Achieving strength-ductility synergy in metallic glasses via electric current-enhanced structural fluctuations
•Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced strain-hardening ability.•Electric currents construct a unique structural fluctuation featuring soft zones surrounded by hard zones.•Plausible mechanisms f...
Saved in:
Published in | International journal of plasticity Vol. 169; p. 103711 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced strain-hardening ability.•Electric currents construct a unique structural fluctuation featuring soft zones surrounded by hard zones.•Plausible mechanisms for such electric current-regulated plasticity in metallic glasses are proposed.
Structural applications of metallic glasses are limited by their room-temperature brittleness and strain-softening, associated with the extreme localization of plastic flow in shear bands. Herein, we alleviate this dilemma by the structural fluctuation induced by electric currents, achieving simultaneous improvement of strengths, compression plasticity, and strain hardening capacity. The electric current enhances the structural fluctuations at the atomic scale, introducing more soft zones while densifying their surroundings, which differs from previously reported rejuvenation strategies. This unique structural pattern featuring soft zones surrounded by hard zones leads to extensive sprouts and interactions of shear bands, capturing substantial atoms to participate in the deformation. The plausible mechanism behind the electric current-influenced dynamic evolution of amorphous clusters is proposed. Electric current introduces interatomic electrostatic forces between shell atoms of amorphous clusters through charge transfer. This force decreases the coordination of Zr- and Cu-centered clusters and increases the Al-centered icosahedra in the glassy matrix. Differential evolution of clusters under electric currents enhances atomic structural fluctuations and originates from the cohesion mechanism determined by electron distribution. These findings are suggestive of vanishing room-temperature brittleness and shed atomic-scale light on modulations of the structure and properties of metallic glasses by electric currents.
[Display omitted] |
---|---|
AbstractList | •Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced strain-hardening ability.•Electric currents construct a unique structural fluctuation featuring soft zones surrounded by hard zones.•Plausible mechanisms for such electric current-regulated plasticity in metallic glasses are proposed.
Structural applications of metallic glasses are limited by their room-temperature brittleness and strain-softening, associated with the extreme localization of plastic flow in shear bands. Herein, we alleviate this dilemma by the structural fluctuation induced by electric currents, achieving simultaneous improvement of strengths, compression plasticity, and strain hardening capacity. The electric current enhances the structural fluctuations at the atomic scale, introducing more soft zones while densifying their surroundings, which differs from previously reported rejuvenation strategies. This unique structural pattern featuring soft zones surrounded by hard zones leads to extensive sprouts and interactions of shear bands, capturing substantial atoms to participate in the deformation. The plausible mechanism behind the electric current-influenced dynamic evolution of amorphous clusters is proposed. Electric current introduces interatomic electrostatic forces between shell atoms of amorphous clusters through charge transfer. This force decreases the coordination of Zr- and Cu-centered clusters and increases the Al-centered icosahedra in the glassy matrix. Differential evolution of clusters under electric currents enhances atomic structural fluctuations and originates from the cohesion mechanism determined by electron distribution. These findings are suggestive of vanishing room-temperature brittleness and shed atomic-scale light on modulations of the structure and properties of metallic glasses by electric currents.
[Display omitted] |
ArticleNumber | 103711 |
Author | Gong, Pan Peng, Zhen Ding, Huaping Jin, Junsong Zhang, Mao Xie, Guoqiang Bu, Hengtong Deng, Lei Yao, Ke-fu Wang, Xinyun Tang, Xuefeng Chen, Wen Schroers, Jan |
Author_xml | – sequence: 1 givenname: Huaping orcidid: 0000-0003-2267-0227 surname: Ding fullname: Ding, Huaping organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Pan orcidid: 0000-0002-3833-8440 surname: Gong fullname: Gong, Pan email: pangong@hust.edu.cn organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Wen surname: Chen fullname: Chen, Wen organization: Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, 01003, United States – sequence: 4 givenname: Zhen surname: Peng fullname: Peng, Zhen organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 5 givenname: Hengtong surname: Bu fullname: Bu, Hengtong organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Mao surname: Zhang fullname: Zhang, Mao organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 7 givenname: Xuefeng surname: Tang fullname: Tang, Xuefeng organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 8 givenname: Junsong surname: Jin fullname: Jin, Junsong organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 9 givenname: Lei surname: Deng fullname: Deng, Lei email: denglei@hust.edu.cn organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 10 givenname: Guoqiang orcidid: 0000-0003-3396-7974 surname: Xie fullname: Xie, Guoqiang organization: School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 11 givenname: Xinyun surname: Wang fullname: Wang, Xinyun email: wangxy_hust@hust.edu.cn organization: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 12 givenname: Ke-fu surname: Yao fullname: Yao, Ke-fu organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 13 givenname: Jan surname: Schroers fullname: Schroers, Jan organization: Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, United States |
BookMark | eNqFkLtuwyAUQBlSqUnaP-jADzgFG5y4Q6Uo6kuK1KWdEYGLg0VwBCSS_7646dShnUBXnCPumaGJ7z0gdEfJghJa33cL2x2djIuSlFUeVUtKJ2hKlqwpakabazSLsSOE8FVFp8iv1d7C2foWxxTAt2lf6JNK1tk04Dh4CO2ArccHSNI5q3Cb5REiPluJwYFKIQ_VKWQ4FeD30ivQoyxbTkE6bNx4k8n2Pt6gKyNdhNufc44-n58-Nq_F9v3lbbPeFqoidSo017RkXDbEENXwldSmpGCo3rFaEUYVb4BTyvMTzWq-W9bMNJQbWSppFFHVHLGLV4U-xgBGHIM9yDAISsTYSXTi0kmMncSlU8YefmHKpu-fpyCt-w9-vMCQFztbCCIqC2MNG3ImoXv7t-ALJ32OZQ |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40200 crossref_primary_10_1007_s11665_023_09013_x crossref_primary_10_1016_j_mtcomm_2025_112044 crossref_primary_10_1080_15376494_2024_2362418 crossref_primary_10_1016_j_ijplas_2024_103926 crossref_primary_10_1016_j_msea_2025_147879 crossref_primary_10_1016_j_jmrt_2024_05_227 crossref_primary_10_1016_j_jmst_2024_04_081 crossref_primary_10_1016_j_jmrt_2023_12_175 crossref_primary_10_1007_s12598_023_02558_9 crossref_primary_10_1016_j_jnoncrysol_2024_122839 crossref_primary_10_1016_j_vacuum_2024_113423 crossref_primary_10_1088_2051_672X_ad3e94 crossref_primary_10_1016_j_ceramint_2025_01_099 crossref_primary_10_1016_j_vacuum_2023_112854 crossref_primary_10_1007_s40430_024_05371_2 crossref_primary_10_1016_j_intermet_2025_108727 crossref_primary_10_1016_j_vacuum_2024_113509 crossref_primary_10_3390_ma17092124 crossref_primary_10_1016_j_intermet_2024_108441 crossref_primary_10_1016_j_jallcom_2024_177721 crossref_primary_10_1016_j_msea_2024_146876 crossref_primary_10_1080_15376494_2024_2301731 crossref_primary_10_1016_j_surfin_2024_105380 crossref_primary_10_1080_00084433_2024_2428885 crossref_primary_10_1016_j_msea_2025_148058 crossref_primary_10_1080_21663831_2024_2343950 crossref_primary_10_1016_j_heliyon_2024_e35259 crossref_primary_10_1088_2053_1591_ad5cdc crossref_primary_10_1007_s11665_024_09171_6 crossref_primary_10_1007_s12540_024_01722_9 crossref_primary_10_1016_j_compositesb_2024_111689 crossref_primary_10_1080_15376494_2024_2362960 crossref_primary_10_1080_15376494_2024_2310204 crossref_primary_10_1007_s11665_024_09864_y crossref_primary_10_1016_j_synthmet_2024_117659 crossref_primary_10_1007_s10971_024_06439_0 crossref_primary_10_1016_j_istruc_2024_106633 crossref_primary_10_1016_j_compgeo_2024_106398 crossref_primary_10_1177_13506501241246845 crossref_primary_10_1016_j_istruc_2024_107483 crossref_primary_10_1063_5_0201673 crossref_primary_10_1038_s41598_024_59345_4 crossref_primary_10_1016_j_corsci_2024_112032 crossref_primary_10_1088_1402_4896_ad3389 crossref_primary_10_1016_j_triboint_2024_109691 crossref_primary_10_1177_09544062241274862 crossref_primary_10_1016_j_aej_2024_03_013 crossref_primary_10_1016_j_ijplas_2024_104112 crossref_primary_10_1016_j_cossms_2024_101190 crossref_primary_10_1016_j_jmrt_2024_06_015 crossref_primary_10_1016_j_heliyon_2024_e36489 crossref_primary_10_1016_j_intermet_2024_108226 crossref_primary_10_1016_j_intermet_2024_108622 crossref_primary_10_1016_j_jallcom_2025_178874 crossref_primary_10_1016_j_jmrt_2024_02_037 crossref_primary_10_1007_s11665_024_09962_x crossref_primary_10_1016_j_mtcomm_2024_110646 crossref_primary_10_1177_03019233241288983 crossref_primary_10_1002_pc_28916 crossref_primary_10_1515_ijmr_2024_0061 crossref_primary_10_1016_j_surfcoat_2024_131370 crossref_primary_10_1016_j_triboint_2024_110037 crossref_primary_10_1016_j_mtphys_2024_101382 crossref_primary_10_1016_j_jmrt_2025_02_006 crossref_primary_10_1103_PhysRevMaterials_8_046001 crossref_primary_10_1016_j_ijplas_2023_103873 crossref_primary_10_1016_j_jmrt_2024_07_082 crossref_primary_10_1142_S0218625X25500398 |
Cites_doi | 10.1103/PhysRevB.99.014208 10.1038/s41586-020-2016-3 10.1103/PhysRevB.99.014115 10.1016/j.jallcom.2015.11.033 10.1006/jcph.1995.1039 10.1063/1.4897439 10.1038/s41467-018-05682-8 10.1038/s41467-019-08954-z 10.1038/s41563-021-01114-z 10.1021/acs.nanolett.5b03045 10.1038/s41467-021-27661-2 10.1016/j.ijplas.2020.102845 10.1016/j.ijplas.2023.103530 10.1038/ncomms3083 10.1016/j.matt.2023.01.016 10.1016/j.ijplas.2020.102918 10.1016/j.mattod.2013.05.002 10.1038/s41586-019-1145-z 10.1016/j.actamat.2017.01.059 10.1016/j.ijplas.2021.103107 10.1016/j.mattod.2017.05.007 10.1016/j.ijplas.2020.102884 10.1016/j.actamat.2021.117116 10.1016/j.scriptamat.2015.09.038 10.1103/PhysRevB.103.L140107 10.1016/j.scriptamat.2009.08.008 10.1063/1.4820434 10.1016/j.actamat.2021.116952 10.1038/s41467-022-34333-2 10.1038/nmat4300 10.1016/j.msea.2019.02.074 10.1038/s41467-022-29821-4 10.1016/j.ijplas.2019.03.007 10.1103/PhysRevE.83.026704 10.1016/j.actamat.2019.04.022 10.1073/pnas.2213941119 10.1088/1361-648X/ab7fd8 10.1016/j.ijplas.2019.02.011 10.1016/j.ijplas.2015.05.006 10.1016/j.actamat.2017.05.057 10.1016/j.actamat.2019.02.033 10.1016/j.ijplas.2022.103305 10.1016/j.actamat.2020.08.077 10.1016/j.jallcom.2020.156724 10.1016/j.actamat.2020.06.063 10.1038/s41467-021-26858-9 10.1016/j.ijplas.2022.103232 10.1016/j.jallcom.2013.06.179 10.1016/j.scriptamat.2018.10.006 10.1016/j.ijplas.2019.09.005 10.1016/j.matdes.2015.05.066 10.1038/nature14674 10.1116/1.5141395 10.1016/j.pmatsci.2019.03.006 10.1016/j.jallcom.2020.154109 10.1107/S0021889813005190 10.1016/j.pmatsci.2011.01.004 10.1016/j.ijplas.2018.11.017 10.1016/j.physb.2021.413237 10.1007/s12598-021-01940-9 10.1016/j.jallcom.2017.09.068 10.1038/s41563-022-01327-w 10.1016/j.scriptamat.2019.11.006 10.1016/j.jmst.2020.11.074 10.1126/science.1186648 10.1016/j.jallcom.2021.160023 10.1038/srep17429 10.1016/j.compositesb.2021.109226 10.1016/j.ijplas.2022.103402 10.1016/j.msea.2020.140078 10.1016/j.jallcom.2015.03.179 10.1016/j.jmst.2022.01.038 10.1038/s41467-018-07930-3 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijplas.2023.103711 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
ExternalDocumentID | 10_1016_j_ijplas_2023_103711 S074964192300195X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABDPE ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 UNMZH VH1 WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-d5d1245a90f0c958adf21ef1db46c041c59e511545ad465b764f915fa2cafc0c3 |
IEDL.DBID | .~1 |
ISSN | 0749-6419 |
IngestDate | Tue Jul 01 01:37:17 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Tue Dec 03 03:45:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural fluctuation Atomic structure Electric current Metallic glass Strength-ductility synergy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-d5d1245a90f0c958adf21ef1db46c041c59e511545ad465b764f915fa2cafc0c3 |
ORCID | 0000-0003-2267-0227 0000-0003-3396-7974 0000-0002-3833-8440 |
ParticipantIDs | crossref_primary_10_1016_j_ijplas_2023_103711 crossref_citationtrail_10_1016_j_ijplas_2023_103711 elsevier_sciencedirect_doi_10_1016_j_ijplas_2023_103711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of plasticity |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Spieckermann, Sopu, Soprunyuk, Kerber, Bednarcik, Schokel, Rezvan, Ketov, Sarac, Schafler, Eckert (bib0052) 2022; 13 Ding, Zhao, Jin, Deng, Gong, Wang (bib0012) 2021; 850 Adachi, Todaka, Yokoyama, Umemoto (bib0001) 2014; 105 Bao, Yang, Chen, Xiang, Zhou, Xie (bib0004) 2023; 162 Juhás, Davis, Farrow, Billinge (bib0027) 2013; 46 Zhang, Huang, Zhang, Deng, Gong, Wang (bib0076) 2022; 34 Das, Dufresne, Maaß (bib0009) 2020; 196 Li, Zhao, Lu, Hirata, Wen, Bai, Chen, Schroers, Liu, Wang (bib0035) 2019; 569 Wei, Yang, Jiang, Wei, Wang, Dai (bib0062) 2019; 99 Adjaoud, Albe (bib0002) 2019; 168 Bokas, Zhao, Morgan, Szlufarska (bib0006) 2017; 728 Yuan, Şopu (bib0071) 2021; 103 Zhu, Ruan, Sun, Guo, Lu (bib0081) 2021; 137 Ketov, Sun, Nachum, Lu, Checchi, Beraldin, Bai, Wang, Louzguine-Luzgin, Carpenter, Greer (bib0029) 2015; 524 Yiu, Hsueh, Shek (bib0068) 2016; 658 Hu, Zhang, Cheng, Wang, Zhang, Li (bib0025) 2020; 191 Jiang, Gan, Huang, Xue, Ning, Sun, Ngan (bib0026) 2020; 125 Yang, Liu, Wu, Wang, Wang, Ruan, Lu (bib0066) 2019; 161 Sha, Qu, Liu, Wang, Gao (bib0048) 2015; 15 Yang, Liu, Wang, Wei, Xue, Dun, Zhao, Chang, Shen (bib0067) 2015; 82 Zhang, Duan, Wada, Kato, Pelletier, Crespo, Pineda, Qiao (bib0074) 2021; 83 Tao, Li, Liu, Pineda, Song, Qiao (bib0058) 2022; 154 Tao, Cullen (bib0057) 2010; 328 Yu, Wang, Samwer (bib0069) 2013; 16 Koumpouras, Larsson (bib0032) 2020; 32 Wang (bib0060) 2019; 106 Schawe, Löffler (bib0046) 2019; 10 Cheng, Hao, Pelletier, Pineda, Qiao (bib0008) 2021; 146 Fu, Liu, Ge, Wang, Ying, Wu, Yan, Zhu, Ke, Luan, Ren, Zuo, Wu, Peng, Liu, Wang, Feng, Lan (bib0019) 2022; 125 Duan, Zhang, Qiao, Wang, Yang, Wada, Kato, Pelletier, Pineda, Crespo (bib0016) 2022; 129 Ketkaew, Chen, Wang, Datye, Fan, Pereira, Schwarz, Liu, Yamada, Dmowski (bib0028) 2018; 9 Tang, Xin, Xu, Miskovic, Sha, Quadir, Ringer, Nomoto, Birbilis, Ferry (bib0053) 2019; 10 Hong, Wang, Li, Zhong, Chen, Zhang, Cao, Ritchie, Wang (bib0024) 2023; 6 Kosiba, Scudino, Kobold, Kühn, Greer, Eckert, Pauly (bib0030) 2017; 127 Zhang, Wang, Li (bib0073) 2021; 876 Li, Zhu, Hong, Zheng, Wang, Wang, Zhang (bib0036) 2022; 13 Plimpton (bib0044) 1995; 117 Yuan, Branicio (bib0070) 2020; 134 Liu, Wang, Ge, Wu, Ke, Li, Sun, Feng, Wu, Wang, Hahn, Ren, Almer, Wang, Lan (bib0037) 2020; 200 Rao, Zhang, Kang, Yu, Jiang (bib0045) 2019; 115 Zhao, Xie, Xu, Zhou (bib0079) 2020; 825 Antipas (bib0003) 2013; 578 Gong, Yin, Jamili-Shirvan, Ding, Wang, Jin (bib0022) 2020; 797 Ding, Bao, Jamili-Shirvan, Jin, Deng, Yao, Gong, Wang (bib0010) 2021; 210 Yuan, Kim, Zhou, Chang, Zhu, Nagaoka, Yang, Pham, Osher, Chen, Ercius, Schmid, Miao (bib0072) 2022; 21 Han, Yang, Lan, Sun (bib0023) 2021; 619 Zhang, Wang, Pineda, Yang, Qiao (bib0075) 2022; 157 Wei, Yang, Bednarcik, Kaban, Shuleshova, Meyer, Busch (bib0063) 2013; 4 Ma (bib0039) 2015; 14 Belhadi, Decremps, Pascarelli, Cormier, Le Godec, Gorsse, Baudelet, Marini, Garbarino (bib0005) 2013; 103 Tang, Yao, Wilkerson (bib0054) 2021; 137 Pan, Ivanov, Zhou, Li, Greer (bib0041) 2020; 578 Kosiba, Şopu, Scudino, Zhang, Bednarcik, Pauly (bib0031) 2019; 119 Lekka, Evangelakis (bib0033) 2009; 61 Ma, Jiang, Ding, Zhang, Li, Zu (bib0040) 2019; 751 Chang, Zhang, Zhao, Li, Luo, Li, Bai (bib0007) 2022; 21 Scudino, Stoica, Kaban, Prashanth, Vaughan, Eckert (bib0047) 2015; 639 Tang, Zhou, Lu, Wang, Cao, Zhang, Yang, Jiang (bib0056) 2022; 13 Djurabekova, Parviainen, Pohjonen, Nordlund (bib0014) 2011; 83 Zhao, Li, Hwang, Wang (bib0080) 2017; 134 Şopu, Scudino, Bian, Gammer, Eckert (bib0051) 2020; 178 Zhang, Wang, Liu, Reddy, Wang, Chen, Song (bib0078) 2022; 152 Luo, Wang, Dong, Su, Guo, Xu, Wang, Wang, Yu, Ritchie, Guo, Fu (bib0038) 2019; 171 Gao, Zhang, Zhang, Yang, Huang, Liu, Wang, Li, Li, Li, Liu (bib0021) 2021; 224 Fadhil, Su, Glazyrin, Jiang, Wang, Cao, Zhang, Gao, Jiang (bib0018) 2021; 216 Gan, Jiang, Huang, Yin, Sun, Ngan (bib0020) 2019; 119 Li, Shen, Luo, An, Gao, Xiao, Zou (bib0034) 2023 Wang, Li, Xu (bib0061) 2016; 113 Peng, Luo, Li, Li, Luan, Gu, Wu, Yao (bib0043) 2022; 41 Ding, Bao, Zhang, Jin, Deng, Yao, Solouk, Gong, Wang (bib0011) 2023; 2 Wu, Bei, Wang, Lu, George, Gao (bib0064) 2015; 71 Ding, Ma, Asta, Ritchie (bib0013) 2015; 5 Du, Liu, Zeng, Fan, Wang, Wu, Chen, Lu (bib0015) 2019; 99 Shang, Wang, Greer, Guan (bib0049) 2021; 213 Wang, Liu, Ye, Liu, Wang, Liu, Lu, Yang (bib0059) 2017; 20 Egami (bib0017) 2011; 56 Wu, Cao, Yao, Zhang, Wang, Liu, Li, Fan, Liu, Wang, Wang, Zhu, Jiang, Kontis, Raabe, Gault, Lu (bib0065) 2021; 12 Zhang, Ding, Ma (bib0077) 2022; 119 Pei, Chen, Zhao, Li, Cui, Sun, Hu, Lan, Hahn, Feng (bib0042) 2022; 26 Shard (bib0050) 2020; 38 Yang (10.1016/j.ijplas.2023.103711_bib0067) 2015; 82 Adachi (10.1016/j.ijplas.2023.103711_bib0001) 2014; 105 Ketkaew (10.1016/j.ijplas.2023.103711_bib0028) 2018; 9 Duan (10.1016/j.ijplas.2023.103711_bib0016) 2022; 129 Liu (10.1016/j.ijplas.2023.103711_bib0037) 2020; 200 Adjaoud (10.1016/j.ijplas.2023.103711_bib0002) 2019; 168 Zhang (10.1016/j.ijplas.2023.103711_bib0073) 2021; 876 Chang (10.1016/j.ijplas.2023.103711_bib0007) 2022; 21 Das (10.1016/j.ijplas.2023.103711_bib0009) 2020; 196 Gan (10.1016/j.ijplas.2023.103711_bib0020) 2019; 119 Li (10.1016/j.ijplas.2023.103711_bib0034) 2023 Wang (10.1016/j.ijplas.2023.103711_bib0060) 2019; 106 Wei (10.1016/j.ijplas.2023.103711_bib0063) 2013; 4 Yuan (10.1016/j.ijplas.2023.103711_bib0070) 2020; 134 Tao (10.1016/j.ijplas.2023.103711_bib0057) 2010; 328 Tang (10.1016/j.ijplas.2023.103711_bib0056) 2022; 13 Luo (10.1016/j.ijplas.2023.103711_bib0038) 2019; 171 Şopu (10.1016/j.ijplas.2023.103711_bib0051) 2020; 178 Li (10.1016/j.ijplas.2023.103711_bib0036) 2022; 13 Ketov (10.1016/j.ijplas.2023.103711_bib0029) 2015; 524 Du (10.1016/j.ijplas.2023.103711_bib0015) 2019; 99 Fu (10.1016/j.ijplas.2023.103711_bib0019) 2022; 125 Bokas (10.1016/j.ijplas.2023.103711_bib0006) 2017; 728 Shard (10.1016/j.ijplas.2023.103711_bib0050) 2020; 38 Sha (10.1016/j.ijplas.2023.103711_bib0048) 2015; 15 Zhang (10.1016/j.ijplas.2023.103711_bib0076) 2022; 34 Zhao (10.1016/j.ijplas.2023.103711_bib0080) 2017; 134 Wang (10.1016/j.ijplas.2023.103711_bib0059) 2017; 20 Ding (10.1016/j.ijplas.2023.103711_bib0011) 2023; 2 Hu (10.1016/j.ijplas.2023.103711_bib0025) 2020; 191 Zhang (10.1016/j.ijplas.2023.103711_bib0077) 2022; 119 Gao (10.1016/j.ijplas.2023.103711_bib0021) 2021; 224 Peng (10.1016/j.ijplas.2023.103711_bib0043) 2022; 41 Jiang (10.1016/j.ijplas.2023.103711_bib0026) 2020; 125 Zhu (10.1016/j.ijplas.2023.103711_bib0081) 2021; 137 Ding (10.1016/j.ijplas.2023.103711_bib0013) 2015; 5 Belhadi (10.1016/j.ijplas.2023.103711_bib0005) 2013; 103 Tang (10.1016/j.ijplas.2023.103711_bib0053) 2019; 10 Han (10.1016/j.ijplas.2023.103711_bib0023) 2021; 619 Bao (10.1016/j.ijplas.2023.103711_bib0004) 2023; 162 Zhao (10.1016/j.ijplas.2023.103711_bib0079) 2020; 825 Tang (10.1016/j.ijplas.2023.103711_bib0054) 2021; 137 Kosiba (10.1016/j.ijplas.2023.103711_bib0031) 2019; 119 Yu (10.1016/j.ijplas.2023.103711_bib0069) 2013; 16 Juhás (10.1016/j.ijplas.2023.103711_bib0027) 2013; 46 Egami (10.1016/j.ijplas.2023.103711_bib0017) 2011; 56 Lekka (10.1016/j.ijplas.2023.103711_bib0033) 2009; 61 Yiu (10.1016/j.ijplas.2023.103711_bib0068) 2016; 658 Yuan (10.1016/j.ijplas.2023.103711_bib0072) 2022; 21 Ding (10.1016/j.ijplas.2023.103711_bib0012) 2021; 850 Pan (10.1016/j.ijplas.2023.103711_bib0041) 2020; 578 Shang (10.1016/j.ijplas.2023.103711_bib0049) 2021; 213 Djurabekova (10.1016/j.ijplas.2023.103711_bib0014) 2011; 83 Zhang (10.1016/j.ijplas.2023.103711_bib0074) 2021; 83 Zhang (10.1016/j.ijplas.2023.103711_bib0078) 2022; 152 Pei (10.1016/j.ijplas.2023.103711_bib0042) 2022; 26 Zhang (10.1016/j.ijplas.2023.103711_bib0075) 2022; 157 Yuan (10.1016/j.ijplas.2023.103711_bib0071) 2021; 103 Ma (10.1016/j.ijplas.2023.103711_bib0039) 2015; 14 Spieckermann (10.1016/j.ijplas.2023.103711_bib0052) 2022; 13 Fadhil (10.1016/j.ijplas.2023.103711_bib0018) 2021; 216 Yang (10.1016/j.ijplas.2023.103711_bib0066) 2019; 161 Cheng (10.1016/j.ijplas.2023.103711_bib0008) 2021; 146 Rao (10.1016/j.ijplas.2023.103711_bib0045) 2019; 115 Schawe (10.1016/j.ijplas.2023.103711_bib0046) 2019; 10 Wei (10.1016/j.ijplas.2023.103711_bib0062) 2019; 99 Ding (10.1016/j.ijplas.2023.103711_bib0010) 2021; 210 Wu (10.1016/j.ijplas.2023.103711_bib0064) 2015; 71 Koumpouras (10.1016/j.ijplas.2023.103711_bib0032) 2020; 32 Antipas (10.1016/j.ijplas.2023.103711_bib0003) 2013; 578 Kosiba (10.1016/j.ijplas.2023.103711_bib0030) 2017; 127 Wu (10.1016/j.ijplas.2023.103711_bib0065) 2021; 12 Tao (10.1016/j.ijplas.2023.103711_bib0058) 2022; 154 Ma (10.1016/j.ijplas.2023.103711_bib0040) 2019; 751 Hong (10.1016/j.ijplas.2023.103711_bib0024) 2023; 6 Li (10.1016/j.ijplas.2023.103711_bib0035) 2019; 569 Plimpton (10.1016/j.ijplas.2023.103711_bib0044) 1995; 117 Gong (10.1016/j.ijplas.2023.103711_bib0022) 2020; 797 Scudino (10.1016/j.ijplas.2023.103711_bib0047) 2015; 639 Wang (10.1016/j.ijplas.2023.103711_bib0061) 2016; 113 |
References_xml | – year: 2023 ident: bib0034 article-title: Harnessing dislocation motion using an electric field publication-title: Nat. Mater. – volume: 20 start-page: 293 year: 2017 end-page: 300 ident: bib0059 article-title: Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses publication-title: Mater. Today – volume: 14 start-page: 547 year: 2015 end-page: 552 ident: bib0039 article-title: Tuning order in disorder publication-title: Nat. Mater. – volume: 213 year: 2021 ident: bib0049 article-title: Atomistic modeling of thermal-cycling rejuvenation in metallic glasses publication-title: Acta Mater – volume: 71 start-page: 136 year: 2015 end-page: 145 ident: bib0064 article-title: Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass publication-title: Int. J. Plast. – volume: 578 start-page: 565 year: 2013 end-page: 570 ident: bib0003 article-title: Molecular orbital interactions in glass-forming Zr publication-title: J. Alloys Compd. – volume: 129 year: 2022 ident: bib0016 article-title: Intrinsic correlation between the fraction of liquidlike zones and the beta relaxation in high-entropy metallic glasses publication-title: Phys. Rev. Lett. – volume: 751 start-page: 128 year: 2019 end-page: 132 ident: bib0040 article-title: Torsional behaviors in Zr-based bulk metallic glass with high stored energy structure publication-title: Mat. Sci. Eng. A-Struct. – volume: 127 start-page: 416 year: 2017 end-page: 425 ident: bib0030 article-title: Transient nucleation and microstructural design in flash-annealed bulk metallic glasses publication-title: Acta Mater – volume: 876 year: 2021 ident: bib0073 article-title: From brittle to ductile transition: the influence of oxygen on mechanical properties of metallic glasses publication-title: J. Alloys Compd. – volume: 41 start-page: 2016 year: 2022 end-page: 2020 ident: bib0043 article-title: Microstructure and mechanical properties of lightweight AlCrTiV publication-title: Rare Metals – volume: 105 year: 2014 ident: bib0001 article-title: Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation publication-title: Appl. Phys. Lett. – volume: 524 start-page: 200 year: 2015 end-page: 203 ident: bib0029 article-title: Rejuvenation of metallic glasses by non-affine thermal strain publication-title: Nature – volume: 137 year: 2021 ident: bib0054 article-title: A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses publication-title: Int. J. Plast. – volume: 13 start-page: 127 year: 2022 ident: bib0052 article-title: Structure-dynamics relationships in cryogenically deformed bulk metallic glass publication-title: Nat. Commun. – volume: 106 year: 2019 ident: bib0060 article-title: Dynamic relaxations and relaxation-property relationships in metallic glasses publication-title: Prog. Mater Sci. – volume: 125 start-page: 145 year: 2022 end-page: 156 ident: bib0019 article-title: In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass publication-title: J. Mater. Sci. Technol. – volume: 119 start-page: 1 year: 2019 end-page: 20 ident: bib0020 article-title: Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu-Zr based metallic-glass microwires, molecular dynamics simulations, and modelling publication-title: Int. J. Plast. – volume: 10 start-page: 1003 year: 2019 ident: bib0053 article-title: Precipitation strengthening in an ultralight magnesium alloy publication-title: Nat. Commun. – volume: 82 start-page: 126 year: 2015 end-page: 129 ident: bib0067 article-title: Electronic structure of Cu publication-title: Mater. Design – volume: 113 start-page: 10 year: 2016 end-page: 13 ident: bib0061 article-title: Toughen and harden metallic glass through designing statistical heterogeneity publication-title: Scripta Mater – volume: 38 year: 2020 ident: bib0050 article-title: Practical guides for x-ray photoelectron spectroscopy: Quantitative XPS publication-title: J. Vac. Sci. Technol. A – volume: 134 year: 2020 ident: bib0070 article-title: Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses publication-title: Int. J. Plast. – volume: 21 start-page: 95 year: 2022 end-page: 102 ident: bib0072 article-title: Three-dimensional atomic packing in amorphous solids with liquid-like structure publication-title: Nat. Mater. – volume: 115 start-page: 238 year: 2019 end-page: 267 ident: bib0045 article-title: A meso-mechanical constitutive model of bulk metallic glass composites considering the local failure of matrix publication-title: Int. J. Plast. – volume: 137 year: 2021 ident: bib0081 article-title: Constitutive modeling of size-dependent deformation behavior in nano-dual-phase glass-crystal alloys publication-title: Int. J. Plast. – volume: 152 year: 2022 ident: bib0078 article-title: Deformation behavior of a nanoporous metallic glass at room temperature publication-title: Int. J. Plast. – volume: 196 start-page: 723 year: 2020 end-page: 732 ident: bib0009 article-title: Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass publication-title: Acta Mater. – volume: 12 start-page: 6582 year: 2021 ident: bib0065 article-title: Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing publication-title: Nat. Commun. – volume: 56 start-page: 637 year: 2011 end-page: 653 ident: bib0017 article-title: Atomic level stresses publication-title: Prog. Mater. Sci. – volume: 639 start-page: 465 year: 2015 end-page: 469 ident: bib0047 article-title: Length scale-dependent structural relaxation in Zr publication-title: J. Alloys Compd. – volume: 15 start-page: 7010 year: 2015 end-page: 7015 ident: bib0048 article-title: Cyclic Deformation in Metallic Glasses publication-title: Nano Lett – volume: 797 year: 2020 ident: bib0022 article-title: Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass publication-title: Mat. Sci. Eng. A-Struct. – volume: 99 year: 2019 ident: bib0015 article-title: Polyamorphic transition in a transition metal based metallic glass under high pressure publication-title: Phys. Rev. B – volume: 210 year: 2021 ident: bib0010 article-title: Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles publication-title: Mater. Design – volume: 569 start-page: 99 year: 2019 end-page: 103 ident: bib0035 article-title: High-temperature bulk metallic glasses developed by combinatorial methods publication-title: Nature – volume: 6 start-page: 1 year: 2023 end-page: 13 ident: bib0024 article-title: Structural heterogeneity governing deformability of metallic glass publication-title: Matter – volume: 224 year: 2021 ident: bib0021 article-title: Large tensile plasticity in Zr-based metallic glass/stainless steel interpenetrating-phase composites prepared by high pressure die casting publication-title: Compos. Part B: Eng. – volume: 728 start-page: 1110 year: 2017 end-page: 1115 ident: bib0006 article-title: Increased stability of CuZrAl metallic glasses prepared by physical vapor deposition publication-title: J. Alloys Compd. – volume: 99 year: 2019 ident: bib0062 article-title: Revisiting the structure–property relationship of metallic glasses: common spatial correlation revealed as a hidden rule publication-title: Phys. Rev. B – volume: 154 year: 2022 ident: bib0058 article-title: Unraveling the microstructural heterogeneity and plasticity of Zr publication-title: Int. J. Plast. – volume: 32 year: 2020 ident: bib0032 article-title: Distinguishing between chemical bonding and physical binding using electron localization function (ELF) publication-title: J. Phys. Condens. Mat. – volume: 13 start-page: 6503 year: 2022 ident: bib0036 article-title: Revealing the pulse-induced electroplasticity by decoupling electron wind force publication-title: Nat. Commun. – volume: 162 year: 2023 ident: bib0004 article-title: Strengthening and toughening of Cu matrix composites reinforced by metallic glass particles with variable size publication-title: Int. J. Plast. – volume: 119 start-page: 156 year: 2019 end-page: 170 ident: bib0031 article-title: Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding publication-title: Int. J. Plast. – volume: 328 start-page: 736 year: 2010 end-page: 740 ident: bib0057 article-title: Visualizing the electron scattering force in nanostructures publication-title: Science – volume: 16 start-page: 183 year: 2013 end-page: 191 ident: bib0069 article-title: The β relaxation in metallic glasses: an overview publication-title: Mater. Today – volume: 619 year: 2021 ident: bib0023 article-title: Al addition on the short and medium range order of CuZrAl metallic glasses publication-title: Physica B – volume: 134 start-page: 104 year: 2017 end-page: 115 ident: bib0080 article-title: Influence of nanoscale structural heterogeneity on shear banding in metallic glasses publication-title: Acta Mater – volume: 103 year: 2013 ident: bib0005 article-title: Polyamorphism in cerium based bulk metallic glasses: electronic and structural properties under pressure and temperature by X-ray absorption techniques publication-title: Appl. Phys. Lett. – volume: 10 start-page: 1337 year: 2019 ident: bib0046 article-title: Existence of multiple critical cooling rates which generate different types of monolithic metallic glass publication-title: Nat. Commun. – volume: 13 start-page: 2120 year: 2022 ident: bib0056 article-title: Extra plasticity governed by shear band deflection in gradient metallic glasses publication-title: Nat Commun – volume: 578 start-page: 559 year: 2020 end-page: 562 ident: bib0041 article-title: Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass publication-title: Nature – volume: 161 start-page: 62 year: 2019 end-page: 65 ident: bib0066 article-title: Elastic modulus change and its relation with glass-forming ability and plasticity in bulk metallic glasses publication-title: Scripta Mater – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib0044 article-title: Fast Parallel Algorithms for Short-Range Molecular Dynamics publication-title: J. Comput. Phys. – volume: 103 year: 2021 ident: bib0071 article-title: Origin of strain hardening in monolithic metallic glasses publication-title: Phys. Rev. B – volume: 5 start-page: 17429 year: 2015 ident: bib0013 article-title: Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids publication-title: Sci. Rep. – volume: 46 start-page: 560 year: 2013 end-page: 566 ident: bib0027 article-title: Pdfgetx3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions publication-title: J. Appl. Crystallogr. – volume: 216 year: 2021 ident: bib0018 article-title: Pressure-induced atomic packing change in Pd publication-title: Acta Mater – volume: 125 start-page: 52 year: 2020 end-page: 62 ident: bib0026 article-title: Stochastic deformation and shear transformation zones of the glassy matrix in CuZr-based metallic-glass composites publication-title: Int. J. Plast. – volume: 157 year: 2022 ident: bib0075 article-title: Achieving structural rejuvenation in metallic glass by modulating β relaxation intensity via easy-to-operate mechanical cycling publication-title: Int. J. Plast. – volume: 61 start-page: 974 year: 2009 end-page: 977 ident: bib0033 article-title: Bonding characteristics and strengthening of CuZr fundamental clusters upon small Al additions from density functional theory calculations publication-title: Scripta Mater – volume: 21 start-page: 1240 year: 2022 end-page: 1245 ident: bib0007 article-title: Liquid-like atoms in dense-packed solid glasses publication-title: Nat. Mater. – volume: 825 year: 2020 ident: bib0079 article-title: Structural evolution and energy landscape of Zr publication-title: J. Alloys Compd. – volume: 850 year: 2021 ident: bib0012 article-title: Densification mechanism of Zr-based bulk metallic glass prepared by two-step spark plasma sintering publication-title: J. Alloys Compd. – volume: 83 start-page: 248 year: 2021 end-page: 255 ident: bib0074 article-title: Dynamic mechanical relaxation behavior of Zr publication-title: J. Mater. Sci. Technol. – volume: 83 year: 2011 ident: bib0014 article-title: Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm publication-title: Phys. Rev. E – volume: 200 start-page: 42 year: 2020 end-page: 55 ident: bib0037 article-title: Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass publication-title: Acta Mater – volume: 191 year: 2020 ident: bib0025 article-title: A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications publication-title: Mater. Design – volume: 4 start-page: 2083 year: 2013 ident: bib0063 article-title: Liquid-liquid transition in a strong bulk metallic glass-forming liquid publication-title: Nat. Commun. – volume: 2 year: 2023 ident: bib0011 article-title: Novel experimental strategy towards temperature inhomogeneity during spark plasma sintering of metallic glasses publication-title: Adv. Powder Mater. – volume: 9 start-page: 1 year: 2018 end-page: 7 ident: bib0028 article-title: Mechanical glass transition revealed by the fracture toughness of metallic glasses publication-title: Nat. Commun. – volume: 146 year: 2021 ident: bib0008 article-title: Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass publication-title: Int. J. Plast. – volume: 658 start-page: 795 year: 2016 end-page: 799 ident: bib0068 article-title: Electroplastic forming in a Fe-based metallic glass ribbon publication-title: J. Alloys Compd. – volume: 34 year: 2022 ident: bib0076 article-title: Influence of oxidation on structure, performance, and application of metallic glasses publication-title: Adv. Mater. – volume: 26 year: 2022 ident: bib0042 article-title: Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance publication-title: Adv. Mater. – volume: 168 start-page: 393 year: 2019 end-page: 400 ident: bib0002 article-title: Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses publication-title: Acta Mater – volume: 178 start-page: 57 year: 2020 end-page: 61 ident: bib0051 article-title: Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses publication-title: Scripta Mater – volume: 171 start-page: 216 year: 2019 end-page: 230 ident: bib0038 article-title: Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying publication-title: Acta Mater – volume: 119 year: 2022 ident: bib0077 article-title: Shear transformations in metallic glasses without excessive and predefinable defects publication-title: P. Natl. Acad. Sci. U.S.A. – volume: 99 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0015 article-title: Polyamorphic transition in a transition metal based metallic glass under high pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.014208 – volume: 578 start-page: 559 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0041 article-title: Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass publication-title: Nature doi: 10.1038/s41586-020-2016-3 – volume: 99 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0062 article-title: Revisiting the structure–property relationship of metallic glasses: common spatial correlation revealed as a hidden rule publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.014115 – volume: 658 start-page: 795 year: 2016 ident: 10.1016/j.ijplas.2023.103711_bib0068 article-title: Electroplastic forming in a Fe-based metallic glass ribbon publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.11.033 – volume: 117 start-page: 1 year: 1995 ident: 10.1016/j.ijplas.2023.103711_bib0044 article-title: Fast Parallel Algorithms for Short-Range Molecular Dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 105 year: 2014 ident: 10.1016/j.ijplas.2023.103711_bib0001 article-title: Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4897439 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.ijplas.2023.103711_bib0028 article-title: Mechanical glass transition revealed by the fracture toughness of metallic glasses publication-title: Nat. Commun. doi: 10.1038/s41467-018-05682-8 – volume: 10 start-page: 1003 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0053 article-title: Precipitation strengthening in an ultralight magnesium alloy publication-title: Nat. Commun. doi: 10.1038/s41467-019-08954-z – volume: 21 start-page: 95 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0072 article-title: Three-dimensional atomic packing in amorphous solids with liquid-like structure publication-title: Nat. Mater. doi: 10.1038/s41563-021-01114-z – volume: 15 start-page: 7010 year: 2015 ident: 10.1016/j.ijplas.2023.103711_bib0048 article-title: Cyclic Deformation in Metallic Glasses publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b03045 – volume: 13 start-page: 127 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0052 article-title: Structure-dynamics relationships in cryogenically deformed bulk metallic glass publication-title: Nat. Commun. doi: 10.1038/s41467-021-27661-2 – volume: 191 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0025 article-title: A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications publication-title: Mater. Design – volume: 134 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0070 article-title: Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102845 – volume: 162 year: 2023 ident: 10.1016/j.ijplas.2023.103711_bib0004 article-title: Strengthening and toughening of Cu matrix composites reinforced by metallic glass particles with variable size publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103530 – volume: 4 start-page: 2083 year: 2013 ident: 10.1016/j.ijplas.2023.103711_bib0063 article-title: Liquid-liquid transition in a strong bulk metallic glass-forming liquid publication-title: Nat. Commun. doi: 10.1038/ncomms3083 – volume: 6 start-page: 1 year: 2023 ident: 10.1016/j.ijplas.2023.103711_bib0024 article-title: Structural heterogeneity governing deformability of metallic glass publication-title: Matter doi: 10.1016/j.matt.2023.01.016 – volume: 137 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0081 article-title: Constitutive modeling of size-dependent deformation behavior in nano-dual-phase glass-crystal alloys publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102918 – volume: 16 start-page: 183 year: 2013 ident: 10.1016/j.ijplas.2023.103711_bib0069 article-title: The β relaxation in metallic glasses: an overview publication-title: Mater. Today doi: 10.1016/j.mattod.2013.05.002 – volume: 569 start-page: 99 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0035 article-title: High-temperature bulk metallic glasses developed by combinatorial methods publication-title: Nature doi: 10.1038/s41586-019-1145-z – volume: 127 start-page: 416 year: 2017 ident: 10.1016/j.ijplas.2023.103711_bib0030 article-title: Transient nucleation and microstructural design in flash-annealed bulk metallic glasses publication-title: Acta Mater doi: 10.1016/j.actamat.2017.01.059 – volume: 146 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0008 article-title: Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2021.103107 – volume: 20 start-page: 293 year: 2017 ident: 10.1016/j.ijplas.2023.103711_bib0059 article-title: Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses publication-title: Mater. Today doi: 10.1016/j.mattod.2017.05.007 – volume: 137 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0054 article-title: A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102884 – volume: 216 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0018 article-title: Pressure-induced atomic packing change in Pd37Ni37S26 metallic glass publication-title: Acta Mater doi: 10.1016/j.actamat.2021.117116 – volume: 113 start-page: 10 year: 2016 ident: 10.1016/j.ijplas.2023.103711_bib0061 article-title: Toughen and harden metallic glass through designing statistical heterogeneity publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2015.09.038 – volume: 103 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0071 article-title: Origin of strain hardening in monolithic metallic glasses publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.L140107 – volume: 61 start-page: 974 year: 2009 ident: 10.1016/j.ijplas.2023.103711_bib0033 article-title: Bonding characteristics and strengthening of CuZr fundamental clusters upon small Al additions from density functional theory calculations publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2009.08.008 – volume: 103 year: 2013 ident: 10.1016/j.ijplas.2023.103711_bib0005 article-title: Polyamorphism in cerium based bulk metallic glasses: electronic and structural properties under pressure and temperature by X-ray absorption techniques publication-title: Appl. Phys. Lett. doi: 10.1063/1.4820434 – volume: 213 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0049 article-title: Atomistic modeling of thermal-cycling rejuvenation in metallic glasses publication-title: Acta Mater doi: 10.1016/j.actamat.2021.116952 – volume: 13 start-page: 6503 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0036 article-title: Revealing the pulse-induced electroplasticity by decoupling electron wind force publication-title: Nat. Commun. doi: 10.1038/s41467-022-34333-2 – volume: 14 start-page: 547 year: 2015 ident: 10.1016/j.ijplas.2023.103711_bib0039 article-title: Tuning order in disorder publication-title: Nat. Mater. doi: 10.1038/nmat4300 – volume: 751 start-page: 128 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0040 article-title: Torsional behaviors in Zr-based bulk metallic glass with high stored energy structure publication-title: Mat. Sci. Eng. A-Struct. doi: 10.1016/j.msea.2019.02.074 – volume: 13 start-page: 2120 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0056 article-title: Extra plasticity governed by shear band deflection in gradient metallic glasses publication-title: Nat Commun doi: 10.1038/s41467-022-29821-4 – volume: 119 start-page: 156 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0031 article-title: Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.03.007 – volume: 83 year: 2011 ident: 10.1016/j.ijplas.2023.103711_bib0014 article-title: Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.026704 – volume: 171 start-page: 216 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0038 article-title: Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying publication-title: Acta Mater doi: 10.1016/j.actamat.2019.04.022 – volume: 119 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0077 article-title: Shear transformations in metallic glasses without excessive and predefinable defects publication-title: P. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2213941119 – volume: 32 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0032 article-title: Distinguishing between chemical bonding and physical binding using electron localization function (ELF) publication-title: J. Phys. Condens. Mat. doi: 10.1088/1361-648X/ab7fd8 – volume: 119 start-page: 1 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0020 article-title: Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu-Zr based metallic-glass microwires, molecular dynamics simulations, and modelling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.02.011 – volume: 71 start-page: 136 year: 2015 ident: 10.1016/j.ijplas.2023.103711_bib0064 article-title: Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2015.05.006 – volume: 134 start-page: 104 year: 2017 ident: 10.1016/j.ijplas.2023.103711_bib0080 article-title: Influence of nanoscale structural heterogeneity on shear banding in metallic glasses publication-title: Acta Mater doi: 10.1016/j.actamat.2017.05.057 – volume: 168 start-page: 393 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0002 article-title: Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses publication-title: Acta Mater doi: 10.1016/j.actamat.2019.02.033 – volume: 154 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0058 article-title: Unraveling the microstructural heterogeneity and plasticity of Zr50Cu40Al10 bulk metallic glass by nanoindentation publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103305 – volume: 200 start-page: 42 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0037 article-title: Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass publication-title: Acta Mater doi: 10.1016/j.actamat.2020.08.077 – volume: 850 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0012 article-title: Densification mechanism of Zr-based bulk metallic glass prepared by two-step spark plasma sintering publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156724 – volume: 196 start-page: 723 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0009 article-title: Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.06.063 – volume: 12 start-page: 6582 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0065 article-title: Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing publication-title: Nat. Commun. doi: 10.1038/s41467-021-26858-9 – volume: 152 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0078 article-title: Deformation behavior of a nanoporous metallic glass at room temperature publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103232 – volume: 578 start-page: 565 year: 2013 ident: 10.1016/j.ijplas.2023.103711_bib0003 article-title: Molecular orbital interactions in glass-forming Zr70Cu30 liquid quasicrystals publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.06.179 – volume: 161 start-page: 62 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0066 article-title: Elastic modulus change and its relation with glass-forming ability and plasticity in bulk metallic glasses publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2018.10.006 – volume: 125 start-page: 52 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0026 article-title: Stochastic deformation and shear transformation zones of the glassy matrix in CuZr-based metallic-glass composites publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.09.005 – year: 2023 ident: 10.1016/j.ijplas.2023.103711_bib0034 article-title: Harnessing dislocation motion using an electric field publication-title: Nat. Mater. – volume: 82 start-page: 126 year: 2015 ident: 10.1016/j.ijplas.2023.103711_bib0067 article-title: Electronic structure of Cu100−xZrx (x=40, 50, 60) metallic glasses publication-title: Mater. Design doi: 10.1016/j.matdes.2015.05.066 – volume: 26 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0042 article-title: Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance publication-title: Adv. Mater. – volume: 129 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0016 article-title: Intrinsic correlation between the fraction of liquidlike zones and the beta relaxation in high-entropy metallic glasses publication-title: Phys. Rev. Lett. – volume: 524 start-page: 200 year: 2015 ident: 10.1016/j.ijplas.2023.103711_bib0029 article-title: Rejuvenation of metallic glasses by non-affine thermal strain publication-title: Nature doi: 10.1038/nature14674 – volume: 38 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0050 article-title: Practical guides for x-ray photoelectron spectroscopy: Quantitative XPS publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.5141395 – volume: 106 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0060 article-title: Dynamic relaxations and relaxation-property relationships in metallic glasses publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2019.03.006 – volume: 825 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0079 article-title: Structural evolution and energy landscape of Zr55Cu35Al10 ternary alloy during glass transition publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154109 – volume: 46 start-page: 560 year: 2013 ident: 10.1016/j.ijplas.2023.103711_bib0027 article-title: Pdfgetx3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889813005190 – volume: 56 start-page: 637 year: 2011 ident: 10.1016/j.ijplas.2023.103711_bib0017 article-title: Atomic level stresses publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.01.004 – volume: 115 start-page: 238 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0045 article-title: A meso-mechanical constitutive model of bulk metallic glass composites considering the local failure of matrix publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.11.017 – volume: 619 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0023 article-title: Al addition on the short and medium range order of CuZrAl metallic glasses publication-title: Physica B doi: 10.1016/j.physb.2021.413237 – volume: 41 start-page: 2016 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0043 article-title: Microstructure and mechanical properties of lightweight AlCrTiV0.5Cux high-entropy alloys publication-title: Rare Metals doi: 10.1007/s12598-021-01940-9 – volume: 728 start-page: 1110 year: 2017 ident: 10.1016/j.ijplas.2023.103711_bib0006 article-title: Increased stability of CuZrAl metallic glasses prepared by physical vapor deposition publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.09.068 – volume: 34 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0076 article-title: Influence of oxidation on structure, performance, and application of metallic glasses publication-title: Adv. Mater. – volume: 21 start-page: 1240 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0007 article-title: Liquid-like atoms in dense-packed solid glasses publication-title: Nat. Mater. doi: 10.1038/s41563-022-01327-w – volume: 178 start-page: 57 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0051 article-title: Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2019.11.006 – volume: 83 start-page: 248 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0074 article-title: Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.11.074 – volume: 210 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0010 article-title: Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles publication-title: Mater. Design – volume: 328 start-page: 736 year: 2010 ident: 10.1016/j.ijplas.2023.103711_bib0057 article-title: Visualizing the electron scattering force in nanostructures publication-title: Science doi: 10.1126/science.1186648 – volume: 876 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0073 article-title: From brittle to ductile transition: the influence of oxygen on mechanical properties of metallic glasses publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160023 – volume: 5 start-page: 17429 year: 2015 ident: 10.1016/j.ijplas.2023.103711_bib0013 article-title: Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids publication-title: Sci. Rep. doi: 10.1038/srep17429 – volume: 224 year: 2021 ident: 10.1016/j.ijplas.2023.103711_bib0021 article-title: Large tensile plasticity in Zr-based metallic glass/stainless steel interpenetrating-phase composites prepared by high pressure die casting publication-title: Compos. Part B: Eng. doi: 10.1016/j.compositesb.2021.109226 – volume: 2 year: 2023 ident: 10.1016/j.ijplas.2023.103711_bib0011 article-title: Novel experimental strategy towards temperature inhomogeneity during spark plasma sintering of metallic glasses publication-title: Adv. Powder Mater. – volume: 157 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0075 article-title: Achieving structural rejuvenation in metallic glass by modulating β relaxation intensity via easy-to-operate mechanical cycling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103402 – volume: 797 year: 2020 ident: 10.1016/j.ijplas.2023.103711_bib0022 article-title: Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass publication-title: Mat. Sci. Eng. A-Struct. doi: 10.1016/j.msea.2020.140078 – volume: 639 start-page: 465 year: 2015 ident: 10.1016/j.ijplas.2023.103711_bib0047 article-title: Length scale-dependent structural relaxation in Zr57.5Ti7.5Nb5Cu12.5Ni10Al7.5 metallic glass publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.03.179 – volume: 125 start-page: 145 year: 2022 ident: 10.1016/j.ijplas.2023.103711_bib0019 article-title: In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.01.038 – volume: 10 start-page: 1337 year: 2019 ident: 10.1016/j.ijplas.2023.103711_bib0046 article-title: Existence of multiple critical cooling rates which generate different types of monolithic metallic glass publication-title: Nat. Commun. doi: 10.1038/s41467-018-07930-3 |
SSID | ssj0005831 |
Score | 2.6232302 |
Snippet | •Electric currents endow Zr-based metallic glasses with an exceptional combination of ultra-high strength, considerable plasticity, and enhanced... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103711 |
SubjectTerms | Atomic structure Electric current Metallic glass Strength-ductility synergy Structural fluctuation |
Title | Achieving strength-ductility synergy in metallic glasses via electric current-enhanced structural fluctuations |
URI | https://dx.doi.org/10.1016/j.ijplas.2023.103711 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3rwYyrOj5GD12zt2rTNcQzHVNxFB7uV5st1zDrYEHbxbzcvSWWCKHhqG5IS8tK8l_T3-z2EbijPtM4yQbjSmsQsSgiTQhLFhbkq47QUEIUfx8loEt9P6bSBBjUXBmCVfu13a7pdrX1J149md1mW3SfzHpbAT8zIst6mwGCPU5jlnY8tmEfmchKaygRq1_Q5i_Eq50sTo3Yghbhln4fhz-5py-UMj9CBjxVx33XnGDVU1USHPm7E_qtcNdH-lqjgCar6YlYqOCfAQASpXtYzAqKuAILd4NXGkv1wWeFXZQLvRSmwjaDVCr-XBXZpcUyhcMJNRFUzCxLATmkWVDqwXsCdO-s7RZPh7fNgRHxWBSLM9mBNJJXGp9OCBToQjGaF1L1Q6VDyOBFBHArKFAWRHlrIOKE8TWLNQqqLnii0CER0hnaqt0qdI6wKzaTk2mywuQnERJakWrGMGwMbp5dkLRTVg5kLLzkOmS8WeY0tm-fOBDmYIHcmaCHy1WrpJDf-qJ_Wdsq_TZ3ceIVfW178u-Ul2oMnh-q7QjvGAuraRCdr3rbTr412-3cPo_EnkBXpOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO2LHBzi6bdo4jQ8cEIvKegGk3kK80aASKrUC9cJP8YOMYwcVCYGE1FMiJ7Ycz2jm2Zl5A7DPRGxMHEsqtDE05I2IciUV1ULiVaPT0jZR-Pomat2HF23WnoCPMhfGhlV62-9semGtfUvVr2a1l2XVWxyHR_YnZqPIemv7yMpLPXzDfVv_8PwEhXxQr5-d3h23qC8tQCVi5AFVTKFjYymvmZrkLE6VqQfaBEqEkayFgWRcM8tUw1IVRkw0o9DwgJm0LlMja7KB407CdIjmwpZNqLyPxJXErggizo7a6ZX5ekVQWfbUQ1BcsTXLi3T3IPjZH474uLNFmPfglBy571-CCZ0vw4IHqsSbgf4yzI2wGK5AfiQ7mbYHE8RmnuSPgw61LLI26nZI-sMiu5BkOXnWiPS7mSQFZNd98pqlxNXhwUbpmKKozjtFVAJx1LaWFoSYrr1zh4urcD-WtV6Dqfwl1-tAdGq4UsLgjl4g8pNx1DSaxwI1Cr1sFG9Ao1zMRHqOc1tqo5uUwWxPiRNBYkWQOBFsAP3q1XMcH3-83yzllHzT1QTd0K89N__dcw9mWnfXV8nV-c3lFszaJy6kcBumUBp6B6HRQOwWqkjgYdy6_wn06iVH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+strength-ductility+synergy+in+metallic+glasses+via+electric+current-enhanced+structural+fluctuations&rft.jtitle=International+journal+of+plasticity&rft.au=Ding%2C+Huaping&rft.au=Gong%2C+Pan&rft.au=Chen%2C+Wen&rft.au=Peng%2C+Zhen&rft.date=2023-10-01&rft.issn=0749-6419&rft.volume=169&rft.spage=103711&rft_id=info:doi/10.1016%2Fj.ijplas.2023.103711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2023_103711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon |