Achieving strength-ductility synergy in metallic glasses via electric current-enhanced structural fluctuations

•Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced strain-hardening ability.•Electric currents construct a unique structural fluctuation featuring soft zones surrounded by hard zones.•Plausible mechanisms f...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of plasticity Vol. 169; p. 103711
Main Authors Ding, Huaping, Gong, Pan, Chen, Wen, Peng, Zhen, Bu, Hengtong, Zhang, Mao, Tang, Xuefeng, Jin, Junsong, Deng, Lei, Xie, Guoqiang, Wang, Xinyun, Yao, Ke-fu, Schroers, Jan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced strain-hardening ability.•Electric currents construct a unique structural fluctuation featuring soft zones surrounded by hard zones.•Plausible mechanisms for such electric current-regulated plasticity in metallic glasses are proposed. Structural applications of metallic glasses are limited by their room-temperature brittleness and strain-softening, associated with the extreme localization of plastic flow in shear bands. Herein, we alleviate this dilemma by the structural fluctuation induced by electric currents, achieving simultaneous improvement of strengths, compression plasticity, and strain hardening capacity. The electric current enhances the structural fluctuations at the atomic scale, introducing more soft zones while densifying their surroundings, which differs from previously reported rejuvenation strategies. This unique structural pattern featuring soft zones surrounded by hard zones leads to extensive sprouts and interactions of shear bands, capturing substantial atoms to participate in the deformation. The plausible mechanism behind the electric current-influenced dynamic evolution of amorphous clusters is proposed. Electric current introduces interatomic electrostatic forces between shell atoms of amorphous clusters through charge transfer. This force decreases the coordination of Zr- and Cu-centered clusters and increases the Al-centered icosahedra in the glassy matrix. Differential evolution of clusters under electric currents enhances atomic structural fluctuations and originates from the cohesion mechanism determined by electron distribution. These findings are suggestive of vanishing room-temperature brittleness and shed atomic-scale light on modulations of the structure and properties of metallic glasses by electric currents. [Display omitted]
AbstractList •Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced strain-hardening ability.•Electric currents construct a unique structural fluctuation featuring soft zones surrounded by hard zones.•Plausible mechanisms for such electric current-regulated plasticity in metallic glasses are proposed. Structural applications of metallic glasses are limited by their room-temperature brittleness and strain-softening, associated with the extreme localization of plastic flow in shear bands. Herein, we alleviate this dilemma by the structural fluctuation induced by electric currents, achieving simultaneous improvement of strengths, compression plasticity, and strain hardening capacity. The electric current enhances the structural fluctuations at the atomic scale, introducing more soft zones while densifying their surroundings, which differs from previously reported rejuvenation strategies. This unique structural pattern featuring soft zones surrounded by hard zones leads to extensive sprouts and interactions of shear bands, capturing substantial atoms to participate in the deformation. The plausible mechanism behind the electric current-influenced dynamic evolution of amorphous clusters is proposed. Electric current introduces interatomic electrostatic forces between shell atoms of amorphous clusters through charge transfer. This force decreases the coordination of Zr- and Cu-centered clusters and increases the Al-centered icosahedra in the glassy matrix. Differential evolution of clusters under electric currents enhances atomic structural fluctuations and originates from the cohesion mechanism determined by electron distribution. These findings are suggestive of vanishing room-temperature brittleness and shed atomic-scale light on modulations of the structure and properties of metallic glasses by electric currents. [Display omitted]
ArticleNumber 103711
Author Gong, Pan
Peng, Zhen
Ding, Huaping
Jin, Junsong
Zhang, Mao
Xie, Guoqiang
Bu, Hengtong
Deng, Lei
Yao, Ke-fu
Wang, Xinyun
Tang, Xuefeng
Chen, Wen
Schroers, Jan
Author_xml – sequence: 1
  givenname: Huaping
  orcidid: 0000-0003-2267-0227
  surname: Ding
  fullname: Ding, Huaping
  organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Pan
  orcidid: 0000-0002-3833-8440
  surname: Gong
  fullname: Gong, Pan
  email: pangong@hust.edu.cn
  organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Wen
  surname: Chen
  fullname: Chen, Wen
  organization: Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, 01003, United States
– sequence: 4
  givenname: Zhen
  surname: Peng
  fullname: Peng, Zhen
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 5
  givenname: Hengtong
  surname: Bu
  fullname: Bu, Hengtong
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Mao
  surname: Zhang
  fullname: Zhang, Mao
  organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 7
  givenname: Xuefeng
  surname: Tang
  fullname: Tang, Xuefeng
  organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 8
  givenname: Junsong
  surname: Jin
  fullname: Jin, Junsong
  organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 9
  givenname: Lei
  surname: Deng
  fullname: Deng, Lei
  email: denglei@hust.edu.cn
  organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 10
  givenname: Guoqiang
  orcidid: 0000-0003-3396-7974
  surname: Xie
  fullname: Xie, Guoqiang
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 11
  givenname: Xinyun
  surname: Wang
  fullname: Wang, Xinyun
  email: wangxy_hust@hust.edu.cn
  organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 12
  givenname: Ke-fu
  surname: Yao
  fullname: Yao, Ke-fu
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 13
  givenname: Jan
  surname: Schroers
  fullname: Schroers, Jan
  organization: Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, United States
BookMark eNqFkLtuwyAUQBlSqUnaP-jADzgFG5y4Q6Uo6kuK1KWdEYGLg0VwBCSS_7646dShnUBXnCPumaGJ7z0gdEfJghJa33cL2x2djIuSlFUeVUtKJ2hKlqwpakabazSLsSOE8FVFp8iv1d7C2foWxxTAt2lf6JNK1tk04Dh4CO2ArccHSNI5q3Cb5REiPluJwYFKIQ_VKWQ4FeD30ivQoyxbTkE6bNx4k8n2Pt6gKyNdhNufc44-n58-Nq_F9v3lbbPeFqoidSo017RkXDbEENXwldSmpGCo3rFaEUYVb4BTyvMTzWq-W9bMNJQbWSppFFHVHLGLV4U-xgBGHIM9yDAISsTYSXTi0kmMncSlU8YefmHKpu-fpyCt-w9-vMCQFztbCCIqC2MNG3ImoXv7t-ALJ32OZQ
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40200
crossref_primary_10_1007_s11665_023_09013_x
crossref_primary_10_1016_j_mtcomm_2025_112044
crossref_primary_10_1080_15376494_2024_2362418
crossref_primary_10_1016_j_ijplas_2024_103926
crossref_primary_10_1016_j_msea_2025_147879
crossref_primary_10_1016_j_jmrt_2024_05_227
crossref_primary_10_1016_j_jmst_2024_04_081
crossref_primary_10_1016_j_jmrt_2023_12_175
crossref_primary_10_1007_s12598_023_02558_9
crossref_primary_10_1016_j_jnoncrysol_2024_122839
crossref_primary_10_1016_j_vacuum_2024_113423
crossref_primary_10_1088_2051_672X_ad3e94
crossref_primary_10_1016_j_ceramint_2025_01_099
crossref_primary_10_1016_j_vacuum_2023_112854
crossref_primary_10_1007_s40430_024_05371_2
crossref_primary_10_1016_j_intermet_2025_108727
crossref_primary_10_1016_j_vacuum_2024_113509
crossref_primary_10_3390_ma17092124
crossref_primary_10_1016_j_intermet_2024_108441
crossref_primary_10_1016_j_jallcom_2024_177721
crossref_primary_10_1016_j_msea_2024_146876
crossref_primary_10_1080_15376494_2024_2301731
crossref_primary_10_1016_j_surfin_2024_105380
crossref_primary_10_1080_00084433_2024_2428885
crossref_primary_10_1016_j_msea_2025_148058
crossref_primary_10_1080_21663831_2024_2343950
crossref_primary_10_1016_j_heliyon_2024_e35259
crossref_primary_10_1088_2053_1591_ad5cdc
crossref_primary_10_1007_s11665_024_09171_6
crossref_primary_10_1007_s12540_024_01722_9
crossref_primary_10_1016_j_compositesb_2024_111689
crossref_primary_10_1080_15376494_2024_2362960
crossref_primary_10_1080_15376494_2024_2310204
crossref_primary_10_1007_s11665_024_09864_y
crossref_primary_10_1016_j_synthmet_2024_117659
crossref_primary_10_1007_s10971_024_06439_0
crossref_primary_10_1016_j_istruc_2024_106633
crossref_primary_10_1016_j_compgeo_2024_106398
crossref_primary_10_1177_13506501241246845
crossref_primary_10_1016_j_istruc_2024_107483
crossref_primary_10_1063_5_0201673
crossref_primary_10_1038_s41598_024_59345_4
crossref_primary_10_1016_j_corsci_2024_112032
crossref_primary_10_1088_1402_4896_ad3389
crossref_primary_10_1016_j_triboint_2024_109691
crossref_primary_10_1177_09544062241274862
crossref_primary_10_1016_j_aej_2024_03_013
crossref_primary_10_1016_j_ijplas_2024_104112
crossref_primary_10_1016_j_cossms_2024_101190
crossref_primary_10_1016_j_jmrt_2024_06_015
crossref_primary_10_1016_j_heliyon_2024_e36489
crossref_primary_10_1016_j_intermet_2024_108226
crossref_primary_10_1016_j_intermet_2024_108622
crossref_primary_10_1016_j_jallcom_2025_178874
crossref_primary_10_1016_j_jmrt_2024_02_037
crossref_primary_10_1007_s11665_024_09962_x
crossref_primary_10_1016_j_mtcomm_2024_110646
crossref_primary_10_1177_03019233241288983
crossref_primary_10_1002_pc_28916
crossref_primary_10_1515_ijmr_2024_0061
crossref_primary_10_1016_j_surfcoat_2024_131370
crossref_primary_10_1016_j_triboint_2024_110037
crossref_primary_10_1016_j_mtphys_2024_101382
crossref_primary_10_1016_j_jmrt_2025_02_006
crossref_primary_10_1103_PhysRevMaterials_8_046001
crossref_primary_10_1016_j_ijplas_2023_103873
crossref_primary_10_1016_j_jmrt_2024_07_082
crossref_primary_10_1142_S0218625X25500398
Cites_doi 10.1103/PhysRevB.99.014208
10.1038/s41586-020-2016-3
10.1103/PhysRevB.99.014115
10.1016/j.jallcom.2015.11.033
10.1006/jcph.1995.1039
10.1063/1.4897439
10.1038/s41467-018-05682-8
10.1038/s41467-019-08954-z
10.1038/s41563-021-01114-z
10.1021/acs.nanolett.5b03045
10.1038/s41467-021-27661-2
10.1016/j.ijplas.2020.102845
10.1016/j.ijplas.2023.103530
10.1038/ncomms3083
10.1016/j.matt.2023.01.016
10.1016/j.ijplas.2020.102918
10.1016/j.mattod.2013.05.002
10.1038/s41586-019-1145-z
10.1016/j.actamat.2017.01.059
10.1016/j.ijplas.2021.103107
10.1016/j.mattod.2017.05.007
10.1016/j.ijplas.2020.102884
10.1016/j.actamat.2021.117116
10.1016/j.scriptamat.2015.09.038
10.1103/PhysRevB.103.L140107
10.1016/j.scriptamat.2009.08.008
10.1063/1.4820434
10.1016/j.actamat.2021.116952
10.1038/s41467-022-34333-2
10.1038/nmat4300
10.1016/j.msea.2019.02.074
10.1038/s41467-022-29821-4
10.1016/j.ijplas.2019.03.007
10.1103/PhysRevE.83.026704
10.1016/j.actamat.2019.04.022
10.1073/pnas.2213941119
10.1088/1361-648X/ab7fd8
10.1016/j.ijplas.2019.02.011
10.1016/j.ijplas.2015.05.006
10.1016/j.actamat.2017.05.057
10.1016/j.actamat.2019.02.033
10.1016/j.ijplas.2022.103305
10.1016/j.actamat.2020.08.077
10.1016/j.jallcom.2020.156724
10.1016/j.actamat.2020.06.063
10.1038/s41467-021-26858-9
10.1016/j.ijplas.2022.103232
10.1016/j.jallcom.2013.06.179
10.1016/j.scriptamat.2018.10.006
10.1016/j.ijplas.2019.09.005
10.1016/j.matdes.2015.05.066
10.1038/nature14674
10.1116/1.5141395
10.1016/j.pmatsci.2019.03.006
10.1016/j.jallcom.2020.154109
10.1107/S0021889813005190
10.1016/j.pmatsci.2011.01.004
10.1016/j.ijplas.2018.11.017
10.1016/j.physb.2021.413237
10.1007/s12598-021-01940-9
10.1016/j.jallcom.2017.09.068
10.1038/s41563-022-01327-w
10.1016/j.scriptamat.2019.11.006
10.1016/j.jmst.2020.11.074
10.1126/science.1186648
10.1016/j.jallcom.2021.160023
10.1038/srep17429
10.1016/j.compositesb.2021.109226
10.1016/j.ijplas.2022.103402
10.1016/j.msea.2020.140078
10.1016/j.jallcom.2015.03.179
10.1016/j.jmst.2022.01.038
10.1038/s41467-018-07930-3
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijplas.2023.103711
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_ijplas_2023_103711
S074964192300195X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-d5d1245a90f0c958adf21ef1db46c041c59e511545ad465b764f915fa2cafc0c3
IEDL.DBID .~1
ISSN 0749-6419
IngestDate Tue Jul 01 01:37:17 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Tue Dec 03 03:45:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural fluctuation
Atomic structure
Electric current
Metallic glass
Strength-ductility synergy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-d5d1245a90f0c958adf21ef1db46c041c59e511545ad465b764f915fa2cafc0c3
ORCID 0000-0003-2267-0227
0000-0003-3396-7974
0000-0002-3833-8440
ParticipantIDs crossref_primary_10_1016_j_ijplas_2023_103711
crossref_citationtrail_10_1016_j_ijplas_2023_103711
elsevier_sciencedirect_doi_10_1016_j_ijplas_2023_103711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle International journal of plasticity
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Spieckermann, Sopu, Soprunyuk, Kerber, Bednarcik, Schokel, Rezvan, Ketov, Sarac, Schafler, Eckert (bib0052) 2022; 13
Ding, Zhao, Jin, Deng, Gong, Wang (bib0012) 2021; 850
Adachi, Todaka, Yokoyama, Umemoto (bib0001) 2014; 105
Bao, Yang, Chen, Xiang, Zhou, Xie (bib0004) 2023; 162
Juhás, Davis, Farrow, Billinge (bib0027) 2013; 46
Zhang, Huang, Zhang, Deng, Gong, Wang (bib0076) 2022; 34
Das, Dufresne, Maaß (bib0009) 2020; 196
Li, Zhao, Lu, Hirata, Wen, Bai, Chen, Schroers, Liu, Wang (bib0035) 2019; 569
Wei, Yang, Jiang, Wei, Wang, Dai (bib0062) 2019; 99
Adjaoud, Albe (bib0002) 2019; 168
Bokas, Zhao, Morgan, Szlufarska (bib0006) 2017; 728
Yuan, Şopu (bib0071) 2021; 103
Zhu, Ruan, Sun, Guo, Lu (bib0081) 2021; 137
Ketov, Sun, Nachum, Lu, Checchi, Beraldin, Bai, Wang, Louzguine-Luzgin, Carpenter, Greer (bib0029) 2015; 524
Yiu, Hsueh, Shek (bib0068) 2016; 658
Hu, Zhang, Cheng, Wang, Zhang, Li (bib0025) 2020; 191
Jiang, Gan, Huang, Xue, Ning, Sun, Ngan (bib0026) 2020; 125
Yang, Liu, Wu, Wang, Wang, Ruan, Lu (bib0066) 2019; 161
Sha, Qu, Liu, Wang, Gao (bib0048) 2015; 15
Yang, Liu, Wang, Wei, Xue, Dun, Zhao, Chang, Shen (bib0067) 2015; 82
Zhang, Duan, Wada, Kato, Pelletier, Crespo, Pineda, Qiao (bib0074) 2021; 83
Tao, Li, Liu, Pineda, Song, Qiao (bib0058) 2022; 154
Tao, Cullen (bib0057) 2010; 328
Yu, Wang, Samwer (bib0069) 2013; 16
Koumpouras, Larsson (bib0032) 2020; 32
Wang (bib0060) 2019; 106
Schawe, Löffler (bib0046) 2019; 10
Cheng, Hao, Pelletier, Pineda, Qiao (bib0008) 2021; 146
Fu, Liu, Ge, Wang, Ying, Wu, Yan, Zhu, Ke, Luan, Ren, Zuo, Wu, Peng, Liu, Wang, Feng, Lan (bib0019) 2022; 125
Duan, Zhang, Qiao, Wang, Yang, Wada, Kato, Pelletier, Pineda, Crespo (bib0016) 2022; 129
Ketkaew, Chen, Wang, Datye, Fan, Pereira, Schwarz, Liu, Yamada, Dmowski (bib0028) 2018; 9
Tang, Xin, Xu, Miskovic, Sha, Quadir, Ringer, Nomoto, Birbilis, Ferry (bib0053) 2019; 10
Hong, Wang, Li, Zhong, Chen, Zhang, Cao, Ritchie, Wang (bib0024) 2023; 6
Kosiba, Scudino, Kobold, Kühn, Greer, Eckert, Pauly (bib0030) 2017; 127
Zhang, Wang, Li (bib0073) 2021; 876
Li, Zhu, Hong, Zheng, Wang, Wang, Zhang (bib0036) 2022; 13
Plimpton (bib0044) 1995; 117
Yuan, Branicio (bib0070) 2020; 134
Liu, Wang, Ge, Wu, Ke, Li, Sun, Feng, Wu, Wang, Hahn, Ren, Almer, Wang, Lan (bib0037) 2020; 200
Rao, Zhang, Kang, Yu, Jiang (bib0045) 2019; 115
Zhao, Xie, Xu, Zhou (bib0079) 2020; 825
Antipas (bib0003) 2013; 578
Gong, Yin, Jamili-Shirvan, Ding, Wang, Jin (bib0022) 2020; 797
Ding, Bao, Jamili-Shirvan, Jin, Deng, Yao, Gong, Wang (bib0010) 2021; 210
Yuan, Kim, Zhou, Chang, Zhu, Nagaoka, Yang, Pham, Osher, Chen, Ercius, Schmid, Miao (bib0072) 2022; 21
Han, Yang, Lan, Sun (bib0023) 2021; 619
Zhang, Wang, Pineda, Yang, Qiao (bib0075) 2022; 157
Wei, Yang, Bednarcik, Kaban, Shuleshova, Meyer, Busch (bib0063) 2013; 4
Ma (bib0039) 2015; 14
Belhadi, Decremps, Pascarelli, Cormier, Le Godec, Gorsse, Baudelet, Marini, Garbarino (bib0005) 2013; 103
Tang, Yao, Wilkerson (bib0054) 2021; 137
Pan, Ivanov, Zhou, Li, Greer (bib0041) 2020; 578
Kosiba, Şopu, Scudino, Zhang, Bednarcik, Pauly (bib0031) 2019; 119
Lekka, Evangelakis (bib0033) 2009; 61
Ma, Jiang, Ding, Zhang, Li, Zu (bib0040) 2019; 751
Chang, Zhang, Zhao, Li, Luo, Li, Bai (bib0007) 2022; 21
Scudino, Stoica, Kaban, Prashanth, Vaughan, Eckert (bib0047) 2015; 639
Tang, Zhou, Lu, Wang, Cao, Zhang, Yang, Jiang (bib0056) 2022; 13
Djurabekova, Parviainen, Pohjonen, Nordlund (bib0014) 2011; 83
Zhao, Li, Hwang, Wang (bib0080) 2017; 134
Şopu, Scudino, Bian, Gammer, Eckert (bib0051) 2020; 178
Zhang, Wang, Liu, Reddy, Wang, Chen, Song (bib0078) 2022; 152
Luo, Wang, Dong, Su, Guo, Xu, Wang, Wang, Yu, Ritchie, Guo, Fu (bib0038) 2019; 171
Gao, Zhang, Zhang, Yang, Huang, Liu, Wang, Li, Li, Li, Liu (bib0021) 2021; 224
Fadhil, Su, Glazyrin, Jiang, Wang, Cao, Zhang, Gao, Jiang (bib0018) 2021; 216
Gan, Jiang, Huang, Yin, Sun, Ngan (bib0020) 2019; 119
Li, Shen, Luo, An, Gao, Xiao, Zou (bib0034) 2023
Wang, Li, Xu (bib0061) 2016; 113
Peng, Luo, Li, Li, Luan, Gu, Wu, Yao (bib0043) 2022; 41
Ding, Bao, Zhang, Jin, Deng, Yao, Solouk, Gong, Wang (bib0011) 2023; 2
Wu, Bei, Wang, Lu, George, Gao (bib0064) 2015; 71
Ding, Ma, Asta, Ritchie (bib0013) 2015; 5
Du, Liu, Zeng, Fan, Wang, Wu, Chen, Lu (bib0015) 2019; 99
Shang, Wang, Greer, Guan (bib0049) 2021; 213
Wang, Liu, Ye, Liu, Wang, Liu, Lu, Yang (bib0059) 2017; 20
Egami (bib0017) 2011; 56
Wu, Cao, Yao, Zhang, Wang, Liu, Li, Fan, Liu, Wang, Wang, Zhu, Jiang, Kontis, Raabe, Gault, Lu (bib0065) 2021; 12
Zhang, Ding, Ma (bib0077) 2022; 119
Pei, Chen, Zhao, Li, Cui, Sun, Hu, Lan, Hahn, Feng (bib0042) 2022; 26
Shard (bib0050) 2020; 38
Yang (10.1016/j.ijplas.2023.103711_bib0067) 2015; 82
Adachi (10.1016/j.ijplas.2023.103711_bib0001) 2014; 105
Ketkaew (10.1016/j.ijplas.2023.103711_bib0028) 2018; 9
Duan (10.1016/j.ijplas.2023.103711_bib0016) 2022; 129
Liu (10.1016/j.ijplas.2023.103711_bib0037) 2020; 200
Adjaoud (10.1016/j.ijplas.2023.103711_bib0002) 2019; 168
Zhang (10.1016/j.ijplas.2023.103711_bib0073) 2021; 876
Chang (10.1016/j.ijplas.2023.103711_bib0007) 2022; 21
Das (10.1016/j.ijplas.2023.103711_bib0009) 2020; 196
Gan (10.1016/j.ijplas.2023.103711_bib0020) 2019; 119
Li (10.1016/j.ijplas.2023.103711_bib0034) 2023
Wang (10.1016/j.ijplas.2023.103711_bib0060) 2019; 106
Wei (10.1016/j.ijplas.2023.103711_bib0063) 2013; 4
Yuan (10.1016/j.ijplas.2023.103711_bib0070) 2020; 134
Tao (10.1016/j.ijplas.2023.103711_bib0057) 2010; 328
Tang (10.1016/j.ijplas.2023.103711_bib0056) 2022; 13
Luo (10.1016/j.ijplas.2023.103711_bib0038) 2019; 171
Şopu (10.1016/j.ijplas.2023.103711_bib0051) 2020; 178
Li (10.1016/j.ijplas.2023.103711_bib0036) 2022; 13
Ketov (10.1016/j.ijplas.2023.103711_bib0029) 2015; 524
Du (10.1016/j.ijplas.2023.103711_bib0015) 2019; 99
Fu (10.1016/j.ijplas.2023.103711_bib0019) 2022; 125
Bokas (10.1016/j.ijplas.2023.103711_bib0006) 2017; 728
Shard (10.1016/j.ijplas.2023.103711_bib0050) 2020; 38
Sha (10.1016/j.ijplas.2023.103711_bib0048) 2015; 15
Zhang (10.1016/j.ijplas.2023.103711_bib0076) 2022; 34
Zhao (10.1016/j.ijplas.2023.103711_bib0080) 2017; 134
Wang (10.1016/j.ijplas.2023.103711_bib0059) 2017; 20
Ding (10.1016/j.ijplas.2023.103711_bib0011) 2023; 2
Hu (10.1016/j.ijplas.2023.103711_bib0025) 2020; 191
Zhang (10.1016/j.ijplas.2023.103711_bib0077) 2022; 119
Gao (10.1016/j.ijplas.2023.103711_bib0021) 2021; 224
Peng (10.1016/j.ijplas.2023.103711_bib0043) 2022; 41
Jiang (10.1016/j.ijplas.2023.103711_bib0026) 2020; 125
Zhu (10.1016/j.ijplas.2023.103711_bib0081) 2021; 137
Ding (10.1016/j.ijplas.2023.103711_bib0013) 2015; 5
Belhadi (10.1016/j.ijplas.2023.103711_bib0005) 2013; 103
Tang (10.1016/j.ijplas.2023.103711_bib0053) 2019; 10
Han (10.1016/j.ijplas.2023.103711_bib0023) 2021; 619
Bao (10.1016/j.ijplas.2023.103711_bib0004) 2023; 162
Zhao (10.1016/j.ijplas.2023.103711_bib0079) 2020; 825
Tang (10.1016/j.ijplas.2023.103711_bib0054) 2021; 137
Kosiba (10.1016/j.ijplas.2023.103711_bib0031) 2019; 119
Yu (10.1016/j.ijplas.2023.103711_bib0069) 2013; 16
Juhás (10.1016/j.ijplas.2023.103711_bib0027) 2013; 46
Egami (10.1016/j.ijplas.2023.103711_bib0017) 2011; 56
Lekka (10.1016/j.ijplas.2023.103711_bib0033) 2009; 61
Yiu (10.1016/j.ijplas.2023.103711_bib0068) 2016; 658
Yuan (10.1016/j.ijplas.2023.103711_bib0072) 2022; 21
Ding (10.1016/j.ijplas.2023.103711_bib0012) 2021; 850
Pan (10.1016/j.ijplas.2023.103711_bib0041) 2020; 578
Shang (10.1016/j.ijplas.2023.103711_bib0049) 2021; 213
Djurabekova (10.1016/j.ijplas.2023.103711_bib0014) 2011; 83
Zhang (10.1016/j.ijplas.2023.103711_bib0074) 2021; 83
Zhang (10.1016/j.ijplas.2023.103711_bib0078) 2022; 152
Pei (10.1016/j.ijplas.2023.103711_bib0042) 2022; 26
Zhang (10.1016/j.ijplas.2023.103711_bib0075) 2022; 157
Yuan (10.1016/j.ijplas.2023.103711_bib0071) 2021; 103
Ma (10.1016/j.ijplas.2023.103711_bib0039) 2015; 14
Spieckermann (10.1016/j.ijplas.2023.103711_bib0052) 2022; 13
Fadhil (10.1016/j.ijplas.2023.103711_bib0018) 2021; 216
Yang (10.1016/j.ijplas.2023.103711_bib0066) 2019; 161
Cheng (10.1016/j.ijplas.2023.103711_bib0008) 2021; 146
Rao (10.1016/j.ijplas.2023.103711_bib0045) 2019; 115
Schawe (10.1016/j.ijplas.2023.103711_bib0046) 2019; 10
Wei (10.1016/j.ijplas.2023.103711_bib0062) 2019; 99
Ding (10.1016/j.ijplas.2023.103711_bib0010) 2021; 210
Wu (10.1016/j.ijplas.2023.103711_bib0064) 2015; 71
Koumpouras (10.1016/j.ijplas.2023.103711_bib0032) 2020; 32
Antipas (10.1016/j.ijplas.2023.103711_bib0003) 2013; 578
Kosiba (10.1016/j.ijplas.2023.103711_bib0030) 2017; 127
Wu (10.1016/j.ijplas.2023.103711_bib0065) 2021; 12
Tao (10.1016/j.ijplas.2023.103711_bib0058) 2022; 154
Ma (10.1016/j.ijplas.2023.103711_bib0040) 2019; 751
Hong (10.1016/j.ijplas.2023.103711_bib0024) 2023; 6
Li (10.1016/j.ijplas.2023.103711_bib0035) 2019; 569
Plimpton (10.1016/j.ijplas.2023.103711_bib0044) 1995; 117
Gong (10.1016/j.ijplas.2023.103711_bib0022) 2020; 797
Scudino (10.1016/j.ijplas.2023.103711_bib0047) 2015; 639
Wang (10.1016/j.ijplas.2023.103711_bib0061) 2016; 113
References_xml – year: 2023
  ident: bib0034
  article-title: Harnessing dislocation motion using an electric field
  publication-title: Nat. Mater.
– volume: 20
  start-page: 293
  year: 2017
  end-page: 300
  ident: bib0059
  article-title: Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses
  publication-title: Mater. Today
– volume: 14
  start-page: 547
  year: 2015
  end-page: 552
  ident: bib0039
  article-title: Tuning order in disorder
  publication-title: Nat. Mater.
– volume: 213
  year: 2021
  ident: bib0049
  article-title: Atomistic modeling of thermal-cycling rejuvenation in metallic glasses
  publication-title: Acta Mater
– volume: 71
  start-page: 136
  year: 2015
  end-page: 145
  ident: bib0064
  article-title: Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass
  publication-title: Int. J. Plast.
– volume: 578
  start-page: 565
  year: 2013
  end-page: 570
  ident: bib0003
  article-title: Molecular orbital interactions in glass-forming Zr
  publication-title: J. Alloys Compd.
– volume: 129
  year: 2022
  ident: bib0016
  article-title: Intrinsic correlation between the fraction of liquidlike zones and the beta relaxation in high-entropy metallic glasses
  publication-title: Phys. Rev. Lett.
– volume: 751
  start-page: 128
  year: 2019
  end-page: 132
  ident: bib0040
  article-title: Torsional behaviors in Zr-based bulk metallic glass with high stored energy structure
  publication-title: Mat. Sci. Eng. A-Struct.
– volume: 127
  start-page: 416
  year: 2017
  end-page: 425
  ident: bib0030
  article-title: Transient nucleation and microstructural design in flash-annealed bulk metallic glasses
  publication-title: Acta Mater
– volume: 876
  year: 2021
  ident: bib0073
  article-title: From brittle to ductile transition: the influence of oxygen on mechanical properties of metallic glasses
  publication-title: J. Alloys Compd.
– volume: 41
  start-page: 2016
  year: 2022
  end-page: 2020
  ident: bib0043
  article-title: Microstructure and mechanical properties of lightweight AlCrTiV
  publication-title: Rare Metals
– volume: 105
  year: 2014
  ident: bib0001
  article-title: Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation
  publication-title: Appl. Phys. Lett.
– volume: 524
  start-page: 200
  year: 2015
  end-page: 203
  ident: bib0029
  article-title: Rejuvenation of metallic glasses by non-affine thermal strain
  publication-title: Nature
– volume: 137
  year: 2021
  ident: bib0054
  article-title: A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses
  publication-title: Int. J. Plast.
– volume: 13
  start-page: 127
  year: 2022
  ident: bib0052
  article-title: Structure-dynamics relationships in cryogenically deformed bulk metallic glass
  publication-title: Nat. Commun.
– volume: 106
  year: 2019
  ident: bib0060
  article-title: Dynamic relaxations and relaxation-property relationships in metallic glasses
  publication-title: Prog. Mater Sci.
– volume: 125
  start-page: 145
  year: 2022
  end-page: 156
  ident: bib0019
  article-title: In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass
  publication-title: J. Mater. Sci. Technol.
– volume: 119
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib0020
  article-title: Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu-Zr based metallic-glass microwires, molecular dynamics simulations, and modelling
  publication-title: Int. J. Plast.
– volume: 10
  start-page: 1003
  year: 2019
  ident: bib0053
  article-title: Precipitation strengthening in an ultralight magnesium alloy
  publication-title: Nat. Commun.
– volume: 82
  start-page: 126
  year: 2015
  end-page: 129
  ident: bib0067
  article-title: Electronic structure of Cu
  publication-title: Mater. Design
– volume: 113
  start-page: 10
  year: 2016
  end-page: 13
  ident: bib0061
  article-title: Toughen and harden metallic glass through designing statistical heterogeneity
  publication-title: Scripta Mater
– volume: 38
  year: 2020
  ident: bib0050
  article-title: Practical guides for x-ray photoelectron spectroscopy: Quantitative XPS
  publication-title: J. Vac. Sci. Technol. A
– volume: 134
  year: 2020
  ident: bib0070
  article-title: Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses
  publication-title: Int. J. Plast.
– volume: 21
  start-page: 95
  year: 2022
  end-page: 102
  ident: bib0072
  article-title: Three-dimensional atomic packing in amorphous solids with liquid-like structure
  publication-title: Nat. Mater.
– volume: 115
  start-page: 238
  year: 2019
  end-page: 267
  ident: bib0045
  article-title: A meso-mechanical constitutive model of bulk metallic glass composites considering the local failure of matrix
  publication-title: Int. J. Plast.
– volume: 137
  year: 2021
  ident: bib0081
  article-title: Constitutive modeling of size-dependent deformation behavior in nano-dual-phase glass-crystal alloys
  publication-title: Int. J. Plast.
– volume: 152
  year: 2022
  ident: bib0078
  article-title: Deformation behavior of a nanoporous metallic glass at room temperature
  publication-title: Int. J. Plast.
– volume: 196
  start-page: 723
  year: 2020
  end-page: 732
  ident: bib0009
  article-title: Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass
  publication-title: Acta Mater.
– volume: 12
  start-page: 6582
  year: 2021
  ident: bib0065
  article-title: Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing
  publication-title: Nat. Commun.
– volume: 56
  start-page: 637
  year: 2011
  end-page: 653
  ident: bib0017
  article-title: Atomic level stresses
  publication-title: Prog. Mater. Sci.
– volume: 639
  start-page: 465
  year: 2015
  end-page: 469
  ident: bib0047
  article-title: Length scale-dependent structural relaxation in Zr
  publication-title: J. Alloys Compd.
– volume: 15
  start-page: 7010
  year: 2015
  end-page: 7015
  ident: bib0048
  article-title: Cyclic Deformation in Metallic Glasses
  publication-title: Nano Lett
– volume: 797
  year: 2020
  ident: bib0022
  article-title: Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass
  publication-title: Mat. Sci. Eng. A-Struct.
– volume: 99
  year: 2019
  ident: bib0015
  article-title: Polyamorphic transition in a transition metal based metallic glass under high pressure
  publication-title: Phys. Rev. B
– volume: 210
  year: 2021
  ident: bib0010
  article-title: Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles
  publication-title: Mater. Design
– volume: 569
  start-page: 99
  year: 2019
  end-page: 103
  ident: bib0035
  article-title: High-temperature bulk metallic glasses developed by combinatorial methods
  publication-title: Nature
– volume: 6
  start-page: 1
  year: 2023
  end-page: 13
  ident: bib0024
  article-title: Structural heterogeneity governing deformability of metallic glass
  publication-title: Matter
– volume: 224
  year: 2021
  ident: bib0021
  article-title: Large tensile plasticity in Zr-based metallic glass/stainless steel interpenetrating-phase composites prepared by high pressure die casting
  publication-title: Compos. Part B: Eng.
– volume: 728
  start-page: 1110
  year: 2017
  end-page: 1115
  ident: bib0006
  article-title: Increased stability of CuZrAl metallic glasses prepared by physical vapor deposition
  publication-title: J. Alloys Compd.
– volume: 99
  year: 2019
  ident: bib0062
  article-title: Revisiting the structure–property relationship of metallic glasses: common spatial correlation revealed as a hidden rule
  publication-title: Phys. Rev. B
– volume: 154
  year: 2022
  ident: bib0058
  article-title: Unraveling the microstructural heterogeneity and plasticity of Zr
  publication-title: Int. J. Plast.
– volume: 32
  year: 2020
  ident: bib0032
  article-title: Distinguishing between chemical bonding and physical binding using electron localization function (ELF)
  publication-title: J. Phys. Condens. Mat.
– volume: 13
  start-page: 6503
  year: 2022
  ident: bib0036
  article-title: Revealing the pulse-induced electroplasticity by decoupling electron wind force
  publication-title: Nat. Commun.
– volume: 162
  year: 2023
  ident: bib0004
  article-title: Strengthening and toughening of Cu matrix composites reinforced by metallic glass particles with variable size
  publication-title: Int. J. Plast.
– volume: 119
  start-page: 156
  year: 2019
  end-page: 170
  ident: bib0031
  article-title: Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding
  publication-title: Int. J. Plast.
– volume: 328
  start-page: 736
  year: 2010
  end-page: 740
  ident: bib0057
  article-title: Visualizing the electron scattering force in nanostructures
  publication-title: Science
– volume: 16
  start-page: 183
  year: 2013
  end-page: 191
  ident: bib0069
  article-title: The β relaxation in metallic glasses: an overview
  publication-title: Mater. Today
– volume: 619
  year: 2021
  ident: bib0023
  article-title: Al addition on the short and medium range order of CuZrAl metallic glasses
  publication-title: Physica B
– volume: 134
  start-page: 104
  year: 2017
  end-page: 115
  ident: bib0080
  article-title: Influence of nanoscale structural heterogeneity on shear banding in metallic glasses
  publication-title: Acta Mater
– volume: 103
  year: 2013
  ident: bib0005
  article-title: Polyamorphism in cerium based bulk metallic glasses: electronic and structural properties under pressure and temperature by X-ray absorption techniques
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 1337
  year: 2019
  ident: bib0046
  article-title: Existence of multiple critical cooling rates which generate different types of monolithic metallic glass
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2120
  year: 2022
  ident: bib0056
  article-title: Extra plasticity governed by shear band deflection in gradient metallic glasses
  publication-title: Nat Commun
– volume: 578
  start-page: 559
  year: 2020
  end-page: 562
  ident: bib0041
  article-title: Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass
  publication-title: Nature
– volume: 161
  start-page: 62
  year: 2019
  end-page: 65
  ident: bib0066
  article-title: Elastic modulus change and its relation with glass-forming ability and plasticity in bulk metallic glasses
  publication-title: Scripta Mater
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib0044
  article-title: Fast Parallel Algorithms for Short-Range Molecular Dynamics
  publication-title: J. Comput. Phys.
– volume: 103
  year: 2021
  ident: bib0071
  article-title: Origin of strain hardening in monolithic metallic glasses
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 17429
  year: 2015
  ident: bib0013
  article-title: Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids
  publication-title: Sci. Rep.
– volume: 46
  start-page: 560
  year: 2013
  end-page: 566
  ident: bib0027
  article-title: Pdfgetx3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions
  publication-title: J. Appl. Crystallogr.
– volume: 216
  year: 2021
  ident: bib0018
  article-title: Pressure-induced atomic packing change in Pd
  publication-title: Acta Mater
– volume: 125
  start-page: 52
  year: 2020
  end-page: 62
  ident: bib0026
  article-title: Stochastic deformation and shear transformation zones of the glassy matrix in CuZr-based metallic-glass composites
  publication-title: Int. J. Plast.
– volume: 157
  year: 2022
  ident: bib0075
  article-title: Achieving structural rejuvenation in metallic glass by modulating β relaxation intensity via easy-to-operate mechanical cycling
  publication-title: Int. J. Plast.
– volume: 61
  start-page: 974
  year: 2009
  end-page: 977
  ident: bib0033
  article-title: Bonding characteristics and strengthening of CuZr fundamental clusters upon small Al additions from density functional theory calculations
  publication-title: Scripta Mater
– volume: 21
  start-page: 1240
  year: 2022
  end-page: 1245
  ident: bib0007
  article-title: Liquid-like atoms in dense-packed solid glasses
  publication-title: Nat. Mater.
– volume: 825
  year: 2020
  ident: bib0079
  article-title: Structural evolution and energy landscape of Zr
  publication-title: J. Alloys Compd.
– volume: 850
  year: 2021
  ident: bib0012
  article-title: Densification mechanism of Zr-based bulk metallic glass prepared by two-step spark plasma sintering
  publication-title: J. Alloys Compd.
– volume: 83
  start-page: 248
  year: 2021
  end-page: 255
  ident: bib0074
  article-title: Dynamic mechanical relaxation behavior of Zr
  publication-title: J. Mater. Sci. Technol.
– volume: 83
  year: 2011
  ident: bib0014
  article-title: Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm
  publication-title: Phys. Rev. E
– volume: 200
  start-page: 42
  year: 2020
  end-page: 55
  ident: bib0037
  article-title: Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass
  publication-title: Acta Mater
– volume: 191
  year: 2020
  ident: bib0025
  article-title: A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications
  publication-title: Mater. Design
– volume: 4
  start-page: 2083
  year: 2013
  ident: bib0063
  article-title: Liquid-liquid transition in a strong bulk metallic glass-forming liquid
  publication-title: Nat. Commun.
– volume: 2
  year: 2023
  ident: bib0011
  article-title: Novel experimental strategy towards temperature inhomogeneity during spark plasma sintering of metallic glasses
  publication-title: Adv. Powder Mater.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib0028
  article-title: Mechanical glass transition revealed by the fracture toughness of metallic glasses
  publication-title: Nat. Commun.
– volume: 146
  year: 2021
  ident: bib0008
  article-title: Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass
  publication-title: Int. J. Plast.
– volume: 658
  start-page: 795
  year: 2016
  end-page: 799
  ident: bib0068
  article-title: Electroplastic forming in a Fe-based metallic glass ribbon
  publication-title: J. Alloys Compd.
– volume: 34
  year: 2022
  ident: bib0076
  article-title: Influence of oxidation on structure, performance, and application of metallic glasses
  publication-title: Adv. Mater.
– volume: 26
  year: 2022
  ident: bib0042
  article-title: Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance
  publication-title: Adv. Mater.
– volume: 168
  start-page: 393
  year: 2019
  end-page: 400
  ident: bib0002
  article-title: Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses
  publication-title: Acta Mater
– volume: 178
  start-page: 57
  year: 2020
  end-page: 61
  ident: bib0051
  article-title: Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses
  publication-title: Scripta Mater
– volume: 171
  start-page: 216
  year: 2019
  end-page: 230
  ident: bib0038
  article-title: Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying
  publication-title: Acta Mater
– volume: 119
  year: 2022
  ident: bib0077
  article-title: Shear transformations in metallic glasses without excessive and predefinable defects
  publication-title: P. Natl. Acad. Sci. U.S.A.
– volume: 99
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0015
  article-title: Polyamorphic transition in a transition metal based metallic glass under high pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.014208
– volume: 578
  start-page: 559
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0041
  article-title: Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass
  publication-title: Nature
  doi: 10.1038/s41586-020-2016-3
– volume: 99
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0062
  article-title: Revisiting the structure–property relationship of metallic glasses: common spatial correlation revealed as a hidden rule
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.014115
– volume: 658
  start-page: 795
  year: 2016
  ident: 10.1016/j.ijplas.2023.103711_bib0068
  article-title: Electroplastic forming in a Fe-based metallic glass ribbon
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.11.033
– volume: 117
  start-page: 1
  year: 1995
  ident: 10.1016/j.ijplas.2023.103711_bib0044
  article-title: Fast Parallel Algorithms for Short-Range Molecular Dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 105
  year: 2014
  ident: 10.1016/j.ijplas.2023.103711_bib0001
  article-title: Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4897439
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijplas.2023.103711_bib0028
  article-title: Mechanical glass transition revealed by the fracture toughness of metallic glasses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05682-8
– volume: 10
  start-page: 1003
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0053
  article-title: Precipitation strengthening in an ultralight magnesium alloy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08954-z
– volume: 21
  start-page: 95
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0072
  article-title: Three-dimensional atomic packing in amorphous solids with liquid-like structure
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01114-z
– volume: 15
  start-page: 7010
  year: 2015
  ident: 10.1016/j.ijplas.2023.103711_bib0048
  article-title: Cyclic Deformation in Metallic Glasses
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b03045
– volume: 13
  start-page: 127
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0052
  article-title: Structure-dynamics relationships in cryogenically deformed bulk metallic glass
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27661-2
– volume: 191
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0025
  article-title: A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications
  publication-title: Mater. Design
– volume: 134
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0070
  article-title: Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102845
– volume: 162
  year: 2023
  ident: 10.1016/j.ijplas.2023.103711_bib0004
  article-title: Strengthening and toughening of Cu matrix composites reinforced by metallic glass particles with variable size
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2023.103530
– volume: 4
  start-page: 2083
  year: 2013
  ident: 10.1016/j.ijplas.2023.103711_bib0063
  article-title: Liquid-liquid transition in a strong bulk metallic glass-forming liquid
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3083
– volume: 6
  start-page: 1
  year: 2023
  ident: 10.1016/j.ijplas.2023.103711_bib0024
  article-title: Structural heterogeneity governing deformability of metallic glass
  publication-title: Matter
  doi: 10.1016/j.matt.2023.01.016
– volume: 137
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0081
  article-title: Constitutive modeling of size-dependent deformation behavior in nano-dual-phase glass-crystal alloys
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102918
– volume: 16
  start-page: 183
  year: 2013
  ident: 10.1016/j.ijplas.2023.103711_bib0069
  article-title: The β relaxation in metallic glasses: an overview
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.05.002
– volume: 569
  start-page: 99
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0035
  article-title: High-temperature bulk metallic glasses developed by combinatorial methods
  publication-title: Nature
  doi: 10.1038/s41586-019-1145-z
– volume: 127
  start-page: 416
  year: 2017
  ident: 10.1016/j.ijplas.2023.103711_bib0030
  article-title: Transient nucleation and microstructural design in flash-annealed bulk metallic glasses
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.01.059
– volume: 146
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0008
  article-title: Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2021.103107
– volume: 20
  start-page: 293
  year: 2017
  ident: 10.1016/j.ijplas.2023.103711_bib0059
  article-title: Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.05.007
– volume: 137
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0054
  article-title: A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102884
– volume: 216
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0018
  article-title: Pressure-induced atomic packing change in Pd37Ni37S26 metallic glass
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2021.117116
– volume: 113
  start-page: 10
  year: 2016
  ident: 10.1016/j.ijplas.2023.103711_bib0061
  article-title: Toughen and harden metallic glass through designing statistical heterogeneity
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2015.09.038
– volume: 103
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0071
  article-title: Origin of strain hardening in monolithic metallic glasses
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.L140107
– volume: 61
  start-page: 974
  year: 2009
  ident: 10.1016/j.ijplas.2023.103711_bib0033
  article-title: Bonding characteristics and strengthening of CuZr fundamental clusters upon small Al additions from density functional theory calculations
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2009.08.008
– volume: 103
  year: 2013
  ident: 10.1016/j.ijplas.2023.103711_bib0005
  article-title: Polyamorphism in cerium based bulk metallic glasses: electronic and structural properties under pressure and temperature by X-ray absorption techniques
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4820434
– volume: 213
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0049
  article-title: Atomistic modeling of thermal-cycling rejuvenation in metallic glasses
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2021.116952
– volume: 13
  start-page: 6503
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0036
  article-title: Revealing the pulse-induced electroplasticity by decoupling electron wind force
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34333-2
– volume: 14
  start-page: 547
  year: 2015
  ident: 10.1016/j.ijplas.2023.103711_bib0039
  article-title: Tuning order in disorder
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4300
– volume: 751
  start-page: 128
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0040
  article-title: Torsional behaviors in Zr-based bulk metallic glass with high stored energy structure
  publication-title: Mat. Sci. Eng. A-Struct.
  doi: 10.1016/j.msea.2019.02.074
– volume: 13
  start-page: 2120
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0056
  article-title: Extra plasticity governed by shear band deflection in gradient metallic glasses
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29821-4
– volume: 119
  start-page: 156
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0031
  article-title: Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.03.007
– volume: 83
  year: 2011
  ident: 10.1016/j.ijplas.2023.103711_bib0014
  article-title: Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.026704
– volume: 171
  start-page: 216
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0038
  article-title: Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.04.022
– volume: 119
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0077
  article-title: Shear transformations in metallic glasses without excessive and predefinable defects
  publication-title: P. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2213941119
– volume: 32
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0032
  article-title: Distinguishing between chemical bonding and physical binding using electron localization function (ELF)
  publication-title: J. Phys. Condens. Mat.
  doi: 10.1088/1361-648X/ab7fd8
– volume: 119
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0020
  article-title: Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu-Zr based metallic-glass microwires, molecular dynamics simulations, and modelling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.02.011
– volume: 71
  start-page: 136
  year: 2015
  ident: 10.1016/j.ijplas.2023.103711_bib0064
  article-title: Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2015.05.006
– volume: 134
  start-page: 104
  year: 2017
  ident: 10.1016/j.ijplas.2023.103711_bib0080
  article-title: Influence of nanoscale structural heterogeneity on shear banding in metallic glasses
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.05.057
– volume: 168
  start-page: 393
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0002
  article-title: Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.02.033
– volume: 154
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0058
  article-title: Unraveling the microstructural heterogeneity and plasticity of Zr50Cu40Al10 bulk metallic glass by nanoindentation
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103305
– volume: 200
  start-page: 42
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0037
  article-title: Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.08.077
– volume: 850
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0012
  article-title: Densification mechanism of Zr-based bulk metallic glass prepared by two-step spark plasma sintering
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156724
– volume: 196
  start-page: 723
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0009
  article-title: Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.06.063
– volume: 12
  start-page: 6582
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0065
  article-title: Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26858-9
– volume: 152
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0078
  article-title: Deformation behavior of a nanoporous metallic glass at room temperature
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103232
– volume: 578
  start-page: 565
  year: 2013
  ident: 10.1016/j.ijplas.2023.103711_bib0003
  article-title: Molecular orbital interactions in glass-forming Zr70Cu30 liquid quasicrystals
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.06.179
– volume: 161
  start-page: 62
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0066
  article-title: Elastic modulus change and its relation with glass-forming ability and plasticity in bulk metallic glasses
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2018.10.006
– volume: 125
  start-page: 52
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0026
  article-title: Stochastic deformation and shear transformation zones of the glassy matrix in CuZr-based metallic-glass composites
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.09.005
– year: 2023
  ident: 10.1016/j.ijplas.2023.103711_bib0034
  article-title: Harnessing dislocation motion using an electric field
  publication-title: Nat. Mater.
– volume: 82
  start-page: 126
  year: 2015
  ident: 10.1016/j.ijplas.2023.103711_bib0067
  article-title: Electronic structure of Cu100−xZrx (x=40, 50, 60) metallic glasses
  publication-title: Mater. Design
  doi: 10.1016/j.matdes.2015.05.066
– volume: 26
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0042
  article-title: Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance
  publication-title: Adv. Mater.
– volume: 129
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0016
  article-title: Intrinsic correlation between the fraction of liquidlike zones and the beta relaxation in high-entropy metallic glasses
  publication-title: Phys. Rev. Lett.
– volume: 524
  start-page: 200
  year: 2015
  ident: 10.1016/j.ijplas.2023.103711_bib0029
  article-title: Rejuvenation of metallic glasses by non-affine thermal strain
  publication-title: Nature
  doi: 10.1038/nature14674
– volume: 38
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0050
  article-title: Practical guides for x-ray photoelectron spectroscopy: Quantitative XPS
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.5141395
– volume: 106
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0060
  article-title: Dynamic relaxations and relaxation-property relationships in metallic glasses
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2019.03.006
– volume: 825
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0079
  article-title: Structural evolution and energy landscape of Zr55Cu35Al10 ternary alloy during glass transition
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154109
– volume: 46
  start-page: 560
  year: 2013
  ident: 10.1016/j.ijplas.2023.103711_bib0027
  article-title: Pdfgetx3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889813005190
– volume: 56
  start-page: 637
  year: 2011
  ident: 10.1016/j.ijplas.2023.103711_bib0017
  article-title: Atomic level stresses
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2011.01.004
– volume: 115
  start-page: 238
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0045
  article-title: A meso-mechanical constitutive model of bulk metallic glass composites considering the local failure of matrix
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.11.017
– volume: 619
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0023
  article-title: Al addition on the short and medium range order of CuZrAl metallic glasses
  publication-title: Physica B
  doi: 10.1016/j.physb.2021.413237
– volume: 41
  start-page: 2016
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0043
  article-title: Microstructure and mechanical properties of lightweight AlCrTiV0.5Cux high-entropy alloys
  publication-title: Rare Metals
  doi: 10.1007/s12598-021-01940-9
– volume: 728
  start-page: 1110
  year: 2017
  ident: 10.1016/j.ijplas.2023.103711_bib0006
  article-title: Increased stability of CuZrAl metallic glasses prepared by physical vapor deposition
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.09.068
– volume: 34
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0076
  article-title: Influence of oxidation on structure, performance, and application of metallic glasses
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1240
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0007
  article-title: Liquid-like atoms in dense-packed solid glasses
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01327-w
– volume: 178
  start-page: 57
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0051
  article-title: Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2019.11.006
– volume: 83
  start-page: 248
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0074
  article-title: Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.11.074
– volume: 210
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0010
  article-title: Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles
  publication-title: Mater. Design
– volume: 328
  start-page: 736
  year: 2010
  ident: 10.1016/j.ijplas.2023.103711_bib0057
  article-title: Visualizing the electron scattering force in nanostructures
  publication-title: Science
  doi: 10.1126/science.1186648
– volume: 876
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0073
  article-title: From brittle to ductile transition: the influence of oxygen on mechanical properties of metallic glasses
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160023
– volume: 5
  start-page: 17429
  year: 2015
  ident: 10.1016/j.ijplas.2023.103711_bib0013
  article-title: Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids
  publication-title: Sci. Rep.
  doi: 10.1038/srep17429
– volume: 224
  year: 2021
  ident: 10.1016/j.ijplas.2023.103711_bib0021
  article-title: Large tensile plasticity in Zr-based metallic glass/stainless steel interpenetrating-phase composites prepared by high pressure die casting
  publication-title: Compos. Part B: Eng.
  doi: 10.1016/j.compositesb.2021.109226
– volume: 2
  year: 2023
  ident: 10.1016/j.ijplas.2023.103711_bib0011
  article-title: Novel experimental strategy towards temperature inhomogeneity during spark plasma sintering of metallic glasses
  publication-title: Adv. Powder Mater.
– volume: 157
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0075
  article-title: Achieving structural rejuvenation in metallic glass by modulating β relaxation intensity via easy-to-operate mechanical cycling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103402
– volume: 797
  year: 2020
  ident: 10.1016/j.ijplas.2023.103711_bib0022
  article-title: Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass
  publication-title: Mat. Sci. Eng. A-Struct.
  doi: 10.1016/j.msea.2020.140078
– volume: 639
  start-page: 465
  year: 2015
  ident: 10.1016/j.ijplas.2023.103711_bib0047
  article-title: Length scale-dependent structural relaxation in Zr57.5Ti7.5Nb5Cu12.5Ni10Al7.5 metallic glass
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.03.179
– volume: 125
  start-page: 145
  year: 2022
  ident: 10.1016/j.ijplas.2023.103711_bib0019
  article-title: In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.01.038
– volume: 10
  start-page: 1337
  year: 2019
  ident: 10.1016/j.ijplas.2023.103711_bib0046
  article-title: Existence of multiple critical cooling rates which generate different types of monolithic metallic glass
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07930-3
SSID ssj0005831
Score 2.6232302
Snippet •Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103711
SubjectTerms Atomic structure
Electric current
Metallic glass
Strength-ductility synergy
Structural fluctuation
Title Achieving strength-ductility synergy in metallic glasses via electric current-enhanced structural fluctuations
URI https://dx.doi.org/10.1016/j.ijplas.2023.103711
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3rwYyrOj5GD12zt2rTNcQzHVNxFB7uV5st1zDrYEHbxbzcvSWWCKHhqG5IS8tK8l_T3-z2EbijPtM4yQbjSmsQsSgiTQhLFhbkq47QUEIUfx8loEt9P6bSBBjUXBmCVfu13a7pdrX1J149md1mW3SfzHpbAT8zIst6mwGCPU5jlnY8tmEfmchKaygRq1_Q5i_Eq50sTo3Yghbhln4fhz-5py-UMj9CBjxVx33XnGDVU1USHPm7E_qtcNdH-lqjgCar6YlYqOCfAQASpXtYzAqKuAILd4NXGkv1wWeFXZQLvRSmwjaDVCr-XBXZpcUyhcMJNRFUzCxLATmkWVDqwXsCdO-s7RZPh7fNgRHxWBSLM9mBNJJXGp9OCBToQjGaF1L1Q6VDyOBFBHArKFAWRHlrIOKE8TWLNQqqLnii0CER0hnaqt0qdI6wKzaTk2mywuQnERJakWrGMGwMbp5dkLRTVg5kLLzkOmS8WeY0tm-fOBDmYIHcmaCHy1WrpJDf-qJ_Wdsq_TZ3ceIVfW178u-Ul2oMnh-q7QjvGAuraRCdr3rbTr412-3cPo_EnkBXpOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO2LHBzi6bdo4jQ8cEIvKegGk3kK80aASKrUC9cJP8YOMYwcVCYGE1FMiJ7Ycz2jm2Zl5A7DPRGxMHEsqtDE05I2IciUV1ULiVaPT0jZR-Pomat2HF23WnoCPMhfGhlV62-9semGtfUvVr2a1l2XVWxyHR_YnZqPIemv7yMpLPXzDfVv_8PwEhXxQr5-d3h23qC8tQCVi5AFVTKFjYymvmZrkLE6VqQfaBEqEkayFgWRcM8tUw1IVRkw0o9DwgJm0LlMja7KB407CdIjmwpZNqLyPxJXErggizo7a6ZX5ekVQWfbUQ1BcsTXLi3T3IPjZH474uLNFmPfglBy571-CCZ0vw4IHqsSbgf4yzI2wGK5AfiQ7mbYHE8RmnuSPgw61LLI26nZI-sMiu5BkOXnWiPS7mSQFZNd98pqlxNXhwUbpmKKozjtFVAJx1LaWFoSYrr1zh4urcD-WtV6Dqfwl1-tAdGq4UsLgjl4g8pNx1DSaxwI1Cr1sFG9Ao1zMRHqOc1tqo5uUwWxPiRNBYkWQOBFsAP3q1XMcH3-83yzllHzT1QTd0K89N__dcw9mWnfXV8nV-c3lFszaJy6kcBumUBp6B6HRQOwWqkjgYdy6_wn06iVH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+strength-ductility+synergy+in+metallic+glasses+via+electric+current-enhanced+structural+fluctuations&rft.jtitle=International+journal+of+plasticity&rft.au=Ding%2C+Huaping&rft.au=Gong%2C+Pan&rft.au=Chen%2C+Wen&rft.au=Peng%2C+Zhen&rft.date=2023-10-01&rft.issn=0749-6419&rft.volume=169&rft.spage=103711&rft_id=info:doi/10.1016%2Fj.ijplas.2023.103711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2023_103711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon