Recent advances in convolutional neural networks

•We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.•We introduce the applications of CNN on various tasks, including image classifica...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 77; pp. 354 - 377
Main Authors Gu, Jiuxiang, Wang, Zhenhua, Kuen, Jason, Ma, Lianyang, Shahroudy, Amir, Shuai, Bing, Liu, Ting, Wang, Xingxing, Wang, Gang, Cai, Jianfei, Chen, Tsuhan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.•We introduce the applications of CNN on various tasks, including image classification, object detection, object tracking, pose estimation, text detection, visual saliency detection, action recognition, scene labeling, speech and natural language processing.•We discuss the challenges in CNN and give several future research directions. In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.
AbstractList •We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.•We introduce the applications of CNN on various tasks, including image classification, object detection, object tracking, pose estimation, text detection, visual saliency detection, action recognition, scene labeling, speech and natural language processing.•We discuss the challenges in CNN and give several future research directions. In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.
Author Wang, Xingxing
Kuen, Jason
Chen, Tsuhan
Gu, Jiuxiang
Shuai, Bing
Shahroudy, Amir
Wang, Zhenhua
Wang, Gang
Ma, Lianyang
Cai, Jianfei
Liu, Ting
Author_xml – sequence: 1
  givenname: Jiuxiang
  orcidid: 0000-0002-3437-5084
  surname: Gu
  fullname: Gu, Jiuxiang
  email: jgu004@ntu.edu.sg
  organization: ROSE Lab, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Zhenhua
  surname: Wang
  fullname: Wang, Zhenhua
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Jason
  surname: Kuen
  fullname: Kuen, Jason
  email: jasonkuen@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Lianyang
  surname: Ma
  fullname: Ma, Lianyang
  email: lyma@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 5
  givenname: Amir
  surname: Shahroudy
  fullname: Shahroudy, Amir
  email: amir3@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 6
  givenname: Bing
  surname: Shuai
  fullname: Shuai, Bing
  email: bshuai001@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 7
  givenname: Ting
  surname: Liu
  fullname: Liu, Ting
  email: LIUT0016@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 8
  givenname: Xingxing
  surname: Wang
  fullname: Wang, Xingxing
  email: wangxx@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 9
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  email: WangGang@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 10
  givenname: Jianfei
  surname: Cai
  fullname: Cai, Jianfei
  email: asjfcai@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 11
  givenname: Tsuhan
  surname: Chen
  fullname: Chen, Tsuhan
  email: tsuhan@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNqFkE1LAzEQhoNUsK3-Aw_7B3adJPvRehCk-AUFQfQcspNZSV2TkqQV_7271pMHPQ28M88Lz8zYxHlHjJ1zKDjw-mJTbHVC_1oI4M0QFcDlEZvyRSPzipdiwqYAkudSgDxhsxg3MBwOiymDJ0JyKdNmrx1SzKzL0Lu973fJeqf7zNEufI_04cNbPGXHne4jnf3MOXu5vXle3efrx7uH1fU6Rwl1yhGNbElQhWW5bIwA3bYkK1PyyjSyXXAwVBOAQLE02ApetXLZya6UdacRGjln5aEXg48xUKe2wb7r8Kk4qNFabdTBWo3WYzpYD9jlLwxt0qNKCtr2_8FXB5gGsb2loCJaGt5ibCBMynj7d8EXZz94cg
CitedBy_id crossref_primary_10_1017_eds_2022_35
crossref_primary_10_3390_foods13132144
crossref_primary_10_1007_s11063_022_10741_9
crossref_primary_10_3390_en13092242
crossref_primary_10_1016_j_heliyon_2024_e26812
crossref_primary_10_1016_j_patcog_2019_01_045
crossref_primary_10_1038_s44222_023_00054_4
crossref_primary_10_1088_1475_7516_2023_09_029
crossref_primary_10_1109_JSEN_2019_2935812
crossref_primary_10_1016_j_neucom_2021_04_076
crossref_primary_10_1109_TPWRS_2023_3286406
crossref_primary_10_3390_cancers15143582
crossref_primary_10_3390_s21165446
crossref_primary_10_1016_j_isprsjprs_2023_11_016
crossref_primary_10_3390_atmos12111487
crossref_primary_10_1088_2631_8695_ad3dae
crossref_primary_10_1007_s10479_024_05902_z
crossref_primary_10_1038_s41598_023_28479_2
crossref_primary_10_3390_su14031583
crossref_primary_10_9766_KIMST_2021_24_6_591
crossref_primary_10_1007_s11276_020_02379_z
crossref_primary_10_1109_OJCOMS_2024_3472094
crossref_primary_10_1109_OJSP_2024_3435703
crossref_primary_10_3390_met13061039
crossref_primary_10_1002_mp_16267
crossref_primary_10_57062_ijpem_st_2022_0038
crossref_primary_10_1016_j_eswa_2021_114600
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_3390_brainsci13081148
crossref_primary_10_1016_j_bbe_2023_02_002
crossref_primary_10_3390_electronics12112475
crossref_primary_10_3390_app10030932
crossref_primary_10_1016_j_jii_2024_100662
crossref_primary_10_1108_DTA_05_2024_0472
crossref_primary_10_1016_j_micpro_2022_104687
crossref_primary_10_1007_s13369_023_08143_7
crossref_primary_10_1109_TNNLS_2023_3246263
crossref_primary_10_1016_j_atech_2024_100556
crossref_primary_10_1016_j_patcog_2019_01_020
crossref_primary_10_1109_TITS_2024_3422039
crossref_primary_10_1016_j_inffus_2022_11_007
crossref_primary_10_1080_08839514_2023_2166233
crossref_primary_10_3390_rs14225853
crossref_primary_10_1080_00949655_2024_2439453
crossref_primary_10_1142_S0218001424590043
crossref_primary_10_1109_ACCESS_2021_3065273
crossref_primary_10_5194_amt_17_7109_2024
crossref_primary_10_1080_10494820_2023_2202698
crossref_primary_10_1007_s10462_025_11152_7
crossref_primary_10_1016_j_media_2019_101561
crossref_primary_10_1016_j_asoc_2022_108660
crossref_primary_10_3390_mi14010188
crossref_primary_10_1016_j_measen_2024_101191
crossref_primary_10_1109_TIP_2023_3275872
crossref_primary_10_1016_j_dche_2024_100207
crossref_primary_10_1080_05704928_2020_1859525
crossref_primary_10_1007_s00521_022_07762_9
crossref_primary_10_1364_OE_496020
crossref_primary_10_1109_TIM_2024_3500062
crossref_primary_10_1177_20552076221133703
crossref_primary_10_1177_07316844241228182
crossref_primary_10_31590_ejosat_1015061
crossref_primary_10_3390_ma15051923
crossref_primary_10_1016_j_jdent_2023_104821
crossref_primary_10_1021_acs_analchem_3c03252
crossref_primary_10_1007_s00521_022_08017_3
crossref_primary_10_1016_j_swevo_2024_101838
crossref_primary_10_1016_j_ces_2023_119462
crossref_primary_10_1016_j_advengsoft_2022_103328
crossref_primary_10_1016_j_jobe_2023_106503
crossref_primary_10_1259_dmfr_20200375
crossref_primary_10_1016_j_energy_2022_124889
crossref_primary_10_1016_j_gene_2022_147045
crossref_primary_10_1109_ACCESS_2020_2987105
crossref_primary_10_1049_rsn2_12389
crossref_primary_10_1016_j_jnca_2020_102766
crossref_primary_10_3389_fonc_2022_960056
crossref_primary_10_1016_j_autcon_2019_102844
crossref_primary_10_1155_2020_7251280
crossref_primary_10_3389_fnins_2019_00625
crossref_primary_10_3390_app11052177
crossref_primary_10_3390_app10030976
crossref_primary_10_1109_TKDE_2021_3130903
crossref_primary_10_1016_j_foodcont_2024_110966
crossref_primary_10_1049_cit2_12320
crossref_primary_10_1109_JSTARS_2024_3468457
crossref_primary_10_1109_OJIM_2022_3217850
crossref_primary_10_1016_j_neucom_2021_08_106
crossref_primary_10_1002_lpor_202400972
crossref_primary_10_1016_j_eswa_2021_115968
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_3390_electronics9121993
crossref_primary_10_1016_j_adapen_2022_100100
crossref_primary_10_1007_s00521_023_08490_4
crossref_primary_10_1299_transjsme_22_00188
crossref_primary_10_3389_feart_2022_1026479
crossref_primary_10_1016_j_tre_2024_103445
crossref_primary_10_1016_j_tust_2024_106122
crossref_primary_10_1021_acsestwater_3c00152
crossref_primary_10_1088_1742_6596_1575_1_012204
crossref_primary_10_7717_peerj_cs_1611
crossref_primary_10_4018_JGIM_302659
crossref_primary_10_1155_2019_6565379
crossref_primary_10_1016_j_measurement_2021_110073
crossref_primary_10_21595_vp_2023_23670
crossref_primary_10_1109_ACCESS_2024_3413717
crossref_primary_10_1155_2020_2154928
crossref_primary_10_1177_17568293221148377
crossref_primary_10_1177_00368504211020161
crossref_primary_10_3390_app13106125
crossref_primary_10_3390_app122110953
crossref_primary_10_1155_2022_9258620
crossref_primary_10_3390_rs15194875
crossref_primary_10_1016_j_heliyon_2023_e16763
crossref_primary_10_21597_jist_976577
crossref_primary_10_1016_j_jhydrol_2022_127830
crossref_primary_10_3390_e26030262
crossref_primary_10_3390_app12178865
crossref_primary_10_3390_app122412606
crossref_primary_10_3390_rs13183606
crossref_primary_10_1016_j_compeleceng_2024_109194
crossref_primary_10_3390_rs13183605
crossref_primary_10_3390_ai1030027
crossref_primary_10_3390_math11224695
crossref_primary_10_1016_j_ajogmf_2023_101182
crossref_primary_10_3390_s22208060
crossref_primary_10_1007_s00477_024_02800_5
crossref_primary_10_1007_s11263_024_02043_5
crossref_primary_10_3390_biomedicines13020284
crossref_primary_10_1016_j_engappai_2022_105032
crossref_primary_10_1080_19942060_2024_2440075
crossref_primary_10_1007_s10489_022_03509_0
crossref_primary_10_1021_acs_jcim_3c01290
crossref_primary_10_1109_ACCESS_2024_3375766
crossref_primary_10_32604_cmc_2022_025692
crossref_primary_10_1016_j_foodcont_2025_111244
crossref_primary_10_3390_electronics14030553
crossref_primary_10_1007_s11042_020_10037_x
crossref_primary_10_1007_s00354_021_00121_7
crossref_primary_10_1109_ACCESS_2019_2918851
crossref_primary_10_1186_s12864_023_09796_2
crossref_primary_10_1016_j_patcog_2021_107822
crossref_primary_10_1063_5_0237313
crossref_primary_10_2118_210605_PA
crossref_primary_10_1038_s41598_023_39079_5
crossref_primary_10_1109_JLT_2021_3096286
crossref_primary_10_1093_cercor_bhab394
crossref_primary_10_3390_electronics12214448
crossref_primary_10_3389_fneur_2023_1171167
crossref_primary_10_3390_app15020741
crossref_primary_10_3390_en15217924
crossref_primary_10_1007_s11517_022_02714_w
crossref_primary_10_1016_j_patcog_2018_08_012
crossref_primary_10_1038_s41392_023_01381_z
crossref_primary_10_1007_s10462_019_09788_3
crossref_primary_10_1007_s42484_024_00194_9
crossref_primary_10_1016_j_neunet_2020_05_025
crossref_primary_10_1080_17477778_2024_2394063
crossref_primary_10_1109_ACCESS_2023_3349352
crossref_primary_10_1016_j_envsoft_2024_106072
crossref_primary_10_3390_app15052305
crossref_primary_10_1016_j_procs_2020_04_206
crossref_primary_10_1029_2021WR031554
crossref_primary_10_3390_heritage8010012
crossref_primary_10_1109_TIP_2019_2962685
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_3390_s21165486
crossref_primary_10_3390_w15010059
crossref_primary_10_1109_TCE_2022_3190069
crossref_primary_10_1007_s11277_024_10928_4
crossref_primary_10_1016_j_vehcom_2024_100760
crossref_primary_10_20965_ijat_2024_p0265
crossref_primary_10_1109_ACCESS_2024_3434681
crossref_primary_10_3390_machines10080610
crossref_primary_10_1007_s11044_023_09884_x
crossref_primary_10_3390_app11125644
crossref_primary_10_3390_drones5040109
crossref_primary_10_1016_j_fuel_2020_119745
crossref_primary_10_17946_JRST_2023_46_4_277
crossref_primary_10_1109_ACCESS_2020_3021508
crossref_primary_10_1109_TPWRS_2022_3163381
crossref_primary_10_1109_TCSS_2021_3136201
crossref_primary_10_32604_sdhm_2024_045831
crossref_primary_10_3389_fpls_2023_1096802
crossref_primary_10_1016_j_neucom_2024_127700
crossref_primary_10_1016_j_net_2024_03_021
crossref_primary_10_1016_j_bios_2025_117399
crossref_primary_10_3389_fphys_2023_1162436
crossref_primary_10_1016_j_compstruct_2022_116170
crossref_primary_10_1016_j_knosys_2025_113166
crossref_primary_10_1016_j_lers_2023_07_001
crossref_primary_10_1016_j_ress_2023_109176
crossref_primary_10_1515_corrrev_2023_0027
crossref_primary_10_1016_j_scitotenv_2024_176758
crossref_primary_10_1007_s11760_022_02300_5
crossref_primary_10_3390_electronics14040797
crossref_primary_10_2139_ssrn_4182106
crossref_primary_10_1121_10_0027932
crossref_primary_10_3390_math11132884
crossref_primary_10_3390_jimaging11030085
crossref_primary_10_1016_j_nantod_2023_101968
crossref_primary_10_1109_TPAMI_2022_3213755
crossref_primary_10_1002_ps_8728
crossref_primary_10_1016_j_engappai_2024_109183
crossref_primary_10_1155_2018_4168538
crossref_primary_10_1109_TKDE_2023_3305809
crossref_primary_10_1007_s40042_022_00398_x
crossref_primary_10_1016_j_tsep_2025_103289
crossref_primary_10_3390_electronics9071140
crossref_primary_10_1016_j_measurement_2024_115331
crossref_primary_10_1186_s12911_024_02460_z
crossref_primary_10_3390_diagnostics14242875
crossref_primary_10_1145_3649448
crossref_primary_10_1016_j_indcrop_2024_119671
crossref_primary_10_1109_ACCESS_2020_3033481
crossref_primary_10_1016_j_chaos_2022_113059
crossref_primary_10_1007_s00530_021_00824_3
crossref_primary_10_1007_s11042_023_17375_6
crossref_primary_10_1142_S0219519424400785
crossref_primary_10_1016_j_ress_2022_108715
crossref_primary_10_2139_ssrn_5050068
crossref_primary_10_3390_brainsci12010094
crossref_primary_10_1049_iet_rpg_2019_0949
crossref_primary_10_2174_1574893618666230706112826
crossref_primary_10_1016_j_cmpb_2023_107957
crossref_primary_10_1145_3551486
crossref_primary_10_3390_math11132972
crossref_primary_10_1016_j_neucom_2024_127737
crossref_primary_10_1080_10589759_2025_2455451
crossref_primary_10_1109_TPAMI_2020_2993627
crossref_primary_10_1016_j_enganabound_2023_06_003
crossref_primary_10_1007_s12665_024_11515_3
crossref_primary_10_1109_ACCESS_2025_3548841
crossref_primary_10_32604_cmc_2025_060567
crossref_primary_10_1109_TCBB_2021_3113326
crossref_primary_10_1109_TGRS_2022_3164341
crossref_primary_10_1145_3608112
crossref_primary_10_1038_s42003_023_05098_1
crossref_primary_10_1016_j_ecoinf_2019_02_007
crossref_primary_10_1109_TITS_2021_3119023
crossref_primary_10_3390_e25101395
crossref_primary_10_1007_s13349_022_00561_9
crossref_primary_10_1016_j_csbj_2021_04_054
crossref_primary_10_3390_pr12081589
crossref_primary_10_1016_j_isci_2023_108714
crossref_primary_10_1109_TCYB_2021_3133106
crossref_primary_10_3390_app15020699
crossref_primary_10_1016_j_saa_2020_119168
crossref_primary_10_1109_ACCESS_2020_3024544
crossref_primary_10_1007_s11694_021_00990_y
crossref_primary_10_1007_s44196_022_00108_2
crossref_primary_10_1145_3404993
crossref_primary_10_1016_j_epsr_2022_107923
crossref_primary_10_1016_j_neunet_2023_07_003
crossref_primary_10_1007_s00371_022_02591_2
crossref_primary_10_3390_su132212392
crossref_primary_10_3390_electronics11050732
crossref_primary_10_1007_s11277_024_10982_y
crossref_primary_10_1007_s11069_024_06837_1
crossref_primary_10_3390_diagnostics12020532
crossref_primary_10_1109_TBME_2021_3124487
crossref_primary_10_3389_fnins_2024_1379495
crossref_primary_10_1016_j_foodchem_2022_132655
crossref_primary_10_1002_cpe_7230
crossref_primary_10_1038_s41467_024_45172_8
crossref_primary_10_32604_cmc_2021_015614
crossref_primary_10_3390_rs15061690
crossref_primary_10_1038_s42256_022_00508_1
crossref_primary_10_1016_j_neucom_2020_04_143
crossref_primary_10_1093_mnras_stad2913
crossref_primary_10_1155_2022_8465543
crossref_primary_10_3390_su13115990
crossref_primary_10_1016_j_sse_2021_108045
crossref_primary_10_1177_01655515231151406
crossref_primary_10_1016_j_apacoust_2024_110285
crossref_primary_10_1016_j_patcog_2019_05_015
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_1088_2058_9565_ac79c9
crossref_primary_10_1021_acsomega_3c06263
crossref_primary_10_3390_agriculture13030730
crossref_primary_10_3390_batteries10090303
crossref_primary_10_3390_rs13163132
crossref_primary_10_1093_jge_gxae023
crossref_primary_10_1007_s42486_022_00121_6
crossref_primary_10_1109_TKDE_2023_3322405
crossref_primary_10_3390_informatics8030053
crossref_primary_10_1111_coin_12411
crossref_primary_10_1007_s13735_023_00279_4
crossref_primary_10_3389_fmars_2022_868420
crossref_primary_10_1007_s11517_022_02656_3
crossref_primary_10_32604_csse_2024_039849
crossref_primary_10_1109_JSEN_2024_3486373
crossref_primary_10_3390_ijms231911539
crossref_primary_10_3390_s23020854
crossref_primary_10_1016_j_oceaneng_2024_117501
crossref_primary_10_1364_OE_514466
crossref_primary_10_1016_j_eswa_2019_113017
crossref_primary_10_1109_ACCESS_2019_2915787
crossref_primary_10_3390_agronomy14040719
crossref_primary_10_1016_j_eswa_2019_113019
crossref_primary_10_1016_j_petrol_2019_106805
crossref_primary_10_1002_lpor_202300765
crossref_primary_10_1016_j_ultras_2023_107041
crossref_primary_10_1109_JSTARS_2021_3065687
crossref_primary_10_1007_s12652_019_01434_8
crossref_primary_10_1007_s11227_025_06936_1
crossref_primary_10_1155_2021_6919483
crossref_primary_10_1016_j_patcog_2022_108962
crossref_primary_10_3390_su142214812
crossref_primary_10_1186_s40537_020_00342_5
crossref_primary_10_1111_1365_2478_13672
crossref_primary_10_3390_ijms24043151
crossref_primary_10_3390_e25081169
crossref_primary_10_1007_s11227_020_03186_1
crossref_primary_10_1007_s11831_023_10000_7
crossref_primary_10_3390_s21196691
crossref_primary_10_1016_j_compbiomed_2025_109871
crossref_primary_10_1080_10447318_2021_1979290
crossref_primary_10_3390_rs14153732
crossref_primary_10_1155_2021_1428710
crossref_primary_10_1109_ACCESS_2024_3379303
crossref_primary_10_1016_j_apenergy_2022_120114
crossref_primary_10_1016_j_neucom_2020_12_064
crossref_primary_10_1080_19498276_2023_2251982
crossref_primary_10_1109_ACCESS_2021_3082557
crossref_primary_10_1016_j_cag_2023_05_017
crossref_primary_10_1016_j_patcog_2021_108215
crossref_primary_10_1007_s11277_023_10258_x
crossref_primary_10_1080_23307706_2022_2141359
crossref_primary_10_1016_j_compscitech_2024_110713
crossref_primary_10_1111_tgis_13264
crossref_primary_10_1007_s12665_023_11072_1
crossref_primary_10_1016_j_ces_2021_116679
crossref_primary_10_1016_j_neucom_2022_01_090
crossref_primary_10_1109_ACCESS_2024_3350555
crossref_primary_10_3390_drones7010002
crossref_primary_10_3390_ijerph19020923
crossref_primary_10_1016_j_csa_2023_100014
crossref_primary_10_1109_TNSRE_2021_3097007
crossref_primary_10_1007_s12652_021_03289_4
crossref_primary_10_2147_IJGM_S499950
crossref_primary_10_23919_PCMP_2023_000167
crossref_primary_10_2478_jaiscr_2023_0006
crossref_primary_10_3389_fbioe_2025_1502669
crossref_primary_10_3390_app11135911
crossref_primary_10_3390_ani12121553
crossref_primary_10_1016_j_patcog_2021_108207
crossref_primary_10_1038_s41598_024_59554_x
crossref_primary_10_1049_enc2_12091
crossref_primary_10_1109_JSSC_2020_3041153
crossref_primary_10_1016_j_asoc_2022_109906
crossref_primary_10_1016_j_vlsi_2023_102074
crossref_primary_10_1049_iet_ipr_2018_6582
crossref_primary_10_1016_j_aca_2024_343577
crossref_primary_10_1016_j_morpho_2023_100723
crossref_primary_10_1016_j_yofte_2024_104125
crossref_primary_10_1021_acsomega_2c07722
crossref_primary_10_1038_s41598_023_35048_0
crossref_primary_10_1017_wsc_2018_66
crossref_primary_10_1155_2020_8887723
crossref_primary_10_1016_j_aca_2021_338574
crossref_primary_10_1016_j_ijdrr_2024_104918
crossref_primary_10_1109_JSEN_2020_3012965
crossref_primary_10_3390_s25020472
crossref_primary_10_1111_geb_13374
crossref_primary_10_1360_SST_2021_0193
crossref_primary_10_1049_iet_sen_2019_0045
crossref_primary_10_1016_j_energy_2024_133495
crossref_primary_10_3390_make4040047
crossref_primary_10_1016_j_compbiomed_2025_109842
crossref_primary_10_1088_1361_6501_ad3b2b
crossref_primary_10_3390_rs13224712
crossref_primary_10_1155_2021_8235108
crossref_primary_10_1016_j_ces_2023_119471
crossref_primary_10_3390_pr12061129
crossref_primary_10_1016_j_measurement_2024_114955
crossref_primary_10_2139_ssrn_4473983
crossref_primary_10_1109_TCE_2019_2897758
crossref_primary_10_1016_j_bspc_2023_105327
crossref_primary_10_1007_s11663_024_03133_y
crossref_primary_10_2174_2666145416666230420093435
crossref_primary_10_1016_j_patcog_2021_108226
crossref_primary_10_1016_j_jprocont_2021_07_012
crossref_primary_10_1016_j_eswa_2024_124465
crossref_primary_10_3390_en15145005
crossref_primary_10_1093_molbev_msad216
crossref_primary_10_1016_j_isatra_2025_02_010
crossref_primary_10_1038_s41598_024_59095_3
crossref_primary_10_35784_acs_2021_08
crossref_primary_10_1016_j_rse_2024_114073
crossref_primary_10_1109_ACCESS_2022_3151089
crossref_primary_10_1016_j_patcog_2025_111382
crossref_primary_10_1002_hbm_26799
crossref_primary_10_1109_TGRS_2021_3079963
crossref_primary_10_1016_j_osnem_2022_100225
crossref_primary_10_2478_pjmpe_2020_0001
crossref_primary_10_1103_PhysRevC_105_034611
crossref_primary_10_1016_j_ijdrr_2024_104921
crossref_primary_10_1007_s00521_024_10207_0
crossref_primary_10_1016_j_camwa_2024_10_036
crossref_primary_10_1109_TGRS_2024_3362471
crossref_primary_10_3390_rs16010037
crossref_primary_10_1007_s11042_023_16754_3
crossref_primary_10_1016_j_patcog_2021_108241
crossref_primary_10_33166_AETiC_2023_03_003
crossref_primary_10_1016_j_envsoft_2020_104856
crossref_primary_10_1016_j_patcog_2021_108242
crossref_primary_10_1063_5_0043653
crossref_primary_10_1155_2021_7865856
crossref_primary_10_1016_j_iref_2025_103996
crossref_primary_10_1016_j_eswa_2024_123156
crossref_primary_10_2174_1574893615666200224095531
crossref_primary_10_1007_s11227_022_04431_5
crossref_primary_10_1016_j_engappai_2023_106276
crossref_primary_10_3390_jmse12071119
crossref_primary_10_1007_s11356_024_32706_2
crossref_primary_10_31466_kfbd_1423022
crossref_primary_10_3389_fpubh_2022_805086
crossref_primary_10_1186_s12938_021_00915_2
crossref_primary_10_29026_oea_2025_240135
crossref_primary_10_1016_j_cirp_2019_03_021
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104688
crossref_primary_10_1007_s11042_020_08905_7
crossref_primary_10_1080_17538947_2024_2393265
crossref_primary_10_3390_rs14153737
crossref_primary_10_1007_s13198_023_01861_z
crossref_primary_10_3390_automation3040031
crossref_primary_10_1016_j_jhydrol_2023_130320
crossref_primary_10_3390_s22228641
crossref_primary_10_54097_hset_v23i_3130
crossref_primary_10_3390_rs14040897
crossref_primary_10_3390_f15081380
crossref_primary_10_1007_s10479_022_04911_0
crossref_primary_10_3390_pharmaceutics14010183
crossref_primary_10_1016_j_swevo_2024_101755
crossref_primary_10_1016_j_cis_2022_102663
crossref_primary_10_3390_rs15020449
crossref_primary_10_1080_14488353_2019_1616357
crossref_primary_10_1016_j_cose_2025_104420
crossref_primary_10_1016_j_cma_2024_117054
crossref_primary_10_1007_s13369_021_05674_9
crossref_primary_10_1016_j_asoc_2024_112324
crossref_primary_10_1016_j_nme_2024_101801
crossref_primary_10_3389_fnagi_2021_757823
crossref_primary_10_1016_j_biosystemseng_2021_09_014
crossref_primary_10_3390_rs15184501
crossref_primary_10_1016_j_ecoinf_2021_101286
crossref_primary_10_2514_1_J063815
crossref_primary_10_1049_ise2_12095
crossref_primary_10_1109_TBCAS_2022_3166530
crossref_primary_10_1016_j_dibe_2024_100449
crossref_primary_10_1109_TASLP_2023_3261757
crossref_primary_10_3390_jimaging7080121
crossref_primary_10_1109_MC_2018_2381116
crossref_primary_10_3390_electronics12183787
crossref_primary_10_1016_j_inffus_2023_101880
crossref_primary_10_3390_rs15102652
crossref_primary_10_1109_ACCESS_2022_3211976
crossref_primary_10_25046_aj050570
crossref_primary_10_3390_app13042302
crossref_primary_10_1016_j_mtcomm_2024_111137
crossref_primary_10_1145_3544491
crossref_primary_10_1177_20552076241293498
crossref_primary_10_2478_jaiscr_2020_0020
crossref_primary_10_1016_j_trc_2021_103303
crossref_primary_10_1109_OJITS_2020_2996063
crossref_primary_10_1177_09544119241266375
crossref_primary_10_3390_rs16010057
crossref_primary_10_3233_AIC_190626
crossref_primary_10_3389_fncom_2023_1209372
crossref_primary_10_3390_rs16244742
crossref_primary_10_1016_j_actatropica_2024_107277
crossref_primary_10_1016_j_brainres_2025_149507
crossref_primary_10_3390_rs15164098
crossref_primary_10_1007_s00607_024_01392_w
crossref_primary_10_29252_jsdp_17_4_139
crossref_primary_10_1007_s12555_021_0234_6
crossref_primary_10_1117_1_JEI_29_4_043004
crossref_primary_10_1139_juvs_2018_0023
crossref_primary_10_1016_j_bspc_2022_104236
crossref_primary_10_3390_rs15102673
crossref_primary_10_1016_j_jksuci_2023_101865
crossref_primary_10_2196_71560
crossref_primary_10_1364_AO_445528
crossref_primary_10_1021_acs_jcim_2c00085
crossref_primary_10_1093_plphys_kiae049
crossref_primary_10_1109_ACCESS_2020_3037114
crossref_primary_10_1007_s11227_022_04936_z
crossref_primary_10_3390_diagnostics14010012
crossref_primary_10_1016_j_envsoft_2024_106126
crossref_primary_10_1109_ACCESS_2022_3217227
crossref_primary_10_3389_fnins_2019_00753
crossref_primary_10_3390_electronics13010189
crossref_primary_10_3390_app12199874
crossref_primary_10_1016_j_jer_2025_01_007
crossref_primary_10_1016_j_neucom_2024_128077
crossref_primary_10_1016_j_arr_2024_102285
crossref_primary_10_1016_j_measurement_2020_108827
crossref_primary_10_1063_5_0057404
crossref_primary_10_1615_JFlowVisImageProc_2022043908
crossref_primary_10_1088_1361_665X_acb2a0
crossref_primary_10_1016_j_biosystemseng_2024_07_002
crossref_primary_10_1016_j_triboint_2018_12_041
crossref_primary_10_1016_j_imu_2021_100545
crossref_primary_10_1002_adom_202301337
crossref_primary_10_1016_j_eswa_2023_122704
crossref_primary_10_3233_JIFS_233388
crossref_primary_10_1109_ACCESS_2020_3026483
crossref_primary_10_1016_j_jcomm_2024_100438
crossref_primary_10_1364_JOSAA_428214
crossref_primary_10_1016_j_cma_2025_117772
crossref_primary_10_1016_j_eswa_2021_115834
crossref_primary_10_1121_10_0005898
crossref_primary_10_2139_ssrn_4192441
crossref_primary_10_1109_TGRS_2024_3358397
crossref_primary_10_1016_j_compag_2023_108194
crossref_primary_10_1364_AO_425941
crossref_primary_10_1016_j_displa_2024_102864
crossref_primary_10_1103_PhysRevAccelBeams_23_032805
crossref_primary_10_3390_electronics12071561
crossref_primary_10_1007_s13555_024_01296_9
crossref_primary_10_1103_PhysRevApplied_16_064006
crossref_primary_10_3390_sym12050867
crossref_primary_10_1016_j_procs_2023_01_156
crossref_primary_10_3390_app10103443
crossref_primary_10_2197_ipsjjip_31_256
crossref_primary_10_3390_s21072411
crossref_primary_10_1016_j_autcon_2020_103081
crossref_primary_10_5194_gmd_17_7347_2024
crossref_primary_10_53070_bbd_1361811
crossref_primary_10_3233_JIFS_191000
crossref_primary_10_1007_s11042_024_19976_1
crossref_primary_10_1016_j_procs_2023_01_151
crossref_primary_10_1177_0894439321994218
crossref_primary_10_1016_j_jfoodeng_2020_109916
crossref_primary_10_1016_j_patcog_2021_107929
crossref_primary_10_1016_j_ipl_2023_106407
crossref_primary_10_1016_j_patcog_2021_107928
crossref_primary_10_1088_2634_4386_ac724d
crossref_primary_10_3389_feart_2022_988556
crossref_primary_10_1038_s41598_023_40341_z
crossref_primary_10_1080_10589759_2025_2468824
crossref_primary_10_1016_j_patcog_2024_110264
crossref_primary_10_3390_bioengineering11070689
crossref_primary_10_1115_1_4045742
crossref_primary_10_1007_s11600_022_00912_6
crossref_primary_10_1109_ACCESS_2023_3239858
crossref_primary_10_1002_lpor_202301209
crossref_primary_10_1016_j_geoen_2023_212554
crossref_primary_10_1109_ACCESS_2020_2987829
crossref_primary_10_1109_TNNLS_2020_3005574
crossref_primary_10_2139_ssrn_4674956
crossref_primary_10_3390_electronics8050579
crossref_primary_10_3390_cancers13010011
crossref_primary_10_1080_0952813X_2019_1572658
crossref_primary_10_3390_s20102761
crossref_primary_10_1002_ejic_202300382
crossref_primary_10_1007_s00521_024_09809_5
crossref_primary_10_1007_s11042_023_17610_0
crossref_primary_10_1007_s11831_021_09557_y
crossref_primary_10_2139_ssrn_4171568
crossref_primary_10_1016_j_array_2021_100077
crossref_primary_10_1109_JSAC_2019_2933763
crossref_primary_10_2139_ssrn_4503316
crossref_primary_10_1007_s11060_022_04224_z
crossref_primary_10_3390_s20185373
crossref_primary_10_32604_cmc_2022_024232
crossref_primary_10_1016_j_neunet_2019_04_024
crossref_primary_10_1007_s13198_022_01759_2
crossref_primary_10_1109_ACCESS_2023_3258972
crossref_primary_10_1016_j_scitotenv_2023_166506
crossref_primary_10_3390_electronics13071194
crossref_primary_10_1007_s10851_024_01211_z
crossref_primary_10_1016_j_jksuci_2023_101859
crossref_primary_10_1145_3472290
crossref_primary_10_3389_ebm_2024_10320
crossref_primary_10_3390_diagnostics13182979
crossref_primary_10_1109_JTEHM_2022_3180933
crossref_primary_10_1038_s41377_022_00976_5
crossref_primary_10_3390_diagnostics13182975
crossref_primary_10_1007_s10994_023_06334_9
crossref_primary_10_1016_j_physa_2022_128067
crossref_primary_10_1109_ACCESS_2019_2960292
crossref_primary_10_1016_j_measurement_2022_110868
crossref_primary_10_1093_jrr_rrab095
crossref_primary_10_1016_j_geoen_2023_212529
crossref_primary_10_1007_s42235_020_0049_9
crossref_primary_10_1080_23789689_2023_2233759
crossref_primary_10_1016_j_patcog_2020_107208
crossref_primary_10_3390_rs15112881
crossref_primary_10_1080_09540091_2023_2189217
crossref_primary_10_1109_TMM_2024_3443616
crossref_primary_10_3389_fbinf_2023_1284705
crossref_primary_10_4018_JDM_306188
crossref_primary_10_1016_j_yofte_2024_103766
crossref_primary_10_3390_agronomy14122909
crossref_primary_10_1051_matecconf_202440606001
crossref_primary_10_1038_s41598_023_46191_z
crossref_primary_10_1016_j_joi_2024_101608
crossref_primary_10_3390_electronics13071179
crossref_primary_10_1007_s10489_023_04730_1
crossref_primary_10_3389_fpls_2022_805738
crossref_primary_10_3390_sym16121651
crossref_primary_10_1016_j_jmsy_2024_08_015
crossref_primary_10_1109_ACCESS_2024_3365632
crossref_primary_10_3390_electronics13193833
crossref_primary_10_1016_j_eswa_2023_121487
crossref_primary_10_1016_j_irbm_2020_12_002
crossref_primary_10_3390_app13179867
crossref_primary_10_1016_j_knosys_2023_110451
crossref_primary_10_1016_j_atech_2022_100036
crossref_primary_10_35234_fumbd_1099000
crossref_primary_10_1016_j_patcog_2021_107980
crossref_primary_10_3390_electronics12061352
crossref_primary_10_1038_s41598_022_22586_2
crossref_primary_10_1109_TIM_2023_3328707
crossref_primary_10_3390_bioengineering10121435
crossref_primary_10_1145_3568423
crossref_primary_10_2139_ssrn_4182236
crossref_primary_10_1145_3605775
crossref_primary_10_1038_s41598_019_47193_6
crossref_primary_10_1016_j_knosys_2024_112904
crossref_primary_10_3233_JIFS_223971
crossref_primary_10_1016_j_mlwa_2025_100638
crossref_primary_10_1080_21681163_2024_2361739
crossref_primary_10_1109_JSTARS_2025_3528650
crossref_primary_10_1177_1475921721998957
crossref_primary_10_3390_rs11030227
crossref_primary_10_1016_j_patcog_2021_107976
crossref_primary_10_1002_nag_3668
crossref_primary_10_1016_j_ijleo_2020_165096
crossref_primary_10_1093_ee_nvae085
crossref_primary_10_1109_TPAMI_2019_2954501
crossref_primary_10_1016_j_compbiomed_2022_105233
crossref_primary_10_3390_s18113910
crossref_primary_10_1039_D3MH00180F
crossref_primary_10_3390_math10152819
crossref_primary_10_1155_2022_2243891
crossref_primary_10_1007_s11042_023_15281_5
crossref_primary_10_1007_s00521_023_09147_y
crossref_primary_10_1109_TPAMI_2023_3294394
crossref_primary_10_1016_j_neucom_2019_02_040
crossref_primary_10_1109_TGRS_2022_3143528
crossref_primary_10_1109_ACCESS_2019_2962833
crossref_primary_10_3788_LOP240653
crossref_primary_10_3390_asi7040061
crossref_primary_10_1016_j_mri_2024_01_017
crossref_primary_10_1016_j_tsep_2023_101717
crossref_primary_10_1007_s42979_023_02218_w
crossref_primary_10_1080_02678292_2023_2292635
crossref_primary_10_1088_1757_899X_928_3_032010
crossref_primary_10_1007_s10489_020_01932_9
crossref_primary_10_1080_01431161_2022_2032453
crossref_primary_10_1088_1742_6596_2273_1_012026
crossref_primary_10_1186_s40323_020_00153_6
crossref_primary_10_1016_j_entcom_2024_100817
crossref_primary_10_3390_atmos13122124
crossref_primary_10_1002_arp_1763
crossref_primary_10_1007_s11356_024_32807_y
crossref_primary_10_1109_TSMC_2022_3158276
crossref_primary_10_1109_TEM_2024_3481439
crossref_primary_10_1016_j_neuroimage_2021_118048
crossref_primary_10_1109_TGRS_2023_3307609
crossref_primary_10_1109_ACCESS_2024_3419911
crossref_primary_10_3390_s21134284
crossref_primary_10_1155_2022_6544282
crossref_primary_10_1109_TGRS_2022_3200545
crossref_primary_10_1016_j_eswa_2023_121371
crossref_primary_10_1142_S1758825123500941
crossref_primary_10_33790_jiti1100102
crossref_primary_10_1016_j_physa_2024_129611
crossref_primary_10_4018_IJSWIS_359985
crossref_primary_10_3390_rs16224225
crossref_primary_10_1016_j_entcom_2024_100847
crossref_primary_10_3390_su151914125
crossref_primary_10_3390_ijgi11100497
crossref_primary_10_1155_2022_5031941
crossref_primary_10_3390_jimaging8020030
crossref_primary_10_1016_j_aei_2023_102332
crossref_primary_10_1109_TFUZZ_2024_3387429
crossref_primary_10_1016_j_aci_2019_11_004
crossref_primary_10_12677_CSA_2021_1112314
crossref_primary_10_1016_j_ijrmms_2021_104745
crossref_primary_10_1016_j_jtice_2024_105719
crossref_primary_10_1016_j_cmpb_2020_105816
crossref_primary_10_3390_healthcare10010109
crossref_primary_10_1049_el_2018_5051
crossref_primary_10_1016_j_artmed_2019_101711
crossref_primary_10_1007_s12559_023_10238_0
crossref_primary_10_1364_AO_516204
crossref_primary_10_1007_s11042_023_15873_1
crossref_primary_10_1109_ACCESS_2022_3154061
crossref_primary_10_1109_JSTARS_2021_3073149
crossref_primary_10_1615_JMachLearnModelComput_2024053706
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_3390_sym15020535
crossref_primary_10_1016_j_patcog_2021_107899
crossref_primary_10_1109_JSEN_2024_3394556
crossref_primary_10_1142_S021800142359005X
crossref_primary_10_1109_TGRS_2020_3018135
crossref_primary_10_1016_j_apgeog_2025_103605
crossref_primary_10_3389_frcmn_2021_656786
crossref_primary_10_1016_j_optcom_2023_129711
crossref_primary_10_1016_j_future_2023_02_005
crossref_primary_10_1016_j_entcom_2024_100860
crossref_primary_10_1016_j_ijrefrig_2024_01_006
crossref_primary_10_7717_peerj_13537
crossref_primary_10_1134_S1062873824709905
crossref_primary_10_1109_TETCI_2024_3386916
crossref_primary_10_1007_s11554_022_01207_1
crossref_primary_10_16984_saufenbilder_1302803
crossref_primary_10_1016_j_imu_2024_101504
crossref_primary_10_1002_ps_6804
crossref_primary_10_1016_j_ecolind_2024_111806
crossref_primary_10_1051_e3sconf_202338909048
crossref_primary_10_1016_j_compbiomed_2023_107760
crossref_primary_10_1002_elan_202300207
crossref_primary_10_1049_el_2018_7671
crossref_primary_10_7717_peerj_cs_2041
crossref_primary_10_1186_s40537_020_00387_6
crossref_primary_10_18307_2023_0206
crossref_primary_10_1109_ACCESS_2019_2936591
crossref_primary_10_1016_j_rser_2023_113843
crossref_primary_10_3390_app15020563
crossref_primary_10_22469_jkslp_2022_33_3_142
crossref_primary_10_1016_j_bspc_2022_103824
crossref_primary_10_1002_ps_6810
crossref_primary_10_1016_j_ast_2024_109030
crossref_primary_10_3390_app11209616
crossref_primary_10_3390_rs16020341
crossref_primary_10_3390_s21082664
crossref_primary_10_7717_peerj_cs_2031
crossref_primary_10_1016_j_infsof_2024_107409
crossref_primary_10_1002_joc_8276
crossref_primary_10_1016_j_est_2022_106298
crossref_primary_10_1007_s12229_024_09299_z
crossref_primary_10_1093_mnras_stab3786
crossref_primary_10_3390_e25071018
crossref_primary_10_1038_s41598_024_79368_1
crossref_primary_10_12677_CSA_2021_116180
crossref_primary_10_1016_j_neuroimage_2023_119904
crossref_primary_10_1007_s11082_022_04290_7
crossref_primary_10_1016_j_scitotenv_2023_163562
crossref_primary_10_1016_j_physleta_2020_126442
crossref_primary_10_1016_j_csite_2024_105334
crossref_primary_10_1177_18761364241305552
crossref_primary_10_1016_j_jhydrol_2025_132677
crossref_primary_10_1145_3374748
crossref_primary_10_1109_JPETS_2018_2881429
crossref_primary_10_1007_s00170_021_08462_9
crossref_primary_10_1177_1094342020953196
crossref_primary_10_3390_s23104800
crossref_primary_10_1109_TKDE_2024_3440654
crossref_primary_10_3390_ijerph182413409
crossref_primary_10_1016_j_patcog_2021_108304
crossref_primary_10_3390_sym13081543
crossref_primary_10_1007_s00216_021_03749_y
crossref_primary_10_1177_14759217231218477
crossref_primary_10_1186_s12859_023_05330_z
crossref_primary_10_1016_j_scitotenv_2024_172319
crossref_primary_10_3390_electronics13010150
crossref_primary_10_1016_j_ijhydene_2024_11_268
crossref_primary_10_1038_s41598_025_87782_2
crossref_primary_10_1016_j_net_2023_07_007
crossref_primary_10_1016_j_optlaseng_2021_106934
crossref_primary_10_26425_2658_3445_2022_5_3_73_82
crossref_primary_10_1088_1361_6501_abc6e3
crossref_primary_10_1111_jcmm_16288
crossref_primary_10_1109_JSTARS_2021_3138187
crossref_primary_10_1051_e3sconf_202452002021
crossref_primary_10_1109_ACCESS_2024_3430325
crossref_primary_10_23736_S2785_1265_24_01888_3
crossref_primary_10_1016_j_knosys_2024_111594
crossref_primary_10_1007_s10462_024_10836_w
crossref_primary_10_1016_j_rpor_2020_03_015
crossref_primary_10_1111_eufm_12365
crossref_primary_10_3390_computers13120343
crossref_primary_10_1007_s11042_023_16217_9
crossref_primary_10_1016_j_engappai_2024_109987
crossref_primary_10_3788_LOP223239
crossref_primary_10_1080_0954898X_2024_2350578
crossref_primary_10_1080_24725579_2024_2398592
crossref_primary_10_3390_act12070274
crossref_primary_10_1016_j_patcog_2021_108324
crossref_primary_10_1093_mnras_stad2852
crossref_primary_10_1016_j_patcog_2018_04_011
crossref_primary_10_3390_electronics11223746
crossref_primary_10_3390_mi14050959
crossref_primary_10_1007_s12145_025_01793_1
crossref_primary_10_1111_exsy_12504
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_11728_cjss2025_01_2024_0034
crossref_primary_10_1016_j_bspc_2021_102663
crossref_primary_10_1109_JSTARS_2020_3014966
crossref_primary_10_4108_eetiot_5046
crossref_primary_10_3390_app12126045
crossref_primary_10_1016_j_fcr_2023_109145
crossref_primary_10_1016_j_compbiomed_2024_108971
crossref_primary_10_1016_j_chemolab_2021_104404
crossref_primary_10_1109_ACCESS_2019_2933437
crossref_primary_10_3390_cancers16040750
crossref_primary_10_1155_2024_2644725
crossref_primary_10_1016_j_camwa_2024_05_013
crossref_primary_10_3390_computers11050083
crossref_primary_10_3390_rs14040812
crossref_primary_10_3389_fmed_2024_1497309
crossref_primary_10_3390_rs14040819
crossref_primary_10_1016_j_cja_2023_12_009
crossref_primary_10_1142_S0129065724500357
crossref_primary_10_1038_s41598_025_94315_4
crossref_primary_10_1016_j_jclepro_2023_139771
crossref_primary_10_1016_j_patcog_2019_106979
crossref_primary_10_1016_j_jfoodeng_2022_111198
crossref_primary_10_1080_10408347_2021_1969886
crossref_primary_10_1109_TKDE_2023_3333824
crossref_primary_10_3390_en16124636
crossref_primary_10_1109_TIM_2020_3032218
crossref_primary_10_1016_j_specom_2021_05_010
crossref_primary_10_46387_bjesr_1528035
crossref_primary_10_1016_j_neucom_2024_128102
crossref_primary_10_1007_s00521_023_09121_8
crossref_primary_10_5534_wjmh_240054
crossref_primary_10_1016_j_jprocont_2022_07_006
crossref_primary_10_3390_s23031486
crossref_primary_10_1039_D3AN01797D
crossref_primary_10_3390_electronics9010153
crossref_primary_10_1038_s41598_021_95240_y
crossref_primary_10_1007_s11265_023_01894_4
crossref_primary_10_1016_j_seta_2022_102071
crossref_primary_10_1109_JPROC_2021_3098483
crossref_primary_10_1109_TGRS_2019_2951433
crossref_primary_10_1016_j_patcog_2021_108361
crossref_primary_10_1109_TCCN_2024_3435478
crossref_primary_10_3390_app14125113
crossref_primary_10_1002_cem_3304
crossref_primary_10_1080_19440049_2024_2358518
crossref_primary_10_1016_j_energy_2023_127865
crossref_primary_10_1111_coin_12361
crossref_primary_10_1016_j_patcog_2021_108368
crossref_primary_10_1007_s11694_022_01473_4
crossref_primary_10_3390_ijerph17072270
crossref_primary_10_2320_matertrans_MT_M2022214
crossref_primary_10_1016_j_energy_2024_132257
crossref_primary_10_1016_j_neucom_2019_06_080
crossref_primary_10_1177_20503121241274197
crossref_primary_10_1016_j_procir_2020_04_158
crossref_primary_10_1109_ICJECE_2023_3289609
crossref_primary_10_1016_j_coastaleng_2019_103593
crossref_primary_10_56130_tucbis_1307926
crossref_primary_10_1016_j_cec_2022_100014
crossref_primary_10_1016_j_neucom_2019_06_084
crossref_primary_10_1016_j_patcog_2021_108396
crossref_primary_10_1007_s40846_020_00574_z
crossref_primary_10_1016_j_compind_2024_104215
crossref_primary_10_3390_e22050517
crossref_primary_10_1016_j_techfore_2021_121067
crossref_primary_10_3390_info16030195
crossref_primary_10_1155_2018_5034684
crossref_primary_10_1007_s00500_022_07179_5
crossref_primary_10_3390_ijms252111649
crossref_primary_10_3390_electronics14010107
crossref_primary_10_1107_S2052252524002392
crossref_primary_10_1016_j_jhydrol_2022_128111
crossref_primary_10_1007_s11042_020_09495_0
crossref_primary_10_1063_5_0138504
crossref_primary_10_1049_iet_ipr_2017_0184
crossref_primary_10_1109_JPROC_2024_3520707
crossref_primary_10_1109_TIE_2019_2907440
crossref_primary_10_1016_j_eja_2019_01_004
crossref_primary_10_1371_journal_pone_0284791
crossref_primary_10_1299_jamdsm_2024jamdsm0097
crossref_primary_10_3390_jsan11030040
crossref_primary_10_1016_j_ress_2023_109837
crossref_primary_10_3390_ma14216311
crossref_primary_10_3390_rs13173460
crossref_primary_10_32604_cmc_2024_055007
crossref_primary_10_1016_j_engappai_2023_106003
crossref_primary_10_1016_j_envc_2023_100679
crossref_primary_10_3389_fncom_2023_1153572
crossref_primary_10_3390_photonics9030165
crossref_primary_10_3390_s24123763
crossref_primary_10_1016_j_postharvbio_2019_111060
crossref_primary_10_51300_jidm_2022_58
crossref_primary_10_3390_sym16040464
crossref_primary_10_1038_s41598_022_26213_y
crossref_primary_10_1007_s11633_022_1375_7
crossref_primary_10_1016_j_neucom_2018_04_061
crossref_primary_10_1016_j_procs_2023_01_204
crossref_primary_10_1016_j_asoc_2022_109715
crossref_primary_10_1007_s41060_024_00578_x
crossref_primary_10_1121_10_0003339
crossref_primary_10_1088_1361_6595_adb515
crossref_primary_10_1109_ACCESS_2020_2985127
crossref_primary_10_1007_s10853_021_06630_6
crossref_primary_10_3390_rs12213537
crossref_primary_10_1038_s41598_024_82586_2
crossref_primary_10_1190_geo2021_0449_1
crossref_primary_10_3390_cancers15154002
crossref_primary_10_1155_2021_3900254
crossref_primary_10_1299_transjsme_24_00072
crossref_primary_10_1109_TGRS_2024_3397861
crossref_primary_10_1007_s11042_023_17982_3
crossref_primary_10_1109_ACCESS_2023_3305954
crossref_primary_10_1063_5_0136492
crossref_primary_10_1007_s12520_022_01501_w
crossref_primary_10_3390_rs15194675
crossref_primary_10_1016_j_patcog_2022_109202
crossref_primary_10_1016_j_jenvman_2024_122805
crossref_primary_10_3389_fnhum_2023_1169949
crossref_primary_10_1109_TSMC_2021_3096529
crossref_primary_10_1016_j_neucom_2021_03_007
crossref_primary_10_1109_LGRS_2024_3392426
crossref_primary_10_1007_s00170_024_14808_w
crossref_primary_10_1016_j_patcog_2022_109206
crossref_primary_10_3390_electronics11223798
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1109_TVT_2023_3239402
crossref_primary_10_3390_buildings11040165
crossref_primary_10_1088_1361_6501_ad4fb4
crossref_primary_10_1007_s11265_023_01895_3
crossref_primary_10_1093_rasti_rzae026
crossref_primary_10_1016_j_health_2023_100259
crossref_primary_10_1155_2022_3732351
crossref_primary_10_1063_5_0194393
crossref_primary_10_1155_2022_1761635
crossref_primary_10_3390_en14051355
crossref_primary_10_3390_s24041330
crossref_primary_10_47115_bsagriculture_1536744
crossref_primary_10_32604_cmc_2024_057684
crossref_primary_10_1093_bib_bbae528
crossref_primary_10_1016_j_measurement_2024_115515
crossref_primary_10_3390_rs12142215
crossref_primary_10_1016_j_patcog_2018_07_023
crossref_primary_10_1007_s11036_024_02298_9
crossref_primary_10_1007_s11063_022_10898_3
crossref_primary_10_1016_j_jmsy_2024_12_005
crossref_primary_10_1021_acs_jcim_4c01749
crossref_primary_10_3788_AOS230776
crossref_primary_10_1016_j_neucom_2024_129280
crossref_primary_10_1016_j_pss_2023_105802
crossref_primary_10_26634_jmat_12_1_19398
crossref_primary_10_3390_mi16010055
crossref_primary_10_1177_10775463241238839
crossref_primary_10_1007_s12021_019_09448_5
crossref_primary_10_1016_j_energy_2022_125501
crossref_primary_10_1016_j_jafr_2023_100503
crossref_primary_10_1016_j_ijleo_2020_164261
crossref_primary_10_1016_j_asoc_2021_108178
crossref_primary_10_1109_ACCESS_2019_2928025
crossref_primary_10_32604_cmes_2024_052549
crossref_primary_10_1038_s41598_023_42191_1
crossref_primary_10_1016_j_measurement_2020_107619
crossref_primary_10_1109_TMLCN_2023_3270131
crossref_primary_10_1007_s11802_025_5783_5
crossref_primary_10_1007_s13369_024_08854_5
crossref_primary_10_1109_JAS_2023_124170
crossref_primary_10_1016_j_inpa_2021_01_002
crossref_primary_10_1016_j_health_2023_100221
crossref_primary_10_1109_TCBB_2022_3170719
crossref_primary_10_3390_atmos15091085
crossref_primary_10_1039_D4NH00592A
crossref_primary_10_1016_j_patcog_2020_107702
crossref_primary_10_1016_j_geothermics_2022_102576
crossref_primary_10_1016_j_iot_2024_101164
crossref_primary_10_1016_j_aca_2019_06_012
crossref_primary_10_1088_1361_6501_ad5b11
crossref_primary_10_1109_TGRS_2024_3511614
crossref_primary_10_1007_s00170_024_14305_0
crossref_primary_10_1371_journal_pone_0302664
crossref_primary_10_1016_j_scitotenv_2024_177459
crossref_primary_10_1016_j_jobe_2021_103098
crossref_primary_10_1080_00051144_2021_2008620
crossref_primary_10_1109_ACCESS_2020_3005684
crossref_primary_10_4018_IJDST_317937
crossref_primary_10_1016_j_patcog_2022_109256
crossref_primary_10_3390_s19235287
crossref_primary_10_1016_j_knosys_2024_112195
crossref_primary_10_1007_s11042_022_12310_7
crossref_primary_10_1002_mus_28023
crossref_primary_10_1061_JITSE4_ISENG_2247
crossref_primary_10_54097_hset_v61i_10291
crossref_primary_10_1109_JIOT_2024_3360715
crossref_primary_10_1080_23249935_2024_2409229
crossref_primary_10_3390_app15052589
crossref_primary_10_1016_j_chiabu_2022_105688
crossref_primary_10_3390_app14135524
crossref_primary_10_1016_j_patcog_2020_107760
crossref_primary_10_1016_j_patcog_2022_109268
crossref_primary_10_3390_jmse12112002
crossref_primary_10_1007_s41605_025_00537_5
crossref_primary_10_1063_5_0004631
crossref_primary_10_1093_bioinformatics_btaa477
crossref_primary_10_1016_j_compbiomed_2021_105021
crossref_primary_10_1155_2022_7587157
crossref_primary_10_1177_03611981231156576
crossref_primary_10_3390_info14040231
crossref_primary_10_1109_TCDS_2022_3153676
crossref_primary_10_3390_s25051405
crossref_primary_10_1016_j_iswa_2021_200049
crossref_primary_10_1007_s12596_024_01831_z
crossref_primary_10_1016_j_fuel_2022_126419
crossref_primary_10_1109_TIM_2022_3146521
crossref_primary_10_1016_j_tibtech_2022_10_010
crossref_primary_10_1016_j_jobe_2020_101827
crossref_primary_10_1016_j_mechmat_2023_104726
crossref_primary_10_1109_ACCESS_2019_2947160
crossref_primary_10_1016_j_tifs_2025_104964
crossref_primary_10_1109_TITS_2019_2918923
crossref_primary_10_1002_adfm_202108044
crossref_primary_10_1007_s42690_024_01406_2
crossref_primary_10_1109_OJCSYS_2023_3316090
crossref_primary_10_1109_TNNLS_2021_3072491
crossref_primary_10_1186_s40537_024_00991_w
crossref_primary_10_3390_jmse12122295
crossref_primary_10_3390_bioengineering10111319
crossref_primary_10_3390_electronics10040427
crossref_primary_10_1007_s10462_024_10871_7
crossref_primary_10_1007_s44285_025_00038_3
crossref_primary_10_1016_j_ress_2022_109066
crossref_primary_10_1186_s12859_023_05135_0
crossref_primary_10_1021_acs_jcim_3c01030
crossref_primary_10_1007_s40820_023_01235_x
crossref_primary_10_1109_ACCESS_2020_2997969
crossref_primary_10_1109_JSTSP_2024_3416851
crossref_primary_10_1155_2023_6266209
crossref_primary_10_3389_fninf_2019_00030
crossref_primary_10_1016_j_est_2023_107093
crossref_primary_10_1016_j_ijrmms_2019_104084
crossref_primary_10_1109_TII_2019_2908211
crossref_primary_10_1016_j_compstruc_2021_106484
crossref_primary_10_1016_j_lwt_2022_113490
crossref_primary_10_3390_computers12090170
crossref_primary_10_1007_s43069_024_00395_9
crossref_primary_10_3390_rs15112730
crossref_primary_10_3390_s19132854
crossref_primary_10_1016_j_cmpbup_2021_100023
crossref_primary_10_1016_j_jpowsour_2024_235674
crossref_primary_10_1111_exsy_13578
crossref_primary_10_1002_cem_70018
crossref_primary_10_1139_cjce_2023_0570
crossref_primary_10_1109_TPAMI_2022_3204971
crossref_primary_10_1002_sam_11455
crossref_primary_10_1016_j_susoc_2021_08_001
crossref_primary_10_3390_s20185051
crossref_primary_10_3390_en16010076
crossref_primary_10_1049_ipr2_12146
crossref_primary_10_3390_s24010197
crossref_primary_10_1103_PhysRevC_111_014325
crossref_primary_10_1016_j_neunet_2022_07_035
crossref_primary_10_1166_jmihi_2021_3315
crossref_primary_10_1109_ACCESS_2020_2978804
crossref_primary_10_2478_amns_2024_2435
crossref_primary_10_1109_ACCESS_2020_3027044
crossref_primary_10_1007_s11030_024_10937_2
crossref_primary_10_1016_j_engappai_2024_108062
crossref_primary_10_3390_make6030096
crossref_primary_10_3390_app15052525
crossref_primary_10_1093_asj_sjae201
crossref_primary_10_4155_fmc_2023_0093
crossref_primary_10_1109_ACCESS_2025_3541585
crossref_primary_10_3389_fcell_2023_1174936
crossref_primary_10_1016_j_psep_2023_07_059
crossref_primary_10_1111_maps_13663
crossref_primary_10_1615_IntJMedMushrooms_2022046298
crossref_primary_10_1007_s11740_020_01007_1
crossref_primary_10_1080_19361610_2025_2453309
crossref_primary_10_1088_1361_6668_ad3d10
crossref_primary_10_1002_tbio_202300005
crossref_primary_10_1016_j_patcog_2020_107788
crossref_primary_10_1109_ACCESS_2022_3176965
crossref_primary_10_1016_j_ijcce_2025_01_004
crossref_primary_10_3390_sym16091151
crossref_primary_10_31436_iiumej_v26i1_3379
crossref_primary_10_1007_s13246_022_01137_z
crossref_primary_10_3390_agriculture11080707
crossref_primary_10_31590_ejosat_1013489
crossref_primary_10_1016_j_atech_2022_100166
crossref_primary_10_3390_en17153757
crossref_primary_10_1016_j_bspc_2023_105926
crossref_primary_10_1016_j_catena_2024_108275
crossref_primary_10_1109_ACCESS_2019_2940557
crossref_primary_10_2174_1872212115666210715163919
crossref_primary_10_3390_rs15112776
crossref_primary_10_1007_s11042_024_18354_1
crossref_primary_10_1007_s42979_024_03185_6
crossref_primary_10_1364_OE_27_027308
crossref_primary_10_1088_2632_2153_ad3c0f
crossref_primary_10_1109_TIP_2021_3064256
crossref_primary_10_1155_2024_5587728
crossref_primary_10_3390_math7121170
crossref_primary_10_3390_electronics12051208
crossref_primary_10_1109_TMAG_2023_3299110
crossref_primary_10_1111_1365_2664_14280
crossref_primary_10_1155_2022_8032726
crossref_primary_10_3390_electronics12061378
crossref_primary_10_3390_diagnostics11081485
crossref_primary_10_37394_232018_2021_9_1
crossref_primary_10_7717_peerj_cs_2362
crossref_primary_10_1371_journal_pcbi_1010778
crossref_primary_10_1016_j_knosys_2021_107535
crossref_primary_10_1155_2022_7494108
crossref_primary_10_1002_mp_14640
crossref_primary_10_3390_make5040094
crossref_primary_10_1016_j_bspc_2022_103992
crossref_primary_10_1002_ajpa_24286
crossref_primary_10_1016_j_compbiomed_2020_103871
crossref_primary_10_1109_JSTARS_2024_3372138
crossref_primary_10_1016_j_compag_2024_108950
crossref_primary_10_3390_polym15061520
crossref_primary_10_1016_j_iot_2020_100305
crossref_primary_10_1016_j_knosys_2023_111327
crossref_primary_10_1364_PRJ_416246
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_3390_informatics8020033
crossref_primary_10_3390_sym17030410
crossref_primary_10_1007_s11042_023_14940_x
crossref_primary_10_1016_j_dld_2024_04_019
crossref_primary_10_3390_s18061746
crossref_primary_10_1109_ACCESS_2021_3096548
crossref_primary_10_1109_JSEN_2020_3023471
crossref_primary_10_3390_make3010011
crossref_primary_10_1002_cpe_6143
crossref_primary_10_1016_j_neucom_2023_127218
crossref_primary_10_1016_j_compgeo_2024_106177
crossref_primary_10_1109_ACCESS_2024_3454825
crossref_primary_10_1016_j_rser_2020_109792
crossref_primary_10_1016_j_seppur_2023_124891
crossref_primary_10_1007_s11071_024_09608_6
crossref_primary_10_1109_ACCESS_2019_2924443
crossref_primary_10_3390_s24061844
crossref_primary_10_1016_j_eswa_2024_125950
crossref_primary_10_1371_journal_pone_0220677
crossref_primary_10_1109_LGRS_2023_3312677
crossref_primary_10_3390_drones9030226
crossref_primary_10_3390_app132312808
crossref_primary_10_1016_j_cirpj_2020_11_009
crossref_primary_10_1109_LGRS_2020_3005982
crossref_primary_10_1109_JSTARS_2024_3405580
crossref_primary_10_1186_s40644_024_00654_2
crossref_primary_10_1016_j_infsof_2020_106486
crossref_primary_10_3390_insects15070557
crossref_primary_10_32604_iasc_2022_023455
crossref_primary_10_32604_cmc_2023_042361
crossref_primary_10_1016_j_eswa_2022_117761
crossref_primary_10_1109_TTE_2023_3293551
crossref_primary_10_1016_j_bspc_2024_107235
crossref_primary_10_1177_15330338231199287
crossref_primary_10_1364_OE_470146
crossref_primary_10_1016_j_sna_2024_116052
crossref_primary_10_3390_s23198191
crossref_primary_10_1007_s00521_021_05758_5
crossref_primary_10_1093_mnras_stad1842
crossref_primary_10_1007_s10851_022_01124_9
crossref_primary_10_3389_fpsyg_2022_1049401
crossref_primary_10_1007_s11629_024_8971_7
crossref_primary_10_1016_j_measurement_2021_109771
crossref_primary_10_1016_j_spasta_2024_100811
crossref_primary_10_3390_s24185995
crossref_primary_10_1007_s40996_021_00668_x
crossref_primary_10_1063_5_0237910
crossref_primary_10_1111_jen_13223
crossref_primary_10_21597_jist_1093732
crossref_primary_10_1016_j_epsr_2022_109065
crossref_primary_10_1016_j_cropro_2023_106302
crossref_primary_10_1016_j_enconman_2022_116385
crossref_primary_10_1016_j_jhydrol_2021_127244
crossref_primary_10_1007_s00466_023_02324_9
crossref_primary_10_1016_j_isprsjprs_2020_07_007
crossref_primary_10_1016_j_bios_2022_114996
crossref_primary_10_1063_9_0000849
crossref_primary_10_1109_TNNLS_2023_3243000
crossref_primary_10_1109_TDEI_2023_3264728
crossref_primary_10_1007_s11063_019_10156_z
crossref_primary_10_1007_s10619_021_07361_y
crossref_primary_10_1007_s41062_022_00793_0
crossref_primary_10_1109_ACCESS_2020_3039862
crossref_primary_10_1016_j_asej_2021_10_017
crossref_primary_10_4103_tjo_TJO_D_23_00012
crossref_primary_10_1016_j_envsoft_2024_106307
crossref_primary_10_3389_frwa_2020_00028
crossref_primary_10_1016_j_aei_2023_102075
crossref_primary_10_3390_app12083804
crossref_primary_10_1016_j_jpi_2022_100101
crossref_primary_10_1051_e3sconf_202454401020
crossref_primary_10_1016_j_compag_2024_109414
crossref_primary_10_5194_gmd_13_2631_2020
crossref_primary_10_1007_s13239_019_00421_6
crossref_primary_10_1080_17460441_2023_2251400
crossref_primary_10_3390_math11051245
crossref_primary_10_1016_j_patcog_2019_06_011
crossref_primary_10_1016_j_patcog_2019_06_012
crossref_primary_10_1016_j_ijft_2024_100590
crossref_primary_10_3390_atmos14020368
crossref_primary_10_1016_j_compchemeng_2020_107099
crossref_primary_10_1007_s11042_022_12128_3
crossref_primary_10_1016_j_neuroscience_2024_03_007
crossref_primary_10_1109_TMI_2020_2968770
crossref_primary_10_1007_s10527_024_10361_8
crossref_primary_10_1007_s41870_024_02149_6
crossref_primary_10_1016_j_patcog_2022_108750
crossref_primary_10_1053_j_semdp_2023_02_002
crossref_primary_10_1155_2023_6928871
crossref_primary_10_1016_j_engstruct_2022_115172
crossref_primary_10_1016_j_bios_2024_116414
crossref_primary_10_1109_ACCESS_2023_3321290
crossref_primary_10_1109_TSG_2024_3448618
crossref_primary_10_1016_j_neucom_2020_05_102
crossref_primary_10_3390_app14010040
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_3390_s24185965
crossref_primary_10_1016_j_patcog_2018_12_019
crossref_primary_10_1111_ahe_13073
crossref_primary_10_1016_j_bspc_2022_103923
crossref_primary_10_1155_2021_1165296
crossref_primary_10_3389_fncom_2021_760554
crossref_primary_10_1117_1_JRS_17_016505
crossref_primary_10_14801_jkiit_2021_19_3_1
crossref_primary_10_1080_19475705_2021_1968043
crossref_primary_10_3390_pr8010073
crossref_primary_10_1002_tpg2_20470
crossref_primary_10_1080_00288330_2023_2261872
crossref_primary_10_1007_s11063_023_11418_7
crossref_primary_10_1016_j_neucom_2020_05_114
crossref_primary_10_1016_j_saa_2024_124295
crossref_primary_10_1007_s00521_020_05321_8
crossref_primary_10_1109_TII_2019_2960837
crossref_primary_10_1016_j_ins_2020_12_084
crossref_primary_10_1016_j_conbuildmat_2023_132684
crossref_primary_10_1109_ACCESS_2024_3521497
crossref_primary_10_3390_machines12050306
crossref_primary_10_12677_MOS_2023_125410
crossref_primary_10_1002_cpe_6964
crossref_primary_10_1016_j_cviu_2019_01_001
crossref_primary_10_1007_s41105_024_00563_8
crossref_primary_10_1109_ACCESS_2019_2907071
crossref_primary_10_1016_j_procs_2022_11_237
crossref_primary_10_1016_j_imu_2024_101475
crossref_primary_10_1155_2021_6690539
crossref_primary_10_3390_coatings14121539
crossref_primary_10_1016_j_petrol_2020_108118
crossref_primary_10_3390_s22052026
crossref_primary_10_1088_1402_4896_adb34a
crossref_primary_10_1016_j_esd_2023_04_004
crossref_primary_10_1002_adma_202306606
crossref_primary_10_1039_D3JA00453H
crossref_primary_10_1002_cpe_5663
crossref_primary_10_1016_j_engfailanal_2023_107228
crossref_primary_10_1186_s13677_020_00203_9
crossref_primary_10_1155_2020_8859489
crossref_primary_10_1016_j_cosrev_2020_100303
crossref_primary_10_1016_j_eml_2021_101566
crossref_primary_10_1016_j_cosrev_2020_100302
crossref_primary_10_1016_j_cosrev_2020_100301
crossref_primary_10_1186_s13635_020_0102_6
crossref_primary_10_1063_5_0005194
crossref_primary_10_1002_advs_202204723
crossref_primary_10_3390_s24092923
crossref_primary_10_1007_s10844_023_00813_0
crossref_primary_10_1007_s11042_019_08028_8
crossref_primary_10_1109_ACCESS_2025_3530900
crossref_primary_10_1088_1361_6501_ad60ea
crossref_primary_10_1038_s42256_024_00966_9
crossref_primary_10_1016_j_postharvbio_2021_111778
crossref_primary_10_3390_agriengineering2030029
crossref_primary_10_3390_rs16173249
crossref_primary_10_1016_j_jhydrol_2024_130846
crossref_primary_10_23919_JSEE_2022_000100
crossref_primary_10_1111_exsy_13658
crossref_primary_10_1093_molbev_msae223
crossref_primary_10_1007_s10844_022_00768_8
crossref_primary_10_1016_j_artmed_2023_102638
crossref_primary_10_1186_s40359_024_02248_w
crossref_primary_10_1016_j_patcog_2020_107801
crossref_primary_10_1109_TPDS_2023_3321755
crossref_primary_10_1007_s13369_022_07412_1
crossref_primary_10_3390_s22207935
crossref_primary_10_4236_jcc_2022_104005
crossref_primary_10_3390_s22166081
crossref_primary_10_1080_19475705_2023_2187271
crossref_primary_10_1088_1361_6501_ad13e5
crossref_primary_10_1016_j_artmed_2021_102059
crossref_primary_10_1007_s11042_023_14816_0
crossref_primary_10_1007_s13369_022_07086_9
crossref_primary_10_32604_cmes_2023_026065
crossref_primary_10_1186_s12859_024_05967_4
crossref_primary_10_3390_s20247099
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_2166_hydro_2022_132
crossref_primary_10_1007_s13369_022_06734_4
crossref_primary_10_1007_s42452_023_05277_z
crossref_primary_10_1016_j_neucom_2020_10_039
crossref_primary_10_1007_s00530_024_01259_2
crossref_primary_10_3390_rs16071235
crossref_primary_10_54097_hset_v62i_10424
crossref_primary_10_1007_s00521_024_09771_2
crossref_primary_10_3390_electronics10101187
crossref_primary_10_1016_j_trac_2025_118243
crossref_primary_10_3390_s23094369
crossref_primary_10_3390_electronics12204362
crossref_primary_10_3390_app12188972
crossref_primary_10_3390_atmos14111698
crossref_primary_10_1016_j_net_2022_07_016
crossref_primary_10_1109_JSEN_2024_3454153
crossref_primary_10_1515_bams_2020_0040
crossref_primary_10_3390_app14146388
crossref_primary_10_1007_s11227_023_05757_4
crossref_primary_10_1016_j_compbiolchem_2024_108201
crossref_primary_10_3390_sym15050964
crossref_primary_10_1016_j_jclepro_2024_143492
crossref_primary_10_1016_j_istruc_2024_107144
crossref_primary_10_1016_j_marpetgeo_2024_106992
crossref_primary_10_1016_j_eja_2020_126030
crossref_primary_10_1155_2020_8863388
crossref_primary_10_3390_s22010400
crossref_primary_10_1016_j_trc_2022_103854
crossref_primary_10_1016_j_fuel_2024_133427
crossref_primary_10_3390_f14061080
crossref_primary_10_1016_j_apor_2024_104145
crossref_primary_10_3390_rs16163000
crossref_primary_10_1109_ACCESS_2019_2930238
crossref_primary_10_1109_TIM_2023_3301047
crossref_primary_10_3390_electronics13142873
crossref_primary_10_1016_j_renene_2025_122342
crossref_primary_10_1016_j_compag_2018_09_021
crossref_primary_10_1155_2021_7167891
crossref_primary_10_1016_j_ijepes_2025_110562
crossref_primary_10_1049_tje2_70032
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_1007_s13042_024_02453_4
crossref_primary_10_3847_1538_4357_ac9ea7
crossref_primary_10_3390_s24113630
crossref_primary_10_1109_TIM_2022_3201927
crossref_primary_10_1007_s42417_023_01014_3
crossref_primary_10_3390_su15129210
crossref_primary_10_1016_j_envres_2024_119478
crossref_primary_10_3390_electronics13234688
crossref_primary_10_1109_ACCESS_2024_3468723
crossref_primary_10_1016_j_jfca_2025_107394
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_1109_TPAMI_2024_3417451
crossref_primary_10_4103_digm_digm_16_18
crossref_primary_10_7554_eLife_84042
crossref_primary_10_1016_j_egyr_2023_01_032
crossref_primary_10_1016_j_matpr_2021_02_244
crossref_primary_10_3389_fenvs_2022_886841
crossref_primary_10_1016_j_oceaneng_2022_113106
crossref_primary_10_1186_s12916_022_02549_0
crossref_primary_10_3390_electronics12143097
crossref_primary_10_1002_itl2_537
crossref_primary_10_1117_1_JRS_13_022007
crossref_primary_10_1038_s41598_022_05727_5
crossref_primary_10_1016_j_ijrefrig_2023_11_025
crossref_primary_10_1371_journal_pone_0281568
crossref_primary_10_3390_a16020113
crossref_primary_10_3390_agronomy14020341
crossref_primary_10_1016_j_ucl_2023_06_002
crossref_primary_10_3390_rs13030389
crossref_primary_10_1109_ACCESS_2023_3334394
crossref_primary_10_1016_j_energy_2025_134569
crossref_primary_10_1063_5_0159264
crossref_primary_10_1007_s00170_023_12453_3
crossref_primary_10_3390_biology11121732
crossref_primary_10_1007_s11634_021_00485_0
crossref_primary_10_1016_j_neucom_2023_126609
crossref_primary_10_2298_CSIS210617055X
crossref_primary_10_1007_s00521_021_06592_5
crossref_primary_10_1016_j_neucom_2020_10_065
crossref_primary_10_4204_EPTCS_364_9
crossref_primary_10_1016_j_eswa_2020_113591
crossref_primary_10_1016_j_future_2021_11_032
crossref_primary_10_1016_j_compag_2020_105700
crossref_primary_10_1109_TIM_2021_3132088
crossref_primary_10_1016_j_scitotenv_2024_176857
crossref_primary_10_1016_j_neucom_2018_05_137
crossref_primary_10_1016_j_patcog_2019_107187
crossref_primary_10_1021_acs_chemrev_3c00708
crossref_primary_10_3390_app11094292
crossref_primary_10_3390_app13148502
crossref_primary_10_1016_j_neunet_2019_01_013
crossref_primary_10_1186_s13007_023_01056_4
crossref_primary_10_1007_s00521_025_11085_w
crossref_primary_10_1103_PhysRevA_110_032434
crossref_primary_10_1093_bib_bbab523
crossref_primary_10_26636_jtit_2022_164922
crossref_primary_10_47933_ijeir_772514
crossref_primary_10_1007_s00256_020_03433_9
crossref_primary_10_32604_cmc_2023_035881
crossref_primary_10_1270_jsbbs_21053
crossref_primary_10_1016_j_patcog_2019_107176
crossref_primary_10_1007_s10479_022_04931_w
crossref_primary_10_1007_s11042_022_12845_9
crossref_primary_10_29328_journal_ibm_1001027
crossref_primary_10_3389_feart_2023_1136346
crossref_primary_10_1016_j_patcog_2019_107180
crossref_primary_10_1155_stc_7386022
crossref_primary_10_3390_informatics10010024
crossref_primary_10_1109_TITS_2019_2906821
crossref_primary_10_1177_03611981241258753
crossref_primary_10_1109_TDEI_2023_3306324
crossref_primary_10_3389_fnins_2023_1169187
crossref_primary_10_1109_TIM_2023_3244822
crossref_primary_10_3233_WEB_221800
crossref_primary_10_3390_electronics13122403
crossref_primary_10_1007_s10462_023_10590_5
crossref_primary_10_1016_j_jpowsour_2023_233472
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1007_s00521_021_06806_w
crossref_primary_10_3390_biomedinformatics3020031
crossref_primary_10_1016_j_compbiomed_2021_105127
crossref_primary_10_1142_S0217751X22502190
crossref_primary_10_1088_1361_6463_ac8126
crossref_primary_10_1021_acs_iecr_9b06295
crossref_primary_10_1109_TIP_2019_2928144
crossref_primary_10_1016_j_mtcomm_2024_108595
crossref_primary_10_1155_2022_2432351
crossref_primary_10_3390_foods11040602
crossref_primary_10_3390_math11214550
crossref_primary_10_3389_fpls_2024_1373590
crossref_primary_10_1007_s12530_021_09386_1
crossref_primary_10_3390_app10051569
crossref_primary_10_1016_j_procs_2022_01_087
crossref_primary_10_3390_app13084781
crossref_primary_10_1016_j_patcog_2019_107156
crossref_primary_10_1007_s11042_024_18738_3
crossref_primary_10_1007_s41939_024_00612_2
crossref_primary_10_1016_j_envpol_2022_119857
crossref_primary_10_1016_j_patcog_2019_107160
crossref_primary_10_3390_app12199691
crossref_primary_10_1088_3050_2454_ada036
crossref_primary_10_1109_ACCESS_2023_3312191
crossref_primary_10_3390_s22072547
crossref_primary_10_1016_j_jobe_2024_111663
crossref_primary_10_1007_s00530_020_00741_x
crossref_primary_10_1007_s11042_020_10114_1
crossref_primary_10_1016_j_patcog_2019_107143
crossref_primary_10_1016_j_patcog_2019_107147
crossref_primary_10_3390_jcm13133750
crossref_primary_10_1007_s42417_023_01165_3
crossref_primary_10_1016_j_cose_2023_103665
crossref_primary_10_1016_j_engappai_2024_109288
crossref_primary_10_1029_2022WR032553
crossref_primary_10_1109_JPROC_2021_3117472
crossref_primary_10_1016_j_compbiomed_2022_105460
crossref_primary_10_1007_s11042_019_7379_9
crossref_primary_10_1007_s10559_023_00569_z
crossref_primary_10_1242_jeb_249232
crossref_primary_10_1155_2022_4778245
crossref_primary_10_1016_j_cej_2024_150266
crossref_primary_10_3390_s24051635
crossref_primary_10_1016_j_talanta_2020_121926
crossref_primary_10_3390_pr13040934
crossref_primary_10_3389_fpls_2024_1354428
crossref_primary_10_1109_ACCESS_2022_3180073
crossref_primary_10_1016_j_neucom_2022_11_078
crossref_primary_10_3390_s22093468
crossref_primary_10_1109_TGRS_2024_3514854
crossref_primary_10_3389_fmars_2024_1492572
crossref_primary_10_3389_fnins_2022_920820
crossref_primary_10_1016_j_etran_2025_100406
crossref_primary_10_1109_JSTARS_2023_3323486
crossref_primary_10_3233_JIFS_231368
crossref_primary_10_1055_s_0044_1788317
crossref_primary_10_1515_eng_2022_0588
crossref_primary_10_1109_ACCESS_2019_2902185
crossref_primary_10_1016_j_jfranklin_2024_107424
crossref_primary_10_1017_dap_2024_49
crossref_primary_10_1007_s00500_023_08373_9
crossref_primary_10_1007_s13355_023_00849_2
crossref_primary_10_3390_electronics9101631
crossref_primary_10_1371_journal_pone_0270826
crossref_primary_10_1016_j_dcan_2022_12_012
crossref_primary_10_3390_rs12101685
crossref_primary_10_3389_fpls_2024_1459515
crossref_primary_10_1016_j_bspc_2022_104417
crossref_primary_10_1108_ILT_03_2024_0081
crossref_primary_10_1109_JQE_2021_3130935
crossref_primary_10_3389_fpls_2024_1389961
crossref_primary_10_3390_s22072559
crossref_primary_10_1038_s41598_024_83543_9
crossref_primary_10_3390_s24061992
crossref_primary_10_3390_jimaging8110298
crossref_primary_10_1109_TGRS_2020_2999371
crossref_primary_10_3390_su15097179
crossref_primary_10_1080_01431161_2024_2365811
crossref_primary_10_1016_j_apenergy_2024_124206
crossref_primary_10_1109_TNSM_2023_3239847
crossref_primary_10_1016_j_mex_2024_102946
crossref_primary_10_32604_iasc_2021_016966
crossref_primary_10_3390_s22072579
crossref_primary_10_1109_TIP_2021_3120054
crossref_primary_10_1016_j_inffus_2023_102068
crossref_primary_10_2319_021220_100_1
crossref_primary_10_1162_neco_a_01446
crossref_primary_10_34133_plantphenomics_0204
crossref_primary_10_1016_j_istruc_2024_107928
crossref_primary_10_1109_TCBB_2020_3034922
crossref_primary_10_4018_IJSIR_302606
crossref_primary_10_1109_TIM_2023_3280500
crossref_primary_10_1515_teme_2024_0099
crossref_primary_10_1016_j_compchemeng_2023_108293
crossref_primary_10_1016_j_apacoust_2024_110138
crossref_primary_10_3390_axioms12090862
crossref_primary_10_28979_jarnas_953634
crossref_primary_10_1016_j_measurement_2021_109813
crossref_primary_10_1007_s11263_023_01900_z
crossref_primary_10_1007_s10462_024_10745_y
crossref_primary_10_1007_s44196_024_00450_7
crossref_primary_10_17341_gazimmfd_435217
crossref_primary_10_1155_2021_1783246
crossref_primary_10_1016_j_iliver_2023_02_002
crossref_primary_10_1364_AOP_484119
crossref_primary_10_1016_j_addma_2024_104208
crossref_primary_10_1088_1741_2552_ad5048
crossref_primary_10_1097_CCO_0000000000000796
crossref_primary_10_1016_j_mtcomm_2024_109847
crossref_primary_10_1016_j_neucom_2020_04_010
crossref_primary_10_1109_JAS_2022_105743
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_3390_fermentation9070629
crossref_primary_10_1016_j_aca_2023_341129
crossref_primary_10_1093_ijlct_ctae047
crossref_primary_10_3390_jmse12020311
crossref_primary_10_1016_j_cma_2023_116041
crossref_primary_10_1016_j_aiia_2021_05_003
crossref_primary_10_1007_s11356_022_24471_x
crossref_primary_10_3389_fgene_2020_00513
crossref_primary_10_3390_healthcare12020125
crossref_primary_10_1016_j_engappai_2024_109376
crossref_primary_10_3390_electronics13081541
crossref_primary_10_1016_j_future_2021_06_030
crossref_primary_10_1016_j_tws_2024_112255
crossref_primary_10_3390_f13122041
crossref_primary_10_1093_mnras_stad1709
crossref_primary_10_1016_j_patcog_2021_108508
crossref_primary_10_1016_j_ecoenv_2023_115066
crossref_primary_10_1002_cpe_7547
crossref_primary_10_1109_TIP_2023_3279525
crossref_primary_10_1007_s13762_021_03179_4
crossref_primary_10_1016_j_advwatres_2020_103840
crossref_primary_10_1016_j_engappai_2020_103615
crossref_primary_10_3390_app13010569
crossref_primary_10_3390_atmos14071123
crossref_primary_10_1016_j_csbj_2024_07_003
crossref_primary_10_1016_j_measurement_2021_109864
crossref_primary_10_1016_j_yexcr_2022_113278
crossref_primary_10_3390_microorganisms11041071
crossref_primary_10_3390_ijgi8070300
crossref_primary_10_1007_s10853_024_09507_6
crossref_primary_10_1016_j_patcog_2024_110980
crossref_primary_10_3389_fphy_2024_1337421
crossref_primary_10_3724_SP_J_1089_2022_19037
crossref_primary_10_3390_machines12040214
crossref_primary_10_1051_shsconf_202214403013
crossref_primary_10_1016_j_envsoft_2023_105654
crossref_primary_10_1016_j_compind_2021_103506
crossref_primary_10_1016_j_imavis_2018_09_016
crossref_primary_10_1109_JIOT_2023_3341811
crossref_primary_10_1002_cepa_2053
crossref_primary_10_1016_j_jphotochem_2022_114321
crossref_primary_10_1016_j_cropro_2024_106734
crossref_primary_10_1016_j_comcom_2020_02_044
crossref_primary_10_1016_j_engappai_2024_108007
crossref_primary_10_1016_j_pnucene_2022_104191
crossref_primary_10_1088_1742_6596_2711_1_012015
crossref_primary_10_3390_rs15061540
crossref_primary_10_1186_s12859_023_05243_x
crossref_primary_10_1007_s11042_019_07813_9
crossref_primary_10_1016_j_hydroa_2024_100190
crossref_primary_10_12688_openreseurope_17424_1
crossref_primary_10_1007_s11571_022_09927_7
crossref_primary_10_32604_csse_2024_052931
crossref_primary_10_1016_j_patcog_2022_108835
crossref_primary_10_1109_JSTSP_2023_3262357
crossref_primary_10_1007_s11042_024_18248_2
crossref_primary_10_1038_s41598_023_37087_z
crossref_primary_10_1007_s10489_021_02445_9
crossref_primary_10_1007_s11356_023_28877_z
crossref_primary_10_1016_j_eswa_2023_121178
crossref_primary_10_1177_27551857241250014
crossref_primary_10_1016_j_microrel_2024_115374
crossref_primary_10_1007_s00138_022_01312_y
crossref_primary_10_3390_info11020125
crossref_primary_10_1016_j_ensm_2024_103860
crossref_primary_10_1016_j_scico_2023_103056
crossref_primary_10_1109_ACCESS_2020_2971319
crossref_primary_10_1002_qute_202000103
crossref_primary_10_3389_fmed_2023_1233724
crossref_primary_10_1007_s11082_024_06321_x
crossref_primary_10_1002_jtr_2419
crossref_primary_10_1007_JHEP10_2021_184
crossref_primary_10_1145_3614095
crossref_primary_10_1115_1_4064705
crossref_primary_10_1016_j_agwat_2024_108972
crossref_primary_10_3390_e20110823
crossref_primary_10_1016_j_measurement_2022_111590
crossref_primary_10_1016_j_actaastro_2019_03_072
crossref_primary_10_1016_j_jclepro_2023_136060
crossref_primary_10_1142_S0218126622500475
crossref_primary_10_1007_s12065_024_00985_w
crossref_primary_10_1016_j_asoc_2024_112188
crossref_primary_10_1016_j_jvcir_2022_103659
crossref_primary_10_3390_rs16183452
crossref_primary_10_1007_s11042_021_11529_0
crossref_primary_10_1016_j_measen_2023_100752
crossref_primary_10_1007_s11356_023_28285_3
crossref_primary_10_1371_journal_pone_0288935
crossref_primary_10_1007_s11356_023_28032_8
crossref_primary_10_1051_0004_6361_202449149
crossref_primary_10_3390_math11051127
crossref_primary_10_1016_j_jsv_2024_118255
crossref_primary_10_3390_app131810418
crossref_primary_10_1109_ACCESS_2024_3350430
crossref_primary_10_1016_j_patcog_2023_109656
crossref_primary_10_3390_e22111314
crossref_primary_10_1021_acs_jcim_3c00761
crossref_primary_10_1002_jmri_28315
crossref_primary_10_1016_j_jobe_2025_112448
crossref_primary_10_3390_antibiotics11101451
crossref_primary_10_1016_j_neucom_2019_03_013
crossref_primary_10_1145_3631429
crossref_primary_10_1016_j_csbj_2022_06_018
crossref_primary_10_17671_gazibtd_799370
crossref_primary_10_3389_fenvs_2023_1285471
crossref_primary_10_1007_s13198_024_02645_9
crossref_primary_10_1109_OJCOMS_2024_3437357
crossref_primary_10_2174_2666255816666230815121119
crossref_primary_10_1364_OE_550831
crossref_primary_10_14801_jkiit_2023_21_11_1
crossref_primary_10_1088_1742_6596_2774_1_012046
crossref_primary_10_3390_info15070409
crossref_primary_10_1016_j_isatra_2021_03_002
crossref_primary_10_1016_j_aca_2021_338697
crossref_primary_10_3390_s22218543
crossref_primary_10_1016_j_jobe_2023_106886
crossref_primary_10_1109_TASE_2022_3173368
crossref_primary_10_1186_s12859_022_04794_9
crossref_primary_10_3389_fgene_2024_1408688
crossref_primary_10_3390_mi13050716
crossref_primary_10_1109_ACCESS_2020_3037333
crossref_primary_10_1007_s10462_020_09825_6
crossref_primary_10_1016_j_aei_2024_102463
crossref_primary_10_1016_j_optlaseng_2019_02_009
crossref_primary_10_3390_ma16227213
crossref_primary_10_1016_j_conengprac_2020_104630
crossref_primary_10_1007_s12024_025_00985_x
crossref_primary_10_1007_s11571_023_09944_0
crossref_primary_10_1016_j_engfracmech_2023_109651
crossref_primary_10_1016_j_seppur_2019_116467
crossref_primary_10_1002_ima_22574
crossref_primary_10_1109_TCSVT_2020_2974768
crossref_primary_10_1088_1742_6596_2010_1_012001
crossref_primary_10_1088_2631_8695_acae1d
crossref_primary_10_1007_s00138_021_01237_y
crossref_primary_10_1007_s11128_024_04363_4
crossref_primary_10_1016_j_ufug_2023_127970
crossref_primary_10_1007_s00521_022_06907_0
crossref_primary_10_1051_bioconf_202414201004
crossref_primary_10_1016_j_asoc_2021_107596
crossref_primary_10_1016_j_knosys_2020_106062
crossref_primary_10_3390_cancers13194961
crossref_primary_10_3389_fpubh_2024_1426168
crossref_primary_10_1016_j_apenergy_2021_117819
crossref_primary_10_1109_ACCESS_2020_2979219
crossref_primary_10_1088_1361_6501_ab230b
crossref_primary_10_1016_j_jvcir_2022_103685
crossref_primary_10_1016_j_jfca_2024_107131
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_3390_electronics10020182
crossref_primary_10_1016_j_energy_2024_132495
crossref_primary_10_3390_app10124089
crossref_primary_10_3389_fsufs_2024_1401825
crossref_primary_10_1242_bio_060533
crossref_primary_10_1016_j_autcon_2024_105884
crossref_primary_10_1109_TIM_2023_3284958
crossref_primary_10_1016_j_asoc_2024_112118
crossref_primary_10_1016_j_neucom_2025_129533
crossref_primary_10_32362_2500_316X_2022_10_5_28_37
crossref_primary_10_3390_su15021150
crossref_primary_10_1007_s11761_023_00361_z
crossref_primary_10_1016_j_ijleo_2020_165764
crossref_primary_10_1016_j_autcon_2024_105894
crossref_primary_10_1016_j_ijtst_2024_06_006
crossref_primary_10_1049_iet_ipr_2019_0241
crossref_primary_10_1109_TIM_2023_3301902
crossref_primary_10_1007_s00521_021_05848_4
crossref_primary_10_1007_s10462_022_10213_5
crossref_primary_10_1016_j_conengprac_2020_104673
crossref_primary_10_1109_MCAS_2019_2945210
crossref_primary_10_1007_s11042_020_08928_0
crossref_primary_10_1016_j_cma_2025_117926
crossref_primary_10_3390_math10214089
crossref_primary_10_1016_j_trac_2025_118156
crossref_primary_10_1021_acssensors_3c01273
crossref_primary_10_1016_j_jjimei_2022_100062
crossref_primary_10_1016_j_jpdc_2023_104778
crossref_primary_10_3390_agriculture12071033
crossref_primary_10_3390_s22166193
crossref_primary_10_1002_ima_22654
crossref_primary_10_1016_j_asoc_2025_112740
crossref_primary_10_1016_j_jisa_2019_102419
crossref_primary_10_1080_15376494_2022_2111009
crossref_primary_10_1016_j_eswa_2023_121956
crossref_primary_10_1016_j_eswa_2023_120621
crossref_primary_10_1088_1755_1315_355_1_012003
crossref_primary_10_1002_adma_201904020
crossref_primary_10_1016_j_autcon_2020_103371
crossref_primary_10_1016_j_patcog_2022_108587
crossref_primary_10_1109_ACCESS_2020_3021943
crossref_primary_10_1016_j_dibe_2023_100298
crossref_primary_10_1007_s11263_018_1125_z
crossref_primary_10_1007_s10796_022_10352_8
crossref_primary_10_1007_s11042_023_15254_8
crossref_primary_10_17482_uumfd_1076377
crossref_primary_10_1016_j_eng_2024_08_023
crossref_primary_10_1109_TIA_2020_2984617
crossref_primary_10_1109_TIV_2019_2938109
crossref_primary_10_1016_j_compbiomed_2021_104317
crossref_primary_10_1007_s00371_024_03411_5
crossref_primary_10_3390_bdcc7030136
crossref_primary_10_1007_s11709_024_1134_7
crossref_primary_10_1016_j_bspc_2021_102943
crossref_primary_10_3389_fbioe_2024_1228846
crossref_primary_10_1016_j_watres_2025_123172
crossref_primary_10_1016_j_vibspec_2022_103450
crossref_primary_10_1016_j_wneu_2022_07_041
crossref_primary_10_1088_1755_1315_653_1_012030
crossref_primary_10_3390_agronomy12102551
crossref_primary_10_1080_08839514_2024_2355760
crossref_primary_10_1016_j_cmpb_2023_107493
crossref_primary_10_3390_s22228986
crossref_primary_10_1155_2021_6664569
crossref_primary_10_1016_j_cie_2020_106530
crossref_primary_10_1016_j_petrol_2021_109089
crossref_primary_10_31857_S0370274X24120227
crossref_primary_10_4108_eetsis_5667
crossref_primary_10_3390_s23010153
crossref_primary_10_1016_j_patcog_2024_111022
crossref_primary_10_1016_j_artmed_2023_102555
crossref_primary_10_1109_TCBB_2023_3322697
crossref_primary_10_3390_app12136595
crossref_primary_10_3390_s22155497
crossref_primary_10_1109_TCBB_2019_2963867
crossref_primary_10_1016_j_geoen_2023_211715
crossref_primary_10_1016_j_oceaneng_2024_117161
crossref_primary_10_1109_ACCESS_2022_3227134
crossref_primary_10_1134_S1054661823010017
crossref_primary_10_1016_j_tra_2024_104300
crossref_primary_10_3389_fcvm_2023_1279324
crossref_primary_10_3390_foods14050825
crossref_primary_10_1016_j_compbiomed_2019_103542
crossref_primary_10_3390_a15120454
crossref_primary_10_1007_s11600_022_00877_6
crossref_primary_10_1038_s41598_023_49589_x
crossref_primary_10_1016_j_plaphe_2025_100004
crossref_primary_10_1109_ACCESS_2024_3467996
crossref_primary_10_1016_j_caeai_2022_100115
crossref_primary_10_1063_5_0206608
crossref_primary_10_3390_a15120466
crossref_primary_10_3390_environments10100167
crossref_primary_10_3390_s24227319
crossref_primary_10_3390_su13095304
crossref_primary_10_1016_j_enconman_2024_119326
crossref_primary_10_1016_j_jrmge_2022_06_007
crossref_primary_10_1109_ACCESS_2024_3391416
crossref_primary_10_35940_ijitee_F8804_0410621
crossref_primary_10_3390_agriculture10100436
crossref_primary_10_1051_epjconf_202328713020
crossref_primary_10_3390_app132413316
crossref_primary_10_3390_w16233503
crossref_primary_10_1016_j_bspc_2021_102906
crossref_primary_10_1038_s41598_024_65693_y
crossref_primary_10_1016_j_compbiomed_2024_108370
crossref_primary_10_1016_j_energy_2025_135537
crossref_primary_10_1109_JSTARS_2024_3379350
crossref_primary_10_1016_j_anucene_2023_110208
crossref_primary_10_1016_j_bdr_2021_100286
crossref_primary_10_1186_s40537_024_00910_z
crossref_primary_10_3390_atmos15030288
crossref_primary_10_1016_j_patcog_2022_109018
crossref_primary_10_3389_fgene_2023_1238095
crossref_primary_10_1117_1_JEI_28_2_023020
crossref_primary_10_1007_s00041_024_10069_z
crossref_primary_10_1016_j_chemolab_2018_07_001
crossref_primary_10_1016_j_nucengdes_2025_113918
crossref_primary_10_20295_2413_2527_2024_137_26_31
crossref_primary_10_17798_bitlisfen_1346730
crossref_primary_10_3389_fpace_2024_1475139
crossref_primary_10_1016_j_cageo_2025_105853
crossref_primary_10_1016_j_patcog_2022_109024
crossref_primary_10_1016_j_est_2023_108181
crossref_primary_10_1016_j_patter_2021_100323
crossref_primary_10_1016_j_patcog_2019_107072
crossref_primary_10_1109_TCSI_2023_3344550
crossref_primary_10_1002_ese3_1405
crossref_primary_10_3390_bioengineering9090430
crossref_primary_10_1016_j_eswa_2023_122402
crossref_primary_10_1007_s10333_022_00908_4
crossref_primary_10_3390_s22166107
crossref_primary_10_1007_s10586_024_04658_2
crossref_primary_10_1016_j_cosrev_2021_100370
crossref_primary_10_1016_j_ultrasmedbio_2023_03_013
crossref_primary_10_1016_j_cosrev_2021_100374
crossref_primary_10_1109_ACCESS_2020_3040286
crossref_primary_10_3390_computers12080151
crossref_primary_10_3390_en16186517
crossref_primary_10_1111_1755_0998_13379
crossref_primary_10_1016_j_cosrev_2021_100379
crossref_primary_10_21837_pm_v21i28_1312
crossref_primary_10_1109_JSTARS_2023_3328403
crossref_primary_10_1016_j_enconman_2023_117707
crossref_primary_10_1080_10618562_2023_2225416
crossref_primary_10_3390_electronics12030478
crossref_primary_10_1016_j_saa_2020_118380
crossref_primary_10_1016_j_comnet_2025_111226
crossref_primary_10_1155_2023_9982080
crossref_primary_10_1007_s10010_019_00354_5
crossref_primary_10_1007_s00521_021_06033_3
crossref_primary_10_1016_j_eswa_2021_115525
crossref_primary_10_1016_j_rser_2023_113576
crossref_primary_10_1007_s12559_023_10113_y
crossref_primary_10_1111_exsy_13393
crossref_primary_10_1007_s11042_022_13644_y
crossref_primary_10_1016_j_saa_2021_119522
crossref_primary_10_1109_ACCESS_2020_2967090
crossref_primary_10_3390_s23083998
crossref_primary_10_1016_j_bios_2024_117086
crossref_primary_10_1016_j_patcog_2019_107038
crossref_primary_10_1016_j_chb_2024_108245
crossref_primary_10_1111_ffe_14291
crossref_primary_10_1155_2023_9790005
crossref_primary_10_1016_j_conbuildmat_2023_134229
crossref_primary_10_1007_s00521_020_04969_6
crossref_primary_10_1088_1361_6560_ac508d
crossref_primary_10_1364_OE_443127
crossref_primary_10_3389_fgene_2024_1375481
crossref_primary_10_1016_j_patcog_2020_107513
crossref_primary_10_1155_2018_5781591
crossref_primary_10_1016_j_oceaneng_2025_120676
crossref_primary_10_1177_14759217241255042
crossref_primary_10_1016_j_cma_2023_115909
crossref_primary_10_1016_j_engappai_2025_110494
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_3389_fphy_2024_1362690
crossref_primary_10_1016_j_matcom_2024_11_004
crossref_primary_10_1016_j_egyr_2023_05_229
crossref_primary_10_1016_j_xcrp_2024_102116
crossref_primary_10_32604_biocell_2023_025905
crossref_primary_10_1007_s42452_024_06207_3
crossref_primary_10_1177_15589250241228266
crossref_primary_10_1109_ACCESS_2024_3444483
crossref_primary_10_1016_j_autcon_2022_104408
crossref_primary_10_3389_fpls_2019_01422
crossref_primary_10_1016_j_geoen_2023_211794
crossref_primary_10_1016_j_jhydrol_2023_130085
crossref_primary_10_1016_j_ijtst_2022_07_003
crossref_primary_10_3389_fpls_2023_1173036
crossref_primary_10_1364_OL_484392
crossref_primary_10_3390_en16186551
crossref_primary_10_1016_j_energy_2024_130881
crossref_primary_10_1109_TSMC_2020_3048950
crossref_primary_10_1016_j_scitotenv_2024_173273
crossref_primary_10_1016_j_engfailanal_2025_109332
crossref_primary_10_1016_j_conbuildmat_2023_134297
crossref_primary_10_1108_ACMM_03_2023_2769
crossref_primary_10_3390_app10062104
crossref_primary_10_1016_j_inffus_2023_01_015
crossref_primary_10_1080_03772063_2022_2083027
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_1145_3715098
crossref_primary_10_1007_s12206_024_1018_8
crossref_primary_10_1016_j_ijbiomac_2023_128802
crossref_primary_10_1049_iet_ipr_2018_5613
crossref_primary_10_1177_1548512920983549
crossref_primary_10_1016_j_ijggc_2020_103189
crossref_primary_10_1016_j_jhydrol_2020_125033
crossref_primary_10_1016_j_advwatres_2024_104833
crossref_primary_10_1007_s13735_024_00322_y
crossref_primary_10_1080_17434440_2022_2014319
crossref_primary_10_1007_s42484_021_00056_8
crossref_primary_10_3390_a16020077
crossref_primary_10_1038_s41598_022_09453_w
crossref_primary_10_1002_aic_18456
crossref_primary_10_3390_act14030113
crossref_primary_10_3390_make7010023
crossref_primary_10_1016_j_trac_2024_117794
crossref_primary_10_1016_j_cjca_2023_12_025
crossref_primary_10_31590_ejosat_1176648
crossref_primary_10_1016_j_ecoinf_2024_102681
crossref_primary_10_1016_j_energy_2024_130866
crossref_primary_10_1016_j_ins_2025_122113
crossref_primary_10_1088_2057_1976_ada6bd
crossref_primary_10_1109_ACCESS_2021_3054117
crossref_primary_10_1109_TITS_2023_3311397
crossref_primary_10_1109_TSC_2023_3303191
crossref_primary_10_1016_j_heliyon_2024_e32215
crossref_primary_10_3389_fevo_2023_1275600
crossref_primary_10_1007_s11036_024_02413_w
crossref_primary_10_1016_j_tsep_2024_103063
crossref_primary_10_1109_TVT_2023_3311011
crossref_primary_10_3390_rs14194686
crossref_primary_10_1016_j_aej_2025_01_077
crossref_primary_10_1109_ACCESS_2021_3116131
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1016_j_apenergy_2021_117061
crossref_primary_10_1038_s41598_022_17263_3
crossref_primary_10_1016_j_scienta_2019_109133
crossref_primary_10_32604_cmc_2022_018181
crossref_primary_10_3390_s24175523
crossref_primary_10_1038_s41598_023_28240_9
crossref_primary_10_1002_aic_18558
crossref_primary_10_1109_ACCESS_2018_2888882
crossref_primary_10_1109_ACCESS_2022_3201338
crossref_primary_10_1038_s41598_024_51258_6
crossref_primary_10_1007_s11831_024_10216_1
crossref_primary_10_1109_JSTSP_2020_2972775
crossref_primary_10_1016_j_energy_2021_120996
crossref_primary_10_1109_JSEN_2024_3371354
crossref_primary_10_1016_j_compag_2023_108456
crossref_primary_10_1109_ACCESS_2024_3362965
crossref_primary_10_32604_cmc_2021_014759
crossref_primary_10_1155_2021_5514224
crossref_primary_10_1016_j_aej_2025_01_095
crossref_primary_10_1038_s41598_022_21604_7
crossref_primary_10_1109_ACCESS_2019_2897078
crossref_primary_10_1109_ACCESS_2021_3074559
crossref_primary_10_1109_TNSM_2023_3273860
crossref_primary_10_1016_j_patcog_2020_107468
crossref_primary_10_1109_ACCESS_2020_3033027
crossref_primary_10_1007_s00521_024_09779_8
crossref_primary_10_1016_j_patcog_2020_107474
crossref_primary_10_1016_j_sedgeo_2020_105790
crossref_primary_10_1016_j_patcog_2020_107475
crossref_primary_10_1109_ACCESS_2024_3514093
crossref_primary_10_1109_JIOT_2024_3408634
crossref_primary_10_5194_hess_25_4435_2021
crossref_primary_10_1071_WR18119
crossref_primary_10_1016_j_eswa_2022_116611
crossref_primary_10_1021_jacs_4c11686
crossref_primary_10_3390_app13148332
crossref_primary_10_1038_s41598_020_63566_8
crossref_primary_10_1016_j_cirpj_2022_01_008
crossref_primary_10_1007_s11135_023_01681_0
crossref_primary_10_1109_ACCESS_2024_3408712
crossref_primary_10_1007_s12652_023_04514_y
crossref_primary_10_1007_s11042_023_16687_x
crossref_primary_10_3390_su13031224
crossref_primary_10_1002_cpe_70011
crossref_primary_10_3390_app13148306
crossref_primary_10_1177_03019233241301144
crossref_primary_10_1007_s11831_021_09551_4
crossref_primary_10_1002_cyto_a_24917
crossref_primary_10_1007_s11042_019_08355_w
crossref_primary_10_1016_j_compag_2022_107269
crossref_primary_10_1371_journal_pone_0196251
crossref_primary_10_3389_fnins_2024_1279708
crossref_primary_10_1364_BOE_400816
crossref_primary_10_1109_TIP_2022_3183434
crossref_primary_10_1080_10447318_2024_2348229
crossref_primary_10_1109_TITS_2023_3303835
crossref_primary_10_1016_j_apenergy_2023_121703
crossref_primary_10_1093_mnras_stac2144
crossref_primary_10_1002_jsfa_13752
crossref_primary_10_1007_s11430_022_1050_2
crossref_primary_10_5194_gmd_14_3421_2021
crossref_primary_10_1016_j_phycom_2024_102303
crossref_primary_10_1016_j_jwpe_2024_106354
crossref_primary_10_1109_LGRS_2021_3109342
crossref_primary_10_1016_j_patter_2023_100860
crossref_primary_10_1109_TGRS_2021_3130406
crossref_primary_10_1360_SSI_2022_0239
crossref_primary_10_3390_en13102509
crossref_primary_10_1186_s12859_021_04527_4
crossref_primary_10_1016_j_jksuci_2020_03_002
crossref_primary_10_1088_1742_6596_2196_1_012022
crossref_primary_10_3390_app12084079
crossref_primary_10_1007_s11069_022_05363_2
crossref_primary_10_1038_s41558_022_01489_0
crossref_primary_10_1109_ACCESS_2022_3194652
crossref_primary_10_1093_bioinformatics_btae147
crossref_primary_10_1109_JSEN_2024_3369062
crossref_primary_10_1016_j_patcog_2019_107075
crossref_primary_10_1063_5_0134421
crossref_primary_10_3390_ijms22062903
crossref_primary_10_1016_j_procs_2020_09_038
crossref_primary_10_1007_s44196_023_00301_x
crossref_primary_10_1016_j_procs_2019_09_400
crossref_primary_10_1038_s10038_023_01213_6
crossref_primary_10_1016_j_patcog_2019_107084
crossref_primary_10_1016_j_knosys_2023_111123
crossref_primary_10_3390_toxics12120921
crossref_primary_10_1109_TMRB_2023_3269856
crossref_primary_10_1142_S0219467825500147
crossref_primary_10_1111_jon_12838
crossref_primary_10_3390_app12168140
crossref_primary_10_1016_j_neucom_2020_06_110
crossref_primary_10_3390_app8081286
crossref_primary_10_1007_s11263_019_01247_4
crossref_primary_10_3390_s22135053
crossref_primary_10_1016_j_soildyn_2024_109127
crossref_primary_10_1051_e3sconf_202131004002
crossref_primary_10_1007_s00371_021_02324_x
crossref_primary_10_1109_JLT_2022_3146839
crossref_primary_10_3390_s20113085
crossref_primary_10_1002_cpe_7626
crossref_primary_10_3390_bioengineering11101034
crossref_primary_10_1007_s11760_024_03639_7
crossref_primary_10_1016_j_geoen_2024_213392
crossref_primary_10_3390_machines10050319
crossref_primary_10_1007_s11042_023_14995_w
crossref_primary_10_3390_en17164132
crossref_primary_10_1109_TNNLS_2021_3104392
crossref_primary_10_1016_j_acha_2024_101669
crossref_primary_10_1109_ACCESS_2023_3258399
crossref_primary_10_1038_s41597_023_02003_7
crossref_primary_10_1016_j_ijpharm_2023_123001
crossref_primary_10_1109_ACCESS_2024_3359367
crossref_primary_10_1016_j_patcog_2023_109778
crossref_primary_10_1016_j_teler_2023_100053
crossref_primary_10_1016_j_rineng_2021_100225
crossref_primary_10_1016_j_jacc_2024_08_053
crossref_primary_10_1038_s41524_020_00380_w
crossref_primary_10_1080_09537287_2024_2320790
crossref_primary_10_1109_JSTARS_2020_3044250
crossref_primary_10_1109_OJITS_2023_3335817
crossref_primary_10_1016_j_isprsjprs_2021_12_005
crossref_primary_10_1016_j_aej_2024_08_074
crossref_primary_10_32604_cmc_2022_020431
crossref_primary_10_1002_widm_1551
crossref_primary_10_1109_TGRS_2023_3283508
crossref_primary_10_1007_s12652_019_01310_5
crossref_primary_10_1016_j_mlwa_2021_100058
crossref_primary_10_1016_j_compag_2022_106802
crossref_primary_10_1016_j_eswa_2024_123592
crossref_primary_10_1016_j_frl_2023_104458
crossref_primary_10_1007_s10664_024_10501_4
crossref_primary_10_1016_j_energy_2024_133011
crossref_primary_10_1155_2020_4608647
crossref_primary_10_1364_JOSAB_544692
crossref_primary_10_1002_jnm_70000
crossref_primary_10_1063_5_0134464
crossref_primary_10_1080_23729333_2022_2150379
crossref_primary_10_1063_5_0100236
crossref_primary_10_3390_math11143153
crossref_primary_10_1016_j_ijmecsci_2024_109672
crossref_primary_10_1063_5_0009326
crossref_primary_10_1016_j_compag_2024_109617
crossref_primary_10_1016_j_engappai_2023_107139
crossref_primary_10_1016_j_measurement_2022_112122
crossref_primary_10_1190_geo2021_0474_1
crossref_primary_10_1016_j_apacoust_2022_109052
crossref_primary_10_1016_j_celrep_2023_112904
crossref_primary_10_1016_j_ymeth_2024_04_003
crossref_primary_10_1080_21693277_2024_2378199
crossref_primary_10_1016_j_patcog_2018_11_009
crossref_primary_10_1016_j_asoc_2024_112015
crossref_primary_10_1109_ACCESS_2021_3110874
crossref_primary_10_1016_j_mlwa_2021_100037
crossref_primary_10_3390_math11020307
crossref_primary_10_3390_rs11172065
crossref_primary_10_1016_j_jag_2024_103718
crossref_primary_10_1007_s00466_024_02554_5
crossref_primary_10_3390_hydrology11100173
crossref_primary_10_1080_00207543_2023_2227903
crossref_primary_10_1093_bib_bbab160
crossref_primary_10_1016_j_envres_2024_120500
crossref_primary_10_1016_j_imu_2020_100412
crossref_primary_10_1016_j_infrared_2024_105265
crossref_primary_10_1007_s42979_023_02592_5
crossref_primary_10_1145_3613963
crossref_primary_10_1016_j_jrras_2023_100757
crossref_primary_10_3389_fnins_2024_1306047
crossref_primary_10_1007_s12596_023_01156_3
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_1016_j_engappai_2023_107121
crossref_primary_10_1016_j_isatra_2021_11_004
crossref_primary_10_1016_j_knosys_2024_112343
crossref_primary_10_1142_S0129065724500047
crossref_primary_10_1155_2022_7490363
crossref_primary_10_1038_s41598_022_17620_2
crossref_primary_10_1016_j_neucom_2021_06_003
crossref_primary_10_3390_drones7090559
crossref_primary_10_1002_ima_22663
crossref_primary_10_1080_17538947_2023_2298245
crossref_primary_10_3390_aerospace8040112
crossref_primary_10_3390_math11020321
crossref_primary_10_1007_s12043_023_02653_7
crossref_primary_10_1016_j_tafmec_2020_102728
crossref_primary_10_1109_TC_2020_2965518
crossref_primary_10_1088_1742_6596_1757_1_012083
crossref_primary_10_1049_ipr2_12835
crossref_primary_10_1360_SSTe_2022_0077
crossref_primary_10_1093_bib_bbae208
crossref_primary_10_1016_j_imavis_2023_104894
crossref_primary_10_3390_machines11100960
crossref_primary_10_1016_j_compositesb_2023_110907
crossref_primary_10_1016_j_compag_2021_106261
crossref_primary_10_1016_j_engappai_2022_104904
crossref_primary_10_1088_1742_6596_1918_4_042152
crossref_primary_10_1016_j_measurement_2022_111759
crossref_primary_10_1155_2022_1702766
crossref_primary_10_3390_app13074356
crossref_primary_10_1007_s00521_021_06715_y
crossref_primary_10_3389_fpls_2023_1269371
crossref_primary_10_1088_1742_6596_1820_1_012004
crossref_primary_10_3390_agronomy13122915
crossref_primary_10_1016_j_cropro_2024_107035
crossref_primary_10_1080_23311916_2024_2307174
crossref_primary_10_1016_j_aej_2024_10_022
crossref_primary_10_1080_21680566_2022_2116125
crossref_primary_10_3390_s22082932
crossref_primary_10_1109_ACCESS_2025_3544923
crossref_primary_10_11834_jig_220079
crossref_primary_10_1007_s11128_023_04143_6
crossref_primary_10_1049_iet_ipr_2020_0444
crossref_primary_10_1109_TCYB_2020_3034605
crossref_primary_10_1016_j_compenvurbsys_2023_101968
crossref_primary_10_3390_machines11100940
crossref_primary_10_1016_j_rse_2020_111970
crossref_primary_10_1109_ACCESS_2020_2984383
crossref_primary_10_36548_jaicn_2022_4_005
crossref_primary_10_1631_FITEE_2000181
crossref_primary_10_1016_j_cmpb_2021_106510
crossref_primary_10_3389_fbrio_2024_1326958
crossref_primary_10_1016_j_measurement_2019_107450
crossref_primary_10_1080_15481603_2024_2393489
crossref_primary_10_26634_jdp_7_4_17682
crossref_primary_10_3390_electronics12010113
crossref_primary_10_1038_s41598_022_21294_1
crossref_primary_10_1587_transfun_2022EAP1100
crossref_primary_10_1007_s00500_024_10313_0
crossref_primary_10_1038_s41467_024_55525_y
crossref_primary_10_1109_ACCESS_2023_3328768
crossref_primary_10_1007_s12559_020_09744_2
crossref_primary_10_1088_2058_9565_ab9f93
crossref_primary_10_1016_j_media_2025_103454
crossref_primary_10_4015_S1016237224500352
crossref_primary_10_1016_j_media_2025_103455
crossref_primary_10_1057_s41278_023_00278_6
crossref_primary_10_1007_s10845_020_01715_6
crossref_primary_10_1007_s12065_022_00780_5
crossref_primary_10_1007_s42979_023_02245_7
crossref_primary_10_1016_j_fuproc_2023_107673
crossref_primary_10_3390_cancers14174342
crossref_primary_10_1109_TNNLS_2023_3273503
crossref_primary_10_1016_j_procs_2024_04_208
crossref_primary_10_1007_s11704_024_40610_8
crossref_primary_10_1016_j_dsp_2025_105178
crossref_primary_10_1016_j_jksuci_2023_04_006
crossref_primary_10_1109_ACCESS_2023_3235866
crossref_primary_10_3390_biomimetics8020187
crossref_primary_10_1061_JTEPBS_0000432
crossref_primary_10_1142_S0218539324500189
crossref_primary_10_1016_j_eswa_2023_119559
crossref_primary_10_1016_j_wasec_2023_100141
crossref_primary_10_3847_1538_4357_ab275e
crossref_primary_10_1007_s40098_024_01065_7
crossref_primary_10_1002_cpe_5920
crossref_primary_10_1016_j_jestch_2024_101794
crossref_primary_10_1080_01431161_2020_1856964
crossref_primary_10_1016_j_patcog_2020_107608
crossref_primary_10_1109_JTEHM_2023_3290036
crossref_primary_10_1364_OE_522516
crossref_primary_10_1007_s00034_024_02898_6
crossref_primary_10_1155_2018_4189150
crossref_primary_10_1002_int_23054
crossref_primary_10_1016_j_procs_2021_05_023
crossref_primary_10_7717_peerj_cs_798
crossref_primary_10_35784_acs_2023_37
crossref_primary_10_1016_j_patcog_2020_107610
crossref_primary_10_1016_j_scitotenv_2023_166168
crossref_primary_10_1109_TIP_2018_2878975
crossref_primary_10_2478_ausi_2023_0006
crossref_primary_10_1016_j_patcog_2024_111153
crossref_primary_10_1016_j_softx_2019_100311
crossref_primary_10_2174_1570180820666230427151812
crossref_primary_10_1088_1361_6501_ad15de
crossref_primary_10_1177_18724981251319630
crossref_primary_10_1016_j_eswa_2023_119534
crossref_primary_10_5194_tc_16_1447_2022
crossref_primary_10_1007_s11119_023_10073_1
crossref_primary_10_1016_j_vehcom_2022_100470
crossref_primary_10_1016_j_ymssp_2022_109642
crossref_primary_10_1109_JPROC_2024_3429360
crossref_primary_10_1016_j_ymssp_2022_109634
crossref_primary_10_1007_s11276_021_02645_8
crossref_primary_10_1016_j_geoen_2024_213279
crossref_primary_10_1016_j_heliyon_2023_e14453
crossref_primary_10_3389_fpls_2023_1102855
crossref_primary_10_1007_s44196_022_00133_1
crossref_primary_10_1016_j_patcog_2024_111138
crossref_primary_10_1007_s00521_022_07099_3
crossref_primary_10_1109_ACCESS_2022_3216393
crossref_primary_10_1109_TPAMI_2024_3457538
crossref_primary_10_1016_j_eswa_2022_117062
crossref_primary_10_1016_j_egyr_2022_03_013
crossref_primary_10_1002_ima_22703
crossref_primary_10_1177_00202940241230488
crossref_primary_10_1016_j_vehcom_2022_100471
crossref_primary_10_1155_2019_6134610
crossref_primary_10_1088_1361_6501_ac4598
crossref_primary_10_1007_s11042_024_18714_x
crossref_primary_10_1145_3696113
crossref_primary_10_3390_nano14020165
crossref_primary_10_1016_j_engappai_2023_106562
crossref_primary_10_1016_j_agwat_2024_109268
crossref_primary_10_1007_s13735_021_00205_6
crossref_primary_10_1007_s00500_023_08865_8
crossref_primary_10_1109_ACCESS_2024_3512185
crossref_primary_10_1007_s00530_022_00955_1
crossref_primary_10_1016_j_physa_2024_130226
crossref_primary_10_1177_09544100241253317
crossref_primary_10_1109_JSEN_2024_3409776
crossref_primary_10_1115_1_4063985
crossref_primary_10_1080_03772063_2019_1644974
crossref_primary_10_1109_TBC_2022_3224249
crossref_primary_10_24012_dumf_492433
crossref_primary_10_3390_sci6040077
crossref_primary_10_1016_j_measurement_2023_113382
crossref_primary_10_1109_TGRS_2021_3106681
crossref_primary_10_3390_ma15031157
crossref_primary_10_1088_1361_6501_abe0d9
crossref_primary_10_3390_electronics12092027
crossref_primary_10_1109_ACCESS_2020_2994592
crossref_primary_10_1016_j_patcog_2020_107659
crossref_primary_10_3389_fpls_2020_01086
crossref_primary_10_1016_j_ymeth_2022_11_001
crossref_primary_10_1016_j_geoen_2024_212854
crossref_primary_10_1007_s10343_022_00764_6
crossref_primary_10_1016_j_eswa_2025_126468
crossref_primary_10_3390_en17163877
crossref_primary_10_1061__ASCE_IS_1943_555X_0000545
crossref_primary_10_1029_2022SW003064
crossref_primary_10_3390_bios12090700
crossref_primary_10_1016_j_acha_2020_05_007
crossref_primary_10_1007_s11042_024_20323_7
crossref_primary_10_1016_j_compeleceng_2023_109012
crossref_primary_10_1016_j_pacs_2021_100241
crossref_primary_10_3390_su16041710
crossref_primary_10_3390_app14020525
crossref_primary_10_1016_j_pepi_2021_106653
crossref_primary_10_1016_j_cviu_2023_103909
crossref_primary_10_1007_s12567_023_00510_2
crossref_primary_10_3390_math10081285
crossref_primary_10_1038_s41598_020_66505_9
crossref_primary_10_1080_02564602_2020_1823252
crossref_primary_10_1155_2022_2549683
crossref_primary_10_1093_bib_bbac631
crossref_primary_10_1016_j_measurement_2021_110545
crossref_primary_10_1088_1742_6596_2664_1_012007
crossref_primary_10_1016_j_neucom_2023_126896
crossref_primary_10_3233_MGS_230034
crossref_primary_10_1155_2022_6173981
crossref_primary_10_1162_neco_a_01273
crossref_primary_10_1016_j_ymeth_2022_03_001
crossref_primary_10_3389_fpls_2020_583438
crossref_primary_10_1186_s13007_022_00929_4
crossref_primary_10_1111_exsy_13454
crossref_primary_10_1016_j_cej_2018_04_087
crossref_primary_10_1038_s41598_022_21646_x
crossref_primary_10_3390_pr8111480
crossref_primary_10_3390_ma15092984
crossref_primary_10_3390_mi13122231
crossref_primary_10_1109_ACCESS_2024_3455255
crossref_primary_10_1109_TSP_2021_3089927
crossref_primary_10_3390_agriculture14040584
crossref_primary_10_1016_j_patcog_2020_107692
crossref_primary_10_1109_TITS_2019_2897377
crossref_primary_10_1007_s00170_022_08836_7
crossref_primary_10_1007_s00224_022_10112_w
crossref_primary_10_1007_s10489_022_03781_0
crossref_primary_10_1016_j_engappai_2023_107822
crossref_primary_10_32604_jai_2024_054314
crossref_primary_10_1007_s40684_023_00528_1
crossref_primary_10_1021_acsomega_2c02665
crossref_primary_10_3390_app14219819
crossref_primary_10_3390_s20205896
crossref_primary_10_3390_w14091384
crossref_primary_10_1021_acsami_4c11087
crossref_primary_10_1016_j_eswa_2022_117925
crossref_primary_10_1002_dac_4685
crossref_primary_10_1016_j_knosys_2023_111301
crossref_primary_10_1016_j_precisioneng_2024_07_006
crossref_primary_10_1049_ipr2_13105
crossref_primary_10_2139_ssrn_3882570
crossref_primary_10_1109_ACCESS_2023_3268797
crossref_primary_10_1109_TAI_2023_3240674
crossref_primary_10_1016_j_rser_2022_112282
crossref_primary_10_1016_j_elerap_2025_101484
crossref_primary_10_1109_TNSRE_2020_3019063
crossref_primary_10_1109_JIOT_2019_2901348
crossref_primary_10_1016_j_bspc_2024_106194
crossref_primary_10_1016_j_heliyon_2023_e23324
crossref_primary_10_3390_electronics10121393
crossref_primary_10_1007_s12046_021_01787_x
crossref_primary_10_1111_2041_210X_13775
crossref_primary_10_1016_j_saa_2024_123976
crossref_primary_10_1093_mnras_stz2851
crossref_primary_10_3390_app13095231
crossref_primary_10_1002_adsr_202200072
crossref_primary_10_1088_1742_6596_2014_1_012020
crossref_primary_10_1016_j_ultras_2021_106661
crossref_primary_10_1007_s12145_024_01438_9
crossref_primary_10_1002_aisy_202100285
crossref_primary_10_1007_s11053_024_10438_x
crossref_primary_10_1007_s11042_019_08158_z
crossref_primary_10_1016_S2589_7500_21_00278_8
crossref_primary_10_1016_j_infsof_2023_107148
crossref_primary_10_3389_fmars_2023_1162064
crossref_primary_10_1007_s11042_025_20735_z
crossref_primary_10_3390_agriculture12020129
crossref_primary_10_1007_s44163_023_00062_8
crossref_primary_10_4018_IJCINI_2020010103
crossref_primary_10_1016_j_mehy_2020_109761
crossref_primary_10_1038_s41598_023_38532_9
crossref_primary_10_32604_iasc_2023_032530
crossref_primary_10_1016_j_compgeo_2023_105935
crossref_primary_10_3390_bdcc9010005
crossref_primary_10_1002_cpe_6486
crossref_primary_10_1016_j_patcog_2023_110003
crossref_primary_10_7734_COSEIK_2019_32_4_265
crossref_primary_10_1007_s10845_021_01829_5
crossref_primary_10_3390_s24103123
crossref_primary_10_1002_mp_16702
crossref_primary_10_1016_j_neucom_2019_08_101
crossref_primary_10_1016_j_compeleceng_2021_107461
crossref_primary_10_1016_j_eswa_2022_117846
crossref_primary_10_1109_COMST_2023_3298300
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_1016_j_infsof_2023_107169
crossref_primary_10_3390_s23167111
crossref_primary_10_3390_pr11071917
crossref_primary_10_1109_ACCESS_2024_3361756
crossref_primary_10_3390_en17174457
crossref_primary_10_1016_j_compag_2024_109719
crossref_primary_10_1029_2018WR023528
crossref_primary_10_1016_j_intell_2024_101832
crossref_primary_10_1016_j_engappai_2020_103831
crossref_primary_10_1016_j_chemolab_2022_104711
crossref_primary_10_1016_j_patcog_2020_107584
crossref_primary_10_1109_TIM_2023_3265128
crossref_primary_10_1016_j_chemosphere_2023_140476
crossref_primary_10_2166_wcc_2024_389
crossref_primary_10_1016_j_mineng_2023_108523
crossref_primary_10_1016_j_jspr_2023_102242
crossref_primary_10_3390_s24217035
crossref_primary_10_1007_s00158_022_03359_x
crossref_primary_10_1109_TGRS_2024_3371714
crossref_primary_10_1051_e3sconf_202336902003
crossref_primary_10_3390_agronomy14123068
crossref_primary_10_1007_s10845_023_02183_4
crossref_primary_10_1016_j_ipm_2024_103914
crossref_primary_10_3390_app12052570
crossref_primary_10_1016_j_radphyschem_2025_112681
crossref_primary_10_3390_s24010177
crossref_primary_10_3390_machines11070677
crossref_primary_10_1088_1361_6595_acb28c
crossref_primary_10_1007_s11042_023_17112_z
crossref_primary_10_1007_s11831_023_09986_x
crossref_primary_10_1016_j_compeleceng_2019_106533
crossref_primary_10_1109_ACCESS_2020_2989273
crossref_primary_10_1007_s13369_023_08534_w
crossref_primary_10_1371_journal_pone_0298102
crossref_primary_10_3390_electronics10212697
crossref_primary_10_1117_1_JRS_18_014507
crossref_primary_10_1016_j_eswa_2023_122283
crossref_primary_10_3390_rs14215305
crossref_primary_10_1007_s12559_024_10374_1
crossref_primary_10_1016_j_oceaneng_2022_110650
crossref_primary_10_3390_su151310543
crossref_primary_10_3390_rs14194763
crossref_primary_10_1049_itr2_12385
crossref_primary_10_1016_j_compbiomed_2022_106156
crossref_primary_10_2139_ssrn_4605153
crossref_primary_10_3390_app132111776
crossref_primary_10_1016_j_matdes_2020_109180
crossref_primary_10_3390_w15152704
crossref_primary_10_1371_journal_pdig_0000678
crossref_primary_10_1080_14737175_2021_1951234
crossref_primary_10_1016_j_ijinfomgt_2020_102205
crossref_primary_10_1016_j_jhydrol_2019_124296
crossref_primary_10_17221_21_2022_CJFS
crossref_primary_10_3748_wjg_v30_i39_4267
crossref_primary_10_1007_s12065_019_00344_0
crossref_primary_10_3934_era_2022008
crossref_primary_10_1007_s10278_024_01050_9
crossref_primary_10_1111_jgh_15502
crossref_primary_10_3389_fmars_2022_947394
crossref_primary_10_1088_1538_3873_acf8f7
crossref_primary_10_2478_jaiscr_2025_0006
crossref_primary_10_1007_s40747_023_01119_y
crossref_primary_10_1007_s00704_023_04775_9
crossref_primary_10_1007_s00521_024_10252_9
crossref_primary_10_1007_s12539_019_00351_w
crossref_primary_10_3390_diagnostics13213384
crossref_primary_10_1016_j_apor_2023_103587
crossref_primary_10_1016_j_scrs_2024_101003
crossref_primary_10_1016_j_jcp_2024_113708
crossref_primary_10_1587_elex_21_20240382
crossref_primary_10_1109_ACCESS_2020_3043386
crossref_primary_10_1080_21642583_2022_2091060
crossref_primary_10_3390_s18061828
crossref_primary_10_1155_2022_1715226
crossref_primary_10_1109_JPROC_2023_3238524
crossref_primary_10_3390_electronics12040858
crossref_primary_10_1109_ACCESS_2021_3085114
crossref_primary_10_1007_s11042_020_09491_4
crossref_primary_10_1090_mcom_3781
crossref_primary_10_1016_j_measurement_2019_05_057
crossref_primary_10_1002_cpe_5130
crossref_primary_10_1016_j_compstruct_2023_117701
crossref_primary_10_2139_ssrn_4005974
crossref_primary_10_3390_app10186507
crossref_primary_10_1109_JSTARS_2021_3049905
crossref_primary_10_1016_j_ast_2021_107297
crossref_primary_10_1080_03081060_2024_2340640
crossref_primary_10_1177_14759217231193102
crossref_primary_10_1007_s43452_025_01147_0
crossref_primary_10_3233_HIS_240006
crossref_primary_10_4028_www_scientific_net_KEM_827_476
crossref_primary_10_3390_agronomy12112723
crossref_primary_10_1016_j_patcog_2022_108614
crossref_primary_10_1038_s41598_021_84358_8
crossref_primary_10_1016_j_procs_2020_02_243
crossref_primary_10_1038_s41598_021_87496_1
crossref_primary_10_1109_JOE_2024_3429653
crossref_primary_10_3390_s24248148
crossref_primary_10_1007_s11042_021_11593_6
crossref_primary_10_1016_j_eswa_2024_123447
crossref_primary_10_1016_j_knosys_2022_109935
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_3390_foods12010141
crossref_primary_10_1109_ACCESS_2024_3365274
crossref_primary_10_1016_j_autcon_2020_103526
crossref_primary_10_1177_14759217241228150
crossref_primary_10_1007_s00521_019_04282_x
crossref_primary_10_1029_2023JF007336
crossref_primary_10_1021_acs_jcim_8b00368
crossref_primary_10_1016_j_jpowsour_2024_234808
crossref_primary_10_3390_jimaging10100248
crossref_primary_10_1007_s00521_019_04665_0
crossref_primary_10_1109_JSTARS_2024_3402388
crossref_primary_10_1145_3634703
crossref_primary_10_1007_s12652_021_03253_2
crossref_primary_10_1016_j_saa_2022_121560
crossref_primary_10_1007_s11042_024_19750_3
crossref_primary_10_1155_2022_3995209
crossref_primary_10_1109_MCE_2024_3387019
crossref_primary_10_1186_s12938_025_01333_4
crossref_primary_10_1016_j_ecolmodel_2023_110545
crossref_primary_10_1109_TGRS_2024_3434403
crossref_primary_10_1155_2021_9928073
crossref_primary_10_1016_j_renene_2022_05_123
crossref_primary_10_1016_j_atmosres_2024_107307
crossref_primary_10_1016_j_future_2019_09_001
crossref_primary_10_1016_j_engappai_2022_104953
crossref_primary_10_1109_ACCESS_2022_3206963
crossref_primary_10_3390_en18061463
crossref_primary_10_1016_j_jpha_2024_101103
crossref_primary_10_1109_TIA_2021_3072025
crossref_primary_10_1016_j_knosys_2021_107446
crossref_primary_10_1016_j_nima_2023_168942
crossref_primary_10_1111_2041_210X_14281
crossref_primary_10_7717_peerj_18822
crossref_primary_10_1038_s41598_022_15533_8
crossref_primary_10_1088_1361_665X_acd3c8
crossref_primary_10_1007_s10096_020_03901_z
crossref_primary_10_1177_01423312241252459
crossref_primary_10_1002_advs_202106043
crossref_primary_10_1016_j_procs_2018_08_282
crossref_primary_10_1007_s11063_022_10894_7
crossref_primary_10_1007_s42835_023_01391_5
crossref_primary_10_1016_j_cliser_2023_100408
crossref_primary_10_1016_j_patcog_2023_109867
crossref_primary_10_1109_ACCESS_2022_3171811
crossref_primary_10_1145_3643678
crossref_primary_10_1002_adfm_202213711
crossref_primary_10_3390_en16166049
crossref_primary_10_1007_s00521_020_05246_2
crossref_primary_10_1016_j_autcon_2025_105973
crossref_primary_10_1038_s41598_023_49075_4
crossref_primary_10_3389_fpubh_2024_1431757
crossref_primary_10_3390_s18092955
crossref_primary_10_3390_ijms231810396
crossref_primary_10_1007_s40747_023_01333_8
crossref_primary_10_3390_en15031215
crossref_primary_10_1088_1742_6596_2310_1_012076
crossref_primary_10_1038_s41598_025_89421_2
crossref_primary_10_1016_j_egyr_2024_04_039
crossref_primary_10_1016_j_eswa_2024_125215
crossref_primary_10_1109_ACCESS_2021_3058387
crossref_primary_10_1109_TSMC_2018_2850149
crossref_primary_10_3389_fnins_2022_979787
crossref_primary_10_4018_IJITSA_344019
crossref_primary_10_1109_LMWC_2022_3208355
crossref_primary_10_3390_diagnostics14131402
crossref_primary_10_3389_fmolb_2021_768106
crossref_primary_10_1093_bib_bbae338
crossref_primary_10_3390_s24020348
crossref_primary_10_1109_OJCAS_2022_3184302
crossref_primary_10_1097_AUD_0000000000001443
crossref_primary_10_21605_cukurovaumfd_1230792
crossref_primary_10_3390_rs17010124
crossref_primary_10_1038_s41598_022_09370_y
crossref_primary_10_1016_j_compbiolchem_2021_107584
crossref_primary_10_1088_1361_6560_ac8964
crossref_primary_10_2118_215117_PA
crossref_primary_10_1016_j_apenergy_2024_123920
crossref_primary_10_5194_se_11_1527_2020
crossref_primary_10_1109_ACCESS_2021_3097969
crossref_primary_10_1007_s00138_018_0990_3
crossref_primary_10_1007_s41871_023_00193_7
crossref_primary_10_1080_10106049_2024_2375585
crossref_primary_10_1007_s10009_023_00701_6
crossref_primary_10_3390_app10144710
crossref_primary_10_1016_j_enganabound_2024_105826
crossref_primary_10_1016_j_asoc_2022_108885
crossref_primary_10_1002_aisy_202400429
crossref_primary_10_1016_j_ejrh_2023_101326
crossref_primary_10_1145_3479428
crossref_primary_10_1016_j_jdent_2019_103226
crossref_primary_10_1016_j_jtbi_2023_111636
crossref_primary_10_3390_math12233661
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_1109_JSEN_2024_3423324
crossref_primary_10_1109_ACCESS_2020_2996250
crossref_primary_10_1093_mnras_stac281
crossref_primary_10_1088_1367_2630_ac71be
crossref_primary_10_3390_electronics13040773
crossref_primary_10_3390_ijms25168660
crossref_primary_10_3390_mi15080985
crossref_primary_10_2478_rgg_2024_0017
crossref_primary_10_1051_0004_6361_202452379
crossref_primary_10_1016_j_compag_2024_109032
crossref_primary_10_3233_JIFS_210100
crossref_primary_10_1155_2022_2178579
crossref_primary_10_14201_ADCAIJ20211016376
crossref_primary_10_1364_OE_26_022603
crossref_primary_10_3390_machines10060422
crossref_primary_10_1016_j_displa_2024_102958
crossref_primary_10_1016_j_patcog_2021_108063
crossref_primary_10_5937_tehnika2304433P
crossref_primary_10_3233_JIFS_231032
crossref_primary_10_1109_TFUZZ_2021_3062899
crossref_primary_10_1016_j_knosys_2022_110210
crossref_primary_10_1109_ACCESS_2024_3399114
crossref_primary_10_1088_2632_2153_ace417
crossref_primary_10_3390_pr10091867
crossref_primary_10_1109_ACCESS_2019_2919566
crossref_primary_10_1002_acm2_13337
crossref_primary_10_1002_cjoc_202100591
crossref_primary_10_1109_TIM_2020_2998233
crossref_primary_10_1117_1_JEI_32_4_043008
crossref_primary_10_1016_j_engappai_2025_110265
crossref_primary_10_7498_aps_70_20210684
crossref_primary_10_1103_PhysRevD_110_063011
crossref_primary_10_3390_rs15204985
crossref_primary_10_1002_spy2_164
crossref_primary_10_1007_s00530_024_01578_4
crossref_primary_10_1049_joe_2019_1153
crossref_primary_10_3390_photonics11111085
crossref_primary_10_1016_j_ijleo_2021_168037
crossref_primary_10_1109_ACCESS_2023_3301160
crossref_primary_10_1016_j_compbiomed_2022_105737
crossref_primary_10_3390_app13127276
crossref_primary_10_1088_1742_6596_2762_1_012006
crossref_primary_10_1016_j_csl_2021_101204
crossref_primary_10_1038_s41598_020_58103_6
crossref_primary_10_1016_j_actaastro_2020_11_035
crossref_primary_10_1109_ACCESS_2021_3114968
crossref_primary_10_1515_revneuro_2018_0050
crossref_primary_10_1109_TAES_2022_3169454
crossref_primary_10_32604_cmes_2021_014669
crossref_primary_10_3390_electronics12092138
crossref_primary_10_1109_ACCESS_2022_3163247
crossref_primary_10_1016_j_patcog_2024_110398
crossref_primary_10_1016_j_est_2024_114959
crossref_primary_10_1016_j_measurement_2023_113911
crossref_primary_10_1016_j_ijsolstr_2025_113223
crossref_primary_10_1016_j_aei_2022_101643
crossref_primary_10_1109_COMST_2023_3323091
crossref_primary_10_1007_s00362_019_01138_3
crossref_primary_10_1002_tee_23543
crossref_primary_10_1016_j_jestch_2025_101977
crossref_primary_10_1109_ACCESS_2023_3326421
crossref_primary_10_1049_ipr2_13097
crossref_primary_10_3390_s20216247
crossref_primary_10_3390_electronics11234008
crossref_primary_10_3390_su12229490
crossref_primary_10_1103_PhysRevD_102_092003
crossref_primary_10_1155_2021_6664776
crossref_primary_10_4155_fmc_2021_0063
crossref_primary_10_1016_j_oceaneng_2021_108803
crossref_primary_10_3390_brainsci10020064
crossref_primary_10_3390_electronics12244956
crossref_primary_10_1109_ACCESS_2020_2975350
crossref_primary_10_4995_var_2021_15329
crossref_primary_10_3390_rs15204971
crossref_primary_10_1016_j_jfca_2024_106930
crossref_primary_10_3390_idr14060090
crossref_primary_10_1109_ACCESS_2022_3186701
crossref_primary_10_1155_2024_5134326
crossref_primary_10_1007_s11042_024_19419_x
crossref_primary_10_3390_math11194147
crossref_primary_10_1109_TVT_2023_3247442
crossref_primary_10_3390_atmos14060953
crossref_primary_10_1007_s43069_023_00278_5
crossref_primary_10_1016_j_biocon_2021_109102
crossref_primary_10_1007_s10826_019_01689_x
crossref_primary_10_1155_2023_2354728
crossref_primary_10_1177_20552076241272632
crossref_primary_10_3390_agronomy11081480
crossref_primary_10_1080_10589759_2024_2422527
crossref_primary_10_1007_s12652_021_03688_7
crossref_primary_10_1007_s11227_018_2600_6
crossref_primary_10_1007_s40747_024_01622_w
crossref_primary_10_1111_exsy_13141
crossref_primary_10_1117_1_JMI_4_4_044504
crossref_primary_10_1016_j_cie_2022_108213
crossref_primary_10_1364_OPTCON_485728
crossref_primary_10_1145_3679010
crossref_primary_10_1016_j_patcog_2024_110351
crossref_primary_10_1109_ACCESS_2021_3076571
crossref_primary_10_1016_j_procs_2021_01_059
crossref_primary_10_17780_ksujes_1208283
crossref_primary_10_1109_ACCESS_2023_3281859
crossref_primary_10_3389_fncom_2023_1091180
crossref_primary_10_1016_j_jocs_2022_101865
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_3390_app14020642
crossref_primary_10_3390_jimaging9010001
crossref_primary_10_3390_s20123539
crossref_primary_10_3390_biomimetics7040241
crossref_primary_10_1088_1742_6596_1547_1_012020
crossref_primary_10_1016_j_measurement_2025_116755
crossref_primary_10_1016_j_saa_2023_122686
crossref_primary_10_3389_fmed_2023_1278232
crossref_primary_10_1016_j_aeolia_2022_100801
crossref_primary_10_1109_ACCESS_2024_3355547
crossref_primary_10_1111_1541_4337_13110
crossref_primary_10_1016_j_compstruct_2022_116354
crossref_primary_10_1016_j_measurement_2022_111808
crossref_primary_10_1007_s10462_022_10272_8
crossref_primary_10_1007_s40735_022_00671_3
crossref_primary_10_1111_1755_0998_14015
crossref_primary_10_1007_s42600_024_00338_7
crossref_primary_10_1016_j_measurement_2024_116450
crossref_primary_10_36680_j_itcon_2020_021
crossref_primary_10_3390_bdcc7020108
crossref_primary_10_1109_LSP_2021_3056901
crossref_primary_10_3390_mca26010017
crossref_primary_10_1109_ACCESS_2025_3542425
crossref_primary_10_1007_s00371_021_02352_7
crossref_primary_10_1051_bioconf_202411301014
crossref_primary_10_1016_j_csbj_2024_10_018
crossref_primary_10_1007_s10845_024_02372_9
crossref_primary_10_1088_1361_6501_aca115
crossref_primary_10_1109_ACCESS_2024_3469537
crossref_primary_10_1007_s10596_022_10181_3
crossref_primary_10_1007_s13369_024_09639_6
crossref_primary_10_1177_14759217221098569
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_1088_1742_6596_1387_1_012124
crossref_primary_10_1016_j_engappai_2022_105698
crossref_primary_10_3390_rs13214262
crossref_primary_10_1016_j_patcog_2018_09_015
crossref_primary_10_1109_TCAD_2020_2966451
crossref_primary_10_1016_j_compbiomed_2022_106216
crossref_primary_10_3390_rs15030765
crossref_primary_10_1016_j_eja_2024_127332
crossref_primary_10_1097_BPO_0000000000002611
crossref_primary_10_7717_peerj_cs_1453
crossref_primary_10_1007_s00521_020_05151_8
crossref_primary_10_1016_j_cpan_2024_11_001
crossref_primary_10_1109_TIP_2024_3388895
crossref_primary_10_4018_IJSSCI_328771
crossref_primary_10_1016_j_eja_2025_127617
crossref_primary_10_1021_acs_jpclett_4c01911
crossref_primary_10_1016_j_jclepro_2024_143963
crossref_primary_10_3390_v15081749
crossref_primary_10_1016_j_patcog_2018_09_007
crossref_primary_10_3389_feart_2022_999530
crossref_primary_10_3389_fnins_2019_00810
crossref_primary_10_1109_TITS_2020_3008935
crossref_primary_10_3390_s23135922
crossref_primary_10_1002_jtr_2812
crossref_primary_10_1145_3592615
crossref_primary_10_1016_j_engappai_2025_110217
crossref_primary_10_1097_CMR_0000000000000922
crossref_primary_10_1016_j_fochx_2023_100690
crossref_primary_10_1145_3631130
crossref_primary_10_1016_j_scs_2021_102830
crossref_primary_10_3390_s20051340
crossref_primary_10_1016_j_jrras_2024_101265
crossref_primary_10_1016_j_cjca_2018_04_032
crossref_primary_10_1109_TGRS_2023_3257039
crossref_primary_10_1109_TCBB_2023_3339645
crossref_primary_10_1109_JSTARS_2021_3129182
crossref_primary_10_3389_frai_2023_1062230
crossref_primary_10_1109_ACCESS_2024_3406736
crossref_primary_10_2478_jaiscr_2022_0012
crossref_primary_10_3390_app13116515
crossref_primary_10_7769_gesec_v15i12_4570
crossref_primary_10_1007_s13369_024_09954_y
crossref_primary_10_3390_app122010476
crossref_primary_10_1109_TIP_2022_3208735
crossref_primary_10_1007_s00521_023_08870_w
crossref_primary_10_1016_j_patcog_2023_110129
crossref_primary_10_1007_s10772_024_10134_4
crossref_primary_10_55708_js0308002
crossref_primary_10_1016_j_nanoen_2024_110186
crossref_primary_10_3390_chemosensors12070140
crossref_primary_10_3233_JIFS_210932
crossref_primary_10_3390_diagnostics12112833
crossref_primary_10_1016_j_ins_2021_02_024
crossref_primary_10_3389_fnins_2018_00689
crossref_primary_10_3389_fenvs_2023_1156248
crossref_primary_10_7498_aps_72_20222381
crossref_primary_10_1016_j_engappai_2022_105775
crossref_primary_10_1007_s10483_023_2992_6
crossref_primary_10_1002_qre_2983
crossref_primary_10_1016_j_inffus_2024_102695
crossref_primary_10_3389_fspas_2022_1031407
crossref_primary_10_3390_app9204364
crossref_primary_10_1145_3688001
crossref_primary_10_1016_j_mejo_2023_105810
crossref_primary_10_1016_j_eswa_2022_116868
crossref_primary_10_3390_app11010089
crossref_primary_10_1364_OL_505232
crossref_primary_10_3390_info14060349
crossref_primary_10_1007_s00170_023_12700_7
crossref_primary_10_1016_j_csbj_2024_01_011
crossref_primary_10_1007_s11269_024_03937_2
crossref_primary_10_32604_cmc_2023_033860
crossref_primary_10_1016_j_patcog_2020_107231
crossref_primary_10_1016_j_energy_2025_134804
crossref_primary_10_3390_electronics12234796
crossref_primary_10_1016_j_jksuci_2024_102208
crossref_primary_10_1016_j_compbiomed_2022_106246
crossref_primary_10_1109_COMST_2023_3273121
crossref_primary_10_1016_j_patcog_2018_10_027
crossref_primary_10_4015_S1016237223500126
crossref_primary_10_1016_j_fbio_2022_101658
crossref_primary_10_1615_CritRevBiomedEng_2022041571
crossref_primary_10_1002_ppj2_70001
crossref_primary_10_1155_2022_9291971
crossref_primary_10_1007_s42835_022_01159_3
crossref_primary_10_1016_j_bspc_2019_101589
crossref_primary_10_1016_j_engappai_2024_108592
crossref_primary_10_1016_j_apenergy_2024_124763
crossref_primary_10_15212_CVIA_2023_0011
crossref_primary_10_3390_wevj15080344
crossref_primary_10_1016_j_oceaneng_2024_117718
crossref_primary_10_1016_j_engappai_2022_105743
crossref_primary_10_1002_int_22883
crossref_primary_10_1109_ACCESS_2020_3008255
crossref_primary_10_1016_j_knosys_2024_112526
crossref_primary_10_1016_j_patcog_2020_107298
crossref_primary_10_3390_s23146507
crossref_primary_10_1016_j_wavemoti_2025_103514
crossref_primary_10_1016_j_geoen_2024_212656
crossref_primary_10_54097_fcis_v4i3_10736
crossref_primary_10_1038_s41598_023_47904_0
crossref_primary_10_3390_su15054341
crossref_primary_10_1016_j_jlumin_2022_119637
crossref_primary_10_3390_s21113664
crossref_primary_10_1002_stc_3090
crossref_primary_10_1016_j_chb_2022_107418
crossref_primary_10_1093_bioinformatics_btad052
crossref_primary_10_1007_s11042_023_15576_7
crossref_primary_10_1016_j_dss_2021_113494
crossref_primary_10_1109_ACCESS_2020_2990181
crossref_primary_10_2478_aei_2023_0006
crossref_primary_10_1007_s11770_025_1175_2
crossref_primary_10_1016_j_ccst_2025_100374
crossref_primary_10_1016_j_patcog_2019_04_005
crossref_primary_10_3390_electronics11020227
crossref_primary_10_1016_j_ogla_2021_11_003
crossref_primary_10_2139_ssrn_4566310
crossref_primary_10_1016_j_patcog_2020_107273
crossref_primary_10_1109_ACCESS_2023_3250661
crossref_primary_10_1007_s00371_024_03471_7
crossref_primary_10_3390_math12142256
crossref_primary_10_1016_j_ecoinf_2019_01_012
crossref_primary_10_1007_s40745_022_00389_6
crossref_primary_10_1088_2632_2153_acd90f
crossref_primary_10_1088_1361_6501_ac8ca5
crossref_primary_10_3390_rs16203823
crossref_primary_10_1039_D3TC02980H
crossref_primary_10_1109_TIP_2020_3026632
crossref_primary_10_1007_s13042_024_02177_5
crossref_primary_10_1016_j_aei_2021_101427
crossref_primary_10_1007_s11082_023_06149_x
crossref_primary_10_1142_S0218001421500300
crossref_primary_10_1109_ACCESS_2023_3242234
crossref_primary_10_1016_j_neucom_2021_09_053
crossref_primary_10_1142_S179396232541003X
crossref_primary_10_1016_j_powtec_2024_120333
crossref_primary_10_1109_ACCESS_2024_3388490
crossref_primary_10_1007_s10614_025_10901_8
crossref_primary_10_3390_s19081933
crossref_primary_10_3390_sym14020295
crossref_primary_10_14358_PERS_22_00111R2
crossref_primary_10_1007_s10872_020_00557_3
crossref_primary_10_3390_s19143174
crossref_primary_10_1016_j_compeleceng_2019_04_002
crossref_primary_10_1007_s13369_020_04839_2
crossref_primary_10_1016_j_rse_2024_114290
crossref_primary_10_5194_hess_23_2561_2019
crossref_primary_10_1115_1_4066128
crossref_primary_10_1016_j_matt_2020_10_005
crossref_primary_10_1016_j_eswa_2023_122191
crossref_primary_10_1016_j_comcom_2022_10_010
crossref_primary_10_1007_s42835_021_00993_1
crossref_primary_10_3390_s23239337
crossref_primary_10_1109_TKDE_2024_3475809
crossref_primary_10_3389_fbioe_2023_1302983
crossref_primary_10_3390_rs11070755
crossref_primary_10_1177_1077546319900115
crossref_primary_10_1061__ASCE_WR_1943_5452_0001394
crossref_primary_10_1038_s41746_023_00840_9
crossref_primary_10_3390_electronics12040926
crossref_primary_10_3390_w12051369
crossref_primary_10_1016_j_neucom_2020_11_058
crossref_primary_10_1109_ACCESS_2023_3322147
crossref_primary_10_1109_TMRB_2020_3048255
crossref_primary_10_1007_s00521_023_09153_0
crossref_primary_10_1016_j_inffus_2024_102616
crossref_primary_10_1007_s11517_019_02066_y
crossref_primary_10_1007_s00371_024_03436_w
crossref_primary_10_1109_TIP_2021_3060255
crossref_primary_10_1016_j_envc_2024_100876
crossref_primary_10_3390_rs13132627
crossref_primary_10_1088_1361_6501_ad8ee4
crossref_primary_10_46947_joaasr632024942
crossref_primary_10_1007_s11042_023_17938_7
crossref_primary_10_1007_s10499_024_01528_x
crossref_primary_10_1145_3583682
crossref_primary_10_1038_s41598_025_93628_8
crossref_primary_10_1155_2022_7196040
crossref_primary_10_1051_itmconf_20257403008
crossref_primary_10_1038_s41598_024_53749_y
crossref_primary_10_1007_s11042_020_08751_7
crossref_primary_10_3390_s22186828
crossref_primary_10_1364_OSAC_405929
crossref_primary_10_1016_j_patcog_2021_108002
crossref_primary_10_1111_jfpe_13998
crossref_primary_10_3390_rs10050719
crossref_primary_10_1021_acs_jafc_3c05029
crossref_primary_10_1007_s00348_022_03540_4
crossref_primary_10_3389_fphy_2023_1259273
crossref_primary_10_1007_s10115_022_01695_4
crossref_primary_10_3390_s19081917
crossref_primary_10_1016_j_asoc_2025_112997
crossref_primary_10_3390_s23031349
crossref_primary_10_1155_2022_6927400
crossref_primary_10_1007_s12524_024_02022_w
crossref_primary_10_1016_j_rser_2023_114193
crossref_primary_10_1016_j_sab_2023_106852
crossref_primary_10_1007_s11042_025_20747_9
crossref_primary_10_23919_cje_2021_00_149
crossref_primary_10_1016_j_patcog_2021_108025
crossref_primary_10_1109_ACCESS_2024_3502766
crossref_primary_10_1007_s11227_022_04784_x
crossref_primary_10_1016_j_egyai_2023_100330
crossref_primary_10_1016_j_compbiomed_2023_107034
crossref_primary_10_54691_zs78vp41
crossref_primary_10_3390_math12243950
crossref_primary_10_1088_1361_6587_adab18
crossref_primary_10_3390_jimaging8070190
crossref_primary_10_1109_ACCESS_2019_2950286
crossref_primary_10_1142_S0219467823500341
crossref_primary_10_3390_machines10010028
crossref_primary_10_1080_10589759_2025_2451772
crossref_primary_10_1007_s11042_024_18418_2
crossref_primary_10_1007_s10489_020_02006_6
crossref_primary_10_3390_diagnostics11101856
crossref_primary_10_1109_TMECH_2020_3027912
crossref_primary_10_1109_TVT_2022_3192850
crossref_primary_10_3390_app122312052
crossref_primary_10_1016_j_jsv_2024_118773
crossref_primary_10_1007_s12145_021_00621_6
crossref_primary_10_1039_D4JA00238E
crossref_primary_10_1007_s11042_022_12200_y
crossref_primary_10_1007_s41062_021_00718_3
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_1021_acs_iecr_0c05045
crossref_primary_10_1016_j_eswa_2022_117282
crossref_primary_10_1016_j_eja_2025_127512
crossref_primary_10_1109_ACCESS_2021_3068897
crossref_primary_10_1109_LGRS_2022_3177231
crossref_primary_10_1007_s11042_021_11262_8
crossref_primary_10_1016_j_eswa_2023_122935
crossref_primary_10_1016_j_neucom_2020_02_053
crossref_primary_10_1016_j_compag_2024_109122
crossref_primary_10_3390_agronomy12081876
crossref_primary_10_1007_s11042_023_16612_2
crossref_primary_10_3233_JIFS_223304
crossref_primary_10_35234_fumbd_1137246
crossref_primary_10_1016_j_compag_2021_106040
crossref_primary_10_1016_j_energy_2020_117858
crossref_primary_10_1007_s00500_025_10496_0
crossref_primary_10_1016_j_autcon_2024_105325
crossref_primary_10_1007_s10773_023_05460_3
crossref_primary_10_3390_agronomy12081843
crossref_primary_10_3389_fncom_2020_00031
crossref_primary_10_3390_atmos15010121
crossref_primary_10_1016_j_engappai_2023_106355
crossref_primary_10_1109_TMM_2021_3068833
crossref_primary_10_1109_TIM_2025_3551032
crossref_primary_10_1016_j_bspc_2021_102812
crossref_primary_10_1109_TNSRE_2023_3297654
crossref_primary_10_1016_j_bspc_2021_102814
crossref_primary_10_1016_j_cacint_2022_100098
crossref_primary_10_1007_s13735_023_00285_6
crossref_primary_10_1016_j_neucom_2019_05_020
crossref_primary_10_1155_2021_5486328
crossref_primary_10_1016_j_compag_2021_106067
crossref_primary_10_3390_s25061924
crossref_primary_10_1007_s12561_024_09421_0
crossref_primary_10_3390_app15010193
crossref_primary_10_1016_j_ress_2024_109966
crossref_primary_10_1016_j_engappai_2023_107661
crossref_primary_10_3390_s22124626
crossref_primary_10_3390_rs14246219
crossref_primary_10_3390_s21165526
crossref_primary_10_1109_TCSS_2022_3217790
crossref_primary_10_1364_PRJ_484662
crossref_primary_10_1016_j_jvcir_2024_104287
crossref_primary_10_1109_ACCESS_2023_3289078
crossref_primary_10_3390_s20164638
crossref_primary_10_1103_PhysRevA_110_012448
crossref_primary_10_1109_JSEN_2023_3261325
crossref_primary_10_1109_JSTARS_2022_3229062
crossref_primary_10_1109_ACCESS_2024_3399222
crossref_primary_10_1016_j_engappai_2023_106305
crossref_primary_10_1371_journal_pone_0303644
crossref_primary_10_1016_j_ejrh_2024_101716
crossref_primary_10_1109_TMM_2020_3040539
crossref_primary_10_1088_2053_1583_ad4661
crossref_primary_10_1016_j_ipm_2024_103671
crossref_primary_10_1063_5_0163759
crossref_primary_10_1007_s11571_024_10115_y
crossref_primary_10_1177_09544070231205063
crossref_primary_10_1109_ACCESS_2020_3047186
crossref_primary_10_1016_j_jclepro_2022_133968
crossref_primary_10_1016_j_jobe_2022_105674
crossref_primary_10_1016_j_inffus_2024_102801
crossref_primary_10_3233_ICA_200638
crossref_primary_10_1080_09537287_2024_2361766
crossref_primary_10_3390_en14248583
crossref_primary_10_1016_j_hsr_2023_100126
crossref_primary_10_1002_ima_22945
crossref_primary_10_1016_j_geomorph_2024_109185
crossref_primary_10_1021_acs_jcim_1c01531
crossref_primary_10_1007_s11042_020_10238_4
crossref_primary_10_1142_S1752890922410124
crossref_primary_10_1016_j_istruc_2024_107583
crossref_primary_10_1109_TCYB_2024_3482352
crossref_primary_10_1061__ASCE_EM_1943_7889_0002062
crossref_primary_10_1007_s11801_023_2165_3
crossref_primary_10_1007_s10791_024_09463_4
crossref_primary_10_1007_s13198_022_01846_4
crossref_primary_10_3390_s23135819
crossref_primary_10_1016_j_jbi_2023_104357
crossref_primary_10_1007_s00158_020_02788_w
crossref_primary_10_1016_j_infrared_2022_104303
crossref_primary_10_3389_fenrg_2021_804405
crossref_primary_10_1038_s41598_020_65235_2
crossref_primary_10_1155_2021_9022558
crossref_primary_10_1016_j_cma_2024_116804
crossref_primary_10_1016_j_smhl_2025_100540
crossref_primary_10_1016_j_patcog_2020_107407
crossref_primary_10_1016_j_neunet_2021_06_028
crossref_primary_10_1016_j_engfailanal_2024_108343
crossref_primary_10_1016_j_autcon_2021_103591
crossref_primary_10_1063_5_0200395
crossref_primary_10_1109_JSTARS_2024_3474689
crossref_primary_10_1146_annurev_chembioeng_122120_023514
crossref_primary_10_1155_2021_6646187
crossref_primary_10_4103_idoj_idoj_460_24
crossref_primary_10_1155_2022_1314459
crossref_primary_10_1016_j_buildenv_2024_112426
crossref_primary_10_1029_2024JB029728
crossref_primary_10_1016_j_fuel_2025_135073
crossref_primary_10_1016_j_patcog_2020_107413
crossref_primary_10_3390_land13122113
crossref_primary_10_1371_journal_pone_0311269
crossref_primary_10_2139_ssrn_4184202
crossref_primary_10_1007_s11071_023_08405_x
crossref_primary_10_1109_ACCESS_2019_2901289
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122131
crossref_primary_10_1016_j_ifacol_2022_09_464
crossref_primary_10_1016_j_actaastro_2024_10_066
crossref_primary_10_3390_brainsci12091233
crossref_primary_10_1111_exsy_13271
crossref_primary_10_1016_j_ecmx_2024_100671
crossref_primary_10_3390_jimaging6030009
crossref_primary_10_1371_journal_pone_0299265
crossref_primary_10_1109_ACCESS_2023_3343759
crossref_primary_10_1016_j_yofte_2024_103943
crossref_primary_10_1016_j_mfglet_2020_01_001
crossref_primary_10_3389_fphy_2023_1290880
crossref_primary_10_1109_ACCESS_2024_3525263
crossref_primary_10_1103_PhysRevApplied_20_024072
crossref_primary_10_1177_09544100231158421
crossref_primary_10_1142_S0218213023500380
crossref_primary_10_3390_s22113966
crossref_primary_10_1109_TITS_2023_3308903
crossref_primary_10_1016_j_measurement_2024_115254
crossref_primary_10_3847_1538_4357_acc8d5
crossref_primary_10_3390_constrmater4010005
crossref_primary_10_1007_s10845_020_01606_w
crossref_primary_10_1007_s00146_025_02231_y
crossref_primary_10_1016_j_compag_2024_109180
crossref_primary_10_1061__ASCE_GM_1943_5622_0002074
crossref_primary_10_1016_j_ijforecast_2020_10_007
crossref_primary_10_1109_ACCESS_2019_2950240
crossref_primary_10_1016_j_asoc_2022_109259
crossref_primary_10_1029_2021WR030595
crossref_primary_10_1088_1361_6587_ac97be
crossref_primary_10_3390_s21248409
crossref_primary_10_1016_j_measurement_2024_115222
crossref_primary_10_3390_s24196398
crossref_primary_10_3390_electronics10232949
crossref_primary_10_3390_agriculture14122263
crossref_primary_10_1016_j_ijforecast_2019_03_029
crossref_primary_10_1109_ACCESS_2023_3347289
crossref_primary_10_1016_j_eswa_2019_04_071
crossref_primary_10_1016_j_jnca_2021_103160
crossref_primary_10_1016_j_jappgeo_2025_105621
crossref_primary_10_3390_app131810067
crossref_primary_10_1002_ps_7990
crossref_primary_10_1080_01431161_2023_2218972
crossref_primary_10_1109_ACCESS_2022_3203706
crossref_primary_10_1109_TETCI_2021_3083428
crossref_primary_10_1109_TFUZZ_2024_3372608
crossref_primary_10_51707_2618_0529_2023_27_08
crossref_primary_10_1016_j_apsadv_2023_100523
crossref_primary_10_3233_JIFS_219246
crossref_primary_10_1002_ese3_1352
crossref_primary_10_1007_s10586_024_04720_z
crossref_primary_10_1016_j_pss_2024_106029
crossref_primary_10_1016_j_jpowsour_2024_234680
crossref_primary_10_1016_j_aei_2024_102810
crossref_primary_10_1109_JIOT_2021_3055804
crossref_primary_10_1177_14613484221129754
crossref_primary_10_1049_elp2_12063
crossref_primary_10_4018_IJDWM_315823
crossref_primary_10_1007_s11227_023_05441_7
crossref_primary_10_32604_cmes_2024_051762
crossref_primary_10_1007_s11432_024_4205_8
crossref_primary_10_1016_j_microrel_2020_113648
crossref_primary_10_1007_s00371_024_03365_8
crossref_primary_10_1007_s13246_020_00934_8
crossref_primary_10_1002_cpe_7033
crossref_primary_10_1017_hpl_2023_1
crossref_primary_10_1053_j_semnuclmed_2022_11_003
crossref_primary_10_1007_s11042_022_13425_7
crossref_primary_10_1002_aisy_202300353
crossref_primary_10_1109_TNNLS_2021_3107049
crossref_primary_10_3390_agronomy12071620
crossref_primary_10_1002_ps_5349
crossref_primary_10_1109_JSEN_2024_3389050
crossref_primary_10_17350_HJSE19030000329
crossref_primary_10_32604_cmc_2023_033733
crossref_primary_10_1109_ACCESS_2019_2903859
crossref_primary_10_3233_IDT_230145
crossref_primary_10_3389_fpls_2021_789630
crossref_primary_10_1109_JSTARS_2023_3333268
crossref_primary_10_1007_s40747_022_00815_5
crossref_primary_10_1007_s11042_023_17759_8
crossref_primary_10_3390_rs15082015
crossref_primary_10_1002_smll_202312283
crossref_primary_10_3390_rs16132261
crossref_primary_10_1109_JPHOT_2024_3410392
crossref_primary_10_31083_j_fbl2703099
crossref_primary_10_1080_10298436_2021_1921773
crossref_primary_10_1016_j_ecoinf_2024_102549
crossref_primary_10_1016_j_bspc_2021_103325
crossref_primary_10_1016_j_comcom_2022_05_035
crossref_primary_10_1051_itmconf_20257002020
crossref_primary_10_1109_TGRS_2024_3355460
crossref_primary_10_3390_s20236888
crossref_primary_10_1002_clem_16
crossref_primary_10_3390_foods11182915
crossref_primary_10_3390_ma16175977
crossref_primary_10_3390_s21010310
crossref_primary_10_3390_sym15051036
crossref_primary_10_1007_s10209_022_00910_x
crossref_primary_10_1016_j_optlastec_2023_110005
crossref_primary_10_33851_JMIS_2023_10_2_145
crossref_primary_10_1109_TSM_2019_2963656
crossref_primary_10_1016_j_ijthermalsci_2022_107802
crossref_primary_10_1109_JIOT_2023_3314717
crossref_primary_10_3390_ani13081376
crossref_primary_10_1109_TITS_2021_3134222
crossref_primary_10_1016_j_datak_2024_102278
crossref_primary_10_1109_ACCESS_2024_3356122
crossref_primary_10_3389_fpls_2020_00821
crossref_primary_10_1109_ACCESS_2023_3289863
crossref_primary_10_1186_s12859_022_04798_5
crossref_primary_10_1016_j_jag_2024_103831
crossref_primary_10_1016_j_future_2023_09_020
crossref_primary_10_1016_j_compscitech_2024_110464
crossref_primary_10_1007_s40435_019_00544_7
crossref_primary_10_3390_rs14102433
crossref_primary_10_3390_plants13091177
crossref_primary_10_3390_su13126527
crossref_primary_10_1109_ACCESS_2024_3425166
crossref_primary_10_3390_s20226626
crossref_primary_10_1016_j_measurement_2023_113209
crossref_primary_10_1016_j_tsep_2024_103188
crossref_primary_10_1016_j_energy_2024_130270
crossref_primary_10_3390_en16227635
crossref_primary_10_1186_s40537_023_00858_6
crossref_primary_10_1183_16000617_0251_2023
crossref_primary_10_1021_acs_chemrev_3c00223
crossref_primary_10_1186_s12859_019_2927_x
crossref_primary_10_1016_j_jtice_2023_105211
crossref_primary_10_3390_modelling4020010
crossref_primary_10_3390_s21061951
crossref_primary_10_1016_j_comcom_2022_05_001
crossref_primary_10_1109_TCDS_2021_3100883
crossref_primary_10_1038_s41586_024_07293_4
crossref_primary_10_1109_OJVT_2024_3422253
crossref_primary_10_3390_math12193105
crossref_primary_10_1016_j_pdpdt_2024_104030
crossref_primary_10_1007_s42405_019_00233_x
crossref_primary_10_1111_coin_70029
crossref_primary_10_3390_s20236838
crossref_primary_10_1016_j_procir_2020_05_107
crossref_primary_10_1007_s00500_019_03878_8
crossref_primary_10_1007_s10845_024_02354_x
crossref_primary_10_3390_s24196313
crossref_primary_10_1088_1748_0221_19_07_P07004
crossref_primary_10_3390_bdcc6040150
crossref_primary_10_1088_1742_6596_1952_4_042023
crossref_primary_10_1007_s10338_022_00340_5
crossref_primary_10_1016_j_jocs_2023_101943
crossref_primary_10_3390_atmos16030294
crossref_primary_10_1007_s12652_022_03698_z
crossref_primary_10_1063_5_0144593
crossref_primary_10_1109_TIP_2019_2957929
crossref_primary_10_1016_j_infsof_2023_107328
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_1007_s11517_024_03076_1
crossref_primary_10_1016_j_ins_2018_10_041
crossref_primary_10_1109_JSTARS_2021_3109439
crossref_primary_10_1109_TIE_2019_2902817
crossref_primary_10_1016_j_jobe_2024_110836
crossref_primary_10_1016_j_energy_2024_132899
crossref_primary_10_1016_j_eswa_2021_116461
crossref_primary_10_1007_s13735_020_00200_3
crossref_primary_10_1109_JSEN_2023_3329497
crossref_primary_10_1007_s10329_024_01123_x
crossref_primary_10_1016_j_ijsolstr_2024_113024
crossref_primary_10_1007_s11042_024_19071_5
crossref_primary_10_32604_csse_2023_027221
crossref_primary_10_3103_S1060992X21010100
crossref_primary_10_1007_s11042_023_17230_8
crossref_primary_10_1109_JSTARS_2020_3002787
crossref_primary_10_2478_aei_2022_0010
crossref_primary_10_1061_JCEMD4_COENG_14919
crossref_primary_10_1109_JETCAS_2022_3227471
crossref_primary_10_1016_j_iintel_2024_100122
crossref_primary_10_1007_s11633_020_1248_x
crossref_primary_10_1177_00405175221130773
crossref_primary_10_1364_AO_546273
crossref_primary_10_1007_s00603_022_02805_y
crossref_primary_10_3390_e27030279
crossref_primary_10_1007_s11276_024_03815_0
crossref_primary_10_1109_TVLSI_2020_2987202
crossref_primary_10_52876_jcs_939875
crossref_primary_10_1016_j_jhydrol_2023_129977
crossref_primary_10_1016_j_sna_2024_115956
crossref_primary_10_1111_jfpe_14519
crossref_primary_10_1007_s10208_024_09656_9
crossref_primary_10_1016_j_envres_2024_118591
crossref_primary_10_1016_j_optlaseng_2022_107078
crossref_primary_10_1007_s10278_024_01350_0
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_3390_ai5030074
crossref_primary_10_3390_ai5030076
crossref_primary_10_3390_app13053245
crossref_primary_10_3390_rs11070859
crossref_primary_10_1109_TAES_2023_3334216
crossref_primary_10_25100_iyc_v25i3_12845
crossref_primary_10_2478_jaiscr_2021_0017
crossref_primary_10_1016_j_engappai_2024_108420
crossref_primary_10_3390_rs14061516
crossref_primary_10_1016_j_powtec_2024_119464
crossref_primary_10_1080_01969722_2022_2110685
crossref_primary_10_1177_09544100221097586
crossref_primary_10_1038_s41598_023_47546_2
crossref_primary_10_3390_s19143051
crossref_primary_10_1016_j_irfa_2023_102738
crossref_primary_10_1587_elex_17_20200308
crossref_primary_10_1007_s12551_022_01040_7
crossref_primary_10_1016_j_compeleceng_2022_108447
crossref_primary_10_1021_acs_jcim_3c01602
crossref_primary_10_3390_s19224933
crossref_primary_10_1007_s00339_022_06365_4
crossref_primary_10_1109_ACCESS_2022_3151186
crossref_primary_10_3390_app14177824
crossref_primary_10_1016_j_knosys_2024_112667
crossref_primary_10_1142_S021972002350004X
crossref_primary_10_1016_j_aci_2018_06_002
crossref_primary_10_1109_TCDS_2022_3232569
crossref_primary_10_1109_ACCESS_2020_3016888
crossref_primary_10_3390_app12126283
crossref_primary_10_1016_j_cageo_2021_104890
crossref_primary_10_1007_s11042_022_12410_4
crossref_primary_10_1007_s11119_023_10106_9
crossref_primary_10_1093_mnras_stac457
crossref_primary_10_1155_2019_7541814
crossref_primary_10_1007_s13753_024_00592_4
crossref_primary_10_1016_j_snb_2021_130986
crossref_primary_10_1007_s10489_023_04486_8
crossref_primary_10_1016_j_est_2024_114245
crossref_primary_10_1016_j_patcog_2021_108106
crossref_primary_10_1080_01431161_2021_1913297
crossref_primary_10_1016_j_procs_2018_10_512
crossref_primary_10_1021_acsami_3c16165
crossref_primary_10_1016_j_geoen_2024_213007
crossref_primary_10_3390_s20041020
crossref_primary_10_1007_s44254_023_00047_x
crossref_primary_10_1016_j_bbcan_2021_188588
crossref_primary_10_3390_su151310388
crossref_primary_10_1016_j_iswa_2024_200363
crossref_primary_10_1016_j_patcog_2021_108135
crossref_primary_10_1016_j_patcog_2018_05_016
crossref_primary_10_1142_S0219519423400894
crossref_primary_10_3390_s23010315
crossref_primary_10_1016_j_compmedimag_2022_102151
crossref_primary_10_1016_j_patcog_2018_05_010
crossref_primary_10_1038_s41598_024_58810_4
crossref_primary_10_1016_j_gsf_2020_04_003
crossref_primary_10_1038_s41598_024_81749_5
crossref_primary_10_3390_electronics10141664
crossref_primary_10_1007_s00138_024_01613_4
crossref_primary_10_1007_s12561_022_09352_8
crossref_primary_10_1016_j_ecolind_2024_112501
crossref_primary_10_1109_TGRS_2021_3117940
crossref_primary_10_1016_j_taml_2022_100384
crossref_primary_10_1016_j_measen_2024_101091
crossref_primary_10_1038_s41598_022_13652_w
crossref_primary_10_3390_app13053289
crossref_primary_10_1016_j_acalib_2023_102736
crossref_primary_10_1109_TMM_2018_2879750
crossref_primary_10_3389_fenrg_2020_607826
crossref_primary_10_3390_fi14120349
crossref_primary_10_1007_s10344_021_01549_4
crossref_primary_10_3389_fcvm_2023_1245614
crossref_primary_10_3390_app13148034
crossref_primary_10_1007_s00477_022_02352_6
crossref_primary_10_1007_s12206_022_0703_8
crossref_primary_10_1109_TVCG_2020_3030418
crossref_primary_10_1007_s00521_021_06743_8
crossref_primary_10_3390_nano13020329
crossref_primary_10_1016_j_iswa_2024_200383
crossref_primary_10_1007_s11517_018_1933_x
crossref_primary_10_1007_s12083_024_01650_w
crossref_primary_10_3389_fchem_2022_818974
crossref_primary_10_1109_ACCESS_2021_3061313
crossref_primary_10_1049_iet_ipr_2020_1048
crossref_primary_10_1016_j_patcog_2021_108159
crossref_primary_10_1016_j_artmed_2020_101792
crossref_primary_10_1016_j_engappai_2023_106395
crossref_primary_10_1016_j_neucom_2019_05_075
crossref_primary_10_3390_app12147188
crossref_primary_10_1186_s12911_022_01826_5
crossref_primary_10_3233_WEB_230363
crossref_primary_10_3390_land12111977
crossref_primary_10_1016_j_comcom_2024_06_015
crossref_primary_10_1109_TIP_2019_2958404
crossref_primary_10_1016_j_ijhydene_2023_03_097
crossref_primary_10_3390_s19183992
crossref_primary_10_3390_rs11141687
crossref_primary_10_52547_jgit_9_4_109
crossref_primary_10_3390_app11136060
crossref_primary_10_3390_diagnostics14070690
crossref_primary_10_1007_s13139_023_00821_6
crossref_primary_10_1016_j_compbiomed_2023_107153
crossref_primary_10_1007_s00330_023_09742_6
crossref_primary_10_1109_ACCESS_2020_2978344
Cites_doi 10.1109/TPAMI.2015.2389824
10.1016/S0031-3203(96)00044-1
10.1016/S0031-3203(01)00178-9
10.1137/090752286
10.1016/j.patcog.2016.06.013
10.1007/s11263-015-0822-0
10.1016/j.patcog.2015.08.027
10.1016/j.patcog.2015.02.003
10.1016/j.patcog.2011.05.017
10.1109/TPAMI.2012.231
10.1016/j.patcog.2016.07.001
10.1109/TPAMI.2016.2577031
10.1016/j.patcog.2012.03.004
10.1016/j.patcog.2015.04.018
10.1016/j.patcog.2012.10.006
10.1109/TNN.2010.2066286
10.1016/j.patcog.2017.06.006
10.1016/j.patcog.2011.09.021
10.1109/TPAMI.2012.59
10.1109/TIP.2016.2605305
10.1109/18.532878
10.1016/j.patrec.2017.08.001
10.1016/j.patcog.2017.06.009
10.1016/j.patcog.2003.10.012
10.3390/s101211259
10.1016/j.patcog.2015.11.019
10.1016/j.patcog.2012.09.015
10.1016/j.patcog.2012.07.013
10.1080/09548980701418942
10.1007/s11263-015-0823-z
10.1016/j.patcog.2017.06.002
10.1109/TPAMI.2016.2572683
10.1016/S0031-3203(01)00129-7
10.1016/j.patcog.2016.05.019
10.1016/j.patrec.2017.04.004
10.1007/s00365-006-0663-2
10.1016/j.patcog.2014.08.013
10.1113/jphysiol.1968.sp008455
10.1038/381607a0
10.1162/neco.1997.9.8.1735
10.1109/78.134406
10.1109/TPAMI.2015.2439281
10.1016/0893-6080(88)90469-8
10.1016/S0893-6080(98)00116-6
10.1016/j.patcog.2015.04.019
10.1109/MSP.2012.2211477
10.1016/j.asoc.2015.06.048
10.1016/j.patcog.2017.01.032
10.1109/MSP.2012.2205597
10.1016/j.patcog.2016.03.023
10.1016/j.patcog.2016.01.027
10.1016/j.patrec.2015.10.013
10.1109/LSP.2015.2441781
10.1016/j.patcog.2014.04.018
10.1109/29.21701
10.1109/5.726791
10.1109/LSP.2017.2657381
10.1109/TPAMI.2009.167
10.1016/j.patcog.2016.12.005
10.1364/AO.29.004790
10.1109/TIP.2016.2531289
10.1049/ip-vis:19941301
10.1016/j.patcog.2016.09.022
10.1109/TPAMI.2011.235
10.1109/TPAMI.2013.122
10.1162/089976600300015015
10.1016/j.patcog.2015.04.005
10.1109/TMI.2003.815867
10.1016/j.patcog.2016.10.023
10.1016/j.patcog.2010.09.020
10.1016/j.patcog.2014.11.006
10.1142/S0218001493000339
10.1016/j.patcog.2017.04.027
10.1016/j.patcog.2016.07.026
10.1016/0031-3203(81)90028-5
10.1109/TPAMI.2016.2599174
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2017.10.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 377
ExternalDocumentID 10_1016_j_patcog_2017_10_013
S0031320317304120
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-ccd3be2e5c4497d20abbe35d415d73b810de6e002c29dcb215b39f3f436fac073
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 02:36:26 EDT 2025
Fri Feb 23 02:25:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-ccd3be2e5c4497d20abbe35d415d73b810de6e002c29dcb215b39f3f436fac073
ORCID 0000-0002-3437-5084
PageCount 24
ParticipantIDs crossref_primary_10_1016_j_patcog_2017_10_013
crossref_citationtrail_10_1016_j_patcog_2017_10_013
elsevier_sciencedirect_doi_10_1016_j_patcog_2017_10_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0041) 2016
Ng, Zeng, Zhang, Yeung, Pedrycz (bib0079) 2016; 60
X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1736–1744.
Xu, Huang, Zhang, Tao (bib0100) 2015
Moczulski, Denil, Appleyard, de Freitas (bib0145) 2016
Pluim, Maintz, Viergever (bib0187) 2003; 22
Patacchiola, Cangelosi (bib0220) 2017; 71
Delakis, Garcia (bib0235) 2008
Zhang (bib0061) 2004
Choromanska, Henaff, Mathieu, Arous, LeCun (bib0101) 2015
Xu, Su (bib0236) 2015
Kümmerer, Theis, Bethge (bib0252) 2015
Han, Mao, Dally (bib0146) 2016
Sercu, Goel (bib0294) 2016
Cao, Liu, Yang, Yu, Wang, Wang, Huang, Wang, Huang, Xu (bib0031) 2015
Qian (bib0108) 1999; 12
Gidaris, Komodakis (bib0205) 2015
Gers, Schmidhuber, Cummins (bib0242) 2000; 12
Wang, Lu, Li, Jiang, Liu (bib0306) 2015
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0199) 2014
Presti, La Cascia (bib0255) 2016; 53
Paine, Jin, Yang, Lin, Huang (bib0115) 2011
Vig, Dorr, Cox (bib0251) 2014
Tang, Lee, Suen (bib0229) 1996; 29
Sercu, Goel (bib0040) 2016
Deng (bib0062) 2012; 29
Zuo, Wang, Shuai, Zhao, Yang (bib0170) 2015; 48
Yu, Xiong, Droppo, Stolcke, Ye, Li, Zweig (bib0297) 2016
Chen, Raitio, Valentini-Botinhao, Yamagishi, Ling (bib0299) 2014
J. Gu, C. Jianfei, G. Wang, T. Chen, Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376, 2017.
Farabet, Couprie, Najman, LeCun (bib0276) 2013; 35
Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (bib0172) 2015; 111
Ji, Xu, Yang, Yu (bib0265) 2013; 35
Abdel-Hamid, Mohamed, Jiang, Penn (bib0289) 2012
Shi, Bai, Yao (bib0243) 2015
Lin, Shen, Lu, Jia (bib0186) 2015
Jaderberg, Simonyan, Vedaldi, Zisserman (bib0240) 2015
Rippel, Snoek, Adams (bib0048) 2015
Weinberger, Dasgupta, Langford, Smola, Attenberg (bib0164) 2009
Z. Yan, V. Jagadeesh, D. DeCoste, W. Di, R. Piramuthu, Hd-cnn: hierarchical deep convolutional neural network for image classification, in: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2740–2748.
Yu, Wang, Chen, Wei (bib0046) 2014
Yao, Yu, Seide, Su, Deng, Gong (bib0288) 2012
Zhang, Lee, Lee, EDU (bib0033) 2016
Prechelt (bib0118) 2012
volume abs/1412.6115, 2014.
Goodfellow, Ibarz, Arnoud, Shet (bib0239) 2014
Bai, Shi, Zhang, Cai, Qi (bib0233) 2017; 66
Dong, Loy, He, Tang (bib0036) 2016; 38
Le, Sarlós, Smola (bib0141) 2013; 85
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0010) 2015
Tang (bib0019) 2013
Das, Agrawal, Zitnick, Parikh, Batra (bib0035) 2016
Zhang, Itoh, Tanida, Ichioka (bib0006) 1990; 29
Paulin, Revaud, Harchaoui, Perronnin, Schmid (bib0097) 2014
He, Zhang, Ren, Sun (bib0056) 2015
Hauberg, Freifeld, Larsen, Fisher III, Hansen (bib0098) 2016
Liu, Lin, Shen (bib0273) 2015; 48
Liu, Wang, Foroosh, Tappen, Pensky (bib0165) 2015
Zeiler, Krishnan, Taylor, Fergus (bib0026) 2010
Sutskever, Martens, Dahl, Hinton (bib0103) 2013
Gomez, Nicolaou, Karatzas (bib0234) 2017; 67
El Ayadi, Kamel, Karray (bib0284) 2011; 44
Kim, Smaragdis (bib0147) 2016
Liu, Han, Zhang, Wen, Liu (bib0249) 2015
Fan, Xu, Wu, Gong (bib0216) 2010; 21
Sullivan (bib0151) 1996; 42
Chen, Yuille (bib0226) 2015
Clevert, Unterthiner, Hochreiter (bib0058) 2016
Liu, Luo, Qiu, Wang, Tang (bib0072) 2016
Xiao, Zhang, Yang, Peng, Zhang (bib0176) 2014
Pedersoli, Vedaldi, Gonzalez, Roca (bib0195) 2015; 48
Li, Wang, Tian, Ding (bib0194) 2015; 48
Denton, Chintala, Fergus (bib0086) 2015
Cheng, Yu, Feris, Kumar, Choudhary, Chang (bib0144) 2015
Lu, Javidi, Lazebnik (bib0212) 2016
Yu, Hermann, Blunsom, Pulman (bib0310) 2014
Yang, Luo, Loy, Tang (bib0180) 2015
Hadsell, Chopra, LeCun (bib0066) 2006
Zeiler, Fergus (bib0011) 2014
Mariet, Sra (bib0161) 2015
Yu, Koltun (bib0037) 2016
Li, Li, Porikli (bib0217) 2014
Nogueira, Penatti, dos Santos (bib0169) 2017; 61
Reed, Akata, Yan, Logeswaran, Schiele, Lee (bib0085) 2016
Li, Yu (bib0248) 2015
LeCun, Bottou, Orr, Müller (bib0013) 2012
Gkioxari, Girshick, Malik (bib0262) 2015
Yin, Schütze (bib0313) 2015
Ren, He, Girshick, Sun (bib0204) 2017; 39
Mirza, Osindero (bib0077) 2014
Saxe, McClelland, Ganguli (bib0105) 2014
Huang, Siniscalchi, Lee (bib0301) 2017
Chen, Guan, Wang (bib0153) 2010; 10
Doersch, Gupta, Efros (bib0106) 2015
Xu, Wang, Chen, Li (bib0057) 2015
Lin, Chen, Yan (bib0018) 2014
Nair, Hinton (bib0014) 2010
Peng, Zhang, Zhang (bib0275) 2013; 46
Gong, Wang, Guo, Lazebnik (bib0052) 2014
Zhou, Lu, Li, Tian (bib0154) 2012
Zhang, Wei, Wu, Cai, Lu, Nguyen, Do (bib0190) 2016; 25
Guo, Lai (bib0254) 2014; 47
Tóth (bib0295) 2014
Wijnhoven, de With (bib0021) 2010
Guo, Yao, Chen (bib0157) 2016
Tousch, Herbin, Audibert (bib0173) 2012; 45
Kingma, Ba (bib0109) 2015
Palaz, Collobert, Doss (bib0291) 2013
Zinkevich, Weimer, Li, Smola (bib0022) 2010
Jégou, Perronnin, Douze, Sanchez, Perez, Schmid (bib0053) 2012; 34
Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (bib0087) 2016
Mishkin, Matas (bib0102) 2016
Ngiam, Chen, Chia, Koh, Le, Ng (bib0023) 2010
Wang, Wang, Wang (bib0175) 2015
Gkioxari, Girshick, Malik (bib0259) 2015
Liu, Anguelov, Erhan, Szegedy, Reed (bib0211) 2016
Waibel, Hanazawa, Hinton, Shikano, Lang (bib0298) 1989; 37
Tompson, Jain, LeCun, Bregler (bib0224) 2014
D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al., Deep speech 2: End-to-end speech recognition in english and mandarin, 2016, pp. 173–182.
Wang, Manning (bib0090) 2013
Oseledets (bib0140) 2011; 33
Abdel-Hamid, Mohamed, Jiang, Deng, Penn, Yu (bib0290) 2014
Hecht-Nielsen (bib0005) 1988; 1
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, 2014.
Minervini, Fischbach, Scharr, Tsaftaris (bib0181) 2016; 81
Xiao, Xu, Yang, Zhang, Peng, Zhang (bib0191) 2015
He, Zhang, Ren, Sun (bib0203) 2015; 37
Dean, Corrado, Monga, Chen, Devin, Mao, Senior, Tucker, Yang, Le (bib0114) 2012
Girshick, Iandola, Darrell, Malik (bib0197) 2015
Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bib0314) 2011; 12
Wan, Zeiler, Zhang, Cun, Fergus (bib0045) 2013
H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250, 2016.
Shuai, Wang, Zuo, Wang, Zhao (bib0279) 2015
Fukushima, Miyake (bib0002) 1982
Han, Pool, Tran, Dally (bib0156) 2015
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (bib0017) 2012
Felzenszwalb, Girshick, McAllester, Ramanan (bib0207) 2010; 32
Zhou, Zheng, Zhu, Latecki (bib0272) 2016; 59
Zeiler, Ranzato, Monga, Mao, Yang, Le, Nguyen, Senior, Vanhoucke, Dean (bib0055) 2013
Wen, Wu, Wang, Chen, Li (bib0166) 2016
M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild with convolutional neural networks, volume 116, 2016, pp. 1–20.
Ding, Lin, Wang, Chao (bib0071) 2015; 48
Shen, Gan, Zeng (bib0124) 2016
Simonyan, Zisserman (bib0268) 2014
Denil, Shakibi, Dinh, de Freitas (bib0136) 2013
Zagoruyko, Komodakis (bib0125) 2016
Hyvärinen, Köster (bib0043) 2007; 18
Eslami, Heess, Weber, Tassa, Kavukcuoglu, Hinton (bib0083) 2016
Sohn, Lee, Yan (bib0084) 2015
Goodfellow, Warde-Farley, Mirza, Courville, Bengio (bib0059) 2013
Jung, Kim, Jain (bib0231) 2004; 37
Niu, Suen (bib0007) 2012; 45
Shuai, Zuo, Wang, Wang (bib0281) 2016
Zhang, Yao, Shi, Bai (bib0238) 2015
Uria, Murray, Renals, Valentini-Botinhao, Bridle (bib0300) 2015
Xie, Yang, Wang, Lin (bib0099) 2015
Zhang, Song (bib0213) 2013; 46
Visin, Kastner, Courville, Bengio, Matteucci, Cho (bib0029) 2015
Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks using vector quantization, in: arXiv preprint
Huang, Qiao, Tang (bib0237) 2014
Endres, Hoiem (bib0200) 2014; 36
Shi, Petterson, Dror, Langford, Smola, Vishwanathan (bib0163) 2009; 10
Krause, Gebru, Deng, Li, Fei-Fei (bib0188) 2014
Srivastava, Greff, Schmidhuber (bib0122) 2015
Lin, RoyChowdhury, Maji (bib0192) 2015
Hong, You, Kwak, Han (bib0219) 2015
Vaillant, Monrocq, Le Cun (bib0198) 1994; 141
S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, Cudnn: efficient primitives for deep learningabs/1410.0759 (2014).
Wang, Oates (bib0024) 2015
Loshchilov, Hutter (bib0110) 2017
Zhang, Yao, Sun, Lu (bib0214) 2013; 46
Nowlan, Platt (bib0196) 1994
Kingma, Welling (bib0073) 2014
Pinheiro, Collobert (bib0278) 2014
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (bib0286) 2012; 29
Sainath, Kingsbury, Mohamed, Dahl, Saon, Soltau, Beran, Aravkin, Ramabhadran (bib0296) 2013
Yang, Patras (bib0093) 2015
Mostajabi, Yadollahpour, Shakhnarovich (bib0282) 2015
Xue, Li, Gong (bib0135) 2013
Krause, Jin, Yang, Fei-Fei (bib0189) 2015
Pratt (bib0155) 1988
Chen, Wilson, Tyree, Weinberger, Chen (bib0162) 2015
Long, Shelhamer, Darrell (bib0028) 2017; 39
Recht, Re, Wright, Niu (bib0113) 2011
Le Cun, Denker, Henderson, Howard, Hubbard, Jackel (bib0003) 1989
Zheng, Liu, Chen, Ge, Zhao (bib0025) 2014
Vasilache, Johnson, Mathieu, Chintala, Piantino, LeCun (bib0131) 2015
Kalchbrenner, Grefenstette, Blunsom (bib0311) 2014
Oquab, Bottou, Laptev, Sivic (bib0258) 2014
Collobert, Weston (bib0309) 2008
Shrivastava, Gupta, Girshick (bib0209) 2016
Olshausen (bib0081) 1996; 381
LeCun, Bottou, Bengio, Haffner (bib0004) 1998; 86
Dasgupta, Kumar, Sarlós (bib0142) 2011
Kim, Jernite, Sontag, Rush (bib0304) 2016
Wang, Ge, Li, Fang (bib0264) 2017; 92
Zhang, Bengio, Hardt, Recht, Vinyals (bib0119) 2017
Chéron, Laptev, Schmid (bib0269) 2015
Courbariaux, Bengio (bib0150) 2016
Jaderberg, Vedaldi, Zisserman (bib0244) 2014
Zhou, Wu, Ni, Zhou, Wen, Zou (bib0149) 2016
Wang, Wu, Coates, Ng (bib0015) 2012
Hoshen, Weiss, Wilson (bib0292) 2015
Tompson, Goroshin, Jain, LeCun, Bregler (bib0092) 2015
Simo-Serra, Trulls, Ferraz, Kokkinos, Moreno-Noguer (bib0208) 2014
Rastegari, Ordonez, Redmon, Farhadi (bib0148) 2016
Nishi, Miura (bib0221) 2017
Zhao, Ouyang, Li, Wang (bib0247) 2015
Glorot, Bengio (bib0104) 2010
Jozefowicz, Vinyals, Schuster, Shazeer, Wu (bib0303) 2016
Im, Ahn, Memisevic, Bengio (b
Zhuang (10.1016/j.patcog.2017.10.013_bib0116) 2013
Dasgupta (10.1016/j.patcog.2017.10.013_bib0142) 2011
10.1016/j.patcog.2017.10.013_bib0245
Zhang (10.1016/j.patcog.2017.10.013_bib0190) 2016; 25
Endres (10.1016/j.patcog.2017.10.013_bib0200) 2014; 36
Vaillant (10.1016/j.patcog.2017.10.013_bib0198) 1994; 141
Zhang (10.1016/j.patcog.2017.10.013_bib0213) 2013; 46
Yu (10.1016/j.patcog.2017.10.013_bib0310) 2014
Saxe (10.1016/j.patcog.2017.10.013_bib0105) 2014
Srinivas (10.1016/j.patcog.2017.10.013_bib0160) 2015
Tang (10.1016/j.patcog.2017.10.013_bib0019) 2013
Boureau (10.1016/j.patcog.2017.10.013_bib0016) 2010
Lin (10.1016/j.patcog.2017.10.013_bib0199) 2014
Sainath (10.1016/j.patcog.2017.10.013_bib0296) 2013
Lu (10.1016/j.patcog.2017.10.013_bib0212) 2016
Chen (10.1016/j.patcog.2017.10.013_bib0283) 2015
Lin (10.1016/j.patcog.2017.10.013_bib0068) 2017
Lin (10.1016/j.patcog.2017.10.013_bib0186) 2015
Chéron (10.1016/j.patcog.2017.10.013_bib0269) 2015
Liu (10.1016/j.patcog.2017.10.013_bib0072) 2016
Zeiler (10.1016/j.patcog.2017.10.013_bib0027) 2011
Xu (10.1016/j.patcog.2017.10.013_bib0057) 2015
Zeiler (10.1016/j.patcog.2017.10.013_bib0047) 2013
Nogueira (10.1016/j.patcog.2017.10.013_bib0169) 2017; 61
Xie (10.1016/j.patcog.2017.10.013_bib0094) 2015
Chen (10.1016/j.patcog.2017.10.013_bib0218) 2016; 38
Sohn (10.1016/j.patcog.2017.10.013_bib0084) 2015
Tikhonov (10.1016/j.patcog.2017.10.013_bib0089) 1943; 39
He (10.1016/j.patcog.2017.10.013_bib0050) 2015; 37
Tóth (10.1016/j.patcog.2017.10.013_bib0295) 2014
Yao (10.1016/j.patcog.2017.10.013_bib0288) 2012
Kim (10.1016/j.patcog.2017.10.013_bib0304) 2016
Yang (10.1016/j.patcog.2017.10.013_bib0093) 2015
Le Cun (10.1016/j.patcog.2017.10.013_bib0003) 1989
Huang (10.1016/j.patcog.2017.10.013_bib0129) 2016
Lee (10.1016/j.patcog.2017.10.013_bib0082) 2006
Jung (10.1016/j.patcog.2017.10.013_bib0231) 2004; 37
Jaderberg (10.1016/j.patcog.2017.10.013_bib0240) 2015
Kümmerer (10.1016/j.patcog.2017.10.013_bib0252) 2015
Moczulski (10.1016/j.patcog.2017.10.013_bib0145) 2016
He (10.1016/j.patcog.2017.10.013_bib0241) 2016
Guo (10.1016/j.patcog.2017.10.013_bib0254) 2014; 47
Das (10.1016/j.patcog.2017.10.013_bib0035) 2016
Denton (10.1016/j.patcog.2017.10.013_bib0086) 2015
Vinciarelli (10.1016/j.patcog.2017.10.013_bib0230) 2002; 35
He (10.1016/j.patcog.2017.10.013_bib0123) 2016
Nowlan (10.1016/j.patcog.2017.10.013_bib0196) 1994
Wan (10.1016/j.patcog.2017.10.013_bib0045) 2013
Singh (10.1016/j.patcog.2017.10.013_bib0126) 2016
Springenberg (10.1016/j.patcog.2017.10.013_bib0060) 2013
Chopra (10.1016/j.patcog.2017.10.013_bib0065) 2005
Zhang (10.1016/j.patcog.2017.10.013_bib0119) 2017
Egmont-Petersen (10.1016/j.patcog.2017.10.013_bib0168) 2002; 35
Long (10.1016/j.patcog.2017.10.013_bib0028) 2017; 39
Madjarov (10.1016/j.patcog.2017.10.013_bib0020) 2012; 45
LeCun (10.1016/j.patcog.2017.10.013_bib0004) 1998; 86
Zeiler (10.1016/j.patcog.2017.10.013_bib0026) 2010
Xie (10.1016/j.patcog.2017.10.013_bib0099) 2015
Courbariaux (10.1016/j.patcog.2017.10.013_bib0150) 2016
Zheng (10.1016/j.patcog.2017.10.013_bib0025) 2014
Srivastava (10.1016/j.patcog.2017.10.013_bib0122) 2015
Tran (10.1016/j.patcog.2017.10.013_bib0266) 2015
Shi (10.1016/j.patcog.2017.10.013_bib0163) 2009; 10
Gers (10.1016/j.patcog.2017.10.013_bib0242) 2000; 12
Hinton (10.1016/j.patcog.2017.10.013_bib0286) 2012; 29
10.1016/j.patcog.2017.10.013_bib0132
Mathieu (10.1016/j.patcog.2017.10.013_bib0049) 2014
10.1016/j.patcog.2017.10.013_bib0130
10.1016/j.patcog.2017.10.013_bib0257
Schaul (10.1016/j.patcog.2017.10.013_bib0111) 2013
Ngiam (10.1016/j.patcog.2017.10.013_bib0023) 2010
Jain (10.1016/j.patcog.2017.10.013_bib0223) 2014
Vincent (10.1016/j.patcog.2017.10.013_bib0078) 2008
Zhang (10.1016/j.patcog.2017.10.013_bib0214) 2013; 46
El Ayadi (10.1016/j.patcog.2017.10.013_bib0284) 2011; 44
Fukushima (10.1016/j.patcog.2017.10.013_bib0002) 1982
Uijlings (10.1016/j.patcog.2017.10.013_bib0185) 2013; 104
Zeiler (10.1016/j.patcog.2017.10.013_bib0055) 2013
Salamon (10.1016/j.patcog.2017.10.013_bib0095) 2017; 24
Patacchiola (10.1016/j.patcog.2017.10.013_bib0220) 2017; 71
Oseledets (10.1016/j.patcog.2017.10.013_bib0140) 2011; 33
Cheng (10.1016/j.patcog.2017.10.013_bib0144) 2015
Khosla (10.1016/j.patcog.2017.10.013_bib0179) 2011; 2
Donahue (10.1016/j.patcog.2017.10.013_bib0270) 2017; 39
Oquab (10.1016/j.patcog.2017.10.013_bib0258) 2014
Gkioxari (10.1016/j.patcog.2017.10.013_bib0261) 2015
Szegedy (10.1016/j.patcog.2017.10.013_bib0042) 2017
Shaham (10.1016/j.patcog.2017.10.013_bib0067) 2017
Zuo (10.1016/j.patcog.2017.10.013_bib0170) 2015; 48
Zhang (10.1016/j.patcog.2017.10.013_bib0112) 2015
Presti (10.1016/j.patcog.2017.10.013_bib0255) 2016; 53
Zhou (10.1016/j.patcog.2017.10.013_bib0034) 2016
Pan (10.1016/j.patcog.2017.10.013_bib0253) 2015
Liu (10.1016/j.patcog.2017.10.013_bib0273) 2015; 48
Chen (10.1016/j.patcog.2017.10.013_bib0153) 2010; 10
Doersch (10.1016/j.patcog.2017.10.013_bib0106) 2015
LeCun (10.1016/j.patcog.2017.10.013_bib0013) 2012
Yu (10.1016/j.patcog.2017.10.013_bib0143) 2014
Eslami (10.1016/j.patcog.2017.10.013_bib0083) 2016
Zhang (10.1016/j.patcog.2017.10.013_bib0263) 2016; 25
Nishi (10.1016/j.patcog.2017.10.013_bib0221) 2017
Yin (10.1016/j.patcog.2017.10.013_bib0313) 2015
Szegedy (10.1016/j.patcog.2017.10.013_bib0041) 2016
Wijnhoven (10.1016/j.patcog.2017.10.013_bib0021) 2010
Prechelt (10.1016/j.patcog.2017.10.013_bib0118) 2012
Wang (10.1016/j.patcog.2017.10.013_bib0246) 2015
Sercu (10.1016/j.patcog.2017.10.013_bib0294) 2016
Zagoruyko (10.1016/j.patcog.2017.10.013_bib0125) 2016
He (10.1016/j.patcog.2017.10.013_bib0250) 2015; 115
Krause (10.1016/j.patcog.2017.10.013_bib0188) 2014
Conneau (10.1016/j.patcog.2017.10.013_bib0315) 2016
Deng (10.1016/j.patcog.2017.10.013_bib0287) 2013
Waibel (10.1016/j.patcog.2017.10.013_bib0298) 1989; 37
10.1016/j.patcog.2017.10.013_bib0280
Han (10.1016/j.patcog.2017.10.013_bib0146) 2016
Kingma (10.1016/j.patcog.2017.10.013_bib0109) 2015
10.1016/j.patcog.2017.10.013_bib0152
Yann N. Dauphin (10.1016/j.patcog.2017.10.013_bib0308) 2017
Tousch (10.1016/j.patcog.2017.10.013_bib0173) 2012; 45
Yoo (10.1016/j.patcog.2017.10.013_bib0206) 2015
Zhang (10.1016/j.patcog.2017.10.013_bib0215) 2015; 48
Xu (10.1016/j.patcog.2017.10.013_bib0100) 2015
10.1016/j.patcog.2017.10.013_bib0159
Zhao (10.1016/j.patcog.2017.10.013_bib0247) 2015
Mirza (10.1016/j.patcog.2017.10.013_bib0077) 2014
Zhang (10.1016/j.patcog.2017.10.013_bib0238) 2015
Fan (10.1016/j.patcog.2017.10.013_bib0216) 2010; 21
Loshchilov (10.1016/j.patcog.2017.10.013_bib0110) 2017
Lavin (10.1016/j.patcog.2017.10.013_bib0133) 2016
Xiao (10.1016/j.patcog.2017.10.013_bib0191) 2015
Pedersoli (10.1016/j.patcog.2017.10.013_bib0195) 2015; 48
Gidaris (10.1016/j.patcog.2017.10.013_bib0205) 2015
Dong (10.1016/j.patcog.2017.10.013_bib0036) 2016; 38
Sainath (10.1016/j.patcog.2017.10.013_bib0134) 2013
Sullivan (10.1016/j.patcog.2017.10.013_bib0151) 1996; 42
Jégou (10.1016/j.patcog.2017.10.013_bib0053) 2012; 34
Jaderberg (10.1016/j.patcog.2017.10.013_bib0244) 2014
Deng (10.1016/j.patcog.2017.10.013_bib0285) 1991; 39
Olshausen (10.1016/j.patcog.2017.10.013_bib0081) 1996; 381
Paine (10.1016/j.patcog.2017.10.013_sbref0115) 2011
Branson (10.1016/j.patcog.2017.10.013_bib0183) 2014
Redmon (10.1016/j.patcog.2017.10.013_bib0210) 2016
Liu (10.1016/j.patcog.2017.10.013_bib0070) 2016
Jozefowicz (10.1016/j.patcog.2017.10.013_bib0303) 2016
Farabet (10.1016/j.patcog.2017.10.013_bib0276) 2013; 35
Simonyan (10.1016/j.patcog.2017.10.013_bib0009) 2015
Tang (10.1016/j.patcog.2017.10.013_bib0229) 1996; 29
Noh (10.1016/j.patcog.2017.10.013_bib0030) 2015
Fu (10.1016/j.patcog.2017.10.013_bib0271) 1981; 13
Hadsell (10.1016/j.patcog.2017.10.013_bib0066) 2006
Wen (10.1016/j.patcog.2017.10.013_bib0166) 2016
Pluim (10.1016/j.patcog.2017.10.013_bib0187) 2003; 22
Zhang (10.1016/j.patcog.2017.10.013_bib0256) 2016; 60
Zhang (10.1016/j.patcog.2017.10.013_bib0006) 1990; 29
Cao (10.1016/j.patcog.2017.10.013_bib0031) 2015
10.1016/j.patcog.2017.10.013_bib0177
Wang (10.1016/j.patcog.2017.10.013_bib0306) 2015
Li (10.1016/j.patcog.2017.10.013_bib0194) 2015; 48
Bagherinezhad (10.1016/j.patcog.2017.10.013_bib0167) 2017
Wang (10.1016/j.patcog.2017.10.013_bib0090) 2013
Targ (10.1016/j.patcog.2017.10.013_sbref0127) 2016
Szegedy (10.1016/j.patcog.2017.10.013_bib0010) 2015
Zhang (10.1016/j.patcog.2017.10.013_bib0184) 2014
He (10.1016/j.patcog.2017.10.013_bib0012) 2016
Ioffe (10.1016/j.patcog.2017.10.013_bib0120) 2015
Goodfellow (10.1016/j.patcog.2017.10.013_bib0059) 2013
Liu (10.1016/j.patcog.2017.10.013_bib0211) 2016
Shi (10.1016/j.patcog.2017.10.013_bib0243) 2015
Yu (10.1016/j.patcog.2017.10.013_bib0297) 2016
10.1016/j.patcog.2017.10.013_bib0293
Huang (10.1016/j.patcog.2017.10.013_bib0301) 2017
Sutskever (10.1016/j.patcog.2017.10.013_bib0103) 2013
Rippel (10.1016/j.patcog.2017.10.013_bib0048) 2015
Vasilache (10.1016/j.patcog.2017.10.013_bib0131) 2015
Shen (10.1016/j.patcog.2017.10.013_bib0124) 2016
Abdel-Hamid (10.1016/j.patcog.2017.10.013_bib0290) 2014
Ba (10.1016/j.patcog.2017.10.013_bib0091) 2013
Wang (10.1016/j.patcog.2017.10.013_bib0264) 2017; 92
Shuai (10.1016/j.patcog.2017.10.013_bib0279) 2015
He (10.1016/j.patcog.2017.10.013_bib0203) 2015; 37
Zhou (10.1016/j.patcog.2017.10.013_sbref0147) 2016
Gomez (10.1016/j.patcog.2017.10.013_bib0234) 2017; 67
Zeiler (10.1016/j.patcog.2017.10.013_bib0011) 2014
Bu (10.1016/j.patcog.2017.10.013_bib0274) 2016; 59
Eigen (10.1016/j.patcog.2017.10.013_bib0096) 2015
Hochreiter (10.1016/j.patcog.2017.10.013_bib0121) 1997; 9
Collobert (10.1016/j.patcog.2017.10.013_bib0314) 2011; 12
Eskenazi (10.1016/j.patcog.2017.10.013_bib0232) 2017; 64
Collobert (10.1016/j.patcog.2017.10.013_bib0309) 2008
Huang (10.1016/j.patcog.2017.10.013_bib0237) 2014
Kalchbrenner (10.1016/j.patcog.2017.10.013_bib0311) 2014
Mariet (10.1016/j.patcog.2017.10.013_bib0161) 2015
Lin (10.1016/j.patcog.2017.10.013_bib0018) 2014
Shuai (10.1016/j.patcog.2017.10.013_bib0281) 2016
Yao (10.1016/j.patcog.2017.10.013_bib0117) 2007; 26
Salimans (10.1016/j.patcog.2017.10.013_bib0087) 2016
Guo (10.1016/j.patcog.2017.10.013_bib0157) 2016
Hubel (10.1016/j.patcog.2017.10.013_bib0001) 1968
Fan (10.1016/j.patcog.2017.10.013_bib0227) 2015
Visin (10.1016/j.pat
References_xml – start-page: 588
  year: 2013
  end-page: 595
  ident: bib0260
  article-title: Poselet conditioned pictorial structures
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 886
  year: 2015
  end-page: 890
  ident: bib0238
  article-title: Automatic discrimination of text and non-text natural images
  publication-title: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR)
– start-page: 842
  year: 2015
  end-page: 850
  ident: bib0191
  article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2016
  ident: bib0039
  article-title: Wavenet: a generative model for raw audio
  publication-title: CoRR abs/1609.03499
– volume: 71
  start-page: 132
  year: 2017
  end-page: 143
  ident: bib0220
  article-title: Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods
  publication-title: Pattern Recognit.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0012
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 44
  start-page: 572
  year: 2011
  end-page: 587
  ident: bib0284
  article-title: Survey on speech emotion recognition: features, classification schemes, and databases
  publication-title: Pattern Recognit.
– start-page: 2377
  year: 2015
  end-page: 2385
  ident: bib0122
  article-title: Training very deep networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 1080
  year: 2015
  end-page: 1088
  ident: bib0261
  article-title: Contextual action recognition with r*CNN
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 834
  year: 2014
  end-page: 849
  ident: bib0184
  article-title: Part-based r-cnns for fine-grained category detection
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 1746
  year: 2014
  end-page: 1751
  ident: bib0312
  article-title: Convolutional neural networks for sentence classification
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)
– start-page: 646
  year: 2016
  end-page: 661
  ident: bib0316
  article-title: Deep networks with stochastic depth
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– year: 2012
  ident: bib0017
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: CoRR abs/1207.0580
– start-page: 1725
  year: 2014
  end-page: 1732
  ident: bib0267
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2365
  year: 2013
  end-page: 2369
  ident: bib0135
  article-title: Restructuring of deep neural network acoustic models with singular value decomposition
  publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH)
– start-page: 2650
  year: 2015
  end-page: 2658
  ident: bib0096
  article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 3973
  year: 2015
  end-page: 3981
  ident: bib0180
  article-title: A large-scale car dataset for fine-grained categorization and verification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 26
  year: 2014
  end-page: 33
  ident: bib0188
  article-title: Learning features and parts for fine-grained recognition
  publication-title: Proceedings of the International Conference on Pattern Recognition (ICPR)
– start-page: 73
  year: 2012
  end-page: 86
  ident: bib0051
  article-title: Unsupervised discovery of mid-level discriminative patches
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– year: 2016
  ident: bib0150
  article-title: Binarynet: training deep neural networks with weights and activations constrained to+ 1 or-1
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 3429
  year: 2016
  end-page: 3433
  ident: bib0294
  article-title: Advances in very deep convolutional neural networks for LVCSR
  publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH)
– start-page: 1134
  year: 2015
  end-page: 1142
  ident: bib0205
  article-title: Object detection via a multi-region and semantic segmentation-aware cnn model
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 315
  year: 2013
  end-page: 320
  ident: bib0296
  article-title: Improvements to deep convolutional neural networks for LVCSR
  publication-title: Proceedings of the Automatic Speech Recognition and Understanding (ASRU) Workshops
– start-page: 1735
  year: 2006
  end-page: 1742
  ident: bib0066
  article-title: Dimensionality reduction by learning an invariant mapping
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 580
  year: 2014
  end-page: 587
  ident: bib0202
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2595
  year: 2010
  end-page: 2603
  ident: bib0022
  article-title: Parallelized stochastic gradient descent
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 1379
  year: 2016
  end-page: 1387
  ident: bib0157
  article-title: Dynamic network surgery for efficient DNNs
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 45
  start-page: 3084
  year: 2012
  end-page: 3104
  ident: bib0020
  article-title: An extensive experimental comparison of methods for multi-label learning
  publication-title: Pattern Recognit.
– start-page: 2645
  year: 2015
  end-page: 2654
  ident: bib0099
  article-title: Hyper-class augmented and regularized deep learning for fine-grained image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 497
  year: 2014
  end-page: 511
  ident: bib0237
  article-title: Robust scene text detection with convolution neural network induced mser trees
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 3620
  year: 2016
  end-page: 3629
  ident: bib0281
  article-title: Dag-recurrent neural networks for scene labeling
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2014
  ident: bib0183
  article-title: Improved bird species recognition using pose normalized deep convolutional nets
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– volume: 22
  start-page: 986
  year: 2003
  end-page: 1004
  ident: bib0187
  article-title: Mutual-information-based registration of medical images: a survey
  publication-title: IEEE Trans. Med. Imaging
– start-page: 249
  year: 2010
  end-page: 256
  ident: bib0104
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)
– start-page: 901
  year: 1994
  end-page: 908
  ident: bib0196
  article-title: A convolutional neural network hand tracker
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 10
  start-page: 11259
  year: 2010
  end-page: 11273
  ident: bib0153
  article-title: Approximate nearest neighbor search by residual vector quantization
  publication-title: Sensors
– volume: 60
  start-page: 875
  year: 2016
  end-page: 889
  ident: bib0079
  article-title: Dual autoencoders features for imbalance classification problem
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib0204
  article-title: Faster r-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
– year: 2017
  ident: bib0067
  article-title: Learning by coincidence: siamese networks and common variable learning
  publication-title: Pattern Recognit.
– start-page: 2094
  year: 2013
  end-page: 2102
  ident: bib0174
  article-title: Discriminative transfer learning with tree-based priors
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib0199
  article-title: Microsoft Coco: Common Objects in Context
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 70
  start-page: 60
  year: 2017
  end-page: 74
  ident: bib0201
  article-title: Textproposals: a text-specific selective search algorithm for word spotting in the wild
  publication-title: Pattern Recognit.
– start-page: 37
  year: 2015
  end-page: 45
  ident: bib0107
  article-title: Learning to see by moving
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 387
  year: 2015
  end-page: 394
  ident: bib0236
  article-title: Robust seed localization and growing with deep convolutional features for scene text detection
  publication-title: Proceedings of the International Conference on Multimedia Retrieval (ICMR)
– start-page: 1279
  year: 2010
  end-page: 1287
  ident: bib0023
  article-title: Tiled convolutional neural networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– year: 2017
  ident: bib0221
  article-title: Generation of human depth images with body part labels for complex human pose recognition
  publication-title: Pattern Recognit.
– start-page: 1078
  year: 2014
  end-page: 1082
  ident: bib0295
  article-title: Convolutional deep maxout networks for phone recognition.
  publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH)
– year: 2011
  ident: bib0115
  article-title: GPU asynchronous stochastic gradient descent to speed up neural network training
  publication-title: CoRR
– volume: 18
  start-page: 81
  year: 2007
  end-page: 100
  ident: bib0043
  article-title: Complex cell pooling and the statistics of natural images
  publication-title: Network
– start-page: 82
  year: 2014
  end-page: 90
  ident: bib0278
  article-title: Recurrent convolutional neural networks for scene labeling
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– reference: D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al., Deep speech 2: End-to-end speech recognition in english and mandarin, 2016, pp. 173–182.
– year: 2014
  ident: bib0217
  article-title: Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– reference: , volume abs/1412.6115, 2014.
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0014
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 24
  start-page: 279
  year: 2017
  end-page: 283
  ident: bib0095
  article-title: Deep convolutional neural networks and data augmentation for environmental sound classification
  publication-title: Signal Process. Lett. (SPL)
– start-page: 806
  year: 2015
  end-page: 814
  ident: bib0165
  article-title: Sparse convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2013
  ident: bib0277
  article-title: Indoor semantic segmentation using depth information
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– reference: J. Gu, C. Jianfei, G. Wang, T. Chen, Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376, 2017.
– start-page: 28
  year: 2016
  end-page: 36
  ident: bib0126
  article-title: Swapout: learning an ensemble of deep architectures
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib0034
  article-title: Learning deep features for discriminative localization
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, Cudnn: efficient primitives for deep learningabs/1410.0759 (2014).
– start-page: 215
  year: 1968
  end-page: 243
  ident: bib0001
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol.
– volume: 59
  start-page: 188
  year: 2016
  end-page: 198
  ident: bib0274
  article-title: Scene parsing using inference embedded deep networks
  publication-title: Pattern Recognit.
– volume: 48
  start-page: 3004
  year: 2015
  end-page: 3015
  ident: bib0170
  article-title: Exemplar based deep discriminative and shareable feature learning for scene image classification
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0303
  article-title: Exploring the limits of language modeling
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– volume: 10
  start-page: 2615
  year: 2009
  end-page: 2637
  ident: bib0163
  article-title: Hash kernels for structured data
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 3517
  year: 2013
  end-page: 3521
  ident: bib0055
  article-title: On rectified linear units for speech processing
  publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
– reference: M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild with convolutional neural networks, volume 116, 2016, pp. 1–20.
– start-page: 2285
  year: 2015
  end-page: 2294
  ident: bib0162
  article-title: Compressing neural networks with the hashing trick
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– year: 2015
  ident: bib0131
  article-title: Fast convolutional nets with fbfft: aGPU performance evaluation
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: bib0042
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 512
  year: 2014
  end-page: 528
  ident: bib0244
  article-title: Deep features for text spotting
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 13
  start-page: 3
  year: 1981
  end-page: 16
  ident: bib0271
  article-title: A survey on image segmentation
  publication-title: Pattern Recognit.
– volume: 30
  year: 2013
  ident: bib0054
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 61
  start-page: 539
  year: 2017
  end-page: 556
  ident: bib0169
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recognit.
– year: 2015
  ident: bib0160
  article-title: Data-free parameter pruning for deep neural networks
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– start-page: 1113
  year: 2009
  end-page: 1120
  ident: bib0164
  article-title: Feature hashing for large scale multitask learning
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 53
  start-page: 130
  year: 2016
  end-page: 147
  ident: bib0255
  article-title: 3D skeleton-based human action classification: a survey
  publication-title: Pattern Recognit.
– volume: 7
  start-page: 669
  year: 1993
  end-page: 688
  ident: bib0064
  article-title: Signature verification using a siamese time delay neural network
  publication-title: Int. J. Pattern Recognit. Artif. Intell. (IJPRAI)
– start-page: 4489
  year: 2015
  end-page: 4497
  ident: bib0266
  article-title: Learning spatiotemporal features with 3d convolutional networks
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– volume: 35
  start-page: 2279
  year: 2002
  end-page: 2301
  ident: bib0168
  article-title: Image processing with neural networksa review
  publication-title: Pattern Recognit.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0121
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 2741
  year: 2016
  end-page: 2749
  ident: bib0304
  article-title: Character-aware neural language models
  publication-title: Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI)
– volume: 2
  start-page: 1
  year: 2011
  ident: bib0179
  article-title: Novel dataset for fine-grained image categorization: stanford dogs
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (CVPR Workshops
– start-page: 612
  year: 2016
  end-page: 621
  ident: bib0033
  article-title: Augmenting supervised neural networks with unsupervised objectives for large-scale image classification
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– year: 2016
  ident: bib0158
  article-title: Designing energy-efficient convolutional neural networks using energy-aware pruning
  publication-title: CoRR abs/1611.05128
– start-page: 118
  year: 2013
  end-page: 126
  ident: bib0090
  article-title: Fast dropout training
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 71
  start-page: 118
  year: 2017
  end-page: 131
  ident: bib0182
  article-title: Lg-cnn: from local parts to global discrimination for fine-grained recognition
  publication-title: Pattern Recognit.
– start-page: 290
  year: 2008
  end-page: 294
  ident: bib0235
  article-title: Text detection with convolutional neural networks
  publication-title: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP)
– volume: 51
  start-page: 148
  year: 2016
  end-page: 175
  ident: bib0193
  article-title: Human detection from images and videos: a survey
  publication-title: Pattern Recognit.
– start-page: 169
  year: 2012
  end-page: 178
  ident: bib0154
  article-title: Scalar quantization for large scale image search
  publication-title: Proceedings of the 20th ACM International Conference on Multimedia
– reference: P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks (2014).
– start-page: 2470
  year: 2015
  end-page: 2478
  ident: bib0262
  article-title: Actions and attributes from wholes and parts
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– year: 2015
  ident: bib0175
  article-title: Learning fine-grained features via a CNN tree for large-scale classification
  publication-title: CoRR abs/1511.04534
– start-page: 815
  year: 2015
  end-page: 823
  ident: bib0069
  article-title: Facenet: a unified embedding for face recognition and clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 4700
  year: 2016
  end-page: 4708
  ident: bib0129
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 66
  start-page: 437
  year: 2017
  end-page: 446
  ident: bib0233
  article-title: Text/non-text image classification in the wild with convolutional neural networks
  publication-title: Pattern Recognit.
– start-page: 3304
  year: 2012
  end-page: 3308
  ident: bib0015
  article-title: End-to-end text recognition with convolutional neural networks
  publication-title: Proceedings of the International Conference on Pattern Recognition (ICPR)
– year: 2016
  ident: bib0146
  article-title: Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 525
  year: 2016
  end-page: 542
  ident: bib0148
  article-title: Xnor-net: imagenet classification using binary convolutional neural networks
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 249
  year: 2013
  end-page: 256
  ident: bib0116
  article-title: A fast parallel SGD for matrix factorization in shared memory systems
  publication-title: Proceedings of the ACM conference on Recommender systems RecSys
– start-page: 2857
  year: 2015
  end-page: 2865
  ident: bib0144
  article-title: An exploration of parameter redundancy in deep networks with circulant projections
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– year: 2014
  ident: bib0223
  article-title: Learning human pose estimation features with convolutional networks
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 3581
  year: 2014
  end-page: 3589
  ident: bib0075
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– year: 2015
  ident: bib0283
  article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 2351
  year: 2016
  end-page: 2359
  ident: bib0212
  article-title: Adaptive object detection using adjacency and zoom prediction
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3084
  year: 2013
  end-page: 3092
  ident: bib0091
  article-title: Adaptive dropout for training deep neural networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– year: 2015
  ident: bib0252
  article-title: Deep gaze i: boosting saliency prediction with feature maps trained on imagenet
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR) Workshops
– start-page: 1666
  year: 2015
  end-page: 1674
  ident: bib0186
  article-title: Deep lac: deep localization, alignment and classification for fine-grained recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 92
  start-page: 33
  year: 2017
  end-page: 40
  ident: bib0264
  article-title: Three-stream CNNs for action recognition
  publication-title: Pattern Recognit. Lett.
– volume: 29
  start-page: 141
  year: 2012
  end-page: 142
  ident: bib0062
  article-title: The mnist database of handwritten digit images for machine learning research
  publication-title: IEEE Signal Process. Mag.
– start-page: 1060
  year: 2016
  end-page: 1069
  ident: bib0085
  article-title: Generative adversarial text to image synthesis
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 1
  start-page: 445
  year: 1988
  end-page: 448
  ident: bib0005
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Networks
– year: 2017
  ident: bib0307
  article-title: An empirical study of language CNN for image captioning
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– volume: 63
  start-page: 499
  year: 2017
  end-page: 510
  ident: bib0080
  article-title: Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction
  publication-title: Pattern Recognit.
– reference: B. Shuai, Z. Zuo, W. Gang, Quaddirectional 2d-recurrent neural networks for image labeling 22(11) (2015b) 1990–1994.
– volume: 12
  start-page: 2493
  year: 2011
  end-page: 2537
  ident: bib0314
  article-title: Natural language processing (almost) from scratch
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 1232
  year: 2012
  end-page: 1240
  ident: bib0114
  article-title: Large scale distributed deep networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 597
  year: 2015
  end-page: 606
  ident: bib0219
  article-title: Online tracking by learning discriminative saliency map with convolutional neural network
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 39
  start-page: 1677
  year: 1991
  end-page: 1681
  ident: bib0285
  article-title: Phonemic hidden ,Markov models with continuous mixture output densities for large vocabulary word recognition
  publication-title: IEEE Trans. Signal Process.
– volume: 48
  start-page: 3542
  year: 2015
  end-page: 3559
  ident: bib0194
  article-title: Feature representation for statistical-learning-based object detection: a review
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bib0203
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: bib0172
  article-title: The pascal visual object classes challenge: a retrospective
  publication-title: Int. J. Conflict Violence (IJCV)
– start-page: 1319
  year: 2013
  end-page: 1327
  ident: bib0059
  article-title: Maxout networks
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 177
  year: 2014
  end-page: 186
  ident: bib0176
  article-title: Error-driven incremental learning in deep convolutional neural network for large-scale image classification
  publication-title: Proceedings of the ACM Multimedia Conference
– reference: X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1736–1744.
– volume: 60
  start-page: 86
  year: 2016
  end-page: 105
  ident: bib0256
  article-title: Rgb-d-based action recognition datasets: a survey
  publication-title: Pattern Recognit.
– year: 2015
  ident: bib0101
  article-title: The loss surfaces of multilayer networks
  publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)
– year: 2016
  ident: bib0038
  article-title: Neural machine translation in linear time
  publication-title: CoRR abs/1610.10099
– reference: Z. Yan, V. Jagadeesh, D. DeCoste, W. Di, R. Piramuthu, Hd-cnn: hierarchical deep convolutional neural network for image classification, in: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2740–2748.
– volume: 39
  start-page: 677
  year: 2017
  end-page: 691
  ident: bib0270
  article-title: Long-term recurrent convolutional networks for visual recognition and description
  publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
– year: 2015
  ident: bib0009
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– year: 2013
  ident: bib0060
  article-title: Improving deep neural networks with probabilistic maxout units
  publication-title: CoRR abs/1312.6116
– year: 2016
  ident: bib0040
  article-title: Dense prediction on sequences with time-dilated convolutions for speech recognition
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) Workshops
– year: 2017
  ident: bib0301
  article-title: Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation
  publication-title: Pattern Recognit. Lett.
– volume: 104
  start-page: 154
  year: 2013
  end-page: 171
  ident: bib0185
  article-title: Selective search for object recognition
  publication-title: Int. J. Conflict Violence (IJCV)
– year: 2017
  ident: bib0167
  article-title: Lcnn: Lookup-based convolutional neural network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2016
  ident: bib0058
  article-title: Fast and accurate deep network learning by exponential linear units (elus)
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– volume: 85
  year: 2013
  ident: bib0141
  article-title: Fastfood-approximating kernel expansions in loglinear time
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– year: 2015
  ident: bib0240
  article-title: Deep structured output learning for unconstrained text recognition
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 658
  year: 2016
  end-page: 666
  ident: bib0088
  article-title: Generating images with perceptual similarity metrics based on deep networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– year: 2016
  ident: bib0102
  article-title: All you need is a good init
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– year: 2015
  ident: bib0024
  article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks
  publication-title: Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Workshops
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0076
  article-title: Generative adversarial nets
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 47
  start-page: 3343
  year: 2014
  end-page: 3361
  ident: bib0254
  article-title: A survey on still image based human action recognition
  publication-title: Pattern Recognit.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0286
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– start-page: 366
  year: 2012
  end-page: 369
  ident: bib0288
  article-title: Adaptation of context-dependent deep neural networks for automatic speech recognition
  publication-title: Proceedings of the Spoken Language Technology (SLT)
– start-page: 2659
  year: 2015
  end-page: 2667
  ident: bib0206
  article-title: Attentionnet: Aggregating weak directions for accurate object detection
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 6655
  year: 2013
  end-page: 6659
  ident: bib0134
  article-title: Low-rank matrix factorization for deep neural network training with high-dimensional output targets
  publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
– reference: Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks using vector quantization, in: arXiv preprint
– year: 2014
  ident: bib0239
  article-title: Multi-digit number recognition from street view imagery using deep convolutional neural networks
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: bib0242
  article-title: Learning to forget: continual prediction with lstm
  publication-title: Neural Comput.
– start-page: 4249
  year: 2015
  end-page: 4258
  ident: bib0279
  article-title: Integrating parametric and non-parametric models for scene labeling
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 35
  start-page: 1433
  year: 2002
  end-page: 1446
  ident: bib0230
  article-title: A survey on off-line cursive word recognition
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 1627
  year: 2010
  end-page: 1645
  ident: bib0207
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
– start-page: 9
  year: 2012
  end-page: 48
  ident: bib0013
  article-title: Efficient backprop
  publication-title: Neural Networks: Tricks of the Trade - Second Edition
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0211
  article-title: SSD: single shot multibox detector
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 307
  year: 2014
  end-page: 315
  ident: bib0044
  article-title: Signal recovery from pooling representations
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 46
  start-page: 397
  year: 2013
  end-page: 411
  ident: bib0213
  article-title: Real-time visual tracking via online weighted multiple instance learning
  publication-title: Pattern Recognit.
– start-page: 3483
  year: 2015
  end-page: 3491
  ident: bib0084
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 1395
  year: 2015
  end-page: 1403
  ident: bib0094
  article-title: Holistically-nested edge detection
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– year: 2014
  ident: bib0073
  article-title: Auto-encoding variational bayes
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– volume: 61
  start-page: 610
  year: 2017
  end-page: 628
  ident: bib0171
  article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0010
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 48
  start-page: 2993
  year: 2015
  end-page: 3003
  ident: bib0071
  article-title: Deep feature learning with relative distance comparison for person re-identification
  publication-title: Pattern Recognit.
– year: 2013
  ident: bib0047
  article-title: Stochastic pooling for regularization of deep convolutional neural networks
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 177
  year: 1988
  end-page: 185
  ident: bib0155
  article-title: Comparing biases for minimal network construction with back-propagation
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 1347
  year: 2015
  end-page: 1355
  ident: bib0227
  article-title: Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 932
  year: 2016
  end-page: 937
  ident: bib0035
  article-title: Human attention in visual question answering: Do humans and deep networks look at the same regions?
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)
– volume: 48
  start-page: 1844
  year: 2015
  end-page: 1853
  ident: bib0195
  article-title: A coarse-to-fine approach for fast deformable object detection
  publication-title: Pattern Recognit.
– start-page: 1567
  year: 2015
  end-page: 1576
  ident: bib0306
  article-title: cnn: a convolutional architecture for word sequence prediction
  publication-title: Proceedings of the Association for Computational Linguistics (ACL)
– start-page: 1954
  year: 2014
  end-page: 1958
  ident: bib0299
  article-title: Dnn-based stochastic postfilter for hmm-based speech synthesis.
  publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH)
– start-page: 1096
  year: 2016
  end-page: 1104
  ident: bib0072
  article-title: Deepfashion: powering robust clothes recognition and retrieval with rich annotations
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 46
  start-page: 1772
  year: 2013
  end-page: 1788
  ident: bib0214
  article-title: Sparse coding based visual tracking: review and experimental comparison
  publication-title: Pattern Recognit.
– start-page: 2059
  year: 2017
  end-page: 2065
  ident: bib0074
  article-title: Denoising criterion for variational auto-encoding framework
  publication-title: Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI)
– start-page: 2148
  year: 2013
  end-page: 2156
  ident: bib0136
  article-title: Predicting parameters in deep learning
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 45
  start-page: 1318
  year: 2012
  end-page: 1325
  ident: bib0007
  article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0127
  article-title: Resnet in resnet: generalizing residual architectures
  publication-title: CoRR
– start-page: 1449
  year: 2015
  end-page: 1457
  ident: bib0192
  article-title: Bilinear CNN models for fine-grained visual recognition
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– volume: 48
  start-page: 580
  year: 2015
  end-page: 590
  ident: bib0215
  article-title: Multi-target tracking by learning local-to-global trajectory models
  publication-title: Pattern Recognit.
– year: 2014
  ident: bib0018
  article-title: Network in network
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 392
  year: 2014
  end-page: 407
  ident: bib0052
  article-title: Multi-scale orderless pooling of deep convolutional activation features
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 33
  start-page: 2295
  year: 2011
  end-page: 2317
  ident: bib0140
  article-title: Tensor-train decomposition
  publication-title: SIAM J. Sci. Comput.
– volume: 45
  start-page: 333
  year: 2012
  end-page: 345
  ident: bib0173
  article-title: Semantic hierarchies for image annotation: a survey
  publication-title: Pattern Recognit.
– start-page: 2524
  year: 2015
  end-page: 2532
  ident: bib0100
  article-title: Augmenting strong supervision using web data for fine-grained categorization
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 936
  year: 2016
  end-page: 941
  ident: bib0124
  article-title: Weighted residuals for very deep networks
  publication-title: Proceedings of the International Conference on Systems and Informatics (ICSAI)
– start-page: 801
  year: 2006
  end-page: 808
  ident: bib0082
  article-title: Efficient sparse coding algorithms
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 3376
  year: 2015
  end-page: 3385
  ident: bib0282
  article-title: Feedforward semantic segmentation with zoom-out features
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2470
  year: 2015
  end-page: 2478
  ident: bib0259
  article-title: Actions and attributes from wholes and parts
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– year: 2014
  ident: bib0290
  article-title: Convolutional neural networks for speech recognition
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– year: 2017
  ident: bib0110
  article-title: Sgdr: Stochastic gradient descent with warm restarts
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– year: 2015
  ident: bib0029
  article-title: Reseg: a recurrent neural network for object segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– year: 2015
  ident: bib0057
  article-title: Empirical evaluation of rectified activations in convolutional network
  publication-title: Proceedings of the International Conference on Machine Learning (ICML) Workshop
– volume: 42
  start-page: 1365
  year: 1996
  end-page: 1374
  ident: bib0151
  article-title: Efficient scalar quantization of exponential and Laplacian random variables
  publication-title: IEEE Trans. Inf. Theory
– start-page: 302
  year: 2014
  end-page: 315
  ident: bib0228
  article-title: Modeep: A deep learning framework using motion features for human pose estimation
  publication-title: Proceedings of the Asian Conference on Computer Vision (ACCV)
– volume: 25
  start-page: 5479
  year: 2016
  end-page: 5490
  ident: bib0263
  article-title: Action recognition in still images with minimum annotation efforts
  publication-title: IEEE Trans. Image Process.
– volume: 37
  start-page: 977
  year: 2004
  end-page: 997
  ident: bib0231
  article-title: Text information extraction in images and video: a survey
  publication-title: Pattern Recognit.
– start-page: 343
  year: 2013
  end-page: 351
  ident: bib0111
  article-title: No more pesky learning rates
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 946
  year: 2014
  end-page: 954
  ident: bib0143
  article-title: Circulant binary embedding
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 1747
  year: 2016
  end-page: 1756
  ident: bib0302
  article-title: Pixel recurrent neural networks
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– year: 2004
  ident: bib0061
  article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 1799
  year: 2014
  end-page: 1807
  ident: bib0224
  article-title: Joint training of a convolutional network and a graphical model for human pose estimation
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 12
  start-page: 145
  year: 1999
  end-page: 151
  ident: bib0108
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
– start-page: 2528
  year: 2010
  end-page: 2535
  ident: bib0026
  article-title: Deconvolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 693
  year: 2011
  end-page: 701
  ident: bib0113
  article-title: Hogwild: a lock-free approach to parallelizing stochastic gradient descent
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 2019
  year: 2014
  end-page: 2026
  ident: bib0178
  article-title: Birdsnap: large-scale fine-grained visual categorization of birds
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 36
  start-page: 222
  year: 2014
  end-page: 234
  ident: bib0200
  article-title: Category independent object proposals
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
– start-page: 4685
  year: 2015
  end-page: 4693
  ident: bib0093
  article-title: Mirror, mirror on the wall, tell me, is the error small?
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: bib0028
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib0011
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 133
  year: 2017
  end-page: 141
  ident: bib0068
  article-title: Deephash: getting regularization, depth and fine-tuning right
  publication-title: Proceedings of the International Conference on Multimedia Retrieval (ICMR)
– volume: PP
  start-page: 1
  year: 2016
  ident: bib0128
  article-title: Residual networks of residual networks: multilevel residual networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol. (TCSVT)
– start-page: 2449
  year: 2015
  end-page: 2457
  ident: bib0048
  article-title: Spectral representations for convolutional neural networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 2798
  year: 2014
  end-page: 2805
  ident: bib0251
  article-title: Large-scale optimization of hierarchical features for saliency prediction in natural images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 5546
  year: 2015
  end-page: 5555
  ident: bib0189
  article-title: Fine-grained recognition without part annotations
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 87.1
  year: 2016
  end-page: 87.12
  ident: bib0125
  article-title: Wide residual networks
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– start-page: 3945
  year: 2015
  end-page: 3954
  ident: bib0226
  article-title: Parsing occluded people by flexible compositions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1139
  year: 2013
  end-page: 1147
  ident: bib0103
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 342
  year: 2016
  end-page: 350
  ident: bib0098
  article-title: Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data augmentation
  publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)
– volume: 29
  start-page: 1931
  year: 1996
  end-page: 1952
  ident: bib0229
  article-title: Automatic document processing: a survey
  publication-title: Pattern Recognit.
– start-page: 160
  year: 2008
  end-page: 167
  ident: bib0309
  article-title: A unified architecture for natural language processing: deep neural networks with multitask learning
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– reference: J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, 2014.
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0210
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 507
  year: 2016
  end-page: 516
  ident: bib0063
  article-title: Large-margin softmax loss for convolutional neural networks
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– year: 2015
  ident: bib0243
  article-title: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition
  publication-title: CoRR abs/1507.05717
– start-page: 655
  year: 2014
  end-page: 665
  ident: bib0311
  article-title: A convolutional neural network for modelling sentences
  publication-title: Proceedings of the Association for Computational Linguistics (ACL)
– start-page: 1269
  year: 2014
  end-page: 1277
  ident: bib0137
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 437
  year: 2015
  end-page: 446
  ident: bib0197
  article-title: Deformable part models are convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 396
  year: 1989
  end-page: 404
  ident: bib0003
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 67
  start-page: 85
  year: 2017
  end-page: 96
  ident: bib0234
  article-title: Improving patch-based scene text script identification with ensembles of conjoined networks
  publication-title: Pattern Recognit.
– start-page: 298
  year: 2014
  end-page: 310
  ident: bib0025
  article-title: Time series classification using multi-channels deep convolutional neural networks
  publication-title: Proceedings of the International Conference on Web-Age Information Management (WAIM)
– start-page: 4013
  year: 2016
  end-page: 4021
  ident: bib0133
  article-title: Fast algorithms for convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: bib0030
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– year: 2014
  ident: bib0105
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 204
  year: 2015
  end-page: 214
  ident: bib0313
  article-title: Multichannel variable-size convolution for sentence classification
  publication-title: Proceedings of the Conference on Natural Language Learning (CoNLL)
– year: 2017
  ident: bib0119
  article-title: Understanding deep learning requires rethinking generalization
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– year: 2013
  ident: bib0019
  article-title: Deep learning using linear support vector machines
  publication-title: Proceedings of the International Conference on Machine Learning (ICML) Workshops
– start-page: 761
  year: 2016
  end-page: 769
  ident: bib0209
  article-title: Training region-based object detectors with online hard example mining
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 539
  year: 2005
  end-page: 546
  ident: bib0065
  article-title: Learning a similarity metric discriminatively, with application to face verification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 64
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0232
  article-title: A comprehensive survey of mostly textual document segmentation algorithms since 2008
  publication-title: Pattern Recognit.
– start-page: 1135
  year: 2015
  end-page: 1143
  ident: bib0156
  article-title: Learning both weights and connections for efficient neural network
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 115
  start-page: 330
  year: 2015
  end-page: 344
  ident: bib0250
  article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection
  publication-title: Inter. J. Comput. Vis.
– year: 2016
  ident: bib0145
  article-title: Acdc: a structured efficient linear layer
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 1717
  year: 2014
  end-page: 1724
  ident: bib0258
  article-title: Learning and transferring mid-level image representations using convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 46
  start-page: 1020
  year: 2013
  end-page: 1038
  ident: bib0275
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0037
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 933
  year: 2017
  end-page: 941
  ident: bib0308
  article-title: Language modeling with gated convolutional networks
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 2226
  year: 2016
  end-page: 2234
  ident: bib0087
  article-title: Improved techniques for training GANs
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 1422
  year: 2015
  end-page: 1430
  ident: bib0106
  article-title: Unsupervised visual representation learning by context prediction
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 53
  year: 2012
  end-page: 67
  ident: bib0118
  article-title: Early stopping - but when?
  publication-title: Neural Networks: Tricks of the Trade - Second Edition
– start-page: 8604
  year: 2013
  end-page: 8608
  ident: bib0287
  article-title: Recent advances in deep learning for speech research at Microsoft
  publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
– volume: 21
  start-page: 1610
  year: 2010
  end-page: 1623
  ident: bib0216
  article-title: Human tracking using convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. (TNN)
– start-page: 364
  year: 2014
  end-page: 375
  ident: bib0046
  article-title: Mixed pooling for convolutional neural networks
  publication-title: Proceedings of the Rough Sets and Knowledge Technology (RSKT)
– year: 2014
  ident: bib0208
  article-title: Fracking deep convolutional image descriptors
  publication-title: CoRR abs/1412.6537
– year: 2015
  ident: bib0161
  article-title: Diversity networks
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– volume: 35
  start-page: 1915
  year: 2013
  end-page: 1929
  ident: bib0276
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
– start-page: 630
  year: 2016
  end-page: 645
  ident: bib0123
  article-title: Identity mappings in deep residual networks
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– year: 2016
  ident: bib0147
  article-title: Bitwise neural networks
  publication-title: Proceedings of the International Conference on Machine Learning (ICML) Workshops
– year: 2016
  ident: bib0315
  article-title: Very deep convolutional networks for natural language processing
  publication-title: CoRR abs/1606.01781
– start-page: 267
  year: 1982
  end-page: 285
  ident: bib0002
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition
  publication-title: Competition and Cooperation in Neural Nets
– start-page: 3183
  year: 2015
  end-page: 3192
  ident: bib0246
  article-title: Deep networks for saliency detection via local estimation and global search
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2018
  year: 2011
  end-page: 2025
  ident: bib0027
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 1653
  year: 2014
  end-page: 1660
  ident: bib0222
  article-title: Deeppose: human pose estimation via deep neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0004
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– start-page: 1486
  year: 2015
  end-page: 1494
  ident: bib0086
  article-title: Deep generative image models using a Laplacian pyramid of adversarial networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: bib0036
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
– start-page: 3501
  year: 2016
  end-page: 3508
  ident: bib0241
  article-title: Reading scene text in deep convolutional sequences
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2015
  ident: bib0253
  article-title: End-to-end convolutional network for saliency prediction
  publication-title: CoRR abs/1507.01422
– reference: H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250, 2016.
– volume: 59
  start-page: 312
  year: 2016
  end-page: 324
  ident: bib0272
  article-title: Multi-scale context for scene labeling via flexible segmentation graph
  publication-title: Pattern Recognit.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0078
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 3225
  year: 2016
  end-page: 3233
  ident: bib0083
  article-title: Attend, infer, repeat: fast scene understanding with generative models
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 685
  year: 2015
  end-page: 693
  ident: bib0112
  article-title: Deep learning with elastic averaging SGD
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– year: 2014
  ident: bib0310
  article-title: Deep learning for answer sentence selection
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) Workshop
– year: 2014
  ident: bib0049
  article-title: Fast training of convolutional networks through FFTs
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 648
  year: 2015
  end-page: 656
  ident: bib0092
  article-title: Efficient object localization using convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3218
  year: 2015
  end-page: 3226
  ident: bib0269
  article-title: P-CNN: pose-based CNN features for action recognition
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 3646
  year: 2014
  end-page: 3653
  ident: bib0097
  article-title: Transformation pursuit for image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2167
  year: 2016
  end-page: 2175
  ident: bib0070
  article-title: Deep relative distance learning: tell the difference between similar vehicles
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 543
  year: 2016
  end-page: 559
  ident: bib0032
  article-title: Top-down neural attention by excitation backprop
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– year: 2015
  ident: bib0109
  article-title: Adam: A method for stochastic optimization
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– start-page: 1073
  year: 2011
  end-page: 1081
  ident: bib0142
  article-title: Fast locality-sensitive hashing
  publication-title: Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD)
– start-page: 424
  year: 2010
  end-page: 427
  ident: bib0021
  article-title: Fast training of object detection using stochastic gradient descent
  publication-title: International Conference on Pattern Recognition (ICPR)
– start-page: 111
  year: 2010
  end-page: 118
  ident: bib0016
  article-title: A theoretical analysis of feature pooling in visual recognition
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 26
  start-page: 289
  year: 2007
  end-page: 315
  ident: bib0117
  article-title: On early stopping in gradient descent learning
  publication-title: Constructive Approx.
– start-page: 2956
  year: 2015
  end-page: 2964
  ident: bib0031
  article-title: Look and think twice: capturing top-down visual attention with feedback convolutional neural networks
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bib0050
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
– volume: 38
  start-page: 1088
  year: 2016
  end-page: 1098
  ident: bib0218
  article-title: Cnntracker: online discriminative object tracking via deep convolutional neural network
  publication-title: Appl. Soft Comput.
– year: 2014
  ident: bib0077
  article-title: Conditional generative adversarial nets
  publication-title: CoRR abs/1411.1784
– volume: 141
  start-page: 245
  year: 1994
  end-page: 250
  ident: bib0198
  article-title: Original approach for the localisation of objects in images
  publication-title: IEE Proc.-Vis. Image Signal Process.
– start-page: 4277
  year: 2012
  end-page: 4280
  ident: bib0289
  article-title: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition
  publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
– volume: 25
  start-page: 1713
  year: 2016
  end-page: 1725
  ident: bib0190
  article-title: Weakly supervised fine-grained categorization with part-based image representation
  publication-title: IEEE Trans. Image Process.
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0120
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 1265
  year: 2015
  end-page: 1274
  ident: bib0247
  article-title: Saliency detection by multi-context deep learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 5455
  year: 2015
  end-page: 5463
  ident: bib0248
  article-title: Visual saliency based on multiscale deep features
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 442
  year: 2015
  end-page: 450
  ident: bib0139
  article-title: Tensorizing neural networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 1058
  year: 2013
  end-page: 1066
  ident: bib0045
  article-title: Regularization of neural networks using dropconnect
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– start-page: 568
  year: 2014
  end-page: 576
  ident: bib0268
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– start-page: 2074
  year: 2016
  end-page: 2082
  ident: bib0166
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS)
– volume: 81
  start-page: 80
  year: 2016
  end-page: 89
  ident: bib0181
  article-title: Finely-grained annotated datasets for image-based plant phenotyping
  publication-title: Pattern Recognit. Lett.
– volume: 34
  start-page: 1704
  year: 2012
  end-page: 1716
  ident: bib0053
  article-title: Aggregating local image descriptors into compact codes
  publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
– year: 2016
  ident: bib0149
  article-title: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients
  publication-title: CoRR
– volume: 39
  start-page: 195
  year: 1943
  end-page: 198
  ident: bib0089
  article-title: On the stability of inverse problems
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 35
  start-page: 221
  year: 2013
  end-page: 231
  ident: bib0265
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
– volume: 37
  start-page: 328
  year: 1989
  end-page: 339
  ident: bib0298
  article-title: Phoneme recognition using time-delay neural networks
  publication-title: IEEE Trans. Acoustics, Speech, Signal Process.
– volume: 48
  start-page: 2983
  year: 2015
  end-page: 2992
  ident: bib0273
  article-title: CRF learning with CNN features for image segmentation
  publication-title: Pattern Recognit.
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0056
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– start-page: 1766
  year: 2013
  end-page: 1770
  ident: bib0291
  article-title: Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks
  publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH)
– start-page: 4465
  year: 2015
  end-page: 4469
  ident: bib0300
  article-title: Modelling acoustic feature dependencies with artificial neural networks: Trajectory-rnade
  publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
– volume: 381
  start-page: 607
  year: 1996
  ident: bib0081
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0041
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0008
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Conflict Violence (IJCV)
– start-page: 17
  year: 2016
  end-page: 21
  ident: bib0297
  article-title: Deep convolutional neural networks with layer-wise context expansion and attention
  publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH)
– volume: 29
  start-page: 4790
  year: 1990
  end-page: 4797
  ident: bib0006
  article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture
  publication-title: Appl. Opt.
– start-page: 362
  year: 2015
  end-page: 370
  ident: bib0249
  article-title: Predicting eye fixations using convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 4624
  year: 2015
  end-page: 4628
  ident: bib0292
  article-title: Speech acoustic modeling from raw multichannel waveforms
  publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
– year: 2014
  ident: bib0138
  article-title: Speeding up convolutional neural networks with low rank expansions
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0050
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2015.2389824
– start-page: 901
  year: 1994
  ident: 10.1016/j.patcog.2017.10.013_bib0196
  article-title: A convolutional neural network hand tracker
– volume: 29
  start-page: 1931
  issue: 12
  year: 1996
  ident: 10.1016/j.patcog.2017.10.013_bib0229
  article-title: Automatic document processing: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00044-1
– start-page: 1449
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0192
  article-title: Bilinear CNN models for fine-grained visual recognition
– start-page: 761
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0209
  article-title: Training region-based object detectors with online hard example mining
– start-page: 2528
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0026
  article-title: Deconvolutional networks
– year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0277
  article-title: Indoor semantic segmentation using depth information
– start-page: 806
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0165
  article-title: Sparse convolutional neural networks
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0018
  article-title: Network in network
– start-page: 249
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0104
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 37
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0107
  article-title: Learning to see by moving
– start-page: 1520
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0030
  article-title: Learning deconvolution network for semantic segmentation
– volume: 35
  start-page: 2279
  issue: 10
  year: 2002
  ident: 10.1016/j.patcog.2017.10.013_bib0168
  article-title: Image processing with neural networksa review
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(01)00178-9
– ident: 10.1016/j.patcog.2017.10.013_bib0293
– volume: 33
  start-page: 2295
  issue: 5
  year: 2011
  ident: 10.1016/j.patcog.2017.10.013_bib0140
  article-title: Tensor-train decomposition
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090752286
– start-page: 3501
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0241
  article-title: Reading scene text in deep convolutional sequences
– start-page: 3581
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0075
  article-title: Semi-supervised learning with deep generative models
– start-page: 1058
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0045
  article-title: Regularization of neural networks using dropconnect
– start-page: 204
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0313
  article-title: Multichannel variable-size convolution for sentence classification
– ident: 10.1016/j.patcog.2017.10.013_bib0132
– start-page: 267
  year: 1982
  ident: 10.1016/j.patcog.2017.10.013_bib0002
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0008
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Conflict Violence (IJCV)
– start-page: 1096
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0072
  article-title: Deepfashion: powering robust clothes recognition and retrieval with rich annotations
– start-page: 815
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0069
  article-title: Facenet: a unified embedding for face recognition and clustering
– start-page: 160
  year: 2008
  ident: 10.1016/j.patcog.2017.10.013_bib0309
  article-title: A unified architecture for natural language processing: deep neural networks with multitask learning
– year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0060
  article-title: Improving deep neural networks with probabilistic maxout units
  publication-title: CoRR abs/1312.6116
– start-page: 302
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0228
  article-title: Modeep: A deep learning framework using motion features for human pose estimation
– start-page: 3304
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0015
  article-title: End-to-end text recognition with convolutional neural networks
– start-page: 4278
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0042
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– start-page: 1134
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0205
  article-title: Object detection via a multi-region and semantic segmentation-aware cnn model
– start-page: 2285
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0162
  article-title: Compressing neural networks with the hashing trick
– start-page: 646
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0316
  article-title: Deep networks with stochastic depth
– volume: 60
  start-page: 875
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0079
  article-title: Dual autoencoders features for imbalance classification problem
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.013
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0243
  article-title: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition
  publication-title: CoRR abs/1507.05717
– volume: 12
  start-page: 2493
  year: 2011
  ident: 10.1016/j.patcog.2017.10.013_bib0314
  article-title: Natural language processing (almost) from scratch
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0128
  article-title: Residual networks of residual networks: multilevel residual networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol. (TCSVT)
– volume: 115
  start-page: 330
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0250
  article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection
  publication-title: Inter. J. Comput. Vis.
  doi: 10.1007/s11263-015-0822-0
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0310
  article-title: Deep learning for answer sentence selection
– start-page: 507
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0063
  article-title: Large-margin softmax loss for convolutional neural networks
– start-page: 1799
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0224
  article-title: Joint training of a convolutional network and a graphical model for human pose estimation
– volume: 51
  start-page: 148
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0193
  article-title: Human detection from images and videos: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.08.027
– start-page: 315
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0296
  article-title: Improvements to deep convolutional neural networks for LVCSR
– start-page: 4685
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0093
  article-title: Mirror, mirror on the wall, tell me, is the error small?
– start-page: 1379
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0157
  article-title: Dynamic network surgery for efficient DNNs
– volume: 48
  start-page: 3004
  issue: 10
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0170
  article-title: Exemplar based deep discriminative and shareable feature learning for scene image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.02.003
– start-page: 3483
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0084
  article-title: Learning structured output representation using deep conditional generative models
– start-page: 1279
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0023
  article-title: Tiled convolutional neural networks
– start-page: 448
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0120
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: J. Mach. Learn. Res. (JMLR)
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0161
  article-title: Diversity networks
– volume: 45
  start-page: 333
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0173
  article-title: Semantic hierarchies for image annotation: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.05.017
– start-page: 2672
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0076
  article-title: Generative adversarial nets
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0276
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2012.231
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0315
  article-title: Very deep convolutional networks for natural language processing
  publication-title: CoRR abs/1606.01781
– start-page: 3429
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0294
  article-title: Advances in very deep convolutional neural networks for LVCSR
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0073
  article-title: Auto-encoding variational bayes
– start-page: 3225
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0083
  article-title: Attend, infer, repeat: fast scene understanding with generative models
– start-page: 658
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0088
  article-title: Generating images with perceptual similarity metrics based on deep networks
– start-page: 4465
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0300
  article-title: Modelling acoustic feature dependencies with artificial neural networks: Trajectory-rnade
– start-page: 1766
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0291
  article-title: Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks
– start-page: 568
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0268
  article-title: Two-stream convolutional networks for action recognition in videos
– volume: 61
  start-page: 539
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0169
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.001
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0147
  article-title: Bitwise neural networks
– ident: 10.1016/j.patcog.2017.10.013_bib0159
– start-page: 1395
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0094
  article-title: Holistically-nested edge detection
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0204
  article-title: Faster r-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2016.2577031
– volume: 45
  start-page: 3084
  issue: 9
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0020
  article-title: An extensive experimental comparison of methods for multi-label learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.03.004
– start-page: 1725
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0267
  article-title: Large-scale video classification with convolutional neural networks
– volume: 48
  start-page: 3542
  issue: 11
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0194
  article-title: Feature representation for statistical-learning-based object detection: a review
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.018
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0303
  article-title: Exploring the limits of language modeling
– year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0017
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: CoRR abs/1207.0580
– volume: 46
  start-page: 1772
  issue: 7
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0214
  article-title: Sparse coding based visual tracking: review and experimental comparison
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.10.006
– start-page: 3945
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0226
  article-title: Parsing occluded people by flexible compositions
– start-page: 512
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0244
  article-title: Deep features for text spotting
– start-page: 655
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0311
  article-title: A convolutional neural network for modelling sentences
– start-page: 1135
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0156
  article-title: Learning both weights and connections for efficient neural network
– start-page: 366
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0288
  article-title: Adaptation of context-dependent deep neural networks for automatic speech recognition
– start-page: 2741
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0304
  article-title: Character-aware neural language models
– start-page: 1567
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0306
  article-title: gen cnn: a convolutional architecture for word sequence prediction
– volume: 85
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0141
  article-title: Fastfood-approximating kernel expansions in loglinear time
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0049
  article-title: Fast training of convolutional networks through FFTs
– year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0307
  article-title: An empirical study of language CNN for image captioning
– start-page: 1096
  year: 2008
  ident: 10.1016/j.patcog.2017.10.013_bib0078
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 21
  start-page: 1610
  issue: 10
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0216
  article-title: Human tracking using convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. (TNN)
  doi: 10.1109/TNN.2010.2066286
– start-page: 82
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0278
  article-title: Recurrent convolutional neural networks for scene labeling
– start-page: 1232
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0114
  article-title: Large scale distributed deep networks
– year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0221
  article-title: Generation of human depth images with body part labels for complex human pose recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.006
– volume: 39
  start-page: 195
  year: 1943
  ident: 10.1016/j.patcog.2017.10.013_bib0089
  article-title: On the stability of inverse problems
– year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0167
  article-title: Lcnn: Lookup-based convolutional neural network
– start-page: 6655
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0134
  article-title: Low-rank matrix factorization for deep neural network training with high-dimensional output targets
– start-page: 1653
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0222
  article-title: Deeppose: human pose estimation via deep neural networks
– volume: 45
  start-page: 1318
  issue: 4
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0007
  article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.09.021
– start-page: 1735
  year: 2006
  ident: 10.1016/j.patcog.2017.10.013_bib0066
  article-title: Dimensionality reduction by learning an invariant mapping
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0223
  article-title: Learning human pose estimation features with convolutional networks
– start-page: 1026
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0056
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– start-page: 290
  year: 2008
  ident: 10.1016/j.patcog.2017.10.013_bib0235
  article-title: Text detection with convolutional neural networks
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0265
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2012.59
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0145
  article-title: Acdc: a structured efficient linear layer
– start-page: 2470
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0259
  article-title: Actions and attributes from wholes and parts
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0203
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2015.2389824
– volume: 25
  start-page: 5479
  issue: 11
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0263
  article-title: Action recognition in still images with minimum annotation efforts
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2605305
– start-page: 2365
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0135
  article-title: Restructuring of deep neural network acoustic models with singular value decomposition
– start-page: 2226
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0087
  article-title: Improved techniques for training GANs
– start-page: 3084
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0091
  article-title: Adaptive dropout for training deep neural networks
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_sbref0147
  article-title: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients
  publication-title: CoRR
– volume: 42
  start-page: 1365
  issue: 5
  year: 1996
  ident: 10.1016/j.patcog.2017.10.013_bib0151
  article-title: Efficient scalar quantization of exponential and Laplacian random variables
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.532878
– year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0301
  article-title: Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.08.001
– start-page: 1747
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0302
  article-title: Pixel recurrent neural networks
– start-page: 87.1
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0125
  article-title: Wide residual networks
– start-page: 612
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0033
  article-title: Augmenting supervised neural networks with unsupervised objectives for large-scale image classification
– start-page: 28
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0126
  article-title: Swapout: learning an ensemble of deep architectures
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0029
  article-title: Reseg: a recurrent neural network for object segmentation
– start-page: 801
  year: 2006
  ident: 10.1016/j.patcog.2017.10.013_bib0082
  article-title: Efficient sparse coding algorithms
– start-page: 2094
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0174
  article-title: Discriminative transfer learning with tree-based priors
– start-page: 2148
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0136
  article-title: Predicting parameters in deep learning
– start-page: 2059
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0074
  article-title: Denoising criterion for variational auto-encoding framework
– volume: 71
  start-page: 132
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0220
  article-title: Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.009
– year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0067
  article-title: Learning by coincidence: siamese networks and common variable learning
  publication-title: Pattern Recognit.
– start-page: 3376
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0282
  article-title: Feedforward semantic segmentation with zoom-out features
– start-page: 3218
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0269
  article-title: P-CNN: pose-based CNN features for action recognition
– start-page: 424
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0021
  article-title: Fast training of object detection using stochastic gradient descent
– start-page: 1954
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0299
  article-title: Dnn-based stochastic postfilter for hmm-based speech synthesis.
– ident: 10.1016/j.patcog.2017.10.013_bib0257
– year: 2004
  ident: 10.1016/j.patcog.2017.10.013_bib0061
  article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms
– start-page: 1666
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0186
  article-title: Deep lac: deep localization, alignment and classification for fine-grained recognition
– start-page: 497
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0237
  article-title: Robust scene text detection with convolution neural network induced mser trees
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0101
  article-title: The loss surfaces of multilayer networks
– start-page: 4489
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0266
  article-title: Learning spatiotemporal features with 3d convolutional networks
– ident: 10.1016/j.patcog.2017.10.013_bib0305
– start-page: 2659
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0206
  article-title: Attentionnet: Aggregating weak directions for accurate object detection
– start-page: 1073
  year: 2011
  ident: 10.1016/j.patcog.2017.10.013_bib0142
  article-title: Fast locality-sensitive hashing
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0185
  article-title: Selective search for object recognition
  publication-title: Int. J. Conflict Violence (IJCV)
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0009
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0040
  article-title: Dense prediction on sequences with time-dilated convolutions for speech recognition
– start-page: 2645
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0099
  article-title: Hyper-class augmented and regularized deep learning for fine-grained image classification
– start-page: 2921
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0034
  article-title: Learning deep features for discriminative localization
– start-page: 3183
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0246
  article-title: Deep networks for saliency detection via local estimation and global search
– start-page: 396
  year: 1989
  ident: 10.1016/j.patcog.2017.10.013_bib0003
  article-title: Handwritten digit recognition with a back-propagation network
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0160
  article-title: Data-free parameter pruning for deep neural networks
– ident: 10.1016/j.patcog.2017.10.013_bib0130
– volume: 37
  start-page: 977
  issue: 5
  year: 2004
  ident: 10.1016/j.patcog.2017.10.013_bib0231
  article-title: Text information extraction in images and video: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.10.012
– volume: 10
  start-page: 11259
  issue: 12
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0153
  article-title: Approximate nearest neighbor search by residual vector quantization
  publication-title: Sensors
  doi: 10.3390/s101211259
– volume: 53
  start-page: 130
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0255
  article-title: 3D skeleton-based human action classification: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.11.019
– volume: 46
  start-page: 1020
  issue: 3
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0275
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.09.015
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0290
  article-title: Convolutional neural networks for speech recognition
– start-page: 53
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0118
  article-title: Early stopping - but when?
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0109
  article-title: Adam: A method for stochastic optimization
– start-page: 779
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0210
  article-title: You only look once: unified, real-time object detection
– start-page: 740
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0199
  article-title: Microsoft Coco: Common Objects in Context
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0058
  article-title: Fast and accurate deep network learning by exponential linear units (elus)
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0175
  article-title: Learning fine-grained features via a CNN tree for large-scale classification
  publication-title: CoRR abs/1511.04534
– start-page: 946
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0143
  article-title: Circulant binary embedding
– volume: 46
  start-page: 397
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0213
  article-title: Real-time visual tracking via online weighted multiple instance learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.013
– start-page: 111
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0016
  article-title: A theoretical analysis of feature pooling in visual recognition
– start-page: 818
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0011
  article-title: Visualizing and understanding convolutional networks
– volume: 18
  start-page: 81
  issue: 2
  year: 2007
  ident: 10.1016/j.patcog.2017.10.013_bib0043
  article-title: Complex cell pooling and the statistics of natural images
  publication-title: Network
  doi: 10.1080/09548980701418942
– ident: 10.1016/j.patcog.2017.10.013_bib0245
  doi: 10.1007/s11263-015-0823-z
– start-page: 2857
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0144
  article-title: An exploration of parameter redundancy in deep networks with circulant projections
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0183
  article-title: Improved bird species recognition using pose normalized deep convolutional nets
– start-page: 5455
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0248
  article-title: Visual saliency based on multiscale deep features
– start-page: 1078
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0295
  article-title: Convolutional deep maxout networks for phone recognition.
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0131
  article-title: Fast convolutional nets with fbfft: aGPU performance evaluation
– start-page: 1060
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0085
  article-title: Generative adversarial text to image synthesis
– start-page: 8604
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0287
  article-title: Recent advances in deep learning for speech research at Microsoft
– volume: 71
  start-page: 118
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0182
  article-title: Lg-cnn: from local parts to global discrimination for fine-grained recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.002
– ident: 10.1016/j.patcog.2017.10.013_bib0152
– start-page: 4249
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0279
  article-title: Integrating parametric and non-parametric models for scene labeling
– volume: 39
  start-page: 640
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0028
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2016.2572683
– start-page: 2524
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0100
  article-title: Augmenting strong supervision using web data for fine-grained categorization
– volume: 35
  start-page: 1433
  issue: 7
  year: 2002
  ident: 10.1016/j.patcog.2017.10.013_bib0230
  article-title: A survey on off-line cursive word recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(01)00129-7
– volume: 60
  start-page: 86
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0256
  article-title: Rgb-d-based action recognition datasets: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.019
– volume: 92
  start-page: 33
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0264
  article-title: Three-stream CNNs for action recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.04.004
– start-page: 648
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0092
  article-title: Efficient object localization using convolutional networks
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0077
  article-title: Conditional generative adversarial nets
  publication-title: CoRR abs/1411.1784
– start-page: 442
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0139
  article-title: Tensorizing neural networks
– volume: 26
  start-page: 289
  issue: 2
  year: 2007
  ident: 10.1016/j.patcog.2017.10.013_bib0117
  article-title: On early stopping in gradient descent learning
  publication-title: Constructive Approx.
  doi: 10.1007/s00365-006-0663-2
– year: 2011
  ident: 10.1016/j.patcog.2017.10.013_sbref0115
  article-title: GPU asynchronous stochastic gradient descent to speed up neural network training
  publication-title: CoRR
– start-page: 17
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0297
  article-title: Deep convolutional neural networks with layer-wise context expansion and attention
– start-page: 693
  year: 2011
  ident: 10.1016/j.patcog.2017.10.013_bib0113
  article-title: Hogwild: a lock-free approach to parallelizing stochastic gradient descent
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.patcog.2017.10.013_bib0179
  article-title: Novel dataset for fine-grained image categorization: stanford dogs
– volume: 48
  start-page: 580
  issue: 2
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0215
  article-title: Multi-target tracking by learning local-to-global trajectory models
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.08.013
– start-page: 26
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0188
  article-title: Learning features and parts for fine-grained recognition
– start-page: 437
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0197
  article-title: Deformable part models are convolutional neural networks
– start-page: 215
  year: 1968
  ident: 10.1016/j.patcog.2017.10.013_bib0001
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1968.sp008455
– start-page: 3517
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0055
  article-title: On rectified linear units for speech processing
– start-page: 543
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0032
  article-title: Top-down neural attention by excitation backprop
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0012
  article-title: Deep residual learning for image recognition
– start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0211
  article-title: SSD: single shot multibox detector
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 10.1016/j.patcog.2017.10.013_bib0081
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– start-page: 2798
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0251
  article-title: Large-scale optimization of hierarchical features for saliency prediction in natural images
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0024
  article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks
– start-page: 2074
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0166
  article-title: Learning structured sparsity in deep neural networks
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.patcog.2017.10.013_bib0121
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 2167
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0070
  article-title: Deep relative distance learning: tell the difference between similar vehicles
– start-page: 1422
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0106
  article-title: Unsupervised visual representation learning by context prediction
– start-page: 249
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0116
  article-title: A fast parallel SGD for matrix factorization in shared memory systems
– start-page: 2019
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0178
  article-title: Birdsnap: large-scale fine-grained visual categorization of birds
– start-page: 1319
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0059
  article-title: Maxout networks
– start-page: 2018
  year: 2011
  ident: 10.1016/j.patcog.2017.10.013_bib0027
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
– volume: 39
  start-page: 1677
  issue: 7
  year: 1991
  ident: 10.1016/j.patcog.2017.10.013_bib0285
  article-title: Phonemic hidden ,Markov models with continuous mixture output densities for large vocabulary word recognition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.134406
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0036
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/TPAMI.2015.2439281
– start-page: 2449
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0048
  article-title: Spectral representations for convolutional neural networks
– start-page: 936
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0124
  article-title: Weighted residuals for very deep networks
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0150
  article-title: Binarynet: training deep neural networks with weights and activations constrained to+ 1 or-1
– start-page: 2956
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0031
  article-title: Look and think twice: capturing top-down visual attention with feedback convolutional neural networks
– start-page: 307
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0044
  article-title: Signal recovery from pooling representations
– start-page: 525
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0148
  article-title: Xnor-net: imagenet classification using binary convolutional neural networks
– start-page: 2377
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0122
  article-title: Training very deep networks
– start-page: 1265
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0247
  article-title: Saliency detection by multi-context deep learning
– volume: 1
  start-page: 445
  issue: Supplement-1
  year: 1988
  ident: 10.1016/j.patcog.2017.10.013_bib0005
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90469-8
– start-page: 1139
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0103
  article-title: On the importance of initialization and momentum in deep learning
– start-page: 685
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0112
  article-title: Deep learning with elastic averaging SGD
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: 10.1016/j.patcog.2017.10.013_bib0108
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 48
  start-page: 2983
  issue: 10
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0273
  article-title: CRF learning with CNN features for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.019
– start-page: 2650
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0096
  article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
– start-page: 3646
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0097
  article-title: Transformation pursuit for image classification
– start-page: 177
  year: 1988
  ident: 10.1016/j.patcog.2017.10.013_bib0155
  article-title: Comparing biases for minimal network construction with back-propagation
– start-page: 364
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0046
  article-title: Mixed pooling for convolutional neural networks
– start-page: 807
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0014
  article-title: Rectified linear units improve restricted Boltzmann machines
– start-page: 118
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0090
  article-title: Fast dropout training
– start-page: 177
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0176
  article-title: Error-driven incremental learning in deep convolutional neural network for large-scale image classification
– start-page: 73
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0051
  article-title: Unsupervised discovery of mid-level discriminative patches
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0283
  article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs
– volume: 29
  start-page: 141
  issue: 6
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0062
  article-title: The mnist database of handwritten digit images for machine learning research
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2211477
– start-page: 133
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0068
  article-title: Deephash: getting regularization, depth and fine-tuning right
– start-page: 2595
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0022
  article-title: Parallelized stochastic gradient descent
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0217
  article-title: Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking
– volume: 38
  start-page: 1088
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0218
  article-title: Cnntracker: online discriminative object tracking via deep convolutional neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.048
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0252
  article-title: Deep gaze i: boosting saliency prediction with feature maps trained on imagenet
– year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0119
  article-title: Understanding deep learning requires rethinking generalization
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0138
  article-title: Speeding up convolutional neural networks with low rank expansions
– volume: 67
  start-page: 85
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0234
  article-title: Improving patch-based scene text script identification with ensembles of conjoined networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.01.032
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0239
  article-title: Multi-digit number recognition from street view imagery using deep convolutional neural networks
– start-page: 4700
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0129
  article-title: Densely connected convolutional networks
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0146
  article-title: Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding
– start-page: 1717
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0258
  article-title: Learning and transferring mid-level image representations using convolutional neural networks
– start-page: 4277
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0289
  article-title: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0286
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– start-page: 834
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0184
  article-title: Part-based r-cnns for fine-grained category detection
– volume: 59
  start-page: 312
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0272
  article-title: Multi-scale context for scene labeling via flexible segmentation graph
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.023
– start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0010
  article-title: Going deeper with convolutions
– volume: 59
  start-page: 188
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0274
  article-title: Scene parsing using inference embedded deep networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.01.027
– volume: 81
  start-page: 80
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0181
  article-title: Finely-grained annotated datasets for image-based plant phenotyping
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.10.013
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_sbref0127
  article-title: Resnet in resnet: generalizing residual architectures
  publication-title: CoRR
– year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0110
  article-title: Sgdr: Stochastic gradient descent with warm restarts
– start-page: 362
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0249
  article-title: Predicting eye fixations using convolutional neural networks
– ident: 10.1016/j.patcog.2017.10.013_bib0280
  doi: 10.1109/LSP.2015.2441781
– volume: 47
  start-page: 3343
  issue: 10
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0254
  article-title: A survey on still image based human action recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.04.018
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0057
  article-title: Empirical evaluation of rectified activations in convolutional network
– volume: 37
  start-page: 328
  issue: 3
  year: 1989
  ident: 10.1016/j.patcog.2017.10.013_bib0298
  article-title: Phoneme recognition using time-delay neural networks
  publication-title: IEEE Trans. Acoustics, Speech, Signal Process.
  doi: 10.1109/29.21701
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2017.10.013_bib0004
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 298
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0025
  article-title: Time series classification using multi-channels deep convolutional neural networks
– year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0047
  article-title: Stochastic pooling for regularization of deep convolutional neural networks
– volume: 24
  start-page: 279
  issue: 3
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0095
  article-title: Deep convolutional neural networks and data augmentation for environmental sound classification
  publication-title: Signal Process. Lett. (SPL)
  doi: 10.1109/LSP.2017.2657381
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  ident: 10.1016/j.patcog.2017.10.013_bib0207
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2009.167
– start-page: 932
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0035
  article-title: Human attention in visual question answering: Do humans and deep networks look at the same regions?
– start-page: 342
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0098
  article-title: Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data augmentation
– volume: 66
  start-page: 437
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0233
  article-title: Text/non-text image classification in the wild with convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.12.005
– start-page: 2818
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0041
  article-title: Rethinking the inception architecture for computer vision
– start-page: 169
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0154
  article-title: Scalar quantization for large scale image search
– start-page: 5546
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0189
  article-title: Fine-grained recognition without part annotations
– year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0019
  article-title: Deep learning using linear support vector machines
– start-page: 2470
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0262
  article-title: Actions and attributes from wholes and parts
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0102
  article-title: All you need is a good init
– volume: 29
  start-page: 4790
  issue: 32
  year: 1990
  ident: 10.1016/j.patcog.2017.10.013_bib0006
  article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture
  publication-title: Appl. Opt.
  doi: 10.1364/AO.29.004790
– volume: 25
  start-page: 1713
  issue: 4
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0190
  article-title: Weakly supervised fine-grained categorization with part-based image representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2531289
– start-page: 539
  year: 2005
  ident: 10.1016/j.patcog.2017.10.013_bib0065
  article-title: Learning a similarity metric discriminatively, with application to face verification
– start-page: 343
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0111
  article-title: No more pesky learning rates
– volume: 141
  start-page: 245
  issue: 4
  year: 1994
  ident: 10.1016/j.patcog.2017.10.013_bib0198
  article-title: Original approach for the localisation of objects in images
  publication-title: IEE Proc.-Vis. Image Signal Process.
  doi: 10.1049/ip-vis:19941301
– start-page: 597
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0219
  article-title: Online tracking by learning discriminative saliency map with convolutional neural network
– start-page: 1486
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0086
  article-title: Deep generative image models using a Laplacian pyramid of adversarial networks
– start-page: 630
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0123
  article-title: Identity mappings in deep residual networks
– start-page: 886
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0238
  article-title: Automatic discrimination of text and non-text natural images
– volume: 10
  start-page: 2615
  year: 2009
  ident: 10.1016/j.patcog.2017.10.013_bib0163
  article-title: Hash kernels for structured data
  publication-title: J. Mach. Learn. Res. (JMLR)
– ident: 10.1016/j.patcog.2017.10.013_bib0225
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0037
  article-title: Multi-scale context aggregation by dilated convolutions
– start-page: 1080
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0261
  article-title: Contextual action recognition with r*CNN
– volume: 63
  start-page: 499
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0080
  article-title: Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.022
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0208
  article-title: Fracking deep convolutional image descriptors
  publication-title: CoRR abs/1412.6537
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0158
  article-title: Designing energy-efficient convolutional neural networks using energy-aware pruning
  publication-title: CoRR abs/1611.05128
– start-page: 3973
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0180
  article-title: A large-scale car dataset for fine-grained categorization and verification
– volume: 30
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0054
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: 10.1016/j.patcog.2017.10.013_bib0177
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0253
  article-title: End-to-end convolutional network for saliency prediction
  publication-title: CoRR abs/1507.01422
– volume: 34
  start-page: 1704
  issue: 9
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0053
  article-title: Aggregating local image descriptors into compact codes
  publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2011.235
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0172
  article-title: The pascal visual object classes challenge: a retrospective
  publication-title: Int. J. Conflict Violence (IJCV)
– volume: 36
  start-page: 222
  issue: 2
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0200
  article-title: Category independent object proposals
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2013.122
– start-page: 4013
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0133
  article-title: Fast algorithms for convolutional neural networks
– year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0105
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  ident: 10.1016/j.patcog.2017.10.013_bib0242
  article-title: Learning to forget: continual prediction with lstm
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0039
  article-title: Wavenet: a generative model for raw audio
  publication-title: CoRR abs/1609.03499
– start-page: 842
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0191
  article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification
– year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0240
  article-title: Deep structured output learning for unconstrained text recognition
– volume: 48
  start-page: 2993
  issue: 10
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0071
  article-title: Deep feature learning with relative distance comparison for person re-identification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.005
– start-page: 392
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0052
  article-title: Multi-scale orderless pooling of deep convolutional activation features
– start-page: 1269
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0137
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
– volume: 22
  start-page: 986
  issue: 8
  year: 2003
  ident: 10.1016/j.patcog.2017.10.013_bib0187
  article-title: Mutual-information-based registration of medical images: a survey
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.815867
– start-page: 1113
  year: 2009
  ident: 10.1016/j.patcog.2017.10.013_bib0164
  article-title: Feature hashing for large scale multitask learning
– volume: 64
  start-page: 1
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0232
  article-title: A comprehensive survey of mostly textual document segmentation algorithms since 2008
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.10.023
– volume: 44
  start-page: 572
  issue: 3
  year: 2011
  ident: 10.1016/j.patcog.2017.10.013_bib0284
  article-title: Survey on speech emotion recognition: features, classification schemes, and databases
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.09.020
– volume: 48
  start-page: 1844
  issue: 5
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0195
  article-title: A coarse-to-fine approach for fast deformable object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.11.006
– start-page: 387
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0236
  article-title: Robust seed localization and growing with deep convolutional features for scene text detection
– volume: 7
  start-page: 669
  issue: 4
  year: 1993
  ident: 10.1016/j.patcog.2017.10.013_bib0064
  article-title: Signature verification using a siamese time delay neural network
  publication-title: Int. J. Pattern Recognit. Artif. Intell. (IJPRAI)
  doi: 10.1142/S0218001493000339
– start-page: 2351
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0212
  article-title: Adaptive object detection using adjacency and zoom prediction
– volume: 70
  start-page: 60
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0201
  article-title: Textproposals: a text-specific selective search algorithm for word spotting in the wild
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.04.027
– start-page: 3620
  year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0281
  article-title: Dag-recurrent neural networks for scene labeling
– start-page: 933
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0308
  article-title: Language modeling with gated convolutional networks
– start-page: 1347
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0227
  article-title: Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation
– start-page: 4624
  year: 2015
  ident: 10.1016/j.patcog.2017.10.013_bib0292
  article-title: Speech acoustic modeling from raw multichannel waveforms
– volume: 61
  start-page: 610
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0171
  article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.026
– volume: 13
  start-page: 3
  issue: 1
  year: 1981
  ident: 10.1016/j.patcog.2017.10.013_bib0271
  article-title: A survey on image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(81)90028-5
– year: 2016
  ident: 10.1016/j.patcog.2017.10.013_bib0038
  article-title: Neural machine translation in linear time
  publication-title: CoRR abs/1610.10099
– start-page: 9
  year: 2012
  ident: 10.1016/j.patcog.2017.10.013_bib0013
  article-title: Efficient backprop
– start-page: 1746
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0312
  article-title: Convolutional neural networks for sentence classification
– start-page: 580
  year: 2014
  ident: 10.1016/j.patcog.2017.10.013_bib0202
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– start-page: 588
  year: 2013
  ident: 10.1016/j.patcog.2017.10.013_bib0260
  article-title: Poselet conditioned pictorial structures
– volume: 39
  start-page: 677
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2017.10.013_bib0270
  article-title: Long-term recurrent convolutional networks for visual recognition and description
  publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI)
  doi: 10.1109/TPAMI.2016.2599174
SSID ssj0017142
Score 2.7135797
Snippet •We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 354
SubjectTerms Convolutional neural network
Deep learning
Title Recent advances in convolutional neural networks
URI https://dx.doi.org/10.1016/j.patcog.2017.10.013
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZHycHrtkl28zqWYqmKPVnoLWRfUpG02PTqb3cm2RQFUfCSkGU3hC-z82C_mQG4tSrMKIORaSUwQJGRZQW6DUyajGsbpiYrKDn5aRZP5-JhES06MG5zYYhW6XR_o9Nrbe1Ghg7N4Xq5pBxfKjuIFxRSEYQUtwuRkJQPPnY0D-rv3VQM5wGj2W36XM3xWqO6W70QwSsZEMcr4D-bpy8mZ3IEB85X9EbN5xxDx5QncNj2YfDctjwFH30_tB2eO8_feMvSIza5kyp8BVWtrG8153tzBvPJ3fN4ylwnBKbQpa-YUppLE5pICZElOvQLKQ2PNFpfnXCZBr42sUHlhshrJdGMS55ZbgWPbaFwF59Dt1yV5gI8Hgmr4wJdHWUxtpKZ4GnhW4ESpTG4i3vAWwBy5cqEU7eKt7zlg73mDWw5wUajCFsP2G7VuimT8cf8pMU2__a7c9Tkv668_PfKK9jHp7RhK15Dt3rfmhv0KCrZr0WmD3uj-8fp7BPIisuF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke9CLb7E-c_C6NsluXsdSLKl9nFrobcm-pCJpsfX_O5tsREEUvCSwyYTly-w82G9mAe6NDDNbwUiUZJigiMiQAsMGInRGlQlTnRW2OHk6i_MFe1pGyxYMmloYS6t0tr-26ZW1diM9h2Zvs1rZGl_bdhAvqKQsCDFv79juVFEbOv3ROJ99biYkAaubhtOAWIGmgq6ieW3Q4q2fLccrebA0r4D-7KG-eJ3hERy4cNHr1zM6hpYuT-CwOYrBcyvzFHwM_9B9eG5Lf-utSs8Syp1i4Sds48rqVtG-t2ewGD7OBzlxhyEQiVH9jkipqNChjiRjWaJCvxBC00ihA1YJFWngKx1rtG8IvpICPbmgmaGG0dgUEhfyObTLdakvwKMRMyouMNqRBtMrkTGaFr5hqFQK87u4C7QBgEvXKdweWPHKG0rYC69h4xY2O4qwdYF8Sm3qThl_vJ802PJvf5yjMf9V8vLfknewl8-nEz4ZzcZXsI9P0pq8eA3t3du7vsEAYydunQJ9ANRBzjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+convolutional+neural+networks&rft.jtitle=Pattern+recognition&rft.au=Gu%2C+Jiuxiang&rft.au=Wang%2C+Zhenhua&rft.au=Kuen%2C+Jason&rft.au=Ma%2C+Lianyang&rft.date=2018-05-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=77&rft.spage=354&rft.epage=377&rft_id=info:doi/10.1016%2Fj.patcog.2017.10.013&rft.externalDocID=S0031320317304120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon