Probabilistic anomaly detection considering multi-level uncertainties for cable-stayed bridges
To model multi-level uncertainties within anomaly detection process for large-span bridges, a probabilistic anomaly detection method is proposed considering uncertain models in the data collection, thermal response separation, and trigger estimation. The uncertain model in the data collection is est...
Saved in:
Published in | Structures (Oxford) Vol. 58; p. 105448 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-0124 2352-0124 |
DOI | 10.1016/j.istruc.2023.105448 |
Cover
Loading…
Abstract | To model multi-level uncertainties within anomaly detection process for large-span bridges, a probabilistic anomaly detection method is proposed considering uncertain models in the data collection, thermal response separation, and trigger estimation. The uncertain model in the data collection is established with the measured value and measuring errors. The uncertain model in the thermal response separation is built through the linear Bayesian estimation. The uncertain distribution of the anomaly detection trigger is obtained via Bayesian estimation of generalized Pareto distribution. Subsequently, measurements from multi-sensors are used to detect anomalies in a probabilistic way. Evidential reasoning, a decision-level fusion tool, is used to derive a collective detection rate to distinguish sensor malfunctions from anomalous scenarios. Specifically, anomalous scenarios deserve a large collective detection rate, whilst sensor malfunctions are subject to a small collective detection rate and a large individual detection rate. Two cases (i.e., sensor malfunction and snow disaster) are illustrated based on measurements from a large span cable-stayed bridge. As a result, the sensor malfunction is detected with an individual detection rate of 89.20% and a collective detection rate of 2.77%. The snowstorm is detected by a collective detection rate of almost 100%. |
---|---|
AbstractList | To model multi-level uncertainties within anomaly detection process for large-span bridges, a probabilistic anomaly detection method is proposed considering uncertain models in the data collection, thermal response separation, and trigger estimation. The uncertain model in the data collection is established with the measured value and measuring errors. The uncertain model in the thermal response separation is built through the linear Bayesian estimation. The uncertain distribution of the anomaly detection trigger is obtained via Bayesian estimation of generalized Pareto distribution. Subsequently, measurements from multi-sensors are used to detect anomalies in a probabilistic way. Evidential reasoning, a decision-level fusion tool, is used to derive a collective detection rate to distinguish sensor malfunctions from anomalous scenarios. Specifically, anomalous scenarios deserve a large collective detection rate, whilst sensor malfunctions are subject to a small collective detection rate and a large individual detection rate. Two cases (i.e., sensor malfunction and snow disaster) are illustrated based on measurements from a large span cable-stayed bridge. As a result, the sensor malfunction is detected with an individual detection rate of 89.20% and a collective detection rate of 2.77%. The snowstorm is detected by a collective detection rate of almost 100%. |
ArticleNumber | 105448 |
Author | Guo, Zhaoyuan Jin, Yao Huang, Qiao Zeng, Xingjian Shi, Chenghong Ren, Yuan Fan, Ziyuan Xu, Xiang |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0002-9412-667X surname: Xu fullname: Xu, Xiang organization: School of Transportation, Southeast University, Nanjing, China – sequence: 2 givenname: Chenghong surname: Shi fullname: Shi, Chenghong organization: School of Transportation, Southeast University, Nanjing, China – sequence: 3 givenname: Yuan orcidid: 0000-0002-7675-1009 surname: Ren fullname: Ren, Yuan email: magren@126.com organization: School of Transportation, Southeast University, Nanjing, China – sequence: 4 givenname: Ziyuan surname: Fan fullname: Fan, Ziyuan organization: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China – sequence: 5 givenname: Zhaoyuan surname: Guo fullname: Guo, Zhaoyuan organization: Department of Engineering, Jiangsu Provincial Transportation Engineering Construction Bureau, Nanjing, China – sequence: 6 givenname: Xingjian surname: Zeng fullname: Zeng, Xingjian organization: School of Cyber Science and Engineering, Southeast University, Nanjing, China – sequence: 7 givenname: Yao surname: Jin fullname: Jin, Yao organization: School of Transportation, Southeast University, Nanjing, China – sequence: 8 givenname: Qiao surname: Huang fullname: Huang, Qiao organization: School of Transportation, Southeast University, Nanjing, China |
BookMark | eNqFkE1LAzEQhoMoWGv_gYf8ga1JNpvdehCk-AUFPejVkE1my5R0I0la6L93y3oQDwoDMww8L7zPBTntQw-EXHE254yr680cU447OxdMlMOrkrI5IRNRVqJgXMjTH_c5maW0YYwJLpmQ9YR8vMbQmhb9EIKWmj5sjT9QBxlsxtBTG_qEDiL2a7rd-YyFhz14uustxGywzwiJdiFSa1oPRcrmAI62Ed0a0iU564xPMPveU_L-cP-2fCpWL4_Py7tVYUumcuHqqlswsE0rQVpRLmwlXCUXTLVcKTNM41hlG-E6LpVjjWpq3inVKmltV1fllNyMuTaGlCJ02mI2xwI5GvSaM32UpTd6lKWPsvQoa4DlL_gz4tbEw3_Y7YjBUGyPEHWyCIMWh3GQp13AvwO-ALsEigQ |
CitedBy_id | crossref_primary_10_1016_j_istruc_2024_107734 crossref_primary_10_1016_j_istruc_2024_107478 crossref_primary_10_3390_app14167057 |
Cites_doi | 10.1177/1369433218766946 10.1016/j.istruc.2022.10.020 10.1088/1361-665X/ab79b3 10.1177/1475921720977020 10.1177/14759217221092786 10.1016/j.engstruct.2019.04.004 10.3389/fbuil.2017.00004 10.1016/j.neucom.2017.06.053 10.1080/15732479.2021.2021953 10.1007/s11831-021-09665-9 10.1016/j.engstruct.2021.113183 10.1142/S0219455415500030 10.1177/1369433220924793 10.1061/(ASCE)CP.1943-5487.0000905 10.1016/j.ymssp.2020.106654 10.1061/(ASCE)ST.1943-541X.0003354 10.1016/j.engstruct.2017.05.009 10.1016/S0141-0296(96)00149-6 10.1088/1361-665X/aad5fb 10.1061/(ASCE)CF.1943-5509.0001537 10.1177/1475921710365269 10.12989/sss.2017.19.3.279 10.1061/(ASCE)BE.1943-5592.0001387 10.1061/(ASCE)BE.1943-5592.0001538 10.1177/14759217211021938 10.1016/j.ymssp.2019.01.026 10.1006/jsvi.1999.2295 10.1177/1475921718773954 10.1016/j.engstruct.2020.110520 10.12989/sss.2014.14.4.679 10.1016/j.ymssp.2020.107077 10.1177/1369433218824486 10.1007/s13349-020-00402-7 10.1061/(ASCE)BE.1943-5592.0001700 10.1061/(ASCE)CF.1943-5509.0001212 10.1061/JCEMD4.COENG-13196 10.1016/j.eng.2019.09.006 10.1007/s13349-022-00564-6 10.1002/stc.2879 10.1061/(ASCE)BE.1943-5592.0001716 10.1016/j.compstruc.2014.01.026 |
ContentType | Journal Article |
Copyright | 2023 Institution of Structural Engineers |
Copyright_xml | – notice: 2023 Institution of Structural Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.istruc.2023.105448 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2352-0124 |
ExternalDocumentID | 10_1016_j_istruc_2023_105448 S2352012423015369 |
GroupedDBID | --M 0R~ 4.4 457 AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM M41 O9- OAUVE RIG ROL SPC SPCBC SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-d75f90ec8b4e4c239c52d54906b166a66a8d05c82df146d086871f66b64ccf753 |
IEDL.DBID | AIKHN |
ISSN | 2352-0124 |
IngestDate | Thu Apr 24 22:49:57 EDT 2025 Tue Jul 01 02:49:18 EDT 2025 Sat Feb 17 16:11:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Decision-level fusion Probabilistic anomaly detection Multi-level uncertainty Structural health monitoring Bayesian inference Cable-stayed bridges |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-d75f90ec8b4e4c239c52d54906b166a66a8d05c82df146d086871f66b64ccf753 |
ORCID | 0000-0002-9412-667X 0000-0002-7675-1009 |
ParticipantIDs | crossref_citationtrail_10_1016_j_istruc_2023_105448 crossref_primary_10_1016_j_istruc_2023_105448 elsevier_sciencedirect_doi_10_1016_j_istruc_2023_105448 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Structures (Oxford) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Gao, Beck, Lin, Huang, Li (b0090) 2023 Hou, Wang, Xia (b0060) 2021; 21 Xue, Liu, Ren, Gong (b0190) 2023; 149 Xu, Forde, Ren, Huang (b0145) 2021; 19 Yang, Yi, Li, Zhang (b0195) 2018; 32 Yue, Ding, Zhao (b0205) 2021; 26 Wahab, De Roeck (b0130) 1999; 226 Yu, Xia, Goicolea, Xia (b0200) 2016; 16 Huang, Yi, Li (b0065) 2020; 34 Ou, Li (b0105) 2010; 9 Zhang, Wang, Wan, Mao, Xu (b0210) 2021; 20 Fang, Xu, Hu, Huang (b0035) 2022; 29 Li, Huang, Asadollahi (b0085) 2021; 247 Wang, Ni, Wang (b0135) 2020; 139 Xu, Xu, Ren, Huang (b0180) 2021; 26 Ni, Wang, Zhang (b0100) 2020; 212 Avci, Abdeljaber, Kiranyaz, Hussein, Gabbouj, Inman (b0005) 2021; 147 Salawu (b0120) 1997; 19 Liu, Li, Xiong, Gao, Wu, (2010, December). Understanding of internal clustering validation measures. In (b0095) 2010 Huang, Yi, Li, Liu (b0070) 2020; 25 Gharehbaghi, Noroozinejad Farsangi, Noori, Yang, Li, Nguyen (b0045) 2021; 29 Wu, Li, Chan, Wang (b0140) 2014; 14 Casas, Moughty (b0015) 2017; 3 Xu, Huang, Ren, Zhao, Yang, Zhang (b0160) 2019; 24 He, Ren, Zhu (b0055) 2017; 145 Xu, Huang, Ren, Zhao, Yang (b0155) 2019; 23 Ren, Ye, Xu, Huang, Fan, Li (b0115) 2022; 46 Zhu, Ni, Jin, Inaudi, Laory (b0230) 2019; 190 Deng, Li, Liu, Chen (b0020) 2018; 21 Xu, Forde, Ren, Huang, Liu (b0150) 2022; 22 Fan, Huang, Ren, Xu, Zhu (b0025) 2021; 35 Ren, Xu, Huang, Zhao, Yang (b0110) 2019; 22 Fan, Huang, Ren, Zhu, Xu (b0030) 2020; 23 Zhou, Sun (b0220) 2019; 124 Zhu, Ni, Jesus, Liu, Laory (b0225) 2018; 27 Huang, Yi, Li, Liu (b0075) 2022; 148 Fujino, Siringoringo, Ikeda, Nagayama, Mizutani (b0040) 2019; 5 Han, Zhang, Zhao, Zhang (b0050) 2022; 12 Xu, Xia (b0185) 2019 Xu, Ren, Huang, Zhao, Tong, Chang (b0175) 2020; 10 Zhou, Sun (b0215) 2018; 18 Cao, Yim, Zhao, Wang (b0010) 2010; 10 Saxena, Prasad, Gupta, Bharill, Patel, Tiwari (b0125) 2017; 267 Xu, Ren, Huang, Fan, Tong, Chang (b0170) 2020; 29 Kromanis, Kripakaran (b0080) 2014; 136 Ou (10.1016/j.istruc.2023.105448_b0105) 2010; 9 Ren (10.1016/j.istruc.2023.105448_b0115) 2022; 46 Kromanis (10.1016/j.istruc.2023.105448_b0080) 2014; 136 Fang (10.1016/j.istruc.2023.105448_b0035) 2022; 29 Yu (10.1016/j.istruc.2023.105448_b0200) 2016; 16 Fujino (10.1016/j.istruc.2023.105448_b0040) 2019; 5 Xu (10.1016/j.istruc.2023.105448_b0160) 2019; 24 Xu (10.1016/j.istruc.2023.105448_b0170) 2020; 29 Han (10.1016/j.istruc.2023.105448_b0050) 2022; 12 Saxena (10.1016/j.istruc.2023.105448_b0125) 2017; 267 Huang (10.1016/j.istruc.2023.105448_b0070) 2020; 25 Huang (10.1016/j.istruc.2023.105448_b0065) 2020; 34 Hou (10.1016/j.istruc.2023.105448_b0060) 2021; 21 Cao (10.1016/j.istruc.2023.105448_b0010) 2010; 10 Ren (10.1016/j.istruc.2023.105448_b0110) 2019; 22 Salawu (10.1016/j.istruc.2023.105448_b0120) 1997; 19 Zhu (10.1016/j.istruc.2023.105448_b0230) 2019; 190 Zhou (10.1016/j.istruc.2023.105448_b0215) 2018; 18 Wahab (10.1016/j.istruc.2023.105448_b0130) 1999; 226 Fan (10.1016/j.istruc.2023.105448_b0030) 2020; 23 Xu (10.1016/j.istruc.2023.105448_b0150) 2022; 22 Li (10.1016/j.istruc.2023.105448_b0085) 2021; 247 Huang (10.1016/j.istruc.2023.105448_b0075) 2022; 148 Yang (10.1016/j.istruc.2023.105448_b0195) 2018; 32 Zhang (10.1016/j.istruc.2023.105448_b0210) 2021; 20 Li (10.1016/j.istruc.2023.105448_b0090) 2023 Xu (10.1016/j.istruc.2023.105448_b0145) 2021; 19 Xu (10.1016/j.istruc.2023.105448_b0180) 2021; 26 Wu (10.1016/j.istruc.2023.105448_b0140) 2014; 14 Xu (10.1016/j.istruc.2023.105448_b0155) 2019; 23 Zhu (10.1016/j.istruc.2023.105448_b0225) 2018; 27 Xu (10.1016/j.istruc.2023.105448_b0185) 2019 Wang (10.1016/j.istruc.2023.105448_b0135) 2020; 139 He (10.1016/j.istruc.2023.105448_b0055) 2017; 145 Zhou (10.1016/j.istruc.2023.105448_b0220) 2019; 124 Fan (10.1016/j.istruc.2023.105448_b0025) 2021; 35 Xue (10.1016/j.istruc.2023.105448_b0190) 2023; 149 Gharehbaghi (10.1016/j.istruc.2023.105448_b0045) 2021; 29 Ni (10.1016/j.istruc.2023.105448_b0100) 2020; 212 Yue (10.1016/j.istruc.2023.105448_b0205) 2021; 26 Liu (10.1016/j.istruc.2023.105448_b0095) 2010 Casas (10.1016/j.istruc.2023.105448_b0015) 2017; 3 Deng (10.1016/j.istruc.2023.105448_b0020) 2018; 21 Avci (10.1016/j.istruc.2023.105448_b0005) 2021; 147 Xu (10.1016/j.istruc.2023.105448_b0175) 2020; 10 |
References_xml | – volume: 22 start-page: 1644 year: 2019 end-page: 1656 ident: b0110 article-title: Long-term condition evaluation for stay cable systems using dead load–induced cable forces publication-title: Adv Struct Eng – volume: 14 start-page: 679 year: 2014 end-page: 697 ident: b0140 article-title: Multiscale features and information extraction of online strain for long-span bridges publication-title: Smart Struct Syst – volume: 19 start-page: 1249 year: 2021 end-page: 1262 ident: b0145 article-title: A Bayesian approach for site-specific extreme load prediction of large-scale bridges publication-title: Struct Infrastruct Eng – volume: 148 start-page: 04022052 year: 2022 ident: b0075 article-title: Sparse Bayesian identification of temperature-displacement model for performance assessment and early warning of bridge bearings publication-title: J Struct Eng – volume: 21 start-page: 2099 year: 2018 end-page: 2113 ident: b0020 article-title: Investigation of temperature actions on flat steel box girders of long-span bridges with temperature monitoring data publication-title: Adv Struct Eng – year: 2019 ident: b0185 article-title: Structural health monitoring of long-span suspension bridges – volume: 16 start-page: 1550003 year: 2016 ident: b0200 article-title: Bridge damage identification from moving load induced deflection based on wavelet transform and Lipschitz exponent publication-title: Int J Struct Stab Dyn – volume: 136 start-page: 64 year: 2014 end-page: 77 ident: b0080 article-title: Predicting thermal response of bridges using regression models derived from measurement histories publication-title: Comput Struct – volume: 247 year: 2021 ident: b0085 article-title: Sparse Bayesian learning with model reduction for probabilistic structural damage detection with limited measurements publication-title: Eng Struct – volume: 145 start-page: 70 year: 2017 end-page: 82 ident: b0055 article-title: Damage detection of beam structures using quasi-static moving load induced displacement response publication-title: Eng Struct – volume: 267 start-page: 664 year: 2017 end-page: 681 ident: b0125 article-title: A review of clustering techniques and developments publication-title: Neurocomputing – volume: 190 start-page: 447 year: 2019 end-page: 458 ident: b0230 article-title: A temperature-driven MPCA method for structural anomaly detection publication-title: Eng Struct – volume: 5 start-page: 1093 year: 2019 end-page: 1119 ident: b0040 article-title: Research and implementations of structural monitoring for bridges and buildings in Japan publication-title: Engineering – volume: 9 start-page: 219 year: 2010 end-page: 231 ident: b0105 article-title: Structural health monitoring in mainland China: review and future trends publication-title: Struct Health Monit – volume: 3 start-page: 1 year: 2017 end-page: 12 ident: b0015 article-title: Bridge damage detection based on vibration data: past and new developments publication-title: Frontiers in Built Environment – volume: 29 start-page: 2209 year: 2021 end-page: 2235 ident: b0045 article-title: A critical review on structural health monitoring: Definitions, methods, and perspectives publication-title: Arch Comput Meth Eng – volume: 124 start-page: 330 year: 2019 end-page: 348 ident: b0220 article-title: A comprehensive study of the thermal response of a long-span cable-stayed bridge: from monitoring phenomena to underlying mechanisms publication-title: Mech Syst Sig Process – volume: 34 start-page: 04020025 year: 2020 ident: b0065 article-title: Anomaly identification of structural health monitoring data using dynamic independent component analysis publication-title: J Comput Civ Eng – volume: 27 year: 2018 ident: b0225 article-title: Thermal strain extraction methodologies for bridge structural condition assessment publication-title: Smart Mater Struct – volume: 24 start-page: 04019028 year: 2019 ident: b0160 article-title: Modelling and separation of thermal effects from cable-stayed bridge response publication-title: J Bridg Eng – volume: 10 start-page: 523 year: 2010 end-page: 537 ident: b0010 article-title: Temperature effects on cable stayed bridge using health monitoring system: a case study publication-title: Struct Health Monit – volume: 46 start-page: 285 year: 2022 end-page: 298 ident: b0115 article-title: An anomaly pattern detection for bridge structural response considering time-varying temperature coefficients publication-title: Structures – volume: 26 start-page: 05021004 year: 2021 ident: b0205 article-title: Deep learning-based minute-scale digital prediction model of temperature-induced deflection of a cable-stayed bridge: Case study publication-title: J Bridg Eng – volume: 212 year: 2020 ident: b0100 article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data publication-title: Eng Struct – volume: 26 start-page: 05021001 year: 2021 ident: b0180 article-title: Site-specific extreme load estimation of a long-span cable-stayed bridge publication-title: J Bridg Eng – volume: 21 start-page: 1076 year: 2021 end-page: 1092 ident: b0060 article-title: Sparse damage detection via the elastic net method using modal data publication-title: Struct Health Monit – volume: 32 start-page: 04018070 year: 2018 ident: b0195 article-title: Correlation-based estimation method for cable-stayed bridge girder deflection variability under thermal action publication-title: J Perform Constr Facil – volume: 35 start-page: 04020123 year: 2021 ident: b0025 article-title: Real-time dynamic warning on deflection abnormity of cable-stayed bridges considering operational environment variations publication-title: J Perform Constr Facil – volume: 20 start-page: 2936 year: 2021 end-page: 2952 ident: b0210 article-title: Anomaly detection of structural health monitoring data using the maximum likelihood estimation-based Bayesian dynamic linear model publication-title: Struct Health Monit – volume: 23 start-page: 2789 year: 2020 end-page: 2802 ident: b0030 article-title: A cointegration approach for cable anomaly warning based on structural health monitoring data: An application to cable-stayed bridges publication-title: Adv Struct Eng – volume: 147 year: 2021 ident: b0005 article-title: A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications publication-title: Mech Syst Sig Process – volume: 139 year: 2020 ident: b0135 article-title: Real-time defect detection of high-speed train wheels by using Bayesian forecasting and dynamic model publication-title: Mech Syst Sig Process – volume: 149 start-page: 04023020 year: 2023 ident: b0190 article-title: Adaptive cross-scenario few-shot learning framework for structural damage detection in civil infrastructure publication-title: J Constr Eng Manag – volume: 12 start-page: 579 year: 2022 end-page: 591 ident: b0050 article-title: Truss bridge anomaly detection using quasi-static rotation response publication-title: J Civ Struct Heal Monit – volume: 23 start-page: 279 year: 2019 end-page: 293 ident: b0155 article-title: Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses publication-title: Smart Struct Syst – volume: 25 start-page: 04020013 year: 2020 ident: b0070 article-title: Strain-based performance warning method for bridge main girders under variable operating conditions publication-title: J Bridg Eng – volume: 29 start-page: e2879 year: 2022 ident: b0035 article-title: A web-based and design-oriented structural health evaluation system for long-span bridges with structural health monitoring system publication-title: Struct Control Health Monit – volume: 226 start-page: 217 year: 1999 end-page: 235 ident: b0130 article-title: Damage detection in bridges using modal curvatures: application to a real damage scenario publication-title: J Sound Vib – volume: 10 start-page: 527 year: 2020 end-page: 541 ident: b0175 article-title: Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies publication-title: J Civ Struct Heal Monit – start-page: 911 year: 2010 end-page: 916 ident: b0095 article-title: IEEE international conference on data mining – volume: 19 start-page: 718 year: 1997 end-page: 723 ident: b0120 article-title: Detection of structural damage through changes in frequency: a review publication-title: Eng Struct – volume: 22 start-page: 948 year: 2022 end-page: 965 ident: b0150 article-title: Multi-index probabilistic anomaly detection for large span bridges using Bayesian estimation and evidential reasoning publication-title: Struct Health Monit – volume: 29 year: 2020 ident: b0170 article-title: Anomaly detection for large span bridges during operational phase using structural health monitoring data publication-title: Smart Mater Struct – year: 2023 ident: b0090 article-title: Probabilistic outlier detection for robust regression modeling of structural response for high-speed railway track monitoring publication-title: Structural Health Monitoring, OnlineFirst – volume: 18 start-page: 778 year: 2018 end-page: 791 ident: b0215 article-title: Insights into temperature effects on structural deformation of a cable-stayed bridge based on structural health monitoring publication-title: Struct Health Monit – volume: 21 start-page: 2099 issue: 14 year: 2018 ident: 10.1016/j.istruc.2023.105448_b0020 article-title: Investigation of temperature actions on flat steel box girders of long-span bridges with temperature monitoring data publication-title: Adv Struct Eng doi: 10.1177/1369433218766946 – volume: 46 start-page: 285 year: 2022 ident: 10.1016/j.istruc.2023.105448_b0115 article-title: An anomaly pattern detection for bridge structural response considering time-varying temperature coefficients publication-title: Structures doi: 10.1016/j.istruc.2022.10.020 – volume: 29 issue: 4 year: 2020 ident: 10.1016/j.istruc.2023.105448_b0170 article-title: Anomaly detection for large span bridges during operational phase using structural health monitoring data publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab79b3 – start-page: 911 year: 2010 ident: 10.1016/j.istruc.2023.105448_b0095 – year: 2019 ident: 10.1016/j.istruc.2023.105448_b0185 – volume: 20 start-page: 2936 issue: 6 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0210 article-title: Anomaly detection of structural health monitoring data using the maximum likelihood estimation-based Bayesian dynamic linear model publication-title: Struct Health Monit doi: 10.1177/1475921720977020 – volume: 10 start-page: 523 issue: 5 year: 2010 ident: 10.1016/j.istruc.2023.105448_b0010 article-title: Temperature effects on cable stayed bridge using health monitoring system: a case study publication-title: Struct Health Monit – volume: 22 start-page: 948 issue: 2 year: 2022 ident: 10.1016/j.istruc.2023.105448_b0150 article-title: Multi-index probabilistic anomaly detection for large span bridges using Bayesian estimation and evidential reasoning publication-title: Struct Health Monit doi: 10.1177/14759217221092786 – volume: 190 start-page: 447 year: 2019 ident: 10.1016/j.istruc.2023.105448_b0230 article-title: A temperature-driven MPCA method for structural anomaly detection publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.04.004 – volume: 3 start-page: 1 year: 2017 ident: 10.1016/j.istruc.2023.105448_b0015 article-title: Bridge damage detection based on vibration data: past and new developments publication-title: Frontiers in Built Environment doi: 10.3389/fbuil.2017.00004 – volume: 267 start-page: 664 year: 2017 ident: 10.1016/j.istruc.2023.105448_b0125 article-title: A review of clustering techniques and developments publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.053 – volume: 19 start-page: 1249 issue: 9 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0145 article-title: A Bayesian approach for site-specific extreme load prediction of large-scale bridges publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2021.2021953 – volume: 29 start-page: 2209 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0045 article-title: A critical review on structural health monitoring: Definitions, methods, and perspectives publication-title: Arch Comput Meth Eng doi: 10.1007/s11831-021-09665-9 – volume: 247 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0085 article-title: Sparse Bayesian learning with model reduction for probabilistic structural damage detection with limited measurements publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113183 – volume: 16 start-page: 1550003 issue: 05 year: 2016 ident: 10.1016/j.istruc.2023.105448_b0200 article-title: Bridge damage identification from moving load induced deflection based on wavelet transform and Lipschitz exponent publication-title: Int J Struct Stab Dyn doi: 10.1142/S0219455415500030 – volume: 23 start-page: 2789 issue: 13 year: 2020 ident: 10.1016/j.istruc.2023.105448_b0030 article-title: A cointegration approach for cable anomaly warning based on structural health monitoring data: An application to cable-stayed bridges publication-title: Adv Struct Eng doi: 10.1177/1369433220924793 – volume: 34 start-page: 04020025 issue: 5 year: 2020 ident: 10.1016/j.istruc.2023.105448_b0065 article-title: Anomaly identification of structural health monitoring data using dynamic independent component analysis publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000905 – volume: 139 year: 2020 ident: 10.1016/j.istruc.2023.105448_b0135 article-title: Real-time defect detection of high-speed train wheels by using Bayesian forecasting and dynamic model publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2020.106654 – volume: 148 start-page: 04022052 issue: 6 year: 2022 ident: 10.1016/j.istruc.2023.105448_b0075 article-title: Sparse Bayesian identification of temperature-displacement model for performance assessment and early warning of bridge bearings publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0003354 – volume: 145 start-page: 70 year: 2017 ident: 10.1016/j.istruc.2023.105448_b0055 article-title: Damage detection of beam structures using quasi-static moving load induced displacement response publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.05.009 – volume: 19 start-page: 718 issue: 9 year: 1997 ident: 10.1016/j.istruc.2023.105448_b0120 article-title: Detection of structural damage through changes in frequency: a review publication-title: Eng Struct doi: 10.1016/S0141-0296(96)00149-6 – volume: 27 issue: 10 year: 2018 ident: 10.1016/j.istruc.2023.105448_b0225 article-title: Thermal strain extraction methodologies for bridge structural condition assessment publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aad5fb – volume: 35 start-page: 04020123 issue: 1 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0025 article-title: Real-time dynamic warning on deflection abnormity of cable-stayed bridges considering operational environment variations publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0001537 – volume: 9 start-page: 219 issue: 3 year: 2010 ident: 10.1016/j.istruc.2023.105448_b0105 article-title: Structural health monitoring in mainland China: review and future trends publication-title: Struct Health Monit doi: 10.1177/1475921710365269 – volume: 23 start-page: 279 issue: 3 year: 2019 ident: 10.1016/j.istruc.2023.105448_b0155 article-title: Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses publication-title: Smart Struct Syst doi: 10.12989/sss.2017.19.3.279 – volume: 24 start-page: 04019028 issue: 5 year: 2019 ident: 10.1016/j.istruc.2023.105448_b0160 article-title: Modelling and separation of thermal effects from cable-stayed bridge response publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001387 – volume: 25 start-page: 04020013 issue: 4 year: 2020 ident: 10.1016/j.istruc.2023.105448_b0070 article-title: Strain-based performance warning method for bridge main girders under variable operating conditions publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001538 – volume: 21 start-page: 1076 issue: 3 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0060 article-title: Sparse damage detection via the elastic net method using modal data publication-title: Struct Health Monit doi: 10.1177/14759217211021938 – volume: 124 start-page: 330 year: 2019 ident: 10.1016/j.istruc.2023.105448_b0220 article-title: A comprehensive study of the thermal response of a long-span cable-stayed bridge: from monitoring phenomena to underlying mechanisms publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2019.01.026 – volume: 226 start-page: 217 issue: 2 year: 1999 ident: 10.1016/j.istruc.2023.105448_b0130 article-title: Damage detection in bridges using modal curvatures: application to a real damage scenario publication-title: J Sound Vib doi: 10.1006/jsvi.1999.2295 – volume: 18 start-page: 778 issue: 3 year: 2018 ident: 10.1016/j.istruc.2023.105448_b0215 article-title: Insights into temperature effects on structural deformation of a cable-stayed bridge based on structural health monitoring publication-title: Struct Health Monit doi: 10.1177/1475921718773954 – volume: 212 year: 2020 ident: 10.1016/j.istruc.2023.105448_b0100 article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.110520 – volume: 14 start-page: 679 issue: 4 year: 2014 ident: 10.1016/j.istruc.2023.105448_b0140 article-title: Multiscale features and information extraction of online strain for long-span bridges publication-title: Smart Struct Syst doi: 10.12989/sss.2014.14.4.679 – volume: 147 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0005 article-title: A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2020.107077 – volume: 22 start-page: 1644 issue: 7 year: 2019 ident: 10.1016/j.istruc.2023.105448_b0110 article-title: Long-term condition evaluation for stay cable systems using dead load–induced cable forces publication-title: Adv Struct Eng doi: 10.1177/1369433218824486 – volume: 10 start-page: 527 issue: 3 year: 2020 ident: 10.1016/j.istruc.2023.105448_b0175 article-title: Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies publication-title: J Civ Struct Heal Monit doi: 10.1007/s13349-020-00402-7 – volume: 26 start-page: 05021001 issue: 4 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0180 article-title: Site-specific extreme load estimation of a long-span cable-stayed bridge publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001700 – volume: 32 start-page: 04018070 issue: 5 year: 2018 ident: 10.1016/j.istruc.2023.105448_b0195 article-title: Correlation-based estimation method for cable-stayed bridge girder deflection variability under thermal action publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0001212 – volume: 149 start-page: 04023020 issue: 5 year: 2023 ident: 10.1016/j.istruc.2023.105448_b0190 article-title: Adaptive cross-scenario few-shot learning framework for structural damage detection in civil infrastructure publication-title: J Constr Eng Manag doi: 10.1061/JCEMD4.COENG-13196 – volume: 5 start-page: 1093 issue: 6 year: 2019 ident: 10.1016/j.istruc.2023.105448_b0040 article-title: Research and implementations of structural monitoring for bridges and buildings in Japan publication-title: Engineering doi: 10.1016/j.eng.2019.09.006 – volume: 12 start-page: 579 issue: 3 year: 2022 ident: 10.1016/j.istruc.2023.105448_b0050 article-title: Truss bridge anomaly detection using quasi-static rotation response publication-title: J Civ Struct Heal Monit doi: 10.1007/s13349-022-00564-6 – volume: 29 start-page: e2879 issue: 2 year: 2022 ident: 10.1016/j.istruc.2023.105448_b0035 article-title: A web-based and design-oriented structural health evaluation system for long-span bridges with structural health monitoring system publication-title: Struct Control Health Monit doi: 10.1002/stc.2879 – year: 2023 ident: 10.1016/j.istruc.2023.105448_b0090 article-title: Probabilistic outlier detection for robust regression modeling of structural response for high-speed railway track monitoring publication-title: Structural Health Monitoring, OnlineFirst – volume: 26 start-page: 05021004 issue: 6 year: 2021 ident: 10.1016/j.istruc.2023.105448_b0205 article-title: Deep learning-based minute-scale digital prediction model of temperature-induced deflection of a cable-stayed bridge: Case study publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001716 – volume: 136 start-page: 64 year: 2014 ident: 10.1016/j.istruc.2023.105448_b0080 article-title: Predicting thermal response of bridges using regression models derived from measurement histories publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.01.026 |
SSID | ssj0002140247 |
Score | 2.2816558 |
Snippet | To model multi-level uncertainties within anomaly detection process for large-span bridges, a probabilistic anomaly detection method is proposed considering... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105448 |
SubjectTerms | Bayesian inference Cable-stayed bridges Decision-level fusion Multi-level uncertainty Probabilistic anomaly detection Structural health monitoring |
Title | Probabilistic anomaly detection considering multi-level uncertainties for cable-stayed bridges |
URI | https://dx.doi.org/10.1016/j.istruc.2023.105448 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GD-MT6Yg9e17a7m01yLMVSFYughZ4M-wpUalqkl_57Z5NNqSAKQi55DITZzcz3hW9mAG56zljMqpzyrkGCwiNFtY4kTRBaa5dozAm-wPlpLEcT8TCNpg0Y1LUwXlYZYn8V08toHa50gjc7y9ms88IQO2B4RTyAKY3LdAdajKcyakKrf_84Gm9-tTAkEawcNeZNqLepi-hKpdesbNV66weJ-7G3ws8C-ilJbSWe4QHsB8RI-tVLHULDFUewt9VH8Bjenj_xs_QyV991mahi8aHma2LdqhRaFcSEsZz4NCklhHTuxUIEk1olCfBtVQniV2J8KRVFyLh2loQeECcwGd69DkY0DE6gBhnAito4ytOuM4kWThh0iomYRSLYlbonpcIjsd3IJMzmGCgtshqkTTkujhTG5EhgTqFZLAp3BoTFSiSKO5Y65FLCIprSOXdIXxVzSsRt4LWnMhO6ivvhFvOslo-9Z5V_M-_frPJvG-jGall11fjj-bhehOzb7sgw8P9qef5vywvY9WeVdOUSmnjfXSEAWenrsMG-ADs32m8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw9e16abzetYiiW1DwRb6Mmw2d1ApaZFeum_dzbZlAqiIOSU7ECY3cx8X_hmBuChraXCrOpS15FIUFxP0DT1fBoitE51mGJOMAXOo7EfT_nzzJvVoFvVwhhZpY39ZUwvorW907LebK3m89YrQ-yA4RXxAKY014_2oME9ZHt1aHT6g3i8_dXCkESwYtSYMaHGpiqiK5Re86JV66MZJG7G3nIzC-inJLWTeHrHcGQRI-mUL3UCNZ2fwuFOH8EzeHv5xM_SyFxN12Ui8uWHWGyI0utCaJUTacdy4mpSSAjpwoiFCCa1UhJg2qoSxK9EmlIqipBxoxWxPSDOYdp7mnRjagcnUIkMYE1V4GWRo2WYcs0lcyPpMYVE0PHTtu8LvELleDJkKsNAqZDVIG3KcHN8LmWGBOYC6vky15dAWCB4KFzNIo1ciitEU2nmaqSvgmnBgya4lacSabuKm-EWi6SSj70npX8T49-k9G8T6NZqVXbV-GN9UG1C8u10JBj4f7W8-rflPezHk9EwGfbHg2s4ME9KGcsN1HGtvkUwsk7v7GH7AqB93Vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+anomaly+detection+considering+multi-level+uncertainties+for+cable-stayed+bridges&rft.jtitle=Structures+%28Oxford%29&rft.au=Xu%2C+Xiang&rft.au=Shi%2C+Chenghong&rft.au=Ren%2C+Yuan&rft.au=Fan%2C+Ziyuan&rft.date=2023-12-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=58&rft.spage=105448&rft_id=info:doi/10.1016%2Fj.istruc.2023.105448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2023_105448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |