Interpretable medical deep framework by logits-constraint attention guiding graph-based multi-scale fusion for Alzheimer’s disease analysis

Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D subject-level methods can not only provide diagnosis results but also interpret the significant brain regions, thereby attracting considerable attent...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 152; p. 110450
Main Authors Xu, Jinghao, Yuan, Chenxi, Ma, Xiaochuan, Shang, Huifang, Shi, Xiaoshuang, Zhu, Xiaofeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D subject-level methods can not only provide diagnosis results but also interpret the significant brain regions, thereby attracting considerable attention. However, the performance of previous attention-based methods might be still restricted by: (i) the gap between attention scores and semantic significant regions; (ii) using only single-scale features or simply fusing multi-scale information by addition or concatenation for classification decision-making. To overcome these two issues, we propose an innovative dual-branch model called LA-GMF, which consists of two major modules: logits-constraint attention (LA) and graph-based multi-scale fusion (GMF). The LA module is designed to guide the model to focus on key areas to enhance the diagnostic performance of local lesions, by reducing the inconsistency between attention scores and class prediction probabilities. Meanwhile, by combining the graph neural network and the self-attention mechanism, the GMF module not only introduces the interaction between patches, but also explores the correlation and complementarity between features at different scales, thereby extracting feature representations more comprehensively. Experiments on the popular ADNI and AIBL datasets validate the potential of our model in boosting early AD diagnosis accuracy. Additionally, our interpretation experiments demonstrate the superior interpretability performance of the proposed method over recent state-of-the-art attention-based methods. Our source codes are released at: https://github.com/nollexu/LA-GMF. [Display omitted] •We propose an interpretable dual-branch framework for Alzheimer’s disease analysis.•We design a logits-constraint attention to reduce the attention-semantic gap.•We design a graph-based multi-scale fusion module to fuse cross-scale information.
AbstractList Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D subject-level methods can not only provide diagnosis results but also interpret the significant brain regions, thereby attracting considerable attention. However, the performance of previous attention-based methods might be still restricted by: (i) the gap between attention scores and semantic significant regions; (ii) using only single-scale features or simply fusing multi-scale information by addition or concatenation for classification decision-making. To overcome these two issues, we propose an innovative dual-branch model called LA-GMF, which consists of two major modules: logits-constraint attention (LA) and graph-based multi-scale fusion (GMF). The LA module is designed to guide the model to focus on key areas to enhance the diagnostic performance of local lesions, by reducing the inconsistency between attention scores and class prediction probabilities. Meanwhile, by combining the graph neural network and the self-attention mechanism, the GMF module not only introduces the interaction between patches, but also explores the correlation and complementarity between features at different scales, thereby extracting feature representations more comprehensively. Experiments on the popular ADNI and AIBL datasets validate the potential of our model in boosting early AD diagnosis accuracy. Additionally, our interpretation experiments demonstrate the superior interpretability performance of the proposed method over recent state-of-the-art attention-based methods. Our source codes are released at: https://github.com/nollexu/LA-GMF. [Display omitted] •We propose an interpretable dual-branch framework for Alzheimer’s disease analysis.•We design a logits-constraint attention to reduce the attention-semantic gap.•We design a graph-based multi-scale fusion module to fuse cross-scale information.
ArticleNumber 110450
Author Yuan, Chenxi
Xu, Jinghao
Zhu, Xiaofeng
Shang, Huifang
Shi, Xiaoshuang
Ma, Xiaochuan
Author_xml – sequence: 1
  givenname: Jinghao
  orcidid: 0009-0005-1638-3661
  surname: Xu
  fullname: Xu, Jinghao
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 2
  givenname: Chenxi
  surname: Yuan
  fullname: Yuan, Chenxi
  organization: Department of Biostatistics, Epidemiology and Informatics Perelman School of Medicine, University of Pennsylvania, United States of America
– sequence: 3
  givenname: Xiaochuan
  orcidid: 0009-0007-6400-718X
  surname: Ma
  fullname: Ma, Xiaochuan
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 4
  givenname: Huifang
  surname: Shang
  fullname: Shang, Huifang
  email: hfshang2002@126.com
  organization: Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 5
  givenname: Xiaoshuang
  orcidid: 0000-0003-4934-0850
  surname: Shi
  fullname: Shi, Xiaoshuang
  email: xsshi2013@gmail.com
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 6
  givenname: Xiaofeng
  surname: Zhu
  fullname: Zhu, Xiaofeng
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
BookMark eNqFkE1OwzAQhS0EEi1wAxa-QIId143LAglV_FRCYgNry7EnwSWxI9sFlRUX4ABcj5OQqKxYgDSjWcx7T3rfFO077wChU0pySuj8bJ33Kmnf5AUpZjmlZMbJHppQUbKM01mxjyaEMJqxgrBDNI1xTQgth8cEfaxcgtAHSKpqAXdgrFYtNgA9roPq4NWHZ1xtcesbm2KmvYspKOsSVimBS9Y73Gyssa7BTVD9U1apCAZ3mzbZLA5hgOtNHGW1D_iyfXsC20H4ev-M2NgIgxorp9pttPEYHdSqjXDyc4_Q4_XVw_I2u7u_WS0v7zLNyDxlpjSEGUqYpqLWwwAp6WJYUWnDxJwTwbXigomFgJrTcsHrStCSz1XJqSjYETrf5ergYwxQS22TGruM3VpJiRzByrXcgZUjWLkDO5hnv8x9sJ0K2_9sFzsbDMVeLAQZtQWnB-IBdJLG278DvgHG55re
CitedBy_id crossref_primary_10_1016_j_patcog_2024_111279
crossref_primary_10_1002_ima_70029
crossref_primary_10_1016_j_patcog_2025_111557
crossref_primary_10_1016_j_inffus_2024_102721
crossref_primary_10_1016_j_neunet_2024_106781
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_patcog_2024_110646
crossref_primary_10_1016_j_patcog_2025_111539
Cites_doi 10.1109/TIM.2022.3218574
10.3233/JAD-141605
10.1016/j.media.2017.10.005
10.1006/nimg.2002.1132
10.1212/WNL.57.2.216
10.1109/TMI.2021.3077079
10.1002/hbm.10062
10.1093/brain/awm319
10.1007/s00521-021-05983-y
10.1109/JBHI.2018.2882392
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2009.05.056
10.1016/j.media.2023.102890
10.1038/nrneurol.2009.215
10.1016/j.neuron.2013.01.002
10.1016/j.patcog.2022.108825
10.1016/j.neuroimage.2019.116459
10.1016/S0197-4580(97)00001-8
10.1007/s00234-007-0269-2
10.1002/hbm.25685
10.1097/00004728-199803000-00032
10.1016/j.compbiomed.2023.107401
10.1007/s10278-017-0037-8
10.1109/TIP.2020.3046875
10.1007/s00234-008-0463-x
10.1016/j.ins.2020.05.102
10.1109/JBHI.2022.3197331
10.1016/j.media.2020.101694
10.1006/nimg.2001.0978
10.1016/j.patcog.2021.107944
10.1109/JBHI.2021.3066832
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.110450
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2024_110450
S0031320324002012
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-d7d03d103c18fc8fce07190718bcd3865085ca583898ef51795fb81756a751823
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:10:53 EDT 2025
Tue Jul 01 02:36:46 EDT 2025
Sat Apr 27 15:44:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural MRI
Graph neural networks
Alzheimer’s disease
Multi-scale feature fusion
Attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-d7d03d103c18fc8fce07190718bcd3865085ca583898ef51795fb81756a751823
ORCID 0009-0005-1638-3661
0000-0003-4934-0850
0009-0007-6400-718X
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2024_110450
crossref_primary_10_1016_j_patcog_2024_110450
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Zhang, Adeli, Shen (b12) 2018; 43
Pei, Wan, Zhang, Wang, Leng, Yang (b23) 2022; 131
Klöppel, Stonnington, Chu, Draganski (b3) 2008; 131
Hon, Khan (b9) 2017
Chen, Xia (b15) 2021; 116
T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: International Conference on Learning Representations, ICLR, 2017.
Aderghal, Boissenin, Benois-Pineau, Catheline, Afdel (b10) 2016
Magnin, Mesrob, Kinkingnéhun, Pélégrini-Issac (b5) 2009; 51
Jagust (b1) 2013; 77
Liu, Li, Yan, Wang (b13) 2020; 208
Yaniv, Lowekamp, Johnson, Beare (b29) 2018; 31
Li, Wei, Wang, Hu, Liu, Xu (b19) 2022; 71
Thekumparampil, Wang, Oh, Li (b25) 2018
Galton, Patterson, Graham, Lambon-Ralph (b38) 2001; 57
Wu, Zhou, Zeng, Qian, Song (b22) 2022; 26
Wen, Thibeau-Sutre, Diaz-Melo, Samper-González (b7) 2020; 63
Farooq, Anwar, Awais, Rehman (b8) 2017
Fan, Li, Zhang, Zhu (b18) 2021; 33
Holmes, Hoge, Collins, Woods, Toga, Evans (b31) 1998; 22
Smith (b32) 2002; 17
Tang, Holland, Dale, Younes, Miller, Initiative (b6) 2015; 44
Jenkinson, Beckmann, Behrens, Woolrich, Smith (b33) 2012; 62
Karas, Scheltens, Rombouts, Van Schijndel (b37) 2007; 49
Guan, Wang, Cheng, Jing, Liu (b21) 2022; 43
Korolev, Safiullin, Belyaev, Dodonova (b17) 2017
Jin, Xu, Zhao, Hu (b27) 2019
Hinrichs, Singh, Mukherjee, Xu (b4) 2009; 48
Zhang, Gao, Li, Jin, Wang, Initiative (b24) 2023; 165
Shi, Xing, Xu, Chen (b34) 2020; 30
Cui, Liu (b11) 2018; 23
Convit, De Leon, Tarshish, De Santi (b36) 1997; 18
Frisoni, Fox, Jack, Scheltens, Thompson (b2) 2010; 6
Jenkinson, Bannister, Brady, Smith (b30) 2002; 17
Zhu, Sun, Huang, Han, Zhang (b14) 2021; 40
Wang, Dai (b16) 2024
Zhang, Han, Zhu, Sun, Zhang (b20) 2021; 26
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello (b35) 2002; 15
Xiang, Shen, Yan, Xu, Shi, Zhu (b39) 2023; 89
Sun, Yin, Ding, Qian, Xu (b26) 2020; 537
Zhang (10.1016/j.patcog.2024.110450_b20) 2021; 26
Korolev (10.1016/j.patcog.2024.110450_b17) 2017
Karas (10.1016/j.patcog.2024.110450_b37) 2007; 49
Liu (10.1016/j.patcog.2024.110450_b13) 2020; 208
10.1016/j.patcog.2024.110450_b28
Pei (10.1016/j.patcog.2024.110450_b23) 2022; 131
Farooq (10.1016/j.patcog.2024.110450_b8) 2017
Jenkinson (10.1016/j.patcog.2024.110450_b30) 2002; 17
Wu (10.1016/j.patcog.2024.110450_b22) 2022; 26
Yaniv (10.1016/j.patcog.2024.110450_b29) 2018; 31
Tang (10.1016/j.patcog.2024.110450_b6) 2015; 44
Fan (10.1016/j.patcog.2024.110450_b18) 2021; 33
Li (10.1016/j.patcog.2024.110450_b19) 2022; 71
Jenkinson (10.1016/j.patcog.2024.110450_b33) 2012; 62
Jagust (10.1016/j.patcog.2024.110450_b1) 2013; 77
Wen (10.1016/j.patcog.2024.110450_b7) 2020; 63
Magnin (10.1016/j.patcog.2024.110450_b5) 2009; 51
Wang (10.1016/j.patcog.2024.110450_b16) 2024
Convit (10.1016/j.patcog.2024.110450_b36) 1997; 18
Aderghal (10.1016/j.patcog.2024.110450_b10) 2016
Chen (10.1016/j.patcog.2024.110450_b15) 2021; 116
Jin (10.1016/j.patcog.2024.110450_b27) 2019
Sun (10.1016/j.patcog.2024.110450_b26) 2020; 537
Xiang (10.1016/j.patcog.2024.110450_b39) 2023; 89
Hon (10.1016/j.patcog.2024.110450_b9) 2017
Holmes (10.1016/j.patcog.2024.110450_b31) 1998; 22
Thekumparampil (10.1016/j.patcog.2024.110450_b25) 2018
Zhu (10.1016/j.patcog.2024.110450_b14) 2021; 40
Shi (10.1016/j.patcog.2024.110450_b34) 2020; 30
Frisoni (10.1016/j.patcog.2024.110450_b2) 2010; 6
Guan (10.1016/j.patcog.2024.110450_b21) 2022; 43
Liu (10.1016/j.patcog.2024.110450_b12) 2018; 43
Klöppel (10.1016/j.patcog.2024.110450_b3) 2008; 131
Cui (10.1016/j.patcog.2024.110450_b11) 2018; 23
Galton (10.1016/j.patcog.2024.110450_b38) 2001; 57
Hinrichs (10.1016/j.patcog.2024.110450_b4) 2009; 48
Zhang (10.1016/j.patcog.2024.110450_b24) 2023; 165
Tzourio-Mazoyer (10.1016/j.patcog.2024.110450_b35) 2002; 15
Smith (10.1016/j.patcog.2024.110450_b32) 2002; 17
References_xml – volume: 30
  start-page: 1662
  year: 2020
  end-page: 1675
  ident: b34
  article-title: Loss-based attention for interpreting image-level prediction of convolutional neural networks
  publication-title: IEEE Trans. Image Process.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b8
  article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI
  publication-title: 2017 IEEE International Conference on Imaging Systems and Techniques
– volume: 23
  start-page: 2099
  year: 2018
  end-page: 2107
  ident: b11
  article-title: Hippocampus analysis by combination of 3-D DenseNet and shapes for Alzheimer’s disease diagnosis
  publication-title: IEEE J. Biomed. Health Inform.
– reference: T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: International Conference on Learning Representations, ICLR, 2017.
– volume: 165
  year: 2023
  ident: b24
  article-title: DAUF: A disease-related attentional UNet framework for progressive and stable mild cognitive impairment identification
  publication-title: Comput. Biol. Med.
– start-page: 1047
  year: 2019
  end-page: 1051
  ident: b27
  article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging
– volume: 26
  start-page: 5289
  year: 2021
  end-page: 5297
  ident: b20
  article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 51
  start-page: 73
  year: 2009
  end-page: 83
  ident: b5
  article-title: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI
  publication-title: Neuroradiology
– start-page: 690
  year: 2016
  end-page: 701
  ident: b10
  article-title: Classification of sMRI for AD diagnosis with convolutional neuronal networks: A pilot 2-D+ study on ADNI
  publication-title: Proceedings of the International Conference on Multimedia Modeling
– volume: 89
  year: 2023
  ident: b39
  article-title: Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis
  publication-title: Med. Image Anal.
– volume: 40
  start-page: 2354
  year: 2021
  end-page: 2366
  ident: b14
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
– year: 2018
  ident: b25
  article-title: Attention-based graph neural network for semi-supervised learning
– volume: 43
  start-page: 760
  year: 2022
  end-page: 772
  ident: b21
  article-title: A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer’s disease
  publication-title: Hum. Brain Mapp.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: b32
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 208
  year: 2020
  ident: b13
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
– volume: 33
  start-page: 13587
  year: 2021
  end-page: 13599
  ident: b18
  article-title: U-net based analysis of MRI for Alzheimer’s disease diagnosis
  publication-title: Neural Comput. Appl.
– volume: 26
  start-page: 5665
  year: 2022
  end-page: 5673
  ident: b22
  article-title: An attention-based 3D CNN with multi-scale integration block for Alzheimer’s disease classification
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 131
  year: 2022
  ident: b23
  article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: Pattern Recognit.
– volume: 43
  start-page: 157
  year: 2018
  end-page: 168
  ident: b12
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
– volume: 537
  start-page: 401
  year: 2020
  end-page: 424
  ident: b26
  article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems
  publication-title: Inform. Sci.
– start-page: 835
  year: 2017
  end-page: 838
  ident: b17
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging
– volume: 63
  year: 2020
  ident: b7
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: b35
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 44
  start-page: 599
  year: 2015
  end-page: 611
  ident: b6
  article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer’s disease
  publication-title: J. Alzheimer’s Dis.
– volume: 48
  start-page: 138
  year: 2009
  end-page: 149
  ident: b4
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
– volume: 116
  year: 2021
  ident: b15
  article-title: Iterative sparse and deep learning for accurate diagnosis of Alzheimer’s disease
  publication-title: Pattern Recognit.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: b30
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 71
  start-page: 1
  year: 2022
  end-page: 11
  ident: b19
  article-title: 3-D CNN-based multichannel contrastive learning for Alzheimer’s disease automatic diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 31
  start-page: 290
  year: 2018
  end-page: 303
  ident: b29
  article-title: SimpleITK image-analysis notebooks: A collaborative environment for education and reproducible research
  publication-title: J. Digit. Imaging
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: b3
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
– volume: 49
  start-page: 967
  year: 2007
  end-page: 976
  ident: b37
  article-title: Precuneus atrophy in early-onset Alzheimer’s disease: A morphometric structural MRI study
  publication-title: Neuroradiology
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  ident: b31
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
– start-page: 1166
  year: 2017
  end-page: 1169
  ident: b9
  article-title: Towards Alzheimer’s disease classification through transfer learning
  publication-title: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: b33
  article-title: Fsl
  publication-title: Neuroimage
– year: 2024
  ident: b16
  article-title: A patch distribution-based active learning method for multiple instance Alzheimer’s disease diagnosis
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 131
  year: 1997
  end-page: 138
  ident: b36
  article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease
  publication-title: Neurobiol. Aging
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: b2
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
– volume: 57
  start-page: 216
  year: 2001
  end-page: 225
  ident: b38
  article-title: Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia
  publication-title: Neurology
– volume: 77
  start-page: 219
  year: 2013
  end-page: 234
  ident: b1
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2024.110450_b19
  article-title: 3-D CNN-based multichannel contrastive learning for Alzheimer’s disease automatic diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3218574
– volume: 44
  start-page: 599
  issue: 2
  year: 2015
  ident: 10.1016/j.patcog.2024.110450_b6
  article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer’s disease
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-141605
– start-page: 1
  year: 2017
  ident: 10.1016/j.patcog.2024.110450_b8
  article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI
– volume: 43
  start-page: 157
  year: 2018
  ident: 10.1016/j.patcog.2024.110450_b12
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.005
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2024.110450_b30
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 57
  start-page: 216
  issue: 2
  year: 2001
  ident: 10.1016/j.patcog.2024.110450_b38
  article-title: Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia
  publication-title: Neurology
  doi: 10.1212/WNL.57.2.216
– volume: 40
  start-page: 2354
  issue: 9
  year: 2021
  ident: 10.1016/j.patcog.2024.110450_b14
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077079
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2024.110450_b32
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.patcog.2024.110450_b3
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 33
  start-page: 13587
  year: 2021
  ident: 10.1016/j.patcog.2024.110450_b18
  article-title: U-net based analysis of MRI for Alzheimer’s disease diagnosis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05983-y
– start-page: 690
  year: 2016
  ident: 10.1016/j.patcog.2024.110450_b10
  article-title: Classification of sMRI for AD diagnosis with convolutional neuronal networks: A pilot 2-D+ study on ADNI
– volume: 23
  start-page: 2099
  issue: 5
  year: 2018
  ident: 10.1016/j.patcog.2024.110450_b11
  article-title: Hippocampus analysis by combination of 3-D DenseNet and shapes for Alzheimer’s disease diagnosis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2882392
– year: 2024
  ident: 10.1016/j.patcog.2024.110450_b16
  article-title: A patch distribution-based active learning method for multiple instance Alzheimer’s disease diagnosis
  publication-title: Pattern Recognit.
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2024.110450_b33
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 48
  start-page: 138
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2024.110450_b4
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.056
– volume: 89
  year: 2023
  ident: 10.1016/j.patcog.2024.110450_b39
  article-title: Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102890
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2024.110450_b2
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.215
– start-page: 835
  year: 2017
  ident: 10.1016/j.patcog.2024.110450_b17
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
– volume: 77
  start-page: 219
  issue: 2
  year: 2013
  ident: 10.1016/j.patcog.2024.110450_b1
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.002
– volume: 131
  year: 2022
  ident: 10.1016/j.patcog.2024.110450_b23
  article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108825
– volume: 208
  year: 2020
  ident: 10.1016/j.patcog.2024.110450_b13
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– start-page: 1166
  year: 2017
  ident: 10.1016/j.patcog.2024.110450_b9
  article-title: Towards Alzheimer’s disease classification through transfer learning
– volume: 18
  start-page: 131
  issue: 2
  year: 1997
  ident: 10.1016/j.patcog.2024.110450_b36
  article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(97)00001-8
– volume: 49
  start-page: 967
  year: 2007
  ident: 10.1016/j.patcog.2024.110450_b37
  article-title: Precuneus atrophy in early-onset Alzheimer’s disease: A morphometric structural MRI study
  publication-title: Neuroradiology
  doi: 10.1007/s00234-007-0269-2
– volume: 43
  start-page: 760
  issue: 2
  year: 2022
  ident: 10.1016/j.patcog.2024.110450_b21
  article-title: A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer’s disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25685
– volume: 22
  start-page: 324
  issue: 2
  year: 1998
  ident: 10.1016/j.patcog.2024.110450_b31
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00032
– volume: 165
  year: 2023
  ident: 10.1016/j.patcog.2024.110450_b24
  article-title: DAUF: A disease-related attentional UNet framework for progressive and stable mild cognitive impairment identification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107401
– start-page: 1047
  year: 2019
  ident: 10.1016/j.patcog.2024.110450_b27
  article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration
– ident: 10.1016/j.patcog.2024.110450_b28
– volume: 31
  start-page: 290
  issue: 3
  year: 2018
  ident: 10.1016/j.patcog.2024.110450_b29
  article-title: SimpleITK image-analysis notebooks: A collaborative environment for education and reproducible research
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-0037-8
– volume: 30
  start-page: 1662
  year: 2020
  ident: 10.1016/j.patcog.2024.110450_b34
  article-title: Loss-based attention for interpreting image-level prediction of convolutional neural networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3046875
– volume: 51
  start-page: 73
  year: 2009
  ident: 10.1016/j.patcog.2024.110450_b5
  article-title: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI
  publication-title: Neuroradiology
  doi: 10.1007/s00234-008-0463-x
– volume: 537
  start-page: 401
  year: 2020
  ident: 10.1016/j.patcog.2024.110450_b26
  article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.05.102
– volume: 26
  start-page: 5665
  issue: 11
  year: 2022
  ident: 10.1016/j.patcog.2024.110450_b22
  article-title: An attention-based 3D CNN with multi-scale integration block for Alzheimer’s disease classification
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3197331
– volume: 63
  year: 2020
  ident: 10.1016/j.patcog.2024.110450_b7
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101694
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.patcog.2024.110450_b35
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 116
  year: 2021
  ident: 10.1016/j.patcog.2024.110450_b15
  article-title: Iterative sparse and deep learning for accurate diagnosis of Alzheimer’s disease
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107944
– year: 2018
  ident: 10.1016/j.patcog.2024.110450_b25
– volume: 26
  start-page: 5289
  issue: 11
  year: 2021
  ident: 10.1016/j.patcog.2024.110450_b20
  article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2021.3066832
SSID ssj0017142
Score 2.5202136
Snippet Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110450
SubjectTerms Alzheimer’s disease
Attention
Graph neural networks
Multi-scale feature fusion
Structural MRI
Title Interpretable medical deep framework by logits-constraint attention guiding graph-based multi-scale fusion for Alzheimer’s disease analysis
URI https://dx.doi.org/10.1016/j.patcog.2024.110450
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihLNQeuplncLMeqoiogeqJSb5FjOyWoS9SmBzggfoAP4Pf4EjyJU0BCICHlksiOEo8z85x5fkPIuc_9oC08myYBl5RJi1MsUkh9hKuxGzAmMaN7O_D6Q3Y9ao9qpFvthUFapfH9pU8vvLW50jKj2crSFPf4ouyghYpyGvMUlYYZ83GWXzyvaR5Y37tUDHdtiq2r7XMFxyvT7m4-1qtEhyEfnuHu-5_C05eQ09shWwYrQqd8nF1SU7M9sl3VYQDzWe6T10_mYDxRMC1zLyCVyiCpyFcQPwL6uXxJBWJCLA2RA6prFnxHGK9SDGNQKFhTDG4SCrYhXeqbKUhW-F8NNMaFzuTpXqVTtXh_eVuCSfEAN_ImB2TYu7zr9qkps0CFXi_kVPrScqVtucIOEqEPpWGHXjPbQSwklgTVqExwTK-GgUpQ0qudxIGGHR7HnI3jHpL6bD5TRwRC33WVNr6jHM4s7sQaTPDQCvWySXhJaDeIW41uJIwGOb7vJKrIZg9RaZMIbRKVNmkQuu6VlRocf7T3K8NF3-ZSpMPErz2P_93zhGziWUkNPCX1fLFSZxqu5HGzmI9NstG5uukPPgAf7uwv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAXdkRZ58DVarY2ybGqqFK6nFqpt8ixnVLUJWrTA5z4AT6A3-NL8CROAQmBhJRTEkeJJ5l5k3l-Q8ity1yvzhsmjT0mqCMMRrFJIXURrka25zgCK7r9QSMYOffj-rhEWsVaGKRVat-f-_TMW-s9NT2btWQ6xTW-KDtooKKcwjzYabiC6lT1Mqk0O91gsC0muKaTi4bbJsUBxQq6jOaVKI-3nKhE0XKQEu_gAvyfItSXqNM-IHsaLkIzv6NDUpKLI7JftGIA_WUek9dP8mA0kzDPyy8gpEwgLvhXED0Burp0TTnCQuwOkQIKbGaUR5hsphjJIBOxphjfBGSEQ7pWF5MQb_DXGiiYC83Z84OczuXq_eVtDbrKA0wrnJyQUftu2Aqo7rRAuUoZUipcYdjCNGxuejFXm1TIQ6XNphdxgV1BFTDjDCusvidjVPWqx5GnkEeDYdnGsk9JebFcyDMCvmvbUtnfkhZzDGZFCk8w3_BV5sQbsW9WiV3Mbsi1DDk-7yws-GaPYW6TEG0S5japErodleQyHH-c7xaGC7-9TqGKFL-OPP_3yBuyEwz7vbDXGXQvyC4eyZmCl6ScrjbySqGXNLrWb-cHNHru4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+medical+deep+framework+by+logits-constraint+attention+guiding+graph-based+multi-scale+fusion+for+Alzheimer%E2%80%99s+disease+analysis&rft.jtitle=Pattern+recognition&rft.au=Xu%2C+Jinghao&rft.au=Yuan%2C+Chenxi&rft.au=Ma%2C+Xiaochuan&rft.au=Shang%2C+Huifang&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=152&rft_id=info:doi/10.1016%2Fj.patcog.2024.110450&rft.externalDocID=S0031320324002012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon