Interpretable medical deep framework by logits-constraint attention guiding graph-based multi-scale fusion for Alzheimer’s disease analysis
Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D subject-level methods can not only provide diagnosis results but also interpret the significant brain regions, thereby attracting considerable attent...
Saved in:
Published in | Pattern recognition Vol. 152; p. 110450 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D subject-level methods can not only provide diagnosis results but also interpret the significant brain regions, thereby attracting considerable attention. However, the performance of previous attention-based methods might be still restricted by: (i) the gap between attention scores and semantic significant regions; (ii) using only single-scale features or simply fusing multi-scale information by addition or concatenation for classification decision-making. To overcome these two issues, we propose an innovative dual-branch model called LA-GMF, which consists of two major modules: logits-constraint attention (LA) and graph-based multi-scale fusion (GMF). The LA module is designed to guide the model to focus on key areas to enhance the diagnostic performance of local lesions, by reducing the inconsistency between attention scores and class prediction probabilities. Meanwhile, by combining the graph neural network and the self-attention mechanism, the GMF module not only introduces the interaction between patches, but also explores the correlation and complementarity between features at different scales, thereby extracting feature representations more comprehensively. Experiments on the popular ADNI and AIBL datasets validate the potential of our model in boosting early AD diagnosis accuracy. Additionally, our interpretation experiments demonstrate the superior interpretability performance of the proposed method over recent state-of-the-art attention-based methods. Our source codes are released at: https://github.com/nollexu/LA-GMF.
[Display omitted]
•We propose an interpretable dual-branch framework for Alzheimer’s disease analysis.•We design a logits-constraint attention to reduce the attention-semantic gap.•We design a graph-based multi-scale fusion module to fuse cross-scale information. |
---|---|
AbstractList | Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D subject-level methods can not only provide diagnosis results but also interpret the significant brain regions, thereby attracting considerable attention. However, the performance of previous attention-based methods might be still restricted by: (i) the gap between attention scores and semantic significant regions; (ii) using only single-scale features or simply fusing multi-scale information by addition or concatenation for classification decision-making. To overcome these two issues, we propose an innovative dual-branch model called LA-GMF, which consists of two major modules: logits-constraint attention (LA) and graph-based multi-scale fusion (GMF). The LA module is designed to guide the model to focus on key areas to enhance the diagnostic performance of local lesions, by reducing the inconsistency between attention scores and class prediction probabilities. Meanwhile, by combining the graph neural network and the self-attention mechanism, the GMF module not only introduces the interaction between patches, but also explores the correlation and complementarity between features at different scales, thereby extracting feature representations more comprehensively. Experiments on the popular ADNI and AIBL datasets validate the potential of our model in boosting early AD diagnosis accuracy. Additionally, our interpretation experiments demonstrate the superior interpretability performance of the proposed method over recent state-of-the-art attention-based methods. Our source codes are released at: https://github.com/nollexu/LA-GMF.
[Display omitted]
•We propose an interpretable dual-branch framework for Alzheimer’s disease analysis.•We design a logits-constraint attention to reduce the attention-semantic gap.•We design a graph-based multi-scale fusion module to fuse cross-scale information. |
ArticleNumber | 110450 |
Author | Yuan, Chenxi Xu, Jinghao Zhu, Xiaofeng Shang, Huifang Shi, Xiaoshuang Ma, Xiaochuan |
Author_xml | – sequence: 1 givenname: Jinghao orcidid: 0009-0005-1638-3661 surname: Xu fullname: Xu, Jinghao organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 2 givenname: Chenxi surname: Yuan fullname: Yuan, Chenxi organization: Department of Biostatistics, Epidemiology and Informatics Perelman School of Medicine, University of Pennsylvania, United States of America – sequence: 3 givenname: Xiaochuan orcidid: 0009-0007-6400-718X surname: Ma fullname: Ma, Xiaochuan organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 4 givenname: Huifang surname: Shang fullname: Shang, Huifang email: hfshang2002@126.com organization: Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 5 givenname: Xiaoshuang orcidid: 0000-0003-4934-0850 surname: Shi fullname: Shi, Xiaoshuang email: xsshi2013@gmail.com organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 6 givenname: Xiaofeng surname: Zhu fullname: Zhu, Xiaofeng organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China |
BookMark | eNqFkE1OwzAQhS0EEi1wAxa-QIId143LAglV_FRCYgNry7EnwSWxI9sFlRUX4ABcj5OQqKxYgDSjWcx7T3rfFO077wChU0pySuj8bJ33Kmnf5AUpZjmlZMbJHppQUbKM01mxjyaEMJqxgrBDNI1xTQgth8cEfaxcgtAHSKpqAXdgrFYtNgA9roPq4NWHZ1xtcesbm2KmvYspKOsSVimBS9Y73Gyssa7BTVD9U1apCAZ3mzbZLA5hgOtNHGW1D_iyfXsC20H4ev-M2NgIgxorp9pttPEYHdSqjXDyc4_Q4_XVw_I2u7u_WS0v7zLNyDxlpjSEGUqYpqLWwwAp6WJYUWnDxJwTwbXigomFgJrTcsHrStCSz1XJqSjYETrf5ergYwxQS22TGruM3VpJiRzByrXcgZUjWLkDO5hnv8x9sJ0K2_9sFzsbDMVeLAQZtQWnB-IBdJLG278DvgHG55re |
CitedBy_id | crossref_primary_10_1016_j_patcog_2024_111279 crossref_primary_10_1002_ima_70029 crossref_primary_10_1016_j_patcog_2025_111557 crossref_primary_10_1016_j_inffus_2024_102721 crossref_primary_10_1016_j_neunet_2024_106781 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1016_j_patcog_2024_110646 crossref_primary_10_1016_j_patcog_2025_111539 |
Cites_doi | 10.1109/TIM.2022.3218574 10.3233/JAD-141605 10.1016/j.media.2017.10.005 10.1006/nimg.2002.1132 10.1212/WNL.57.2.216 10.1109/TMI.2021.3077079 10.1002/hbm.10062 10.1093/brain/awm319 10.1007/s00521-021-05983-y 10.1109/JBHI.2018.2882392 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2009.05.056 10.1016/j.media.2023.102890 10.1038/nrneurol.2009.215 10.1016/j.neuron.2013.01.002 10.1016/j.patcog.2022.108825 10.1016/j.neuroimage.2019.116459 10.1016/S0197-4580(97)00001-8 10.1007/s00234-007-0269-2 10.1002/hbm.25685 10.1097/00004728-199803000-00032 10.1016/j.compbiomed.2023.107401 10.1007/s10278-017-0037-8 10.1109/TIP.2020.3046875 10.1007/s00234-008-0463-x 10.1016/j.ins.2020.05.102 10.1109/JBHI.2022.3197331 10.1016/j.media.2020.101694 10.1006/nimg.2001.0978 10.1016/j.patcog.2021.107944 10.1109/JBHI.2021.3066832 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2024.110450 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2024_110450 S0031320324002012 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-d7d03d103c18fc8fce07190718bcd3865085ca583898ef51795fb81756a751823 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:10:53 EDT 2025 Tue Jul 01 02:36:46 EDT 2025 Sat Apr 27 15:44:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural MRI Graph neural networks Alzheimer’s disease Multi-scale feature fusion Attention |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-d7d03d103c18fc8fce07190718bcd3865085ca583898ef51795fb81756a751823 |
ORCID | 0009-0005-1638-3661 0000-0003-4934-0850 0009-0007-6400-718X |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2024_110450 crossref_primary_10_1016_j_patcog_2024_110450 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Zhang, Adeli, Shen (b12) 2018; 43 Pei, Wan, Zhang, Wang, Leng, Yang (b23) 2022; 131 Klöppel, Stonnington, Chu, Draganski (b3) 2008; 131 Hon, Khan (b9) 2017 Chen, Xia (b15) 2021; 116 T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: International Conference on Learning Representations, ICLR, 2017. Aderghal, Boissenin, Benois-Pineau, Catheline, Afdel (b10) 2016 Magnin, Mesrob, Kinkingnéhun, Pélégrini-Issac (b5) 2009; 51 Jagust (b1) 2013; 77 Liu, Li, Yan, Wang (b13) 2020; 208 Yaniv, Lowekamp, Johnson, Beare (b29) 2018; 31 Li, Wei, Wang, Hu, Liu, Xu (b19) 2022; 71 Thekumparampil, Wang, Oh, Li (b25) 2018 Galton, Patterson, Graham, Lambon-Ralph (b38) 2001; 57 Wu, Zhou, Zeng, Qian, Song (b22) 2022; 26 Wen, Thibeau-Sutre, Diaz-Melo, Samper-González (b7) 2020; 63 Farooq, Anwar, Awais, Rehman (b8) 2017 Fan, Li, Zhang, Zhu (b18) 2021; 33 Holmes, Hoge, Collins, Woods, Toga, Evans (b31) 1998; 22 Smith (b32) 2002; 17 Tang, Holland, Dale, Younes, Miller, Initiative (b6) 2015; 44 Jenkinson, Beckmann, Behrens, Woolrich, Smith (b33) 2012; 62 Karas, Scheltens, Rombouts, Van Schijndel (b37) 2007; 49 Guan, Wang, Cheng, Jing, Liu (b21) 2022; 43 Korolev, Safiullin, Belyaev, Dodonova (b17) 2017 Jin, Xu, Zhao, Hu (b27) 2019 Hinrichs, Singh, Mukherjee, Xu (b4) 2009; 48 Zhang, Gao, Li, Jin, Wang, Initiative (b24) 2023; 165 Shi, Xing, Xu, Chen (b34) 2020; 30 Cui, Liu (b11) 2018; 23 Convit, De Leon, Tarshish, De Santi (b36) 1997; 18 Frisoni, Fox, Jack, Scheltens, Thompson (b2) 2010; 6 Jenkinson, Bannister, Brady, Smith (b30) 2002; 17 Zhu, Sun, Huang, Han, Zhang (b14) 2021; 40 Wang, Dai (b16) 2024 Zhang, Han, Zhu, Sun, Zhang (b20) 2021; 26 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello (b35) 2002; 15 Xiang, Shen, Yan, Xu, Shi, Zhu (b39) 2023; 89 Sun, Yin, Ding, Qian, Xu (b26) 2020; 537 Zhang (10.1016/j.patcog.2024.110450_b20) 2021; 26 Korolev (10.1016/j.patcog.2024.110450_b17) 2017 Karas (10.1016/j.patcog.2024.110450_b37) 2007; 49 Liu (10.1016/j.patcog.2024.110450_b13) 2020; 208 10.1016/j.patcog.2024.110450_b28 Pei (10.1016/j.patcog.2024.110450_b23) 2022; 131 Farooq (10.1016/j.patcog.2024.110450_b8) 2017 Jenkinson (10.1016/j.patcog.2024.110450_b30) 2002; 17 Wu (10.1016/j.patcog.2024.110450_b22) 2022; 26 Yaniv (10.1016/j.patcog.2024.110450_b29) 2018; 31 Tang (10.1016/j.patcog.2024.110450_b6) 2015; 44 Fan (10.1016/j.patcog.2024.110450_b18) 2021; 33 Li (10.1016/j.patcog.2024.110450_b19) 2022; 71 Jenkinson (10.1016/j.patcog.2024.110450_b33) 2012; 62 Jagust (10.1016/j.patcog.2024.110450_b1) 2013; 77 Wen (10.1016/j.patcog.2024.110450_b7) 2020; 63 Magnin (10.1016/j.patcog.2024.110450_b5) 2009; 51 Wang (10.1016/j.patcog.2024.110450_b16) 2024 Convit (10.1016/j.patcog.2024.110450_b36) 1997; 18 Aderghal (10.1016/j.patcog.2024.110450_b10) 2016 Chen (10.1016/j.patcog.2024.110450_b15) 2021; 116 Jin (10.1016/j.patcog.2024.110450_b27) 2019 Sun (10.1016/j.patcog.2024.110450_b26) 2020; 537 Xiang (10.1016/j.patcog.2024.110450_b39) 2023; 89 Hon (10.1016/j.patcog.2024.110450_b9) 2017 Holmes (10.1016/j.patcog.2024.110450_b31) 1998; 22 Thekumparampil (10.1016/j.patcog.2024.110450_b25) 2018 Zhu (10.1016/j.patcog.2024.110450_b14) 2021; 40 Shi (10.1016/j.patcog.2024.110450_b34) 2020; 30 Frisoni (10.1016/j.patcog.2024.110450_b2) 2010; 6 Guan (10.1016/j.patcog.2024.110450_b21) 2022; 43 Liu (10.1016/j.patcog.2024.110450_b12) 2018; 43 Klöppel (10.1016/j.patcog.2024.110450_b3) 2008; 131 Cui (10.1016/j.patcog.2024.110450_b11) 2018; 23 Galton (10.1016/j.patcog.2024.110450_b38) 2001; 57 Hinrichs (10.1016/j.patcog.2024.110450_b4) 2009; 48 Zhang (10.1016/j.patcog.2024.110450_b24) 2023; 165 Tzourio-Mazoyer (10.1016/j.patcog.2024.110450_b35) 2002; 15 Smith (10.1016/j.patcog.2024.110450_b32) 2002; 17 |
References_xml | – volume: 30 start-page: 1662 year: 2020 end-page: 1675 ident: b34 article-title: Loss-based attention for interpreting image-level prediction of convolutional neural networks publication-title: IEEE Trans. Image Process. – start-page: 1 year: 2017 end-page: 6 ident: b8 article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI publication-title: 2017 IEEE International Conference on Imaging Systems and Techniques – volume: 23 start-page: 2099 year: 2018 end-page: 2107 ident: b11 article-title: Hippocampus analysis by combination of 3-D DenseNet and shapes for Alzheimer’s disease diagnosis publication-title: IEEE J. Biomed. Health Inform. – reference: T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: International Conference on Learning Representations, ICLR, 2017. – volume: 165 year: 2023 ident: b24 article-title: DAUF: A disease-related attentional UNet framework for progressive and stable mild cognitive impairment identification publication-title: Comput. Biol. Med. – start-page: 1047 year: 2019 end-page: 1051 ident: b27 article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging – volume: 26 start-page: 5289 year: 2021 end-page: 5297 ident: b20 article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE J. Biomed. Health Inf. – volume: 51 start-page: 73 year: 2009 end-page: 83 ident: b5 article-title: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI publication-title: Neuroradiology – start-page: 690 year: 2016 end-page: 701 ident: b10 article-title: Classification of sMRI for AD diagnosis with convolutional neuronal networks: A pilot 2-D+ study on ADNI publication-title: Proceedings of the International Conference on Multimedia Modeling – volume: 89 year: 2023 ident: b39 article-title: Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis publication-title: Med. Image Anal. – volume: 40 start-page: 2354 year: 2021 end-page: 2366 ident: b14 article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI publication-title: IEEE Trans. Med. Imaging – year: 2018 ident: b25 article-title: Attention-based graph neural network for semi-supervised learning – volume: 43 start-page: 760 year: 2022 end-page: 772 ident: b21 article-title: A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer’s disease publication-title: Hum. Brain Mapp. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: b32 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 208 year: 2020 ident: b13 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease publication-title: Neuroimage – volume: 33 start-page: 13587 year: 2021 end-page: 13599 ident: b18 article-title: U-net based analysis of MRI for Alzheimer’s disease diagnosis publication-title: Neural Comput. Appl. – volume: 26 start-page: 5665 year: 2022 end-page: 5673 ident: b22 article-title: An attention-based 3D CNN with multi-scale integration block for Alzheimer’s disease classification publication-title: IEEE J. Biomed. Health Inf. – volume: 131 year: 2022 ident: b23 article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI publication-title: Pattern Recognit. – volume: 43 start-page: 157 year: 2018 end-page: 168 ident: b12 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med. Image Anal. – volume: 537 start-page: 401 year: 2020 end-page: 424 ident: b26 article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems publication-title: Inform. Sci. – start-page: 835 year: 2017 end-page: 838 ident: b17 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging – volume: 63 year: 2020 ident: b7 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: b35 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 44 start-page: 599 year: 2015 end-page: 611 ident: b6 article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer’s disease publication-title: J. Alzheimer’s Dis. – volume: 48 start-page: 138 year: 2009 end-page: 149 ident: b4 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage – volume: 116 year: 2021 ident: b15 article-title: Iterative sparse and deep learning for accurate diagnosis of Alzheimer’s disease publication-title: Pattern Recognit. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: b30 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 71 start-page: 1 year: 2022 end-page: 11 ident: b19 article-title: 3-D CNN-based multichannel contrastive learning for Alzheimer’s disease automatic diagnosis publication-title: IEEE Trans. Instrum. Meas. – volume: 31 start-page: 290 year: 2018 end-page: 303 ident: b29 article-title: SimpleITK image-analysis notebooks: A collaborative environment for education and reproducible research publication-title: J. Digit. Imaging – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: b3 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain – volume: 49 start-page: 967 year: 2007 end-page: 976 ident: b37 article-title: Precuneus atrophy in early-onset Alzheimer’s disease: A morphometric structural MRI study publication-title: Neuroradiology – volume: 22 start-page: 324 year: 1998 end-page: 333 ident: b31 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. – start-page: 1166 year: 2017 end-page: 1169 ident: b9 article-title: Towards Alzheimer’s disease classification through transfer learning publication-title: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: b33 article-title: Fsl publication-title: Neuroimage – year: 2024 ident: b16 article-title: A patch distribution-based active learning method for multiple instance Alzheimer’s disease diagnosis publication-title: Pattern Recognit. – volume: 18 start-page: 131 year: 1997 end-page: 138 ident: b36 article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease publication-title: Neurobiol. Aging – volume: 6 start-page: 67 year: 2010 end-page: 77 ident: b2 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat. Rev. Neurol. – volume: 57 start-page: 216 year: 2001 end-page: 225 ident: b38 article-title: Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia publication-title: Neurology – volume: 77 start-page: 219 year: 2013 end-page: 234 ident: b1 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration publication-title: Neuron – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.patcog.2024.110450_b19 article-title: 3-D CNN-based multichannel contrastive learning for Alzheimer’s disease automatic diagnosis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3218574 – volume: 44 start-page: 599 issue: 2 year: 2015 ident: 10.1016/j.patcog.2024.110450_b6 article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer’s disease publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-141605 – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2024.110450_b8 article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI – volume: 43 start-page: 157 year: 2018 ident: 10.1016/j.patcog.2024.110450_b12 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.005 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.patcog.2024.110450_b30 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 57 start-page: 216 issue: 2 year: 2001 ident: 10.1016/j.patcog.2024.110450_b38 article-title: Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia publication-title: Neurology doi: 10.1212/WNL.57.2.216 – volume: 40 start-page: 2354 issue: 9 year: 2021 ident: 10.1016/j.patcog.2024.110450_b14 article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3077079 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.patcog.2024.110450_b32 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.patcog.2024.110450_b3 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 33 start-page: 13587 year: 2021 ident: 10.1016/j.patcog.2024.110450_b18 article-title: U-net based analysis of MRI for Alzheimer’s disease diagnosis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05983-y – start-page: 690 year: 2016 ident: 10.1016/j.patcog.2024.110450_b10 article-title: Classification of sMRI for AD diagnosis with convolutional neuronal networks: A pilot 2-D+ study on ADNI – volume: 23 start-page: 2099 issue: 5 year: 2018 ident: 10.1016/j.patcog.2024.110450_b11 article-title: Hippocampus analysis by combination of 3-D DenseNet and shapes for Alzheimer’s disease diagnosis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2882392 – year: 2024 ident: 10.1016/j.patcog.2024.110450_b16 article-title: A patch distribution-based active learning method for multiple instance Alzheimer’s disease diagnosis publication-title: Pattern Recognit. – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.patcog.2024.110450_b33 article-title: Fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 48 start-page: 138 issue: 1 year: 2009 ident: 10.1016/j.patcog.2024.110450_b4 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.056 – volume: 89 year: 2023 ident: 10.1016/j.patcog.2024.110450_b39 article-title: Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102890 – volume: 6 start-page: 67 issue: 2 year: 2010 ident: 10.1016/j.patcog.2024.110450_b2 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.215 – start-page: 835 year: 2017 ident: 10.1016/j.patcog.2024.110450_b17 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification – volume: 77 start-page: 219 issue: 2 year: 2013 ident: 10.1016/j.patcog.2024.110450_b1 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2013.01.002 – volume: 131 year: 2022 ident: 10.1016/j.patcog.2024.110450_b23 article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108825 – volume: 208 year: 2020 ident: 10.1016/j.patcog.2024.110450_b13 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116459 – start-page: 1166 year: 2017 ident: 10.1016/j.patcog.2024.110450_b9 article-title: Towards Alzheimer’s disease classification through transfer learning – volume: 18 start-page: 131 issue: 2 year: 1997 ident: 10.1016/j.patcog.2024.110450_b36 article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(97)00001-8 – volume: 49 start-page: 967 year: 2007 ident: 10.1016/j.patcog.2024.110450_b37 article-title: Precuneus atrophy in early-onset Alzheimer’s disease: A morphometric structural MRI study publication-title: Neuroradiology doi: 10.1007/s00234-007-0269-2 – volume: 43 start-page: 760 issue: 2 year: 2022 ident: 10.1016/j.patcog.2024.110450_b21 article-title: A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer’s disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25685 – volume: 22 start-page: 324 issue: 2 year: 1998 ident: 10.1016/j.patcog.2024.110450_b31 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00032 – volume: 165 year: 2023 ident: 10.1016/j.patcog.2024.110450_b24 article-title: DAUF: A disease-related attentional UNet framework for progressive and stable mild cognitive impairment identification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107401 – start-page: 1047 year: 2019 ident: 10.1016/j.patcog.2024.110450_b27 article-title: Attention-based 3D convolutional network for Alzheimer’s disease diagnosis and biomarkers exploration – ident: 10.1016/j.patcog.2024.110450_b28 – volume: 31 start-page: 290 issue: 3 year: 2018 ident: 10.1016/j.patcog.2024.110450_b29 article-title: SimpleITK image-analysis notebooks: A collaborative environment for education and reproducible research publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-0037-8 – volume: 30 start-page: 1662 year: 2020 ident: 10.1016/j.patcog.2024.110450_b34 article-title: Loss-based attention for interpreting image-level prediction of convolutional neural networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3046875 – volume: 51 start-page: 73 year: 2009 ident: 10.1016/j.patcog.2024.110450_b5 article-title: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI publication-title: Neuroradiology doi: 10.1007/s00234-008-0463-x – volume: 537 start-page: 401 year: 2020 ident: 10.1016/j.patcog.2024.110450_b26 article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.05.102 – volume: 26 start-page: 5665 issue: 11 year: 2022 ident: 10.1016/j.patcog.2024.110450_b22 article-title: An attention-based 3D CNN with multi-scale integration block for Alzheimer’s disease classification publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3197331 – volume: 63 year: 2020 ident: 10.1016/j.patcog.2024.110450_b7 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101694 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.patcog.2024.110450_b35 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 116 year: 2021 ident: 10.1016/j.patcog.2024.110450_b15 article-title: Iterative sparse and deep learning for accurate diagnosis of Alzheimer’s disease publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107944 – year: 2018 ident: 10.1016/j.patcog.2024.110450_b25 – volume: 26 start-page: 5289 issue: 11 year: 2021 ident: 10.1016/j.patcog.2024.110450_b20 article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2021.3066832 |
SSID | ssj0017142 |
Score | 2.5202136 |
Snippet | Deep learning using structural MRI has been widely applied to early diagnosis study of Alzheimer’s disease. Among existing methods, attention-based 3D... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110450 |
SubjectTerms | Alzheimer’s disease Attention Graph neural networks Multi-scale feature fusion Structural MRI |
Title | Interpretable medical deep framework by logits-constraint attention guiding graph-based multi-scale fusion for Alzheimer’s disease analysis |
URI | https://dx.doi.org/10.1016/j.patcog.2024.110450 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihLNQeuplncLMeqoiogeqJSb5FjOyWoS9SmBzggfoAP4Pf4EjyJU0BCICHlksiOEo8z85x5fkPIuc_9oC08myYBl5RJi1MsUkh9hKuxGzAmMaN7O_D6Q3Y9ao9qpFvthUFapfH9pU8vvLW50jKj2crSFPf4ouyghYpyGvMUlYYZ83GWXzyvaR5Y37tUDHdtiq2r7XMFxyvT7m4-1qtEhyEfnuHu-5_C05eQ09shWwYrQqd8nF1SU7M9sl3VYQDzWe6T10_mYDxRMC1zLyCVyiCpyFcQPwL6uXxJBWJCLA2RA6prFnxHGK9SDGNQKFhTDG4SCrYhXeqbKUhW-F8NNMaFzuTpXqVTtXh_eVuCSfEAN_ImB2TYu7zr9qkps0CFXi_kVPrScqVtucIOEqEPpWGHXjPbQSwklgTVqExwTK-GgUpQ0qudxIGGHR7HnI3jHpL6bD5TRwRC33WVNr6jHM4s7sQaTPDQCvWySXhJaDeIW41uJIwGOb7vJKrIZg9RaZMIbRKVNmkQuu6VlRocf7T3K8NF3-ZSpMPErz2P_93zhGziWUkNPCX1fLFSZxqu5HGzmI9NstG5uukPPgAf7uwv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAXdkRZ58DVarY2ybGqqFK6nFqpt8ixnVLUJWrTA5z4AT6A3-NL8CROAQmBhJRTEkeJJ5l5k3l-Q8ity1yvzhsmjT0mqCMMRrFJIXURrka25zgCK7r9QSMYOffj-rhEWsVaGKRVat-f-_TMW-s9NT2btWQ6xTW-KDtooKKcwjzYabiC6lT1Mqk0O91gsC0muKaTi4bbJsUBxQq6jOaVKI-3nKhE0XKQEu_gAvyfItSXqNM-IHsaLkIzv6NDUpKLI7JftGIA_WUek9dP8mA0kzDPyy8gpEwgLvhXED0Burp0TTnCQuwOkQIKbGaUR5hsphjJIBOxphjfBGSEQ7pWF5MQb_DXGiiYC83Z84OczuXq_eVtDbrKA0wrnJyQUftu2Aqo7rRAuUoZUipcYdjCNGxuejFXm1TIQ6XNphdxgV1BFTDjDCusvidjVPWqx5GnkEeDYdnGsk9JebFcyDMCvmvbUtnfkhZzDGZFCk8w3_BV5sQbsW9WiV3Mbsi1DDk-7yws-GaPYW6TEG0S5japErodleQyHH-c7xaGC7-9TqGKFL-OPP_3yBuyEwz7vbDXGXQvyC4eyZmCl6ScrjbySqGXNLrWb-cHNHru4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+medical+deep+framework+by+logits-constraint+attention+guiding+graph-based+multi-scale+fusion+for+Alzheimer%E2%80%99s+disease+analysis&rft.jtitle=Pattern+recognition&rft.au=Xu%2C+Jinghao&rft.au=Yuan%2C+Chenxi&rft.au=Ma%2C+Xiaochuan&rft.au=Shang%2C+Huifang&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=152&rft_id=info:doi/10.1016%2Fj.patcog.2024.110450&rft.externalDocID=S0031320324002012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |