.1016/j.patrec.2023.05.011_bib0024) 2020 Vapnik (10.1016/j.patrec.2023.05.011_bib0019) 2015; 16 Zhang (10.1016/j.patrec.2023.05.011_bib0013) 2019 10.1016/j.patrec.2023.05.011_bib0029 Li (10.1016/j.patrec.2023.05.011_bib0010) 2019 Sepas-Moghaddam (10.1016/j.patrec.2023.05.011_bib0015) 2021; 30 Zhang (10.1016/j.patrec.2023.05.011_bib0006) 2021; 29 10.1016/j.patrec.2023.05.011_bib0022 Picard (10.1016/j.patrec.2023.05.011_bib0001) 2000 10.1016/j.patrec.2023.05.011_bib0021 10.1016/j.patrec.2023.05.011_bib0004 Zhang (10.1016/j.patrec.2023.05.011_bib0011) 2020 |
References_xml | – volume: 138 start-page: 638 year: 2020 end-page: 643 ident: bib0017 article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images publication-title: Pattern Recognit. Lett.. – year: 2020 ident: bib0012 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – start-page: 4323 year: 2019 end-page: 4332 ident: bib0026 article-title: Patient knowledge distillation for BERT model compression publication-title: EMNLP-IJCNLP – volume: 49 start-page: 839 year: 2018 end-page: 847 ident: bib0009 article-title: Spatial–temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. – reference: D. Lopez-Paz, L. Bottou, B. Schölkopf, V. Vapnik, Unifying distillation and privileged information, – start-page: 3856 year: 2017 end-page: 3866 ident: bib0005 article-title: Dynamic routing between capsules publication-title: NeurIPS – start-page: 340 year: 2019 end-page: 349 ident: bib0016 article-title: Dual directed capsule network for very low resolution image recognition publication-title: ICCV – year: 2020 ident: bib0024 article-title: Spatio-temporal graph for video captioning with knowledge distillation publication-title: CVPR – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: bib0002 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev. – volume: 1 start-page: 624 year: 1998 ident: bib0020 article-title: Statistical learning theory publication-title: Wiley New York – reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, – reference: (2015). – volume: 29 start-page: 1138 year: 2021 end-page: 1149 ident: bib0006 article-title: Capsule attention for multimodal EEG-EOG representation learning with application to driver vigilance estimation publication-title: IEEE Trans. Neural Syst. Rehabil.Eng. – year: 2020 ident: bib0025 article-title: Regularizing class-wise predictions via self-knowledge distillation publication-title: CVPR – year: 2018 ident: bib0007 article-title: A regression method with subnetwork neurons for vigilance estimation using EOG and EEG publication-title: IEEE Trans. Cognit. Dev. Syst. – volume: 16 start-page: 2023 year: 2015 end-page: 2049 ident: bib0019 article-title: Learning using privileged information: similarity control and knowledge transfer publication-title: J. Mach. Learn. Res. – reference: (2020). – year: 2000 ident: bib0001 article-title: Affective Computing – volume: 22 start-page: 544 year: 2009 end-page: 557 ident: bib0018 article-title: A new learning paradigm: learning using privileged information publication-title: Neural Netw. – start-page: 8026 year: 2019 end-page: 8037 ident: bib0030 article-title: Pytorch: an imperative style, high-performance deep learning library publication-title: NeurIPS – start-page: 2709 year: 2020 end-page: 2716 ident: bib0011 article-title: Variational pathway reasoning for EEG emotion recognition publication-title: AAAI – reference: J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, – reference: (2016). – volume: 14 start-page: 026017 year: 2017 ident: bib0003 article-title: A multimodal approach to estimating vigilance using EEG and forehead EOG publication-title: J. Neural Eng. – reference: G. Zhang, A. Etemad, RFNet: Riemannian fusion network for EEG-based brain-computer interfaces, – year: 2019 ident: bib0010 article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – start-page: 897 year: 2016 end-page: 904 ident: bib0008 article-title: Driving fatigue detection with fusion of EEG and forehead EOG publication-title: IJCNN – volume: 30 start-page: 2627 year: 2021 end-page: 2642 ident: bib0015 article-title: CapsField: light field-based face and expression recognition in the wild using capsule routing publication-title: IEEE Trans. Image Process. – start-page: 5259 year: 2019 end-page: 5267 ident: bib0013 article-title: Joint slot filling and intent detection via capsule neural networks publication-title: ACL – start-page: 5142 year: 2019 end-page: 5151 ident: bib0023 article-title: Towards understanding knowledge distillation publication-title: ICML – start-page: 1365 year: 2019 end-page: 1374 ident: bib0028 article-title: Similarity-preserving knowledge distillation publication-title: ICCV – start-page: 3115 year: 2020 end-page: 3124 ident: bib0014 article-title: Hyperbolic capsule networks for multi-label classification publication-title: ACL – start-page: 202 year: 2019 end-page: 208 ident: bib0027 article-title: Natural language generation for effective knowledge distillation publication-title: 2nd Workshop on Deep Learning Approaches for Low-Resource NLP – volume: 22 start-page: 544 issue: 5–6 year: 2009 ident: 10.1016/j.patrec.2023.05.011_bib0018 article-title: A new learning paradigm: learning using privileged information publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.06.042 – ident: 10.1016/j.patrec.2023.05.011_bib0029 – start-page: 340 year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0016 article-title: Dual directed capsule network for very low resolution image recognition – start-page: 202 year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0027 article-title: Natural language generation for effective knowledge distillation – volume: 14 start-page: 026017 issue: 2 year: 2017 ident: 10.1016/j.patrec.2023.05.011_bib0003 article-title: A multimodal approach to estimating vigilance using EEG and forehead EOG publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa5a98 – year: 2018 ident: 10.1016/j.patrec.2023.05.011_bib0007 article-title: A regression method with subnetwork neurons for vigilance estimation using EOG and EEG publication-title: IEEE Trans. Cognit. Dev. Syst. – start-page: 2709 year: 2020 ident: 10.1016/j.patrec.2023.05.011_bib0011 article-title: Variational pathway reasoning for EEG emotion recognition – ident: 10.1016/j.patrec.2023.05.011_bib0004 – ident: 10.1016/j.patrec.2023.05.011_bib0021 – year: 2020 ident: 10.1016/j.patrec.2023.05.011_bib0024 article-title: Spatio-temporal graph for video captioning with knowledge distillation – year: 2020 ident: 10.1016/j.patrec.2023.05.011_bib0025 article-title: Regularizing class-wise predictions via self-knowledge distillation – volume: 49 start-page: 839 issue: 3 year: 2018 ident: 10.1016/j.patrec.2023.05.011_bib0009 article-title: Spatial–temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2788081 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.patrec.2023.05.011_bib0002 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev. doi: 10.1109/TAMD.2015.2431497 – start-page: 3856 year: 2017 ident: 10.1016/j.patrec.2023.05.011_bib0005 article-title: Dynamic routing between capsules – year: 2000 ident: 10.1016/j.patrec.2023.05.011_bib0001 – year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0010 article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – start-page: 4323 year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0026 article-title: Patient knowledge distillation for BERT model compression – volume: 29 start-page: 1138 year: 2021 ident: 10.1016/j.patrec.2023.05.011_bib0006 article-title: Capsule attention for multimodal EEG-EOG representation learning with application to driver vigilance estimation publication-title: IEEE Trans. Neural Syst. Rehabil.Eng. doi: 10.1109/TNSRE.2021.3089594 – start-page: 5259 year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0013 article-title: Joint slot filling and intent detection via capsule neural networks – year: 2020 ident: 10.1016/j.patrec.2023.05.011_bib0012 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – start-page: 1365 year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0028 article-title: Similarity-preserving knowledge distillation – start-page: 5142 year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0023 article-title: Towards understanding knowledge distillation – start-page: 897 year: 2016 ident: 10.1016/j.patrec.2023.05.011_bib0008 article-title: Driving fatigue detection with fusion of EEG and forehead EOG – ident: 10.1016/j.patrec.2023.05.011_bib0022 – start-page: 8026 year: 2019 ident: 10.1016/j.patrec.2023.05.011_bib0030 article-title: Pytorch: an imperative style, high-performance deep learning library – volume: 30 start-page: 2627 year: 2021 ident: 10.1016/j.patrec.2023.05.011_bib0015 article-title: CapsField: light field-based face and expression recognition in the wild using capsule routing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3054476 – volume: 138 start-page: 638 year: 2020 ident: 10.1016/j.patrec.2023.05.011_bib0017 article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images publication-title: Pattern Recognit. Lett.. doi: 10.1016/j.patrec.2020.09.010 – volume: 1 start-page: 624 year: 1998 ident: 10.1016/j.patrec.2023.05.011_bib0020 article-title: Statistical learning theory publication-title: Wiley New York – start-page: 3115 year: 2020 ident: 10.1016/j.patrec.2023.05.011_bib0014 article-title: Hyperbolic capsule networks for multi-label classification – volume: 16 start-page: 2023 issue: 1 year: 2015 ident: 10.1016/j.patrec.2023.05.011_bib0019 article-title: Learning using privileged information: similarity control and knowledge transfer publication-title: J. Mach. Learn. Res. |
SSID | ssj0006398 |
Score | 2.4414 |
Snippet | •We distill EEG representations via capsule-based architectures.•We encourage lightweight model to mimic heavy model distillation using privileged... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | Capsule network Deep learning Electroencephalography Model compression |
Title | Distilling EEG representations via capsules for affective computing |
URI | https://dx.doi.org/10.1016/j.patrec.2023.05.011 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvejBj6pYP8oevMYm2U3SHEttrYq9aKG3ZXezgYrEYqtHf7szSVYriIKXkISdEIadmbfLm7cA5zwyvklF5GlEB54gHlVKspVWxdamKkakRA3Od5N4PBU3s2jWgIHrhSFaZZ37q5xeZuv6Tbf2Zncxn3fviUBPbZUIohHnh6T4KURCs_zi_YvmgRW45_S9abRrnys5XrTfbEnIMOSVfmfwc3laKzmjXdiusSLrV7-zBw1btGDHncPA6rBswdaaqOA-DC4pbEupbTYcXrFSttK1GBVL9jZXzChcHD_ZJUPIylRJ6cCsx0z5aTQ8gOlo-DAYe_VRCZ5BzL_yssw3Og96uFyzvuV0gkjPhsYkmbaKqzw2GGl5LjTecq6CJFMBVseE4_LR0lbNITSL58IeAYsMT00mFEZrgNdYq1ClOlE8N0Ij-msDdx6SptYRp-MsnqQjjD3Kyq-S_Cr9SKJf2-B9Wi0qHY0_xifO-fLbfJCY6n-1PP635Qls0lNFxj2F5url1Z4h5FjpTjmnOrDRv74dTz4AIdrW6g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1APPqpife7Ba2jSzaM5ltqa2sfFFnpbdjcbqJRYbPX3O5vslgqi4CWEJBPCkJn5dvnmG4AHGkhXxn7gCEQHjq95VLGWrVQ8VCrmISIl3eA8noTJzH-eB_MKdG0vjKZVmtxf5vQiW5srTePN5mqxaL5oAr1uq0QQjTi_RfegptWpgirUOoNhMtkmZCzCbSvxrQ1sB11B89JbzkprGbZoKeHp_VyhdqpO_wSODFwknfKLTqGi8joc21EMxERmHQ53dAXPoPuoI7dQ2ya93hMplCttl1G-Jp8LTiTH9fFSrQmiVsILVgcmPiKLV6PhOcz6vWk3ccy0BEci7N84aepKkXltXLEpV1E9RKStWlJGqVCc8iyUGGxZ5gs8pZR7Uco9LJARxRWk0rs1F1DN33J1CSSQNJapzzFgPTyGgrd4LCJOM-kLBIANoNZDTBopcT3RYsksZ-yVlX5l2q_MDRj6tQHO1mpVSmn88Xxknc--_RIMs_2vllf_tryH_WQ6HrHRYDK8hgN9p-Tm3kB18_6hbhGBbMSd-cO-AIl32Zs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distilling+EEG+representations+via+capsules+for+affective+computing&rft.jtitle=Pattern+recognition+letters&rft.au=Zhang%2C+Guangyi&rft.au=Etemad%2C+Ali&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.volume=171&rft.spage=99&rft.epage=105&rft_id=info:doi/10.1016%2Fj.patrec.2023.05.011&rft.externalDocID=S0167865523001423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |