Benchmarking the geometrical robustness of a Virtual Element Poisson solver
Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh...
Saved in:
Published in | Mathematics and computers in simulation Vol. 190; pp. 1392 - 1414 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4754 |
DOI | 10.1016/j.matcom.2021.07.018 |
Cover
Abstract | Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings. |
---|---|
AbstractList | Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to mesh generation algorithms. Differently from classical finite element methods, where the relation between the geometric properties of the mesh and the performances of the solver are well known, the characterization of a good polytopal element is still subject to ongoing research. Current shape regularity criteria are quite restrictive, and greatly limit the set of valid meshes. Nevertheless, numerical experiments revealed that PEM solvers can perform well on meshes that are far outside the strict boundaries imposed by the current theory, suggesting that the real capabilities of these methods are much higher. In this work, we propose a benchmark to study the correlation between general 2D polygonal meshes and PEM solvers which we test on a virtual element solver for the Poisson equation. The benchmark aims to explore the space of 2D polygonal meshes and polygonal quality metrics, in order to understand if and how shape regularity, defined according to different criteria, affects the performance of the method. The proposed tool is quite general, and can be potentially used to study any PEM solver. Besides discussing the basics of the benchmark, we demonstrate its application on a representative member of the PEM family, namely the Virtual Element Method, also discussing our findings. |
Author | Prada, Daniele Spagnuolo, Michela Patanè, Giuseppe Biasotti, Silvia Cabiddu, Daniela Pennacchio, Micol Bertoluzza, Silvia Livesu, Marco Attene, Marco |
Author_xml | – sequence: 1 givenname: Marco surname: Attene fullname: Attene, Marco – sequence: 2 givenname: Silvia orcidid: 0000-0002-9992-825X surname: Biasotti fullname: Biasotti, Silvia – sequence: 3 givenname: Silvia surname: Bertoluzza fullname: Bertoluzza, Silvia – sequence: 4 givenname: Daniela orcidid: 0000-0001-5797-4189 surname: Cabiddu fullname: Cabiddu, Daniela email: daniela.cabiddu@cnr.it – sequence: 5 givenname: Marco surname: Livesu fullname: Livesu, Marco – sequence: 6 givenname: Giuseppe orcidid: 0000-0002-2276-9553 surname: Patanè fullname: Patanè, Giuseppe – sequence: 7 givenname: Micol surname: Pennacchio fullname: Pennacchio, Micol – sequence: 8 givenname: Daniele surname: Prada fullname: Prada, Daniele – sequence: 9 givenname: Michela surname: Spagnuolo fullname: Spagnuolo, Michela |
BookMark | eNqFkM1OAjEUhbvAREDfwEVfgPG209LBhYkS_IkkulC3TencgeJMa9pC4ts7BFcudHVPbvKd5HwjMvDBIyEXDAoGbHq5LTqTbegKDpwVoApg1YAMoVTVRCgpTskopS0A9FkOydMtervpTPxwfk3zBukaQ4c5OmtaGsNql7LHlGhoqKHvLuZd_1-02KHP9CW4lIKnKbR7jGfkpDFtwvOfOyZvd4vX-cNk-Xz_OL9ZTmwJ0zypBXCQ3AjRGK6MbIyUUkwrxFoa0zSKzwxTpSpnouK1YLCyypaMCc5LVIKXY3J17LUxpBSx0dZlk13wORrXagb6oEJv9VGFPqjQoHSvoofFL_gzun7_13_Y9RHDftjeYdTJul4d1i6izboO7u-Cb3xLf08 |
CitedBy_id | crossref_primary_10_1111_cgf_14779 crossref_primary_10_1007_s10444_021_09913_3 crossref_primary_10_1016_j_jcp_2025_113773 crossref_primary_10_1145_3554920 crossref_primary_10_1002_nme_7052 crossref_primary_10_1016_j_cag_2022_05_001 crossref_primary_10_1016_j_camwa_2024_02_036 crossref_primary_10_1016_j_cag_2022_05_002 crossref_primary_10_1016_j_camwa_2022_03_042 crossref_primary_10_1111_cgf_15025 |
Cites_doi | 10.1142/S021820251650038X 10.1145/311535.311576 10.1016/j.cam.2012.10.003 10.1090/S0025-5718-08-02123-6 10.1111/cgf.13249 10.1016/j.crma.2014.10.013 10.1016/j.cag.2018.01.004 10.1137/S0036144599352836 10.1016/j.cma.2004.10.008 10.1111/cgf.13116 10.1142/S021820251750052X 10.1016/j.camwa.2007.11.010 10.1137/040613950 10.1002/num.21905 10.1142/S021820251440003X 10.1142/S0218202514500146 10.1002/nme.1141 10.1142/S0218202512500492 10.1111/cgf.12866 |
ContentType | Journal Article |
Copyright | 2021 International Association for Mathematics and Computers in Simulation (IMACS) |
Copyright_xml | – notice: 2021 International Association for Mathematics and Computers in Simulation (IMACS) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matcom.2021.07.018 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 1414 |
ExternalDocumentID | 10_1016_j_matcom_2021_07_018 S0378475421002706 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAYWO AAYXX ABWVN ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423 |
IEDL.DBID | AIKHN |
ISSN | 0378-4754 |
IngestDate | Tue Jul 01 03:39:38 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Wed Dec 04 16:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polytopal Element Methods Geometric metrics Polygonal meshes Geometry-PEM correlation Virtual Element Methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-d402052a44fa27a5fa555468eed5aaff729a173739482d410bc7c3114223e7423 |
ORCID | 0000-0002-2276-9553 0000-0002-9992-825X 0000-0001-5797-4189 |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2021_07_018 crossref_primary_10_1016_j_matcom_2021_07_018 elsevier_sciencedirect_doi_10_1016_j_matcom_2021_07_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – sequence: 0 name: Elsevier B.V |
References | Brandts, Korotov, Křížek (b2) 2008; 55 Cangiani, Georgoulis, Houston (b4) 2014; 24 Kaplan, Salesin (b17) 2000 Gao, Huang, Xu, Pan, Deng, Chen (b12) 2017; 36 Welzl (b41) 1991 Cockburn, Dong, Guzmán (b6) 2008; 77 Golub, Va. Loan (b14) 1996 Ciarlet (b5) 2002 M. Desbrun, M. Meyer, P. Schröder, A.H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, in: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, Citeseer, 1999, pp. 317–324. Sukumar, Tabarraei (b32) 2004; 61 Beirão da Veiga, Lipnikov, Manzini (b37) 2014 Kaplan, Salesin, escherization (b18) 2004 T. Schneider, J. Dumas, X. Gao, M. Botsch, D. Panozzo, D. Zorin, Poly-spline finite element method, ACM Trans. Graph. Shewchuk (b28) 1996 The CGAL Project (b33) 2018 Livesu (b21) 2018; 71 M. Livesu, cinolib: a generic programming header only C++ library for processing polygonal and polyhedral meshes, Trans. Comput. Sci. XXXIV. L. Simonson, G. Suto, Geometry Template Library for Stl-Like 2d Operations, Colorado, GTL Boostcon. Mu, Wang, Wang (b22) 2015; 31 Pietro, Ern (b24) 2015; 353 Schneider, Hu, Dumas, Gao, Panozzo, Zorin (b27) 2018 Patané (b23) 2016; 35 C. Stimpson, C. Ernst, P. Knupp, P. Pébay, D. Thompson, The verdict library reference manual, Sandia National Laboratories Technical Report 9. Dodge (b8) 2008 Franke (b11) 1979 Du, Faber, Gunzburger (b9) 1999; 41 Herholz, Haase, Alexa (b15) 2017; 36 Weisser (b40) 2019 Antonietti, Cangiani, Collis, Dong, Georgoulis, Giani, Houston (b1) 2016 Shewchuk (b29) 2002 K. Lipnikov, On shape-regularity of polyhedral meshes for solving pdes, in: Research Notes, 22nd International Meshing Roundtable, 2013. Brezzi, Lipnikov, Shashkov (b3) 2005; 43 Beir ao da Veiga, Russo (b38) 2017; 27 Gillette, Rand (b13) 2018 Beirão da Veiga, Brezzi, Marini, Russo (b35) 2014; 24 Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini, Russo (b34) 2013; 23 Hughes, Cottrell, Bazilevs (b16) 2005; 194 Rjasanow, Weiß er (b25) 2013; 241 Wang, Ye (b39) 2013; 241 Floater, Hormann (b10) 2005 Beirão da Veiga, Chernov, Mascotto, Russo (b36) 2016; 26 Weisser (10.1016/j.matcom.2021.07.018_b40) 2019 Ciarlet (10.1016/j.matcom.2021.07.018_b5) 2002 Brezzi (10.1016/j.matcom.2021.07.018_b3) 2005; 43 10.1016/j.matcom.2021.07.018_b20 Wang (10.1016/j.matcom.2021.07.018_b39) 2013; 241 Cockburn (10.1016/j.matcom.2021.07.018_b6) 2008; 77 Sukumar (10.1016/j.matcom.2021.07.018_b32) 2004; 61 Schneider (10.1016/j.matcom.2021.07.018_b27) 2018 Herholz (10.1016/j.matcom.2021.07.018_b15) 2017; 36 10.1016/j.matcom.2021.07.018_b26 Beir ao da Veiga (10.1016/j.matcom.2021.07.018_b38) 2017; 27 Beirão da Veiga (10.1016/j.matcom.2021.07.018_b34) 2013; 23 Floater (10.1016/j.matcom.2021.07.018_b10) 2005 Kaplan (10.1016/j.matcom.2021.07.018_b17) 2000 Beirão da Veiga (10.1016/j.matcom.2021.07.018_b36) 2016; 26 Beirão da Veiga (10.1016/j.matcom.2021.07.018_b37) 2014 Beirão da Veiga (10.1016/j.matcom.2021.07.018_b35) 2014; 24 Rjasanow (10.1016/j.matcom.2021.07.018_b25) 2013; 241 10.1016/j.matcom.2021.07.018_b7 Gao (10.1016/j.matcom.2021.07.018_b12) 2017; 36 The CGAL Project (10.1016/j.matcom.2021.07.018_b33) 2018 Brandts (10.1016/j.matcom.2021.07.018_b2) 2008; 55 Hughes (10.1016/j.matcom.2021.07.018_b16) 2005; 194 Gillette (10.1016/j.matcom.2021.07.018_b13) 2018 Patané (10.1016/j.matcom.2021.07.018_b23) 2016; 35 Kaplan (10.1016/j.matcom.2021.07.018_b18) 2004 10.1016/j.matcom.2021.07.018_b30 Mu (10.1016/j.matcom.2021.07.018_b22) 2015; 31 10.1016/j.matcom.2021.07.018_b31 Du (10.1016/j.matcom.2021.07.018_b9) 1999; 41 Shewchuk (10.1016/j.matcom.2021.07.018_b28) 1996 Livesu (10.1016/j.matcom.2021.07.018_b21) 2018; 71 Pietro (10.1016/j.matcom.2021.07.018_b24) 2015; 353 Golub (10.1016/j.matcom.2021.07.018_b14) 1996 10.1016/j.matcom.2021.07.018_b19 Cangiani (10.1016/j.matcom.2021.07.018_b4) 2014; 24 Franke (10.1016/j.matcom.2021.07.018_b11) 1979 Dodge (10.1016/j.matcom.2021.07.018_b8) 2008 Antonietti (10.1016/j.matcom.2021.07.018_b1) 2016 Shewchuk (10.1016/j.matcom.2021.07.018_b29) 2002 Welzl (10.1016/j.matcom.2021.07.018_b41) 1991 |
References_xml | – start-page: 280 year: 2018 ident: b27 article-title: Decoupling simulation accuracy from mesh quality publication-title: SIGGRAPH Asia 2018 Technical Papers – start-page: 279 year: 2016 end-page: 308 ident: b1 article-title: Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains publication-title: Connections and Challenges in Modern Approaches To Numerical Partial Differential Equations – start-page: 157 year: 2005 end-page: 186 ident: b10 article-title: Surface parameterization: a tutorial and survey publication-title: Advances in Multiresolution for Geometric Modelling – volume: 353 start-page: 31 year: 2015 end-page: 34 ident: b24 article-title: Hybrid high-order methods for variable-diffusion problems on general meshes publication-title: C. R. Math. – volume: 241 start-page: 103 year: 2013 end-page: 115 ident: b39 article-title: A weak Galerkin finite element method for second-order elliptic problems publication-title: J. Comput. Appl. Math. – volume: 77 start-page: 1887 year: 2008 end-page: 1916 ident: b6 article-title: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems publication-title: Math. Comp. – reference: K. Lipnikov, On shape-regularity of polyhedral meshes for solving pdes, in: Research Notes, 22nd International Meshing Roundtable, 2013. – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: b16 article-title: Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 35 start-page: 599 year: 2016 end-page: 624 ident: b23 article-title: Star-Laplacian spectral kernels and distances for geometry processing and shape analysis publication-title: Comput. Graph. Forum – reference: L. Simonson, G. Suto, Geometry Template Library for Stl-Like 2d Operations, Colorado, GTL Boostcon. – volume: 26 start-page: 1567 year: 2016 end-page: 1598 ident: b36 article-title: Basic principles of hp virtual elements on quasiuniform meshes publication-title: Math. Models Methods Appl. Sci. – year: 1996 ident: b14 article-title: Matrix Computations – volume: 61 start-page: 2045 year: 2004 end-page: 2066 ident: b32 article-title: Conforming polygonal finite elements publication-title: Internat. J. Numer. Methods Engrg. – volume: 41 start-page: 637 year: 1999 end-page: 676 ident: b9 article-title: Centroidal voronoi tessellations: Applications and algorithms publication-title: SIAM Rev. – volume: 36 start-page: 163 year: 2017 end-page: 175 ident: b15 article-title: Diffusion diagrams: Voronoi cells and centroids from diffusion publication-title: Comput. Graph. Forum – year: 2008 ident: b8 article-title: The Concise Encyclopedia of Statistics – year: 1979 ident: b11 article-title: A critical comparison of some methods for interpolation of scattered data – start-page: 499 year: 2000 end-page: 510 ident: b17 article-title: Escherization publication-title: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques – reference: T. Schneider, J. Dumas, X. Gao, M. Botsch, D. Panozzo, D. Zorin, Poly-spline finite element method, ACM Trans. Graph. – start-page: 137 year: 2002 ident: b29 article-title: What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures, Vol. 73 – year: 2002 ident: b5 article-title: The Finite Element Method for Elliptic Problems – volume: 31 start-page: 308 year: 2015 end-page: 325 ident: b22 article-title: Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization publication-title: Numer. Methods Partial Differential Equations – reference: C. Stimpson, C. Ernst, P. Knupp, P. Pébay, D. Thompson, The verdict library reference manual, Sandia National Laboratories Technical Report 9. – start-page: 359 year: 1991 end-page: 370 ident: b41 article-title: Smallest enclosing disks (balls and ellipsoids) publication-title: New Results and New Trends in Computer Science – volume: 36 start-page: 105 year: 2017 end-page: 116 ident: b12 article-title: Evaluating hex-mesh quality metrics via correlation analysis publication-title: Comput. Graph. Forum – volume: 24 start-page: 1541 year: 2014 end-page: 1573 ident: b35 article-title: The Hitchhiker’s guide to the virtual element method publication-title: Math. Models Methods Appl. Sci. – start-page: 255 year: 2004 end-page: 262 ident: b18 article-title: Dihedral escherization publication-title: Proceedings of Graphics Interface 2004 – volume: 24 start-page: 2009 year: 2014 end-page: 2041 ident: b4 article-title: hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes publication-title: Math. Models Methods Appl. Sci. – volume: 241 start-page: 103 year: 2013 end-page: 115 ident: b25 article-title: Higher order BEM-based FEM on polygonal meshes publication-title: SIAM J. Numer. Anal. – volume: 27 start-page: 2557 year: 2017 end-page: 2594 ident: b38 article-title: Stability analysis for the virtual element method publication-title: Math. Models Methods Appl. Sci. – year: 2014 ident: b37 article-title: The Mimetic Finite Difference Method for Elliptic Problems – volume: 55 start-page: 2227 year: 2008 end-page: 2233 ident: b2 article-title: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions publication-title: Comput. Math. Appl. – reference: M. Desbrun, M. Meyer, P. Schröder, A.H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, in: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, Citeseer, 1999, pp. 317–324. – volume: 71 start-page: 124 year: 2018 end-page: 131 ident: b21 article-title: A heat flow relaxation scheme for n dimensional discrete hyper surfaces publication-title: Comput. Graph. – start-page: 475 year: 2019 end-page: 501 ident: b40 article-title: Anisotropic Polygonal and Polyedral Discretizations in Finite Element Analysis, Vol. 53 – start-page: 23 year: 2018 end-page: 42 ident: b13 article-title: Shape Quality for Generalized Baricentric Interpolation – reference: M. Livesu, cinolib: a generic programming header only C++ library for processing polygonal and polyhedral meshes, Trans. Comput. Sci. XXXIV. – start-page: 203 year: 1996 end-page: 222 ident: b28 article-title: Triangle: Engineering a 2d quality mesh generator and delaunay triangulator publication-title: Applied Computational Geometry Towards Geometric Engineering – volume: 43 start-page: 1872 year: 2005 end-page: 1896 ident: b3 article-title: Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes publication-title: SIAM J. Numer. Anal. – year: 2018 ident: b33 article-title: CGAL User and Reference Manual, 4.13 Edition – volume: 23 start-page: 199 year: 2013 end-page: 214 ident: b34 article-title: Basic principles of virtual element methods publication-title: Math. Models Methods Appl. Sci. – start-page: 279 year: 2016 ident: 10.1016/j.matcom.2021.07.018_b1 article-title: Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains – start-page: 23 year: 2018 ident: 10.1016/j.matcom.2021.07.018_b13 – year: 2014 ident: 10.1016/j.matcom.2021.07.018_b37 – volume: 26 start-page: 1567 issue: 08 year: 2016 ident: 10.1016/j.matcom.2021.07.018_b36 article-title: Basic principles of hp virtual elements on quasiuniform meshes publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S021820251650038X – year: 2008 ident: 10.1016/j.matcom.2021.07.018_b8 – ident: 10.1016/j.matcom.2021.07.018_b7 doi: 10.1145/311535.311576 – volume: 241 start-page: 103 year: 2013 ident: 10.1016/j.matcom.2021.07.018_b39 article-title: A weak Galerkin finite element method for second-order elliptic problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.10.003 – volume: 77 start-page: 1887 issue: 264 year: 2008 ident: 10.1016/j.matcom.2021.07.018_b6 article-title: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems publication-title: Math. Comp. doi: 10.1090/S0025-5718-08-02123-6 – start-page: 499 year: 2000 ident: 10.1016/j.matcom.2021.07.018_b17 article-title: Escherization – volume: 36 start-page: 105 issue: 5 year: 2017 ident: 10.1016/j.matcom.2021.07.018_b12 article-title: Evaluating hex-mesh quality metrics via correlation analysis publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13249 – ident: 10.1016/j.matcom.2021.07.018_b26 – start-page: 157 year: 2005 ident: 10.1016/j.matcom.2021.07.018_b10 article-title: Surface parameterization: a tutorial and survey – volume: 353 start-page: 31 issue: 1 year: 2015 ident: 10.1016/j.matcom.2021.07.018_b24 article-title: Hybrid high-order methods for variable-diffusion problems on general meshes publication-title: C. R. Math. doi: 10.1016/j.crma.2014.10.013 – ident: 10.1016/j.matcom.2021.07.018_b20 – year: 2002 ident: 10.1016/j.matcom.2021.07.018_b5 – volume: 71 start-page: 124 year: 2018 ident: 10.1016/j.matcom.2021.07.018_b21 article-title: A heat flow relaxation scheme for n dimensional discrete hyper surfaces publication-title: Comput. Graph. doi: 10.1016/j.cag.2018.01.004 – start-page: 280 year: 2018 ident: 10.1016/j.matcom.2021.07.018_b27 article-title: Decoupling simulation accuracy from mesh quality – volume: 41 start-page: 637 issue: 4 year: 1999 ident: 10.1016/j.matcom.2021.07.018_b9 article-title: Centroidal voronoi tessellations: Applications and algorithms publication-title: SIAM Rev. doi: 10.1137/S0036144599352836 – start-page: 203 year: 1996 ident: 10.1016/j.matcom.2021.07.018_b28 article-title: Triangle: Engineering a 2d quality mesh generator and delaunay triangulator – year: 1996 ident: 10.1016/j.matcom.2021.07.018_b14 – ident: 10.1016/j.matcom.2021.07.018_b31 – year: 2018 ident: 10.1016/j.matcom.2021.07.018_b33 – volume: 194 start-page: 4135 issue: 39–41 year: 2005 ident: 10.1016/j.matcom.2021.07.018_b16 article-title: Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.10.008 – start-page: 255 year: 2004 ident: 10.1016/j.matcom.2021.07.018_b18 article-title: Dihedral escherization – volume: 36 start-page: 163 issue: 2 year: 2017 ident: 10.1016/j.matcom.2021.07.018_b15 article-title: Diffusion diagrams: Voronoi cells and centroids from diffusion publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13116 – ident: 10.1016/j.matcom.2021.07.018_b19 – volume: 241 start-page: 103 year: 2013 ident: 10.1016/j.matcom.2021.07.018_b25 article-title: Higher order BEM-based FEM on polygonal meshes publication-title: SIAM J. Numer. Anal. – volume: 27 start-page: 2557 issue: 13 year: 2017 ident: 10.1016/j.matcom.2021.07.018_b38 article-title: Stability analysis for the virtual element method publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S021820251750052X – volume: 55 start-page: 2227 issue: 10 year: 2008 ident: 10.1016/j.matcom.2021.07.018_b2 article-title: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2007.11.010 – volume: 43 start-page: 1872 year: 2005 ident: 10.1016/j.matcom.2021.07.018_b3 article-title: Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes publication-title: SIAM J. Numer. Anal. doi: 10.1137/040613950 – year: 1979 ident: 10.1016/j.matcom.2021.07.018_b11 – volume: 31 start-page: 308 issue: 1 year: 2015 ident: 10.1016/j.matcom.2021.07.018_b22 article-title: Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.21905 – start-page: 359 year: 1991 ident: 10.1016/j.matcom.2021.07.018_b41 article-title: Smallest enclosing disks (balls and ellipsoids) – volume: 24 start-page: 1541 issue: 08 year: 2014 ident: 10.1016/j.matcom.2021.07.018_b35 article-title: The Hitchhiker’s guide to the virtual element method publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S021820251440003X – volume: 24 start-page: 2009 issue: 10 year: 2014 ident: 10.1016/j.matcom.2021.07.018_b4 article-title: hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202514500146 – volume: 61 start-page: 2045 issue: 12 year: 2004 ident: 10.1016/j.matcom.2021.07.018_b32 article-title: Conforming polygonal finite elements publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1141 – volume: 23 start-page: 199 issue: 1 year: 2013 ident: 10.1016/j.matcom.2021.07.018_b34 article-title: Basic principles of virtual element methods publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202512500492 – volume: 35 start-page: 599 issue: 2 year: 2016 ident: 10.1016/j.matcom.2021.07.018_b23 article-title: Star-Laplacian spectral kernels and distances for geometry processing and shape analysis publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12866 – start-page: 137 year: 2002 ident: 10.1016/j.matcom.2021.07.018_b29 – ident: 10.1016/j.matcom.2021.07.018_b30 – start-page: 475 year: 2019 ident: 10.1016/j.matcom.2021.07.018_b40 |
SSID | ssj0007545 |
Score | 2.3605995 |
Snippet | Polytopal Element Methods (PEM) allow us solving differential equations on general polygonal and polyhedral grids, potentially offering great flexibility to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1392 |
SubjectTerms | Geometric metrics Geometry-PEM correlation Polygonal meshes Polytopal Element Methods Virtual Element Methods |
Title | Benchmarking the geometrical robustness of a Virtual Element Poisson solver |
URI | https://dx.doi.org/10.1016/j.matcom.2021.07.018 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEN3U9uLFb2P9yh68ri2wy8KxNm2qTRoTremNLOyiNRaaSq_-dmdgaTQxmngikB1CHsPMA97MEHIV-loHjlIsFdplXPkuUzzRLAZyjwkSkyaqLSb-aMrvZmLWIP26FgZllTb2VzG9jNb2SMei2VnO552HrichtAruYhdRiW23W64X-qJJWr3b8WiyCciwplQywnqGBnUFXSnzAl6IshEXcl3ZxROnf_yUob5kneEe2bF0kfaqK9onDZMdkN16FAO1T-YhGd_A9mWhyi_fFEgdfTb5AqdlwT2gqzxevxcY1GieUkWf5issG6GDSjtO73OAP88o-CF49hGZDgeP_RGzcxJYAoS_YBrfAYWrOE-VK5VIlUDtWQDpTyiVpsCflSM96YU8cDV3unEiE68sovUM_qk9Js0sz8wJoSKF0xg_DESSAJFKlBFB6hgTGM211H6beDU2UWKbiOMsi7eoVou9RhWiESIadWUEiLYJ21gtqyYaf6yXNezRN2eIIM7_ann6b8szso17lVLlnDSL1dpcAN8o4kuydf3hXFqv-gTXBtU0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOOjFtxGfe_C6AdrdbjkigRRBYiIYbpulu1WMtATL_3emD6KJ0cRTk3anaabTb76238wQctv2jPFbWrNIGIdx7TlM89CwOZB7TJCYNFFtMfaCKb-fiVmFdMtaGJRVFtifY3qG1sWeRuHNxmqxaDw1XQnQKriDXUQltt2ucQFve1VS6wyGwXgLyLAmUzLCeoYGZQVdJvMCXoiyEQdyXdbFE6d__JShvmSd_gHZK-gi7eRXdEgqNj4i--UoBlo8mcdkeAfb16XOvnxTIHX0xSZLnJYF94Cuk_nmI0VQo0lENX1erLFshPZy7Th9TMD9SUwhDiGyT8i035t0A1bMSWAhEP6UGXwHFI7mPNKO1CLSArVnPqQ_oXUUAX_WLelKt819x_BWcx7K0M2KaF2Lf2pPSTVOYntGqIjgNNZr-yIMgUiF2go_alnrW8ONNF6duKVvVFg0EcdZFu-qVIu9qdyjCj2qmlKBR-uEba1WeRONP9bL0u3qWzAowPlfLc__bXlDdoLJw0iNBuPhBdnFI7lq5ZJU0_XGXgH3SOfXRWx9Avbj1yM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+the+geometrical+robustness+of+a+Virtual+Element+Poisson+solver&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Attene%2C+Marco&rft.au=Biasotti%2C+Silvia&rft.au=Bertoluzza%2C+Silvia&rft.au=Cabiddu%2C+Daniela&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.volume=190&rft.spage=1392&rft.epage=1414&rft_id=info:doi/10.1016%2Fj.matcom.2021.07.018&rft.externalDocID=S0378475421002706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |