Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery

•We propose a simple yet effective CMAFF module that can fuse the complementary information of multispectral remote sensing images with joint common-modality and differential-modality attentions.•We confirm the effectiveness of our cross-modality fusion attention module through extensive ablation st...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 130; p. 108786
Main Authors Qingyun, Fang, Zhaokui, Wang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2022.108786

Cover

Loading…
Abstract •We propose a simple yet effective CMAFF module that can fuse the complementary information of multispectral remote sensing images with joint common-modality and differential-modality attentions.•We confirm the effectiveness of our cross-modality fusion attention module through extensive ablation studies.•We design a new two-stream object detection network YOLOFusion for multispectral remote sensing images and verify its performance. Cross-modality fusing complementary information of multispectral remote sensing image pairs can improve the perception ability of detection algorithms, making them more robust and reliable for a wider range of applications, such as nighttime detection. Compared with prior methods, we think different features should be processed specifically, the modality-specific features should be retained and enhanced, while the modality-shared features should be cherry-picked from the RGB and thermal IR modalities. Following this idea, a novel and lightweight multispectral feature fusion approach with joint common-modality and differential-modality attentions are proposed, named Cross-Modality Attentive Feature Fusion (CMAFF). Given the intermediate feature maps of RGB and thermal images, our module parallel infers attention maps from two separate modalities, common- and differential-modality, then the attention maps are multiplied to the input feature map respectively for adaptive feature enhancement or selection. Extensive experiments demonstrate that our proposed approach can achieve the state-of-the-art performance at a low computation cost.
AbstractList •We propose a simple yet effective CMAFF module that can fuse the complementary information of multispectral remote sensing images with joint common-modality and differential-modality attentions.•We confirm the effectiveness of our cross-modality fusion attention module through extensive ablation studies.•We design a new two-stream object detection network YOLOFusion for multispectral remote sensing images and verify its performance. Cross-modality fusing complementary information of multispectral remote sensing image pairs can improve the perception ability of detection algorithms, making them more robust and reliable for a wider range of applications, such as nighttime detection. Compared with prior methods, we think different features should be processed specifically, the modality-specific features should be retained and enhanced, while the modality-shared features should be cherry-picked from the RGB and thermal IR modalities. Following this idea, a novel and lightweight multispectral feature fusion approach with joint common-modality and differential-modality attentions are proposed, named Cross-Modality Attentive Feature Fusion (CMAFF). Given the intermediate feature maps of RGB and thermal images, our module parallel infers attention maps from two separate modalities, common- and differential-modality, then the attention maps are multiplied to the input feature map respectively for adaptive feature enhancement or selection. Extensive experiments demonstrate that our proposed approach can achieve the state-of-the-art performance at a low computation cost.
ArticleNumber 108786
Author Zhaokui, Wang
Qingyun, Fang
Author_xml – sequence: 1
  givenname: Fang
  surname: Qingyun
  fullname: Qingyun, Fang
  email: fqy17@mails.tsinghua.edu.cn
– sequence: 2
  givenname: Wang
  surname: Zhaokui
  fullname: Zhaokui, Wang
  email: wangzk@tsinghua.edu.cn
BookMark eNqFkM1KAzEUhYNUsFbfwEVeYGqSSWdSF4IU_6DgRtchTW5KhpmkJGmhb2-GceVCVwfO5RzO_a7RzAcPCN1RsqSENvfd8qCyDvslI4wVS7SiuUBzKtq6WlHOZmhOSE2rmpH6Cl2n1BFC23KYI7OJIaVqCEb1Lp-xyhl8difAFlQ-xqLH5ILHNkQcdh3ojA3kIqPpPB6OfXbpUIyoehxhCBlwAp-c32M3qD3E8w26tKpPcPujC_T18vy5eau2H6_vm6dtpWvS5EobUjdW76ixVrQcaMsNA7smrdg1ygqr-JoRIThrOGW0EcJwzlZkTSixrYB6gR6mXj0-FcFK7bIal5ZxrpeUyJGX7OTES4685MSrhPmv8CGW_fH8X-xxikF57OQgyqQdeA3GxQJFmuD-LvgGCeyLCg
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3361556
crossref_primary_10_1109_TNNLS_2023_3266452
crossref_primary_10_1016_j_infrared_2023_105077
crossref_primary_10_3788_AOS240664
crossref_primary_10_1016_j_patcog_2023_110215
crossref_primary_10_1109_TGRS_2024_3446814
crossref_primary_10_3390_rs15020370
crossref_primary_10_1080_2150704X_2024_2305177
crossref_primary_10_3390_rs16244649
crossref_primary_10_1080_2150704X_2023_2254912
crossref_primary_10_1109_LGRS_2023_3276052
crossref_primary_10_3390_rs15030614
crossref_primary_10_1016_j_neucom_2025_129913
crossref_primary_10_1109_LSP_2023_3309578
crossref_primary_10_1109_JSEN_2025_3530076
crossref_primary_10_1109_TCSVT_2024_3418965
crossref_primary_10_3390_su14159733
crossref_primary_10_3390_s24134098
crossref_primary_10_1109_TCSVT_2024_3454631
crossref_primary_10_1109_JSTARS_2024_3447649
crossref_primary_10_1109_TGRS_2023_3293147
crossref_primary_10_1016_j_patcog_2025_111579
crossref_primary_10_1016_j_patcog_2022_109071
crossref_primary_10_3788_IRLA20240253
crossref_primary_10_1109_JSTARS_2024_3504549
crossref_primary_10_1109_JSTARS_2023_3315544
crossref_primary_10_1109_JSEN_2024_3399193
crossref_primary_10_3390_rs16234451
crossref_primary_10_1109_TGRS_2024_3376819
crossref_primary_10_3390_rs15184539
crossref_primary_10_1109_JIOT_2024_3400856
crossref_primary_10_1007_s00530_024_01540_4
crossref_primary_10_1109_TITS_2024_3412417
crossref_primary_10_1186_s13634_023_01002_5
crossref_primary_10_1016_j_eswa_2024_123233
crossref_primary_10_1016_j_iswa_2023_200264
crossref_primary_10_1016_j_patcog_2023_109762
crossref_primary_10_1016_j_isprsjprs_2024_09_025
crossref_primary_10_3390_rs16020327
crossref_primary_10_1016_j_patcog_2025_111441
crossref_primary_10_3390_electronics12244902
crossref_primary_10_1109_JSTARS_2024_3452707
crossref_primary_10_3389_feart_2024_1381192
crossref_primary_10_1109_LGRS_2023_3339214
crossref_primary_10_3390_rs16061071
crossref_primary_10_1016_j_image_2023_117027
crossref_primary_10_1109_LGRS_2025_3527560
crossref_primary_10_1109_TGRS_2023_3258666
crossref_primary_10_11834_jig_230495
crossref_primary_10_1038_s41598_024_77244_6
crossref_primary_10_1016_j_engappai_2024_108774
crossref_primary_10_1016_j_compeleceng_2025_110133
crossref_primary_10_1360_SSPMA_2024_0291
crossref_primary_10_3390_drones8030112
crossref_primary_10_3390_rs17061095
crossref_primary_10_3390_drones7010020
crossref_primary_10_1016_j_dsp_2025_104996
crossref_primary_10_1016_j_patcog_2023_109434
crossref_primary_10_1016_j_elerap_2025_101479
crossref_primary_10_1109_JSTARS_2025_3526995
crossref_primary_10_1109_LGRS_2024_3440045
crossref_primary_10_1109_ACCESS_2024_3404248
crossref_primary_10_1016_j_asr_2024_08_028
crossref_primary_10_1109_JSEN_2023_3324451
crossref_primary_10_1109_TGRS_2024_3367934
crossref_primary_10_3390_plants13141980
crossref_primary_10_1088_1361_6501_ad66f8
crossref_primary_10_1109_TGRS_2024_3363057
crossref_primary_10_3390_electronics13020443
crossref_primary_10_1016_j_patcog_2023_109913
crossref_primary_10_1364_JOSAA_511058
Cites_doi 10.1016/j.patcog.2018.03.007
10.5244/C.30.73
10.1109/TPAMI.2014.2300479
10.1016/j.patcog.2018.08.005
10.3390/s21124184
10.1016/j.patcog.2019.107103
10.1016/j.patcog.2022.108717
10.1016/j.patcog.2020.107639
10.1016/j.patcog.2021.108102
10.1109/TPAMI.2016.2577031
10.3390/rs12152501
10.1016/j.patcog.2020.107333
10.1109/ACCESS.2020.2993998
10.1016/j.jvcir.2015.11.002
10.1016/j.patcog.2019.106986
10.1023/B:VISI.0000029664.99615.94
10.1109/JSTARS.2020.3041316
10.1016/j.patcog.2020.107474
10.1007/978-3-031-20077-9_9
10.1177/1729881419842995
10.1109/TPAMI.2015.2389824
10.1007/s11263-009-0275-4
10.1016/j.patcog.2020.107635
10.1016/j.patcog.2012.10.009
10.1016/j.inffus.2018.09.015
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108786
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108786
S0031320322002679
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-cd036fcb1dff874e174d2ef9078b6af8fa4920884264121688d442509010f78e3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 22:50:40 EDT 2025
Tue Jul 01 02:36:38 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cross-modality
Feature fusion
Multispectral remote sensing imagery
Attention
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-cd036fcb1dff874e174d2ef9078b6af8fa4920884264121688d442509010f78e3
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_108786
crossref_primary_10_1016_j_patcog_2022_108786
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108786
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (bib0054) 2019; vol. 32
Y.-T. Chen, J. Shi, C. Mertz, S. Kong, D. Ramanan, Multimodal object detection via bayesian fusion
Quan, Chen, Shao, Teng, Xu, Ji (bib0007) 2021; 111
Dollár, Appel, Belongie, Perona (bib0005) 2014; 36
Zhou, Chen, Cao (bib0052) 2020
Pang, Chen, Shi, Feng, Ouyang, Lin (bib0015) 2019
Svendsen, Martino, Camps-Valls (bib0023) 2020; 100
Z. Zhang, T. He, H. Zhang, Z. Zhang, J. Xie, M. Li, Bag of freebies for training object detection neural networks
(2021).
Hwang, Park, Kim, Choi, Kweon (bib0031) 2015
Zhang, Fromont, Lefevre, Avignon (bib0035) 2021
Ren, He, Girshick, Sun (bib0012) 2017; 39
G. Jocher, A. Stoken, J. Borovec, L. Changyu, A. Hogan, et al., ultralytics/yolov5: v3. 1-Bug fixes and performance improvements, 2020.
A. Bochkovskiy, C.-Y. Wang, H.Y.M. Liao, YOLOv4: optimal speed and accuracy of object detection
Mandal, Shah, Meena, Vipparthi (bib0057) 2019
Li, Song, Tong, Tang (bib0034) 2019; 85
Pham, Courtrai, Friguet, Lefévre, Baussard (bib0027) 2020; 12
Fang, Li, Gu, Zhu, Lim (bib0011) 2020; 107
Dhanaraj, Sharma, Sarkar, Karnam, Chachlakis, Ptucha, Markopoulos, Saber (bib0036) 2020
Y. Zheng, I.H. Izzat, S. Ziaee, GFD-SSD: gated fusion double SSD for multispectral pedestrian detection
Girshick (bib0009) 2015
Razakarivony, Jurie (bib0053) 2016; 34
Li, Chen, Wang, Zhang (bib0016) 2019
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0018) 2016
Zheng, Gong, Liu, Jiang, Zhan, Lu, Zhang (bib0022) 2022; 129
Sharma, Dhanaraj, Karnam, Chachlakis, Ptucha, Markopoulos, Saber (bib0037) 2021; 14
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0040) 2014
Wang, Liao, Wu, Chen, Hsieh, Yeh (bib0049) 2020
Park, Kim, Sohn (bib0033) 2018; 80
(2019).
Cai, Vasconcelos (bib0014) 2018
Girshick, Donahue, Darrell, Malik (bib0008) 2014
Redmon, Farhadi (bib0042) 2017
Tan, Pang, Le (bib0019) 2020
Ding, Xue, Long, Xia, Lu (bib0026) 2019
Everingham, Gool, Williams, Winn, Zisserman (bib0041) 2010; 88
Cao, Yang, Zhao, Guo, Li (bib0046) 2021; 21
Zhang, Liu, Zhang, Yang, Qiao, Huang, Hussain (bib0047) 2019; 50
Zhang, Fromont, Lefèvre, Avignon (bib0058) 2020
Zhong, Sun, Huo (bib0010) 2019; 96
Lowe (bib0003) 2004; 60
Zhao, Jia, Li (bib0024) 2021; 111
(2020).
Dalal, Triggs (bib0002) 2005
Liu, Qi, Qin, Shi, Jia (bib0051) 2018
Redmon, Divvala, Girshick, Farhadi (bib0020) 2016
Zhao, Wang, Wu, Li, Zhao (bib0021) 2020; 104
Pang, Chen, Shi, Feng, Ouyang, Lin (bib0013) 2019
J. Liu, S. Zhang, S. Wang, D.N. Metaxas, Multispectral deep neural networks for pedestrian detection
Maaten, Hinton (bib0056) 2008; 9
Qingyun, Lin, Zhaokui (bib0028) 2020; 8
J. Redmon, A. Farhadi, YOLOV3: an incremental improvement
A.V. Etten, You only look twice: rapid multi-scale object detection in satellite imagery
Bai, Wang, Liu, Liu, Song, Sebe, Kim (bib0006) 2021; 120
Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, YOLOX: exceeding YOLO series in 2021
Minetto, Thome, Cord, Leite, Stolfi (bib0001) 2013; 46
Viola, Jones (bib0004) 2001
Yang, Liu, He, Li (bib0030) 2019; 16
(2018).
He, Zhang, Ren, Sun (bib0050) 2015; 37
(2016).
Han, Ding, Li, Xia (bib0029) 2022; 60
Lin, Goyal, Girshick, He, Dollár (bib0017) 2017
Pang (10.1016/j.patcog.2022.108786_bib0015) 2019
Zheng (10.1016/j.patcog.2022.108786_bib0022) 2022; 129
Zhang (10.1016/j.patcog.2022.108786_bib0058) 2020
Minetto (10.1016/j.patcog.2022.108786_bib0001) 2013; 46
Sharma (10.1016/j.patcog.2022.108786_bib0037) 2021; 14
Zhong (10.1016/j.patcog.2022.108786_bib0010) 2019; 96
Fang (10.1016/j.patcog.2022.108786_bib0011) 2020; 107
10.1016/j.patcog.2022.108786_bib0038
10.1016/j.patcog.2022.108786_bib0032
Ding (10.1016/j.patcog.2022.108786_bib0026) 2019
Viola (10.1016/j.patcog.2022.108786_bib0004) 2001
Cao (10.1016/j.patcog.2022.108786_bib0046) 2021; 21
Wang (10.1016/j.patcog.2022.108786_bib0049) 2020
10.1016/j.patcog.2022.108786_bib0039
Liu (10.1016/j.patcog.2022.108786_bib0018) 2016
Girshick (10.1016/j.patcog.2022.108786_bib0009) 2015
Quan (10.1016/j.patcog.2022.108786_bib0007) 2021; 111
Lin (10.1016/j.patcog.2022.108786_bib0017) 2017
Yang (10.1016/j.patcog.2022.108786_bib0030) 2019; 16
Li (10.1016/j.patcog.2022.108786_bib0016) 2019
10.1016/j.patcog.2022.108786_bib0048
Pham (10.1016/j.patcog.2022.108786_bib0027) 2020; 12
10.1016/j.patcog.2022.108786_bib0043
10.1016/j.patcog.2022.108786_bib0044
10.1016/j.patcog.2022.108786_bib0045
Redmon (10.1016/j.patcog.2022.108786_bib0020) 2016
Dollár (10.1016/j.patcog.2022.108786_bib0005) 2014; 36
Liu (10.1016/j.patcog.2022.108786_bib0051) 2018
Tan (10.1016/j.patcog.2022.108786_bib0019) 2020
Dhanaraj (10.1016/j.patcog.2022.108786_bib0036) 2020
Girshick (10.1016/j.patcog.2022.108786_bib0008) 2014
Bai (10.1016/j.patcog.2022.108786_bib0006) 2021; 120
Cai (10.1016/j.patcog.2022.108786_bib0014) 2018
He (10.1016/j.patcog.2022.108786_bib0050) 2015; 37
Redmon (10.1016/j.patcog.2022.108786_bib0042) 2017
Zhao (10.1016/j.patcog.2022.108786_bib0024) 2021; 111
Mandal (10.1016/j.patcog.2022.108786_bib0057) 2019
Everingham (10.1016/j.patcog.2022.108786_bib0041) 2010; 88
Lowe (10.1016/j.patcog.2022.108786_bib0003) 2004; 60
Dalal (10.1016/j.patcog.2022.108786_bib0002) 2005
10.1016/j.patcog.2022.108786_bib0055
Maaten (10.1016/j.patcog.2022.108786_bib0056) 2008; 9
Svendsen (10.1016/j.patcog.2022.108786_bib0023) 2020; 100
Park (10.1016/j.patcog.2022.108786_bib0033) 2018; 80
Zhang (10.1016/j.patcog.2022.108786_bib0047) 2019; 50
Qingyun (10.1016/j.patcog.2022.108786_bib0028) 2020; 8
Lin (10.1016/j.patcog.2022.108786_bib0040) 2014
Zhou (10.1016/j.patcog.2022.108786_bib0052) 2020
Ren (10.1016/j.patcog.2022.108786_bib0012) 2017; 39
Li (10.1016/j.patcog.2022.108786_bib0034) 2019; 85
Razakarivony (10.1016/j.patcog.2022.108786_bib0053) 2016; 34
Zhao (10.1016/j.patcog.2022.108786_bib0021) 2020; 104
Paszke (10.1016/j.patcog.2022.108786_bib0054) 2019; vol. 32
Han (10.1016/j.patcog.2022.108786_bib0029) 2022; 60
10.1016/j.patcog.2022.108786_bib0025
Zhang (10.1016/j.patcog.2022.108786_bib0035) 2021
Pang (10.1016/j.patcog.2022.108786_bib0013) 2019
Hwang (10.1016/j.patcog.2022.108786_bib0031) 2015
References_xml – volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib0012
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 50
  start-page: 20
  year: 2019
  end-page: 29
  ident: bib0047
  article-title: Cross-modality interactive attention network for multispectral pedestrian detection
  publication-title: Inf. Fusion
– reference: Z. Zhang, T. He, H. Zhang, Z. Zhang, J. Xie, M. Li, Bag of freebies for training object detection neural networks,
– start-page: 2844
  year: 2019
  end-page: 2853
  ident: bib0026
  article-title: Learning roi transformer for oriented object detection in aerial images
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 34
  start-page: 187
  year: 2016
  end-page: 203
  ident: bib0053
  article-title: Vehicle detection in aerial imagery: a small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent
– reference: (2019).
– reference: J. Liu, S. Zhang, S. Wang, D.N. Metaxas, Multispectral deep neural networks for pedestrian detection,
– reference: G. Jocher, A. Stoken, J. Borovec, L. Changyu, A. Hogan, et al., ultralytics/yolov5: v3. 1-Bug fixes and performance improvements, 2020.
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib0040
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proceedings of the European Conference Computer Vision
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0018
  article-title: SSD: single shot multibox detector
  publication-title: Proceedings of the European Conference Computer Vision
– reference: (2020).
– volume: 100
  start-page: 107103
  year: 2020
  ident: bib0023
  article-title: Active emulation of computer codes with gaussian processes – application to remote sensing
  publication-title: Pattern Recognit.
– reference: Y. Zheng, I.H. Izzat, S. Ziaee, GFD-SSD: gated fusion double SSD for multispectral pedestrian detection,
– start-page: 6517
  year: 2017
  end-page: 6525
  ident: bib0042
  article-title: YOLO9000: Better, faster, stronger
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: (2016).
– reference: A.V. Etten, You only look twice: rapid multi-scale object detection in satellite imagery,
– reference: J. Redmon, A. Farhadi, YOLOV3: an incremental improvement,
– start-page: 787
  year: 2020
  end-page: 803
  ident: bib0052
  article-title: Improving multispectral pedestrian detection by addressing modality imbalance problems
  publication-title: Proceedings of the European Conference Computer Vision
– start-page: 886
  year: 2005
  end-page: 893
  ident: bib0002
  article-title: Histograms of oriented gradients for human detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 120
  start-page: 108102
  year: 2021
  ident: bib0006
  article-title: Explainable deep learning for efficient and robust pattern recognition: a survey of recent developments
  publication-title: Pattern Recognit.
– volume: 129
  start-page: 108717
  year: 2022
  ident: bib0022
  article-title: HFA-Net: high frequency attention siamese network for building change detection in VHR remote sensing images
  publication-title: Pattern Recognit.
– reference: (2021).
– start-page: 511
  year: 2001
  end-page: 518
  ident: bib0004
  article-title: Rapid object detection using a boosted cascade of simple features
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 14
  start-page: 1497
  year: 2021
  end-page: 1508
  ident: bib0037
  article-title: YOLOrs: object detection in multimodal remote sensing imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, YOLOX: exceeding YOLO series in 2021,
– start-page: 821
  year: 2019
  end-page: 830
  ident: bib0013
  article-title: Libra R-CNN: towards balanced learning for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 21
  year: 2021
  ident: bib0046
  article-title: Attention fusion for one-stage multispectral pedestrian detection
  publication-title: Sensors
– volume: 104
  start-page: 107333
  year: 2020
  ident: bib0021
  article-title: Remote sensing image segmentation using geodesic-kernel functions and multi-feature spaces
  publication-title: Pattern Recognit.
– start-page: 6154
  year: 2018
  end-page: 6162
  ident: bib0014
  article-title: Cascade R-CNN: delving into high quality object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib0017
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 10778
  year: 2020
  end-page: 10787
  ident: bib0019
  article-title: Efficientdet: Scalable and efficient object detection
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: (2018).
– start-page: 580
  year: 2014
  end-page: 587
  ident: bib0008
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1139506
  year: 2020
  ident: bib0036
  article-title: Vehicle detection from multi-modal aerial imagery using YOLOv3 with mid-level fusion
  publication-title: Proceedings of the Big Data II: Learning, Analytics, and Applications
– volume: 80
  start-page: 143
  year: 2018
  end-page: 155
  ident: bib0033
  article-title: Unified multi-spectral pedestrian detection based on probabilistic fusion networks
  publication-title: Pattern Recognit.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bib0003
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 107
  start-page: 107474
  year: 2020
  ident: bib0011
  article-title: A novel hybrid approach for crack detection
  publication-title: Pattern Recognit.
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0020
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  ident: bib0041
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
– volume: 111
  start-page: 107635
  year: 2021
  ident: bib0024
  article-title: Hyperspectral remote sensing image classification based on tighter random projection with minimal intra-class variance algorithm
  publication-title: Pattern Recognit.
– volume: 36
  start-page: 1532
  year: 2014
  end-page: 1545
  ident: bib0005
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  year: 2020
  ident: bib0027
  article-title: YOLO-Fine: one-stage detector of small objects under various backgrounds in remote sensing images
  publication-title: Remote Sens.
– volume: vol. 32
  start-page: 8026
  year: 2019
  end-page: 8037
  ident: bib0054
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– start-page: 6054
  year: 2019
  end-page: 6063
  ident: bib0016
  article-title: Scale-aware trident networks for object detection
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– reference: A. Bochkovskiy, C.-Y. Wang, H.Y.M. Liao, YOLOv4: optimal speed and accuracy of object detection,
– start-page: 1571
  year: 2020
  end-page: 1580
  ident: bib0049
  article-title: CSPNet: a new backbone that can enhance learning capability of CNN
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0056
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib0030
  article-title: Air-to-ground multimodal object detection algorithm based on feature association learning
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib0029
  article-title: Align deep features for oriented object detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 85
  start-page: 161
  year: 2019
  end-page: 171
  ident: bib0034
  article-title: Illumination-aware faster R-CNN for robust multispectral pedestrian detection
  publication-title: Pattern Recognit.
– start-page: 3098
  year: 2019
  end-page: 3102
  ident: bib0057
  article-title: SSSDET: simple short and shallow network for resource efficient vehicle detection in aerial scenes
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– start-page: 1037
  year: 2015
  end-page: 1045
  ident: bib0031
  article-title: Multispectral pedestrian detection: benchmark dataset and baseline
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 72
  year: 2021
  end-page: 80
  ident: bib0035
  article-title: Guided attentive feature fusion for multispectral pedestrian detection
  publication-title: Proceedings of the IEEE Winter Conference on Applications of Computer Vision
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: bib0009
  article-title: Fast R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 276
  year: 2020
  end-page: 280
  ident: bib0058
  article-title: Multispectral fusion for object detection with cyclic fuse-and-refine blocks
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– volume: 111
  start-page: 107639
  year: 2021
  ident: bib0007
  article-title: Image denoising using complex-valued deep CNN
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bib0050
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 96
  start-page: 106986
  year: 2019
  ident: bib0010
  article-title: Improved localization accuracy by LocNet for faster R-CNN based text detection in natural scene images
  publication-title: Pattern Recognit.
– start-page: 821
  year: 2019
  end-page: 830
  ident: bib0015
  article-title: Libra R-CNN: towards balanced learning for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 93058
  year: 2020
  end-page: 93068
  ident: bib0028
  article-title: An efficient feature pyramid network for object detection in remote sensing imagery
  publication-title: IEEE Access
– volume: 46
  start-page: 1078
  year: 2013
  end-page: 1090
  ident: bib0001
  article-title: T-HOG: an effective gradient-based descriptor for single line text regions
  publication-title: Pattern Recognit.
– reference: Y.-T. Chen, J. Shi, C. Mertz, S. Kong, D. Ramanan, Multimodal object detection via bayesian fusion,
– start-page: 8759
  year: 2018
  end-page: 8768
  ident: bib0051
  article-title: Path aggregation network for instance segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 80
  start-page: 143
  year: 2018
  ident: 10.1016/j.patcog.2022.108786_bib0033
  article-title: Unified multi-spectral pedestrian detection based on probabilistic fusion networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.03.007
– start-page: 779
  year: 2016
  ident: 10.1016/j.patcog.2022.108786_bib0020
  article-title: You only look once: unified, real-time object detection
– ident: 10.1016/j.patcog.2022.108786_bib0043
– ident: 10.1016/j.patcog.2022.108786_bib0032
  doi: 10.5244/C.30.73
– start-page: 6154
  year: 2018
  ident: 10.1016/j.patcog.2022.108786_bib0014
  article-title: Cascade R-CNN: delving into high quality object detection
– volume: 36
  start-page: 1532
  issue: 8
  year: 2014
  ident: 10.1016/j.patcog.2022.108786_bib0005
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2300479
– start-page: 1037
  year: 2015
  ident: 10.1016/j.patcog.2022.108786_bib0031
  article-title: Multispectral pedestrian detection: benchmark dataset and baseline
– volume: 85
  start-page: 161
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0034
  article-title: Illumination-aware faster R-CNN for robust multispectral pedestrian detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.08.005
– volume: 21
  issue: 12
  year: 2021
  ident: 10.1016/j.patcog.2022.108786_bib0046
  article-title: Attention fusion for one-stage multispectral pedestrian detection
  publication-title: Sensors
  doi: 10.3390/s21124184
– start-page: 276
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0058
  article-title: Multispectral fusion for object detection with cyclic fuse-and-refine blocks
– start-page: 8759
  year: 2018
  ident: 10.1016/j.patcog.2022.108786_bib0051
  article-title: Path aggregation network for instance segmentation
– start-page: 2844
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0026
  article-title: Learning roi transformer for oriented object detection in aerial images
– start-page: 6517
  year: 2017
  ident: 10.1016/j.patcog.2022.108786_bib0042
  article-title: YOLO9000: Better, faster, stronger
– start-page: 2980
  year: 2017
  ident: 10.1016/j.patcog.2022.108786_bib0017
  article-title: Focal loss for dense object detection
– volume: 100
  start-page: 107103
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0023
  article-title: Active emulation of computer codes with gaussian processes – application to remote sensing
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107103
– ident: 10.1016/j.patcog.2022.108786_bib0025
– volume: 129
  start-page: 108717
  year: 2022
  ident: 10.1016/j.patcog.2022.108786_bib0022
  article-title: HFA-Net: high frequency attention siamese network for building change detection in VHR remote sensing images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108717
– start-page: 1139506
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0036
  article-title: Vehicle detection from multi-modal aerial imagery using YOLOv3 with mid-level fusion
– volume: 111
  start-page: 107639
  year: 2021
  ident: 10.1016/j.patcog.2022.108786_bib0007
  article-title: Image denoising using complex-valued deep CNN
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107639
– volume: 120
  start-page: 108102
  year: 2021
  ident: 10.1016/j.patcog.2022.108786_bib0006
  article-title: Explainable deep learning for efficient and robust pattern recognition: a survey of recent developments
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108102
– start-page: 511
  year: 2001
  ident: 10.1016/j.patcog.2022.108786_bib0004
  article-title: Rapid object detection using a boosted cascade of simple features
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.patcog.2022.108786_bib0012
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 821
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0013
  article-title: Libra R-CNN: towards balanced learning for object detection
– volume: 12
  issue: 15
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0027
  article-title: YOLO-Fine: one-stage detector of small objects under various backgrounds in remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12152501
– start-page: 3098
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0057
  article-title: SSSDET: simple short and shallow network for resource efficient vehicle detection in aerial scenes
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2022.108786_bib0029
  article-title: Align deep features for oriented object detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 104
  start-page: 107333
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0021
  article-title: Remote sensing image segmentation using geodesic-kernel functions and multi-feature spaces
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107333
– start-page: 6054
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0016
  article-title: Scale-aware trident networks for object detection
– volume: 8
  start-page: 93058
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0028
  article-title: An efficient feature pyramid network for object detection in remote sensing imagery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993998
– volume: 34
  start-page: 187
  year: 2016
  ident: 10.1016/j.patcog.2022.108786_bib0053
  article-title: Vehicle detection in aerial imagery: a small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent
  doi: 10.1016/j.jvcir.2015.11.002
– start-page: 72
  year: 2021
  ident: 10.1016/j.patcog.2022.108786_bib0035
  article-title: Guided attentive feature fusion for multispectral pedestrian detection
– volume: 96
  start-page: 106986
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0010
  article-title: Improved localization accuracy by LocNet for faster R-CNN based text detection in natural scene images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.106986
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2022.108786_bib0003
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– start-page: 1440
  year: 2015
  ident: 10.1016/j.patcog.2022.108786_bib0009
  article-title: Fast R-CNN
– volume: 14
  start-page: 1497
  year: 2021
  ident: 10.1016/j.patcog.2022.108786_bib0037
  article-title: YOLOrs: object detection in multimodal remote sensing imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3041316
– ident: 10.1016/j.patcog.2022.108786_bib0039
– start-page: 821
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0015
  article-title: Libra R-CNN: towards balanced learning for object detection
– start-page: 1571
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0049
  article-title: CSPNet: a new backbone that can enhance learning capability of CNN
– start-page: 580
  year: 2014
  ident: 10.1016/j.patcog.2022.108786_bib0008
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 107
  start-page: 107474
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0011
  article-title: A novel hybrid approach for crack detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107474
– ident: 10.1016/j.patcog.2022.108786_bib0045
  doi: 10.1007/978-3-031-20077-9_9
– volume: 16
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0030
  article-title: Air-to-ground multimodal object detection algorithm based on feature association learning
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881419842995
– start-page: 740
  year: 2014
  ident: 10.1016/j.patcog.2022.108786_bib0040
  article-title: Microsoft COCO: Common objects in context
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.patcog.2022.108786_bib0050
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 10.1016/j.patcog.2022.108786_bib0056
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2022.108786_bib0041
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– ident: 10.1016/j.patcog.2022.108786_bib0048
– volume: 111
  start-page: 107635
  year: 2021
  ident: 10.1016/j.patcog.2022.108786_bib0024
  article-title: Hyperspectral remote sensing image classification based on tighter random projection with minimal intra-class variance algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107635
– ident: 10.1016/j.patcog.2022.108786_bib0044
– start-page: 787
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0052
  article-title: Improving multispectral pedestrian detection by addressing modality imbalance problems
– volume: 46
  start-page: 1078
  issue: 3
  year: 2013
  ident: 10.1016/j.patcog.2022.108786_bib0001
  article-title: T-HOG: an effective gradient-based descriptor for single line text regions
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.10.009
– volume: 50
  start-page: 20
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0047
  article-title: Cross-modality interactive attention network for multispectral pedestrian detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.015
– ident: 10.1016/j.patcog.2022.108786_bib0038
– volume: vol. 32
  start-page: 8026
  year: 2019
  ident: 10.1016/j.patcog.2022.108786_bib0054
  article-title: Pytorch: an imperative style, high-performance deep learning library
– start-page: 886
  year: 2005
  ident: 10.1016/j.patcog.2022.108786_bib0002
  article-title: Histograms of oriented gradients for human detection
– start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2022.108786_bib0018
  article-title: SSD: single shot multibox detector
– ident: 10.1016/j.patcog.2022.108786_bib0055
– start-page: 10778
  year: 2020
  ident: 10.1016/j.patcog.2022.108786_bib0019
  article-title: Efficientdet: Scalable and efficient object detection
SSID ssj0017142
Score 2.6867542
Snippet •We propose a simple yet effective CMAFF module that can fuse the complementary information of multispectral remote sensing images with joint common-modality...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108786
SubjectTerms Attention
Cross-modality
Feature fusion
Multispectral remote sensing imagery
Object detection
Title Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery
URI https://dx.doi.org/10.1016/j.patcog.2022.108786
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZH2YPXtc17cyxFqYo9WegtdF8lYtNS04MXf7szm6QoiILHhN1NmJ2dx_LNNwDXgQqEQTfBlZ9ggmKF4TINIk5UJhjxSmMlVSM_jePRJHyYRtMWDJtaGIJV1ra_sunOWtdverU0e6s8pxpfoh3so0ZSIpFQER-x16FO33xsYR7U37tiDA88TqOb8jmH8VqhuVvOMUv0fQLbJVRR_ZN7-uJy7g5gr44V2aD6nUNomeII9ps-DKw-lsegh7QWXyy1C6oZUWYWZMaYNY63k9kNXYoxDFDZUtLNC9OmdCCsguUFc6hCV3O5xu-tDW6fYW8EbS_mLF8QzcX7CUzubp-HI153T-AK04CSK43OySrpaWtFEhpMPbRvLCbDQsYzK-wsTH20MRQSeb4XC6FDPMB9wmvYRJjgFNrFsjBnwOI0UH6skn4qdagjK2M1SyMtrdVCykh1IGiElqmaWpw6XLxmDYbsJatEnZGos0rUHeDbWauKWuOP8UmzH9k3FcnQ-v868_zfMy9gl54q9N4ltMv1xlxhFFLKrlOzLuwM7h9H408GvN5h
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHPTi24jPPXjdQN_bIyESkMcJEm4N-yIYKQTh4L93pg-iidHEa9tpm9nZeex-8y3Ak6c8YTBMcOVGWKBYYbiMvYATlQlmvNJYSd3Iw1HYnfgv02BagXbZC0OwysL35z4989bFlUahzcZ6saAeX6IdbKJFUiERxQdQI3Yqvwq1Vq_fHe03EyLHz0nDPYeTQNlBl8G81ujxVnMsFF2X8HYRNVX_FKG-RJ3OKRwX6SJr5X90BhWTnsNJeRQDK2bmBeg2vYsvVzrLqxmxZqbkyZg1GXUnsztaF2OYo7KVpMUXps02w2GlbJGyDFiYtV1u8HsbgyNo2Duh29M5WyyJ6eLjEiad53G7y4sDFLjCSmDLlcb4ZJV0tLUi8g1WH9o1FuthIcOZFXbmxy66GcqKHNcJhdA-zuEmQTZsJIx3BdV0lZprYGHsKTdUUTOW2teBlaGaxYGW1mohZaDq4JVKS1TBLk6HXLwlJYzsNclVnZCqk1zVdeB7qXXOrvHH81E5Hsk3K0kwAPwqefNvyUc47I6Hg2TQG_Vv4Yju5GC-O6huNztzj0nJVj4URvcJqizhEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-modality+attentive+feature+fusion+for+object+detection+in+multispectral+remote+sensing+imagery&rft.jtitle=Pattern+recognition&rft.au=Qingyun%2C+Fang&rft.au=Zhaokui%2C+Wang&rft.date=2022-10-01&rft.issn=0031-3203&rft.volume=130&rft.spage=108786&rft_id=info:doi/10.1016%2Fj.patcog.2022.108786&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon