Electrochemical activation of graphite electrode for nitrate reduction: Energetic performance and application potential
Electrocatalysis is a potential technology to remove nitrate from wastewater. However, developing an efficient electrode with long-term stability is still a great challenge. Herein, we reported a facile electrochemical activation method to improve nitrate reduction ability of graphite electrodes. Re...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 329; p. 122553 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalysis is a potential technology to remove nitrate from wastewater. However, developing an efficient electrode with long-term stability is still a great challenge. Herein, we reported a facile electrochemical activation method to improve nitrate reduction ability of graphite electrodes. Results of cyclic voltammetry and electrochemical impedance spectroscopy showed that the nitrate reduction activity was enhanced and the solid-liquid interfacial resistance was decreased. The activated electrode displayed nitrate reduction rate of 0.0409 min−1, which was 10.8 times that of pristine graphite and closed to Fe and Cu electrodes. Furthermore, taking solution including 50.0 mg/L nitrate-N as target, the activated electrode performed above 90.0 % of nitrate removal during 81 days of continuous running. When activated graphite electrode was enlarged to 2500.0 cm2, its performance in nitrate reduction was maintained well. These results suggested electrochemical activated graphite electrode was a promising alternative in the real application of nitrate removal from water and wastewater.
[Display omitted]
•An electrochemical reduction method was used to activate graphite electrode.•Activated graphite electrode reduced solid-liquid interfacial resistance and increased the defect content.•The nitrate reduction rate of the activated graphite electrode was close to those of metal electrodes.•The activated graphite electrode showed satisfactory stability and scale-up potential. |
---|---|
AbstractList | Electrocatalysis is a potential technology to remove nitrate from wastewater. However, developing an efficient electrode with long-term stability is still a great challenge. Herein, we reported a facile electrochemical activation method to improve nitrate reduction ability of graphite electrodes. Results of cyclic voltammetry and electrochemical impedance spectroscopy showed that the nitrate reduction activity was enhanced and the solid-liquid interfacial resistance was decreased. The activated electrode displayed nitrate reduction rate of 0.0409 min−1, which was 10.8 times that of pristine graphite and closed to Fe and Cu electrodes. Furthermore, taking solution including 50.0 mg/L nitrate-N as target, the activated electrode performed above 90.0 % of nitrate removal during 81 days of continuous running. When activated graphite electrode was enlarged to 2500.0 cm2, its performance in nitrate reduction was maintained well. These results suggested electrochemical activated graphite electrode was a promising alternative in the real application of nitrate removal from water and wastewater.
[Display omitted]
•An electrochemical reduction method was used to activate graphite electrode.•Activated graphite electrode reduced solid-liquid interfacial resistance and increased the defect content.•The nitrate reduction rate of the activated graphite electrode was close to those of metal electrodes.•The activated graphite electrode showed satisfactory stability and scale-up potential. |
ArticleNumber | 122553 |
Author | Kang, Wenda Li, Zhangliang Wu, Shuai Yu, Hongtao Tang, Jiahao Yan, Liming |
Author_xml | – sequence: 1 givenname: Wenda surname: Kang fullname: Kang, Wenda organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Liming surname: Yan fullname: Yan, Liming organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Jiahao surname: Tang fullname: Tang, Jiahao organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China – sequence: 4 givenname: Shuai surname: Wu fullname: Wu, Shuai organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China – sequence: 5 givenname: Hongtao surname: Yu fullname: Yu, Hongtao email: yuhongtao@dlut.edu.cn organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China – sequence: 6 givenname: Zhangliang surname: Li fullname: Li, Zhangliang email: ptulizhangliang@126.com organization: Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China |
BookMark | eNp9kE1LAzEQhoNUsK3-Aw_5A7vmY5tuPQhS6gcUvOg5zCaTNmWbXbKx4r83dT17Ghie92XmmZFJ6AIScstZyRlXd4cSegOpKQUTsuRCLBbygkx5vZSFrGs5IVO2EqqQcimvyGwYDoxlUtRT8rVp0aTYmT0evYGWgkn-BMl3gXaO7iL0e5-Q4ohZpK6LNPgUIW8j2k9zZu_pJmDcYfKG9hgzc4RgkEKwFPq-zdW_lX2XMCQP7TW5dNAOePM35-TjafO-fim2b8-v68dtYSRTqbCVbFRTNW4lFdaOr9Aw0VQgGsYZCM7RCo7SMbesbdUoJxSssKoVh3rBKiPnpBp7TeyGIaLTffRHiN-aM32Wpw96lKfP8vQoL8cexhjm204eox6Mx_yR9TGL0Lbz_xf8ANDRfw0 |
CitedBy_id | crossref_primary_10_1021_acs_est_4c03949 crossref_primary_10_1021_acscatal_4c02317 crossref_primary_10_1039_D3GC03859A crossref_primary_10_1002_smtd_202300169 crossref_primary_10_1007_s10800_023_02019_2 crossref_primary_10_1016_j_jece_2023_110344 crossref_primary_10_1002_sstr_202400187 crossref_primary_10_1021_acs_energyfuels_4c00415 crossref_primary_10_1021_acs_est_4c01464 crossref_primary_10_1039_D3CY01441J crossref_primary_10_1002_advs_202308979 crossref_primary_10_1016_j_cej_2023_146261 crossref_primary_10_1016_j_snb_2023_134733 crossref_primary_10_1016_j_apcatb_2024_124224 crossref_primary_10_1002_smll_202303732 crossref_primary_10_1021_acssuschemeng_4c00394 |
Cites_doi | 10.1021/acscatal.7b01371 10.1016/j.cej.2021.128958 10.1039/D1CS00116G 10.1002/adfm.201902171 10.1007/s11356-018-3813-1 10.1016/j.cej.2020.126269 10.1016/S0010-8545(99)00143-5 10.1039/C9TA06435D 10.1016/j.electacta.2019.134846 10.1007/s10853-020-05468-8 10.1016/j.jclepro.2019.118569 10.1016/j.jenvman.2020.111357 10.1007/s12665-016-5768-1 10.1016/j.jhazmat.2012.02.034 10.1039/c2ee23062c 10.1016/j.cej.2015.03.001 10.1016/j.apcatb.2019.05.016 10.1007/s10853-020-05764-3 10.1149/1.2900094 10.1002/smll.201803783 10.1016/j.chemosphere.2020.126364 10.1016/j.chemosphere.2021.131501 10.1002/smtd.202000672 10.1007/s10311-021-01239-2 10.1016/j.cej.2021.132216 10.1016/j.electacta.2018.08.127 10.1016/j.cattod.2011.05.015 10.1016/j.cej.2018.04.168 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2023.122553 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2023_122553 S0926337323001960 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPD SSG SSZ T5K ~02 ~G- 53G AAQXK AAXKI AAYXX ABXDB ADMUD AHHHB AI. AKRWK ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE VH1 WUQ XPP |
ID | FETCH-LOGICAL-c306t-d43b6b4bf936e8f19ec02b4a2b010a211ed21e3f0f78d4b6f26a9e4861a8504c3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Thu Sep 12 16:47:59 EDT 2024 Sat Mar 02 16:01:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graphite electrode Stability Electrochemical activation Scale-up application Nitrate reduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-d43b6b4bf936e8f19ec02b4a2b010a211ed21e3f0f78d4b6f26a9e4861a8504c3 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2023_122553 elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_122553 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-15 |
PublicationDateYYYYMMDD | 2023-07-15 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Gu, Wu, Chen, Quan, Yu (bib13) 2021; 285 Wang, Wang, Li, Yu, Zhang (bib19) 2021; 50 Ma, Li, Liu, Wang, Chen, Li, Feng (bib30) 2018; 348 Duca, Koper (bib20) 2012; 5 Lasagna, De Luca, Franchino (bib2) 2016; 75 Wu, Gu, Kang, Yu, Chen, Quan, Lu (bib25) 2023; 452 Jiang, Zhang, Dong, Wei, Feng, Ren, Luan (bib1) 2022; 429 Zhang, Wang, Liu, Yu, Lu, Zhang (bib6) 2021; 403 Fanning (bib3) 2000; 199 Lacasa, Cañizares, Llanos, Rodrigo (bib14) 2012; 213–214 Zheng, Zhu, Yan, Lin, Lei, Zhang, Xu, Dang, Wei, Feng (bib17) 2021 Zhu, Zhang, Yin, Qin, Zhang, Wang (bib11) 2018; 291 Pu, Deng, Wang, Wang, Zhang, Shangguan, Chu (bib15) 2019; 26 Ma, Chu, Li, Rakov, Han, Du, Song, Xu (bib7) 2018; 14 Cheng, Xiao, Xie (bib26) 2019; 7 Wang, Wang, Zhang, Wang (bib27) 2020; 276 Zhang, Xu (bib24) 2019; 29 Ghodbane, Sarrazin, Roué, Bélanger (bib16) 2008; 155 Gao, Jiang, Ni, Qi, Zhang, Oturan, Oturan (bib23) 2019; 254 Guo, Heck, Kasiraju, Qian, Zhao, Grabow, Miller, Wong (bib21) 2018; 8 Zeng, Priest, Wang, Wu (bib5) 2020; 4 Velusamy, Periyasamy, Kumar, Vo, Sindhu, Sneka, Subhashini (bib4) 2021; 19 Ding, Li, Zhao, Wang, Zheng, Gao (bib12) 2015; 271 Kuang, Natsui, Feng, Einaga (bib10) 2020; 251 Lu, Lu, Yang, Song, Zhang, Li (bib28) 2021; 56 Dalal, Lee, Wallace (bib22) 2021; 56 Yin, Liu, Song, Chen, Liu, Cai, Zhang (bib9) 2019; 324 Jonoush, Rezaee, Ghaffarinejad (bib18) 2020; 242 Palomares, Franch, Corma (bib29) 2011; 172 Zhao, Zhao, Quan, Chen, Yu, Zhang, Niu, Zhang (bib8) 2021; 415 Lu (10.1016/j.apcatb.2023.122553_bib28) 2021; 56 Zhang (10.1016/j.apcatb.2023.122553_bib6) 2021; 403 Gao (10.1016/j.apcatb.2023.122553_bib23) 2019; 254 Duca (10.1016/j.apcatb.2023.122553_bib20) 2012; 5 Fanning (10.1016/j.apcatb.2023.122553_bib3) 2000; 199 Wu (10.1016/j.apcatb.2023.122553_bib25) 2023; 452 Ma (10.1016/j.apcatb.2023.122553_bib7) 2018; 14 Li (10.1016/j.apcatb.2023.122553_bib13) 2021; 285 Zeng (10.1016/j.apcatb.2023.122553_bib5) 2020; 4 Zhang (10.1016/j.apcatb.2023.122553_bib24) 2019; 29 Ma (10.1016/j.apcatb.2023.122553_bib30) 2018; 348 Wang (10.1016/j.apcatb.2023.122553_bib27) 2020; 276 Ding (10.1016/j.apcatb.2023.122553_bib12) 2015; 271 Kuang (10.1016/j.apcatb.2023.122553_bib10) 2020; 251 Zhu (10.1016/j.apcatb.2023.122553_bib11) 2018; 291 Ghodbane (10.1016/j.apcatb.2023.122553_bib16) 2008; 155 Guo (10.1016/j.apcatb.2023.122553_bib21) 2018; 8 Velusamy (10.1016/j.apcatb.2023.122553_bib4) 2021; 19 Dalal (10.1016/j.apcatb.2023.122553_bib22) 2021; 56 Pu (10.1016/j.apcatb.2023.122553_bib15) 2019; 26 Wang (10.1016/j.apcatb.2023.122553_bib19) 2021; 50 Cheng (10.1016/j.apcatb.2023.122553_bib26) 2019; 7 Jiang (10.1016/j.apcatb.2023.122553_bib1) 2022; 429 Jonoush (10.1016/j.apcatb.2023.122553_bib18) 2020; 242 Palomares (10.1016/j.apcatb.2023.122553_bib29) 2011; 172 Lasagna (10.1016/j.apcatb.2023.122553_bib2) 2016; 75 Yin (10.1016/j.apcatb.2023.122553_bib9) 2019; 324 Zhao (10.1016/j.apcatb.2023.122553_bib8) 2021; 415 Zheng (10.1016/j.apcatb.2023.122553_bib17) 2021 Lacasa (10.1016/j.apcatb.2023.122553_bib14) 2012; 213–214 |
References_xml | – volume: 19 start-page: 3165 year: 2021 end-page: 3180 ident: bib4 article-title: Advanced techniques to remove phosphates and nitrates from waters: a review publication-title: Environ. Chem. Lett. contributor: fullname: Subhashini – volume: 29 start-page: 1902171 year: 2019 ident: bib24 article-title: Simultaneous electrochemical dual‐electrode exfoliation of graphite toward scalable production of high‐quality graphene publication-title: Adv. Funct. Mater. contributor: fullname: Xu – volume: 254 start-page: 391 year: 2019 end-page: 402 ident: bib23 article-title: Non-precious Co publication-title: Appl. Catal. B Environ. contributor: fullname: Oturan – year: 2021 ident: bib17 article-title: Activated Ni cathode for electrocatalytic nitrate reduction to ammonia: from fundamentals to scale-up for treatment of industrial wastewater publication-title: Environ. Sci. Technol. contributor: fullname: Feng – volume: 199 start-page: 159 year: 2000 end-page: 179 ident: bib3 article-title: The chemical reduction of nitrate in aqueous solution publication-title: Coord. Chem. Rev. contributor: fullname: Fanning – volume: 14 year: 2018 ident: bib7 article-title: Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution publication-title: Small contributor: fullname: Xu – volume: 75 year: 2016 ident: bib2 article-title: The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution publication-title: Environ. Earth Sci. contributor: fullname: Franchino – volume: 4 start-page: 2000672 year: 2020 ident: bib5 article-title: Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects publication-title: Small Methods contributor: fullname: Wu – volume: 276 year: 2020 ident: bib27 article-title: Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate publication-title: J. Environ. Manag. contributor: fullname: Wang – volume: 172 start-page: 90 year: 2011 end-page: 94 ident: bib29 article-title: A study of different supports for the catalytic reduction of nitrates from natural water with a continuous reactor publication-title: Catal. Today contributor: fullname: Corma – volume: 242 year: 2020 ident: bib18 article-title: Electrocatalytic nitrate reduction using Fe publication-title: J. Clean. Prod. contributor: fullname: Ghaffarinejad – volume: 348 start-page: 171 year: 2018 end-page: 179 ident: bib30 article-title: A graphene oxide nanosheet-modified Ti nanocomposite electrode with enhanced electrochemical property and stability for nitrate reduction publication-title: Chem. Eng. J. contributor: fullname: Feng – volume: 271 start-page: 252 year: 2015 end-page: 259 ident: bib12 article-title: Electroreduction of nitrate in water: role of cathode and cell configuration publication-title: Chem. Eng. J. contributor: fullname: Gao – volume: 213–214 start-page: 478 year: 2012 end-page: 484 ident: bib14 article-title: Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media publication-title: J. Hazard. Mater. contributor: fullname: Rodrigo – volume: 251 year: 2020 ident: bib10 article-title: Electrochemical reduction of nitrate on boron-doped diamond electrodes: effects of surface termination and boron-doping level publication-title: Chemosphere contributor: fullname: Einaga – volume: 291 start-page: 328 year: 2018 end-page: 334 ident: bib11 article-title: In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid publication-title: Electrochim. Acta contributor: fullname: Wang – volume: 452 year: 2023 ident: bib25 article-title: Construction of microchannel charcoal cathodes with spatial-constraint capability for enhancing reduction of NO publication-title: Chem. Eng. J. contributor: fullname: Lu – volume: 26 start-page: 3932 year: 2019 end-page: 3945 ident: bib15 article-title: Optimizing the removal of nitrate from aqueous solutions via reduced graphite oxide–supported nZVI: synthesis, characterization, kinetics, and reduction mechanism publication-title: Environ. Sci. Pollut. Res. contributor: fullname: Chu – volume: 56 start-page: 3612 year: 2021 end-page: 3622 ident: bib22 article-title: Cathodic exfoliation of graphite into graphene nanoplatelets in aqueous solution of alkali metal salts publication-title: J. Mater. Sci. contributor: fullname: Wallace – volume: 56 start-page: 7357 year: 2021 end-page: 7371 ident: bib28 article-title: Cu, Ni and multi-walled carbon-nanotube-modified graphite felt electrode for nitrate electroreduction in water publication-title: J. Mater. Sci. contributor: fullname: Li – volume: 50 start-page: 6720 year: 2021 end-page: 6733 ident: bib19 article-title: Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges publication-title: Chem. Soc. Rev. contributor: fullname: Zhang – volume: 403 year: 2021 ident: bib6 article-title: Recent advances in non-noble metal electrocatalysts for nitrate reduction publication-title: Chem. Eng. J. contributor: fullname: Zhang – volume: 7 start-page: 19616 year: 2019 end-page: 19633 ident: bib26 article-title: Photocatalytic nitrogen fixation: the role of defects in photocatalysts publication-title: J. Mater. Chem. A contributor: fullname: Xie – volume: 324 year: 2019 ident: bib9 article-title: In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate publication-title: Electrochim. Acta contributor: fullname: Zhang – volume: 285 year: 2021 ident: bib13 article-title: Selective reduction of nitrate to ammonium over charcoal electrode derived from natural wood publication-title: Chemosphere contributor: fullname: Yu – volume: 429 year: 2022 ident: bib1 article-title: Photocatalytic nitrate reduction by a non-metal catalyst h-BN: performance and mechanism publication-title: Chem. Eng. J. contributor: fullname: Luan – volume: 5 start-page: 9726 year: 2012 end-page: 9742 ident: bib20 article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction publication-title: Energ. Environ. Sci. contributor: fullname: Koper – volume: 8 start-page: 503 year: 2018 end-page: 515 ident: bib21 article-title: Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts publication-title: ACS Catal. contributor: fullname: Wong – volume: 415 year: 2021 ident: bib8 article-title: Efficient electrochemical nitrate removal on Cu and nitrogen doped carbon publication-title: Chem. Eng. J. contributor: fullname: Zhang – volume: 155 start-page: F117 year: 2008 ident: bib16 article-title: Electrochemical reduction of nitrate on pyrolytic graphite-supported Cu and Pd–Cu electrocatalysts publication-title: J. Electrochem. Soc. contributor: fullname: Bélanger – volume: 8 start-page: 503 year: 2018 ident: 10.1016/j.apcatb.2023.122553_bib21 article-title: Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.7b01371 contributor: fullname: Guo – volume: 415 year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib8 article-title: Efficient electrochemical nitrate removal on Cu and nitrogen doped carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128958 contributor: fullname: Zhao – volume: 50 start-page: 6720 year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib19 article-title: Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00116G contributor: fullname: Wang – volume: 29 start-page: 1902171 year: 2019 ident: 10.1016/j.apcatb.2023.122553_bib24 article-title: Simultaneous electrochemical dual‐electrode exfoliation of graphite toward scalable production of high‐quality graphene publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902171 contributor: fullname: Zhang – volume: 26 start-page: 3932 year: 2019 ident: 10.1016/j.apcatb.2023.122553_bib15 article-title: Optimizing the removal of nitrate from aqueous solutions via reduced graphite oxide–supported nZVI: synthesis, characterization, kinetics, and reduction mechanism publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3813-1 contributor: fullname: Pu – volume: 403 year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib6 article-title: Recent advances in non-noble metal electrocatalysts for nitrate reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126269 contributor: fullname: Zhang – volume: 199 start-page: 159 year: 2000 ident: 10.1016/j.apcatb.2023.122553_bib3 article-title: The chemical reduction of nitrate in aqueous solution publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(99)00143-5 contributor: fullname: Fanning – volume: 7 start-page: 19616 year: 2019 ident: 10.1016/j.apcatb.2023.122553_bib26 article-title: Photocatalytic nitrogen fixation: the role of defects in photocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06435D contributor: fullname: Cheng – volume: 324 year: 2019 ident: 10.1016/j.apcatb.2023.122553_bib9 article-title: In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134846 contributor: fullname: Yin – volume: 452 year: 2023 ident: 10.1016/j.apcatb.2023.122553_bib25 article-title: Construction of microchannel charcoal cathodes with spatial-constraint capability for enhancing reduction of NO3− in high-salinity water publication-title: Chem. Eng. J. contributor: fullname: Wu – volume: 56 start-page: 3612 year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib22 article-title: Cathodic exfoliation of graphite into graphene nanoplatelets in aqueous solution of alkali metal salts publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05468-8 contributor: fullname: Dalal – volume: 242 year: 2020 ident: 10.1016/j.apcatb.2023.122553_bib18 article-title: Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: selectivity and energy consumption studies publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118569 contributor: fullname: Jonoush – volume: 276 year: 2020 ident: 10.1016/j.apcatb.2023.122553_bib27 article-title: Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111357 contributor: fullname: Wang – volume: 75 year: 2016 ident: 10.1016/j.apcatb.2023.122553_bib2 article-title: The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5768-1 contributor: fullname: Lasagna – year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib17 article-title: Activated Ni cathode for electrocatalytic nitrate reduction to ammonia: from fundamentals to scale-up for treatment of industrial wastewater publication-title: Environ. Sci. Technol. contributor: fullname: Zheng – volume: 213–214 start-page: 478 year: 2012 ident: 10.1016/j.apcatb.2023.122553_bib14 article-title: Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.02.034 contributor: fullname: Lacasa – volume: 5 start-page: 9726 year: 2012 ident: 10.1016/j.apcatb.2023.122553_bib20 article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction publication-title: Energ. Environ. Sci. doi: 10.1039/c2ee23062c contributor: fullname: Duca – volume: 271 start-page: 252 year: 2015 ident: 10.1016/j.apcatb.2023.122553_bib12 article-title: Electroreduction of nitrate in water: role of cathode and cell configuration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.001 contributor: fullname: Ding – volume: 254 start-page: 391 year: 2019 ident: 10.1016/j.apcatb.2023.122553_bib23 article-title: Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.05.016 contributor: fullname: Gao – volume: 56 start-page: 7357 year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib28 article-title: Cu, Ni and multi-walled carbon-nanotube-modified graphite felt electrode for nitrate electroreduction in water publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05764-3 contributor: fullname: Lu – volume: 155 start-page: F117 year: 2008 ident: 10.1016/j.apcatb.2023.122553_bib16 article-title: Electrochemical reduction of nitrate on pyrolytic graphite-supported Cu and Pd–Cu electrocatalysts publication-title: J. Electrochem. Soc. doi: 10.1149/1.2900094 contributor: fullname: Ghodbane – volume: 14 year: 2018 ident: 10.1016/j.apcatb.2023.122553_bib7 article-title: Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution publication-title: Small doi: 10.1002/smll.201803783 contributor: fullname: Ma – volume: 251 year: 2020 ident: 10.1016/j.apcatb.2023.122553_bib10 article-title: Electrochemical reduction of nitrate on boron-doped diamond electrodes: effects of surface termination and boron-doping level publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126364 contributor: fullname: Kuang – volume: 285 year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib13 article-title: Selective reduction of nitrate to ammonium over charcoal electrode derived from natural wood publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131501 contributor: fullname: Li – volume: 4 start-page: 2000672 year: 2020 ident: 10.1016/j.apcatb.2023.122553_bib5 article-title: Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects publication-title: Small Methods doi: 10.1002/smtd.202000672 contributor: fullname: Zeng – volume: 19 start-page: 3165 year: 2021 ident: 10.1016/j.apcatb.2023.122553_bib4 article-title: Advanced techniques to remove phosphates and nitrates from waters: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-021-01239-2 contributor: fullname: Velusamy – volume: 429 year: 2022 ident: 10.1016/j.apcatb.2023.122553_bib1 article-title: Photocatalytic nitrate reduction by a non-metal catalyst h-BN: performance and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132216 contributor: fullname: Jiang – volume: 291 start-page: 328 year: 2018 ident: 10.1016/j.apcatb.2023.122553_bib11 article-title: In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.127 contributor: fullname: Zhu – volume: 172 start-page: 90 year: 2011 ident: 10.1016/j.apcatb.2023.122553_bib29 article-title: A study of different supports for the catalytic reduction of nitrates from natural water with a continuous reactor publication-title: Catal. Today doi: 10.1016/j.cattod.2011.05.015 contributor: fullname: Palomares – volume: 348 start-page: 171 year: 2018 ident: 10.1016/j.apcatb.2023.122553_bib30 article-title: A graphene oxide nanosheet-modified Ti nanocomposite electrode with enhanced electrochemical property and stability for nitrate reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.168 contributor: fullname: Ma |
SSID | ssj0002328 |
Score | 2.548243 |
Snippet | Electrocatalysis is a potential technology to remove nitrate from wastewater. However, developing an efficient electrode with long-term stability is still a... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 122553 |
SubjectTerms | Electrochemical activation Graphite electrode Nitrate reduction Scale-up application Stability |
Title | Electrochemical activation of graphite electrode for nitrate reduction: Energetic performance and application potential |
URI | https://dx.doi.org/10.1016/j.apcatb.2023.122553 |
Volume | 329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED-pBtCo-yx68ps1mN9vEm5RKVexFhd7CvgIVaUONePO3O5MHrSAePCbsQLIzOzuzO983AFc65s6g1wuU43Egc57imrMq0CrhwnGRy4qs-nGixi_yfhpPN2DYYmGorLLx_bVPr7x186bfzGa_mM36T2EaKSEGAoNoInmhvF3i9oc23ftalXlgxFB5Yxwc0OgWPlfVeOnC6tL0qIV4j6Nlx-L37Wlty7ndh70mVmQ39eccwIafd2B72LZo68DuGptgB45HK9AaijWr9v0QPkd1rxvbkAMwAjPUR7FskbOKsxojT9a0xHGeYSTLcK0TjQRbErkrjb1mIwIKEuqRFSu8AdNzx9buwVmxKKkESb8dwcvt6Hk4DpqGC4HFzKEMnBRGGWnyVCifoN68DSMjdWQwa9OYKnoXcS_yMB8kThqVR0qnXiaK6yQOpRXHsDlfzP0J4I-kkbOhpw5nMtU2wcTPUDKnTY4znZxC0M5zVtS8GllbcPaa1XrJSC9ZrZdTGLTKyH7YR4au_0_Js39LnsMOPdFJLo8vYLNcfvhLDEFK061srAtbN3cP48k3rCTdcQ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLUQOwwOCAaI8ZkD17KmSbOW2zQNdYztwpC4VUmTSiC0VaOIv4_TpmxIiAPXNpbaOHbsxO8Z4FqGVCv0ep7QNPR4TmO0uUx4UkSUacpyXpFVT2cieeL3z-HzFgwbLIwtq3S-v_bplbd2T3puNnvFy0vv0Y8DwVifYRBtSV4wb29hNBCjdbYG40ky-3bIGDRUDhnHe1agQdBVZV6yyGSpbmwX8RuKiztkv-9QG7vO3T7suXCRDOovOoAts-hAe9h0aevA7gahYAeOR2vcGoo5w30_hM9R3e4mc_wAxOIZ6tNYssxJRVuNwSdxXXG0IRjMEjR3yyRBVpbf1Y69JSOLFbTAR1KsIQdELjTZuAonxbK0VUjy7Qie7kbzYeK5ngtehslD6WnOlFBc5TETJkLVmcwPFJeBwsRNYrZodEANy_28H2muRB4IGRseCSqj0OcZO4btxXJhTgB_JA505hvb5IzHMosw91M2n5Mqx5mOuuA185wWNbVG2tScvaa1XlKrl7TWSxf6jTLSH0skRe__p-TpvyWvoJ3Mpw_pw3g2OYMd-8Ye7NLwHLbL1Ye5wIikVJduxX0BTeXgJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+activation+of+graphite+electrode+for+nitrate+reduction%3A+Energetic+performance+and+application+potential&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Kang%2C+Wenda&rft.au=Yan%2C+Liming&rft.au=Tang%2C+Jiahao&rft.au=Wu%2C+Shuai&rft.date=2023-07-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=329&rft_id=info:doi/10.1016%2Fj.apcatb.2023.122553&rft.externalDocID=S0926337323001960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |