Recent advances in convolutional neural networks
•We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.•We introduce the applications of CNN on various tasks, including image classifica...
Saved in:
Published in | Pattern recognition Vol. 77; pp. 354 - 377 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.•We introduce the applications of CNN on various tasks, including image classification, object detection, object tracking, pose estimation, text detection, visual saliency detection, action recognition, scene labeling, speech and natural language processing.•We discuss the challenges in CNN and give several future research directions.
In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing. |
---|---|
AbstractList | •We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.•We introduce the applications of CNN on various tasks, including image classification, object detection, object tracking, pose estimation, text detection, visual saliency detection, action recognition, scene labeling, speech and natural language processing.•We discuss the challenges in CNN and give several future research directions.
In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing. |
Author | Wang, Xingxing Kuen, Jason Chen, Tsuhan Gu, Jiuxiang Shuai, Bing Shahroudy, Amir Wang, Zhenhua Wang, Gang Ma, Lianyang Cai, Jianfei Liu, Ting |
Author_xml | – sequence: 1 givenname: Jiuxiang orcidid: 0000-0002-3437-5084 surname: Gu fullname: Gu, Jiuxiang email: jgu004@ntu.edu.sg organization: ROSE Lab, Interdisciplinary Graduate School, Nanyang Technological University, Singapore – sequence: 2 givenname: Zhenhua surname: Wang fullname: Wang, Zhenhua organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Jason surname: Kuen fullname: Kuen, Jason email: jasonkuen@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Lianyang surname: Ma fullname: Ma, Lianyang email: lyma@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 5 givenname: Amir surname: Shahroudy fullname: Shahroudy, Amir email: amir3@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 6 givenname: Bing surname: Shuai fullname: Shuai, Bing email: bshuai001@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 7 givenname: Ting surname: Liu fullname: Liu, Ting email: LIUT0016@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 8 givenname: Xingxing surname: Wang fullname: Wang, Xingxing email: wangxx@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 9 givenname: Gang surname: Wang fullname: Wang, Gang email: WangGang@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 10 givenname: Jianfei surname: Cai fullname: Cai, Jianfei email: asjfcai@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 11 givenname: Tsuhan surname: Chen fullname: Chen, Tsuhan email: tsuhan@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw_7B3adJPvRehCk-AUFQfQcspNZSV2TkqQV_7271pMHPQ28M88Lz8zYxHlHjJ1zKDjw-mJTbHVC_1oI4M0QFcDlEZvyRSPzipdiwqYAkudSgDxhsxg3MBwOiymDJ0JyKdNmrx1SzKzL0Lu973fJeqf7zNEufI_04cNbPGXHne4jnf3MOXu5vXle3efrx7uH1fU6Rwl1yhGNbElQhWW5bIwA3bYkK1PyyjSyXXAwVBOAQLE02ApetXLZya6UdacRGjln5aEXg48xUKe2wb7r8Kk4qNFabdTBWo3WYzpYD9jlLwxt0qNKCtr2_8FXB5gGsb2loCJaGt5ibCBMynj7d8EXZz94cg |
CitedBy_id | crossref_primary_10_1017_eds_2022_35 crossref_primary_10_3390_foods13132144 crossref_primary_10_1007_s11063_022_10741_9 crossref_primary_10_3390_en13092242 crossref_primary_10_1016_j_heliyon_2024_e26812 crossref_primary_10_1016_j_patcog_2019_01_045 crossref_primary_10_1038_s44222_023_00054_4 crossref_primary_10_1088_1475_7516_2023_09_029 crossref_primary_10_1109_JSEN_2019_2935812 crossref_primary_10_1016_j_neucom_2021_04_076 crossref_primary_10_1109_TPWRS_2023_3286406 crossref_primary_10_3390_cancers15143582 crossref_primary_10_3390_s21165446 crossref_primary_10_1016_j_isprsjprs_2023_11_016 crossref_primary_10_3390_atmos12111487 crossref_primary_10_1088_2631_8695_ad3dae crossref_primary_10_1007_s10479_024_05902_z crossref_primary_10_1038_s41598_023_28479_2 crossref_primary_10_3390_su14031583 crossref_primary_10_9766_KIMST_2021_24_6_591 crossref_primary_10_1007_s11276_020_02379_z crossref_primary_10_1109_OJCOMS_2024_3472094 crossref_primary_10_1109_OJSP_2024_3435703 crossref_primary_10_3390_met13061039 crossref_primary_10_1002_mp_16267 crossref_primary_10_57062_ijpem_st_2022_0038 crossref_primary_10_1016_j_eswa_2021_114600 crossref_primary_10_3390_jimaging11030091 crossref_primary_10_3390_brainsci13081148 crossref_primary_10_1016_j_bbe_2023_02_002 crossref_primary_10_3390_electronics12112475 crossref_primary_10_3390_app10030932 crossref_primary_10_1016_j_jii_2024_100662 crossref_primary_10_1108_DTA_05_2024_0472 crossref_primary_10_1016_j_micpro_2022_104687 crossref_primary_10_1007_s13369_023_08143_7 crossref_primary_10_1109_TNNLS_2023_3246263 crossref_primary_10_1016_j_atech_2024_100556 crossref_primary_10_1016_j_patcog_2019_01_020 crossref_primary_10_1109_TITS_2024_3422039 crossref_primary_10_1016_j_inffus_2022_11_007 crossref_primary_10_1080_08839514_2023_2166233 crossref_primary_10_3390_rs14225853 crossref_primary_10_1080_00949655_2024_2439453 crossref_primary_10_1142_S0218001424590043 crossref_primary_10_1109_ACCESS_2021_3065273 crossref_primary_10_5194_amt_17_7109_2024 crossref_primary_10_1080_10494820_2023_2202698 crossref_primary_10_1007_s10462_025_11152_7 crossref_primary_10_1016_j_media_2019_101561 crossref_primary_10_1016_j_asoc_2022_108660 crossref_primary_10_3390_mi14010188 crossref_primary_10_1016_j_measen_2024_101191 crossref_primary_10_1109_TIP_2023_3275872 crossref_primary_10_1016_j_dche_2024_100207 crossref_primary_10_1080_05704928_2020_1859525 crossref_primary_10_1007_s00521_022_07762_9 crossref_primary_10_1364_OE_496020 crossref_primary_10_1109_TIM_2024_3500062 crossref_primary_10_1177_20552076221133703 crossref_primary_10_1177_07316844241228182 crossref_primary_10_31590_ejosat_1015061 crossref_primary_10_3390_ma15051923 crossref_primary_10_1016_j_jdent_2023_104821 crossref_primary_10_1021_acs_analchem_3c03252 crossref_primary_10_1007_s00521_022_08017_3 crossref_primary_10_1016_j_swevo_2024_101838 crossref_primary_10_1016_j_ces_2023_119462 crossref_primary_10_1016_j_advengsoft_2022_103328 crossref_primary_10_1016_j_jobe_2023_106503 crossref_primary_10_1259_dmfr_20200375 crossref_primary_10_1016_j_energy_2022_124889 crossref_primary_10_1016_j_gene_2022_147045 crossref_primary_10_1109_ACCESS_2020_2987105 crossref_primary_10_1049_rsn2_12389 crossref_primary_10_1016_j_jnca_2020_102766 crossref_primary_10_3389_fonc_2022_960056 crossref_primary_10_1016_j_autcon_2019_102844 crossref_primary_10_1155_2020_7251280 crossref_primary_10_3389_fnins_2019_00625 crossref_primary_10_3390_app11052177 crossref_primary_10_3390_app10030976 crossref_primary_10_1109_TKDE_2021_3130903 crossref_primary_10_1016_j_foodcont_2024_110966 crossref_primary_10_1049_cit2_12320 crossref_primary_10_1109_JSTARS_2024_3468457 crossref_primary_10_1109_OJIM_2022_3217850 crossref_primary_10_1016_j_neucom_2021_08_106 crossref_primary_10_1002_lpor_202400972 crossref_primary_10_1016_j_eswa_2021_115968 crossref_primary_10_1007_s40815_023_01544_8 crossref_primary_10_3390_electronics9121993 crossref_primary_10_1016_j_adapen_2022_100100 crossref_primary_10_1007_s00521_023_08490_4 crossref_primary_10_1299_transjsme_22_00188 crossref_primary_10_3389_feart_2022_1026479 crossref_primary_10_1016_j_tre_2024_103445 crossref_primary_10_1016_j_tust_2024_106122 crossref_primary_10_1021_acsestwater_3c00152 crossref_primary_10_1088_1742_6596_1575_1_012204 crossref_primary_10_7717_peerj_cs_1611 crossref_primary_10_4018_JGIM_302659 crossref_primary_10_1155_2019_6565379 crossref_primary_10_1016_j_measurement_2021_110073 crossref_primary_10_21595_vp_2023_23670 crossref_primary_10_1109_ACCESS_2024_3413717 crossref_primary_10_1155_2020_2154928 crossref_primary_10_1177_17568293221148377 crossref_primary_10_1177_00368504211020161 crossref_primary_10_3390_app13106125 crossref_primary_10_3390_app122110953 crossref_primary_10_1155_2022_9258620 crossref_primary_10_3390_rs15194875 crossref_primary_10_1016_j_heliyon_2023_e16763 crossref_primary_10_21597_jist_976577 crossref_primary_10_1016_j_jhydrol_2022_127830 crossref_primary_10_3390_e26030262 crossref_primary_10_3390_app12178865 crossref_primary_10_3390_app122412606 crossref_primary_10_3390_rs13183606 crossref_primary_10_1016_j_compeleceng_2024_109194 crossref_primary_10_3390_rs13183605 crossref_primary_10_3390_ai1030027 crossref_primary_10_3390_math11224695 crossref_primary_10_1016_j_ajogmf_2023_101182 crossref_primary_10_3390_s22208060 crossref_primary_10_1007_s00477_024_02800_5 crossref_primary_10_1007_s11263_024_02043_5 crossref_primary_10_3390_biomedicines13020284 crossref_primary_10_1016_j_engappai_2022_105032 crossref_primary_10_1080_19942060_2024_2440075 crossref_primary_10_1007_s10489_022_03509_0 crossref_primary_10_1021_acs_jcim_3c01290 crossref_primary_10_1109_ACCESS_2024_3375766 crossref_primary_10_32604_cmc_2022_025692 crossref_primary_10_1016_j_foodcont_2025_111244 crossref_primary_10_3390_electronics14030553 crossref_primary_10_1007_s11042_020_10037_x crossref_primary_10_1007_s00354_021_00121_7 crossref_primary_10_1109_ACCESS_2019_2918851 crossref_primary_10_1186_s12864_023_09796_2 crossref_primary_10_1016_j_patcog_2021_107822 crossref_primary_10_1063_5_0237313 crossref_primary_10_2118_210605_PA crossref_primary_10_1038_s41598_023_39079_5 crossref_primary_10_1109_JLT_2021_3096286 crossref_primary_10_1093_cercor_bhab394 crossref_primary_10_3390_electronics12214448 crossref_primary_10_3389_fneur_2023_1171167 crossref_primary_10_3390_app15020741 crossref_primary_10_3390_en15217924 crossref_primary_10_1007_s11517_022_02714_w crossref_primary_10_1016_j_patcog_2018_08_012 crossref_primary_10_1038_s41392_023_01381_z crossref_primary_10_1007_s10462_019_09788_3 crossref_primary_10_1007_s42484_024_00194_9 crossref_primary_10_1016_j_neunet_2020_05_025 crossref_primary_10_1080_17477778_2024_2394063 crossref_primary_10_1109_ACCESS_2023_3349352 crossref_primary_10_1016_j_envsoft_2024_106072 crossref_primary_10_3390_app15052305 crossref_primary_10_1016_j_procs_2020_04_206 crossref_primary_10_1029_2021WR031554 crossref_primary_10_3390_heritage8010012 crossref_primary_10_1109_TIP_2019_2962685 crossref_primary_10_1016_j_ref_2025_100682 crossref_primary_10_3390_s21165486 crossref_primary_10_3390_w15010059 crossref_primary_10_1109_TCE_2022_3190069 crossref_primary_10_1007_s11277_024_10928_4 crossref_primary_10_1016_j_vehcom_2024_100760 crossref_primary_10_20965_ijat_2024_p0265 crossref_primary_10_1109_ACCESS_2024_3434681 crossref_primary_10_3390_machines10080610 crossref_primary_10_1007_s11044_023_09884_x crossref_primary_10_3390_app11125644 crossref_primary_10_3390_drones5040109 crossref_primary_10_1016_j_fuel_2020_119745 crossref_primary_10_17946_JRST_2023_46_4_277 crossref_primary_10_1109_ACCESS_2020_3021508 crossref_primary_10_1109_TPWRS_2022_3163381 crossref_primary_10_1109_TCSS_2021_3136201 crossref_primary_10_32604_sdhm_2024_045831 crossref_primary_10_3389_fpls_2023_1096802 crossref_primary_10_1016_j_neucom_2024_127700 crossref_primary_10_1016_j_net_2024_03_021 crossref_primary_10_1016_j_bios_2025_117399 crossref_primary_10_3389_fphys_2023_1162436 crossref_primary_10_1016_j_compstruct_2022_116170 crossref_primary_10_1016_j_knosys_2025_113166 crossref_primary_10_1016_j_lers_2023_07_001 crossref_primary_10_1016_j_ress_2023_109176 crossref_primary_10_1515_corrrev_2023_0027 crossref_primary_10_1016_j_scitotenv_2024_176758 crossref_primary_10_1007_s11760_022_02300_5 crossref_primary_10_3390_electronics14040797 crossref_primary_10_2139_ssrn_4182106 crossref_primary_10_1121_10_0027932 crossref_primary_10_3390_math11132884 crossref_primary_10_3390_jimaging11030085 crossref_primary_10_1016_j_nantod_2023_101968 crossref_primary_10_1109_TPAMI_2022_3213755 crossref_primary_10_1002_ps_8728 crossref_primary_10_1016_j_engappai_2024_109183 crossref_primary_10_1155_2018_4168538 crossref_primary_10_1109_TKDE_2023_3305809 crossref_primary_10_1007_s40042_022_00398_x crossref_primary_10_1016_j_tsep_2025_103289 crossref_primary_10_3390_electronics9071140 crossref_primary_10_1016_j_measurement_2024_115331 crossref_primary_10_1186_s12911_024_02460_z crossref_primary_10_3390_diagnostics14242875 crossref_primary_10_1145_3649448 crossref_primary_10_1016_j_indcrop_2024_119671 crossref_primary_10_1109_ACCESS_2020_3033481 crossref_primary_10_1016_j_chaos_2022_113059 crossref_primary_10_1007_s00530_021_00824_3 crossref_primary_10_1007_s11042_023_17375_6 crossref_primary_10_1142_S0219519424400785 crossref_primary_10_1016_j_ress_2022_108715 crossref_primary_10_2139_ssrn_5050068 crossref_primary_10_3390_brainsci12010094 crossref_primary_10_1049_iet_rpg_2019_0949 crossref_primary_10_2174_1574893618666230706112826 crossref_primary_10_1016_j_cmpb_2023_107957 crossref_primary_10_1145_3551486 crossref_primary_10_3390_math11132972 crossref_primary_10_1016_j_neucom_2024_127737 crossref_primary_10_1080_10589759_2025_2455451 crossref_primary_10_1109_TPAMI_2020_2993627 crossref_primary_10_1016_j_enganabound_2023_06_003 crossref_primary_10_1007_s12665_024_11515_3 crossref_primary_10_1109_ACCESS_2025_3548841 crossref_primary_10_32604_cmc_2025_060567 crossref_primary_10_1109_TCBB_2021_3113326 crossref_primary_10_1109_TGRS_2022_3164341 crossref_primary_10_1145_3608112 crossref_primary_10_1038_s42003_023_05098_1 crossref_primary_10_1016_j_ecoinf_2019_02_007 crossref_primary_10_1109_TITS_2021_3119023 crossref_primary_10_3390_e25101395 crossref_primary_10_1007_s13349_022_00561_9 crossref_primary_10_1016_j_csbj_2021_04_054 crossref_primary_10_3390_pr12081589 crossref_primary_10_1016_j_isci_2023_108714 crossref_primary_10_1109_TCYB_2021_3133106 crossref_primary_10_3390_app15020699 crossref_primary_10_1016_j_saa_2020_119168 crossref_primary_10_1109_ACCESS_2020_3024544 crossref_primary_10_1007_s11694_021_00990_y crossref_primary_10_1007_s44196_022_00108_2 crossref_primary_10_1145_3404993 crossref_primary_10_1016_j_epsr_2022_107923 crossref_primary_10_1016_j_neunet_2023_07_003 crossref_primary_10_1007_s00371_022_02591_2 crossref_primary_10_3390_su132212392 crossref_primary_10_3390_electronics11050732 crossref_primary_10_1007_s11277_024_10982_y crossref_primary_10_1007_s11069_024_06837_1 crossref_primary_10_3390_diagnostics12020532 crossref_primary_10_1109_TBME_2021_3124487 crossref_primary_10_3389_fnins_2024_1379495 crossref_primary_10_1016_j_foodchem_2022_132655 crossref_primary_10_1002_cpe_7230 crossref_primary_10_1038_s41467_024_45172_8 crossref_primary_10_32604_cmc_2021_015614 crossref_primary_10_3390_rs15061690 crossref_primary_10_1038_s42256_022_00508_1 crossref_primary_10_1016_j_neucom_2020_04_143 crossref_primary_10_1093_mnras_stad2913 crossref_primary_10_1155_2022_8465543 crossref_primary_10_3390_su13115990 crossref_primary_10_1016_j_sse_2021_108045 crossref_primary_10_1177_01655515231151406 crossref_primary_10_1016_j_apacoust_2024_110285 crossref_primary_10_1016_j_patcog_2019_05_015 crossref_primary_10_1016_j_est_2022_106193 crossref_primary_10_1088_2058_9565_ac79c9 crossref_primary_10_1021_acsomega_3c06263 crossref_primary_10_3390_agriculture13030730 crossref_primary_10_3390_batteries10090303 crossref_primary_10_3390_rs13163132 crossref_primary_10_1093_jge_gxae023 crossref_primary_10_1007_s42486_022_00121_6 crossref_primary_10_1109_TKDE_2023_3322405 crossref_primary_10_3390_informatics8030053 crossref_primary_10_1111_coin_12411 crossref_primary_10_1007_s13735_023_00279_4 crossref_primary_10_3389_fmars_2022_868420 crossref_primary_10_1007_s11517_022_02656_3 crossref_primary_10_32604_csse_2024_039849 crossref_primary_10_1109_JSEN_2024_3486373 crossref_primary_10_3390_ijms231911539 crossref_primary_10_3390_s23020854 crossref_primary_10_1016_j_oceaneng_2024_117501 crossref_primary_10_1364_OE_514466 crossref_primary_10_1016_j_eswa_2019_113017 crossref_primary_10_1109_ACCESS_2019_2915787 crossref_primary_10_3390_agronomy14040719 crossref_primary_10_1016_j_eswa_2019_113019 crossref_primary_10_1016_j_petrol_2019_106805 crossref_primary_10_1002_lpor_202300765 crossref_primary_10_1016_j_ultras_2023_107041 crossref_primary_10_1109_JSTARS_2021_3065687 crossref_primary_10_1007_s12652_019_01434_8 crossref_primary_10_1007_s11227_025_06936_1 crossref_primary_10_1155_2021_6919483 crossref_primary_10_1016_j_patcog_2022_108962 crossref_primary_10_3390_su142214812 crossref_primary_10_1186_s40537_020_00342_5 crossref_primary_10_1111_1365_2478_13672 crossref_primary_10_3390_ijms24043151 crossref_primary_10_3390_e25081169 crossref_primary_10_1007_s11227_020_03186_1 crossref_primary_10_1007_s11831_023_10000_7 crossref_primary_10_3390_s21196691 crossref_primary_10_1016_j_compbiomed_2025_109871 crossref_primary_10_1080_10447318_2021_1979290 crossref_primary_10_3390_rs14153732 crossref_primary_10_1155_2021_1428710 crossref_primary_10_1109_ACCESS_2024_3379303 crossref_primary_10_1016_j_apenergy_2022_120114 crossref_primary_10_1016_j_neucom_2020_12_064 crossref_primary_10_1080_19498276_2023_2251982 crossref_primary_10_1109_ACCESS_2021_3082557 crossref_primary_10_1016_j_cag_2023_05_017 crossref_primary_10_1016_j_patcog_2021_108215 crossref_primary_10_1007_s11277_023_10258_x crossref_primary_10_1080_23307706_2022_2141359 crossref_primary_10_1016_j_compscitech_2024_110713 crossref_primary_10_1111_tgis_13264 crossref_primary_10_1007_s12665_023_11072_1 crossref_primary_10_1016_j_ces_2021_116679 crossref_primary_10_1016_j_neucom_2022_01_090 crossref_primary_10_1109_ACCESS_2024_3350555 crossref_primary_10_3390_drones7010002 crossref_primary_10_3390_ijerph19020923 crossref_primary_10_1016_j_csa_2023_100014 crossref_primary_10_1109_TNSRE_2021_3097007 crossref_primary_10_1007_s12652_021_03289_4 crossref_primary_10_2147_IJGM_S499950 crossref_primary_10_23919_PCMP_2023_000167 crossref_primary_10_2478_jaiscr_2023_0006 crossref_primary_10_3389_fbioe_2025_1502669 crossref_primary_10_3390_app11135911 crossref_primary_10_3390_ani12121553 crossref_primary_10_1016_j_patcog_2021_108207 crossref_primary_10_1038_s41598_024_59554_x crossref_primary_10_1049_enc2_12091 crossref_primary_10_1109_JSSC_2020_3041153 crossref_primary_10_1016_j_asoc_2022_109906 crossref_primary_10_1016_j_vlsi_2023_102074 crossref_primary_10_1049_iet_ipr_2018_6582 crossref_primary_10_1016_j_aca_2024_343577 crossref_primary_10_1016_j_morpho_2023_100723 crossref_primary_10_1016_j_yofte_2024_104125 crossref_primary_10_1021_acsomega_2c07722 crossref_primary_10_1038_s41598_023_35048_0 crossref_primary_10_1017_wsc_2018_66 crossref_primary_10_1155_2020_8887723 crossref_primary_10_1016_j_aca_2021_338574 crossref_primary_10_1016_j_ijdrr_2024_104918 crossref_primary_10_1109_JSEN_2020_3012965 crossref_primary_10_3390_s25020472 crossref_primary_10_1111_geb_13374 crossref_primary_10_1360_SST_2021_0193 crossref_primary_10_1049_iet_sen_2019_0045 crossref_primary_10_1016_j_energy_2024_133495 crossref_primary_10_3390_make4040047 crossref_primary_10_1016_j_compbiomed_2025_109842 crossref_primary_10_1088_1361_6501_ad3b2b crossref_primary_10_3390_rs13224712 crossref_primary_10_1155_2021_8235108 crossref_primary_10_1016_j_ces_2023_119471 crossref_primary_10_3390_pr12061129 crossref_primary_10_1016_j_measurement_2024_114955 crossref_primary_10_2139_ssrn_4473983 crossref_primary_10_1109_TCE_2019_2897758 crossref_primary_10_1016_j_bspc_2023_105327 crossref_primary_10_1007_s11663_024_03133_y crossref_primary_10_2174_2666145416666230420093435 crossref_primary_10_1016_j_patcog_2021_108226 crossref_primary_10_1016_j_jprocont_2021_07_012 crossref_primary_10_1016_j_eswa_2024_124465 crossref_primary_10_3390_en15145005 crossref_primary_10_1093_molbev_msad216 crossref_primary_10_1016_j_isatra_2025_02_010 crossref_primary_10_1038_s41598_024_59095_3 crossref_primary_10_35784_acs_2021_08 crossref_primary_10_1016_j_rse_2024_114073 crossref_primary_10_1109_ACCESS_2022_3151089 crossref_primary_10_1016_j_patcog_2025_111382 crossref_primary_10_1002_hbm_26799 crossref_primary_10_1109_TGRS_2021_3079963 crossref_primary_10_1016_j_osnem_2022_100225 crossref_primary_10_2478_pjmpe_2020_0001 crossref_primary_10_1103_PhysRevC_105_034611 crossref_primary_10_1016_j_ijdrr_2024_104921 crossref_primary_10_1007_s00521_024_10207_0 crossref_primary_10_1016_j_camwa_2024_10_036 crossref_primary_10_1109_TGRS_2024_3362471 crossref_primary_10_3390_rs16010037 crossref_primary_10_1007_s11042_023_16754_3 crossref_primary_10_1016_j_patcog_2021_108241 crossref_primary_10_33166_AETiC_2023_03_003 crossref_primary_10_1016_j_envsoft_2020_104856 crossref_primary_10_1016_j_patcog_2021_108242 crossref_primary_10_1063_5_0043653 crossref_primary_10_1155_2021_7865856 crossref_primary_10_1016_j_iref_2025_103996 crossref_primary_10_1016_j_eswa_2024_123156 crossref_primary_10_2174_1574893615666200224095531 crossref_primary_10_1007_s11227_022_04431_5 crossref_primary_10_1016_j_engappai_2023_106276 crossref_primary_10_3390_jmse12071119 crossref_primary_10_1007_s11356_024_32706_2 crossref_primary_10_31466_kfbd_1423022 crossref_primary_10_3389_fpubh_2022_805086 crossref_primary_10_1186_s12938_021_00915_2 crossref_primary_10_29026_oea_2025_240135 crossref_primary_10_1016_j_cirp_2019_03_021 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104688 crossref_primary_10_1007_s11042_020_08905_7 crossref_primary_10_1080_17538947_2024_2393265 crossref_primary_10_3390_rs14153737 crossref_primary_10_1007_s13198_023_01861_z crossref_primary_10_3390_automation3040031 crossref_primary_10_1016_j_jhydrol_2023_130320 crossref_primary_10_3390_s22228641 crossref_primary_10_54097_hset_v23i_3130 crossref_primary_10_3390_rs14040897 crossref_primary_10_3390_f15081380 crossref_primary_10_1007_s10479_022_04911_0 crossref_primary_10_3390_pharmaceutics14010183 crossref_primary_10_1016_j_swevo_2024_101755 crossref_primary_10_1016_j_cis_2022_102663 crossref_primary_10_3390_rs15020449 crossref_primary_10_1080_14488353_2019_1616357 crossref_primary_10_1016_j_cose_2025_104420 crossref_primary_10_1016_j_cma_2024_117054 crossref_primary_10_1007_s13369_021_05674_9 crossref_primary_10_1016_j_asoc_2024_112324 crossref_primary_10_1016_j_nme_2024_101801 crossref_primary_10_3389_fnagi_2021_757823 crossref_primary_10_1016_j_biosystemseng_2021_09_014 crossref_primary_10_3390_rs15184501 crossref_primary_10_1016_j_ecoinf_2021_101286 crossref_primary_10_2514_1_J063815 crossref_primary_10_1049_ise2_12095 crossref_primary_10_1109_TBCAS_2022_3166530 crossref_primary_10_1016_j_dibe_2024_100449 crossref_primary_10_1109_TASLP_2023_3261757 crossref_primary_10_3390_jimaging7080121 crossref_primary_10_1109_MC_2018_2381116 crossref_primary_10_3390_electronics12183787 crossref_primary_10_1016_j_inffus_2023_101880 crossref_primary_10_3390_rs15102652 crossref_primary_10_1109_ACCESS_2022_3211976 crossref_primary_10_25046_aj050570 crossref_primary_10_3390_app13042302 crossref_primary_10_1016_j_mtcomm_2024_111137 crossref_primary_10_1145_3544491 crossref_primary_10_1177_20552076241293498 crossref_primary_10_2478_jaiscr_2020_0020 crossref_primary_10_1016_j_trc_2021_103303 crossref_primary_10_1109_OJITS_2020_2996063 crossref_primary_10_1177_09544119241266375 crossref_primary_10_3390_rs16010057 crossref_primary_10_3233_AIC_190626 crossref_primary_10_3389_fncom_2023_1209372 crossref_primary_10_3390_rs16244742 crossref_primary_10_1016_j_actatropica_2024_107277 crossref_primary_10_1016_j_brainres_2025_149507 crossref_primary_10_3390_rs15164098 crossref_primary_10_1007_s00607_024_01392_w crossref_primary_10_29252_jsdp_17_4_139 crossref_primary_10_1007_s12555_021_0234_6 crossref_primary_10_1117_1_JEI_29_4_043004 crossref_primary_10_1139_juvs_2018_0023 crossref_primary_10_1016_j_bspc_2022_104236 crossref_primary_10_3390_rs15102673 crossref_primary_10_1016_j_jksuci_2023_101865 crossref_primary_10_2196_71560 crossref_primary_10_1364_AO_445528 crossref_primary_10_1021_acs_jcim_2c00085 crossref_primary_10_1093_plphys_kiae049 crossref_primary_10_1109_ACCESS_2020_3037114 crossref_primary_10_1007_s11227_022_04936_z crossref_primary_10_3390_diagnostics14010012 crossref_primary_10_1016_j_envsoft_2024_106126 crossref_primary_10_1109_ACCESS_2022_3217227 crossref_primary_10_3389_fnins_2019_00753 crossref_primary_10_3390_electronics13010189 crossref_primary_10_3390_app12199874 crossref_primary_10_1016_j_jer_2025_01_007 crossref_primary_10_1016_j_neucom_2024_128077 crossref_primary_10_1016_j_arr_2024_102285 crossref_primary_10_1016_j_measurement_2020_108827 crossref_primary_10_1063_5_0057404 crossref_primary_10_1615_JFlowVisImageProc_2022043908 crossref_primary_10_1088_1361_665X_acb2a0 crossref_primary_10_1016_j_biosystemseng_2024_07_002 crossref_primary_10_1016_j_triboint_2018_12_041 crossref_primary_10_1016_j_imu_2021_100545 crossref_primary_10_1002_adom_202301337 crossref_primary_10_1016_j_eswa_2023_122704 crossref_primary_10_3233_JIFS_233388 crossref_primary_10_1109_ACCESS_2020_3026483 crossref_primary_10_1016_j_jcomm_2024_100438 crossref_primary_10_1364_JOSAA_428214 crossref_primary_10_1016_j_cma_2025_117772 crossref_primary_10_1016_j_eswa_2021_115834 crossref_primary_10_1121_10_0005898 crossref_primary_10_2139_ssrn_4192441 crossref_primary_10_1109_TGRS_2024_3358397 crossref_primary_10_1016_j_compag_2023_108194 crossref_primary_10_1364_AO_425941 crossref_primary_10_1016_j_displa_2024_102864 crossref_primary_10_1103_PhysRevAccelBeams_23_032805 crossref_primary_10_3390_electronics12071561 crossref_primary_10_1007_s13555_024_01296_9 crossref_primary_10_1103_PhysRevApplied_16_064006 crossref_primary_10_3390_sym12050867 crossref_primary_10_1016_j_procs_2023_01_156 crossref_primary_10_3390_app10103443 crossref_primary_10_2197_ipsjjip_31_256 crossref_primary_10_3390_s21072411 crossref_primary_10_1016_j_autcon_2020_103081 crossref_primary_10_5194_gmd_17_7347_2024 crossref_primary_10_53070_bbd_1361811 crossref_primary_10_3233_JIFS_191000 crossref_primary_10_1007_s11042_024_19976_1 crossref_primary_10_1016_j_procs_2023_01_151 crossref_primary_10_1177_0894439321994218 crossref_primary_10_1016_j_jfoodeng_2020_109916 crossref_primary_10_1016_j_patcog_2021_107929 crossref_primary_10_1016_j_ipl_2023_106407 crossref_primary_10_1016_j_patcog_2021_107928 crossref_primary_10_1088_2634_4386_ac724d crossref_primary_10_3389_feart_2022_988556 crossref_primary_10_1038_s41598_023_40341_z crossref_primary_10_1080_10589759_2025_2468824 crossref_primary_10_1016_j_patcog_2024_110264 crossref_primary_10_3390_bioengineering11070689 crossref_primary_10_1115_1_4045742 crossref_primary_10_1007_s11600_022_00912_6 crossref_primary_10_1109_ACCESS_2023_3239858 crossref_primary_10_1002_lpor_202301209 crossref_primary_10_1016_j_geoen_2023_212554 crossref_primary_10_1109_ACCESS_2020_2987829 crossref_primary_10_1109_TNNLS_2020_3005574 crossref_primary_10_2139_ssrn_4674956 crossref_primary_10_3390_electronics8050579 crossref_primary_10_3390_cancers13010011 crossref_primary_10_1080_0952813X_2019_1572658 crossref_primary_10_3390_s20102761 crossref_primary_10_1002_ejic_202300382 crossref_primary_10_1007_s00521_024_09809_5 crossref_primary_10_1007_s11042_023_17610_0 crossref_primary_10_1007_s11831_021_09557_y crossref_primary_10_2139_ssrn_4171568 crossref_primary_10_1016_j_array_2021_100077 crossref_primary_10_1109_JSAC_2019_2933763 crossref_primary_10_2139_ssrn_4503316 crossref_primary_10_1007_s11060_022_04224_z crossref_primary_10_3390_s20185373 crossref_primary_10_32604_cmc_2022_024232 crossref_primary_10_1016_j_neunet_2019_04_024 crossref_primary_10_1007_s13198_022_01759_2 crossref_primary_10_1109_ACCESS_2023_3258972 crossref_primary_10_1016_j_scitotenv_2023_166506 crossref_primary_10_3390_electronics13071194 crossref_primary_10_1007_s10851_024_01211_z crossref_primary_10_1016_j_jksuci_2023_101859 crossref_primary_10_1145_3472290 crossref_primary_10_3389_ebm_2024_10320 crossref_primary_10_3390_diagnostics13182979 crossref_primary_10_1109_JTEHM_2022_3180933 crossref_primary_10_1038_s41377_022_00976_5 crossref_primary_10_3390_diagnostics13182975 crossref_primary_10_1007_s10994_023_06334_9 crossref_primary_10_1016_j_physa_2022_128067 crossref_primary_10_1109_ACCESS_2019_2960292 crossref_primary_10_1016_j_measurement_2022_110868 crossref_primary_10_1093_jrr_rrab095 crossref_primary_10_1016_j_geoen_2023_212529 crossref_primary_10_1007_s42235_020_0049_9 crossref_primary_10_1080_23789689_2023_2233759 crossref_primary_10_1016_j_patcog_2020_107208 crossref_primary_10_3390_rs15112881 crossref_primary_10_1080_09540091_2023_2189217 crossref_primary_10_1109_TMM_2024_3443616 crossref_primary_10_3389_fbinf_2023_1284705 crossref_primary_10_4018_JDM_306188 crossref_primary_10_1016_j_yofte_2024_103766 crossref_primary_10_3390_agronomy14122909 crossref_primary_10_1051_matecconf_202440606001 crossref_primary_10_1038_s41598_023_46191_z crossref_primary_10_1016_j_joi_2024_101608 crossref_primary_10_3390_electronics13071179 crossref_primary_10_1007_s10489_023_04730_1 crossref_primary_10_3389_fpls_2022_805738 crossref_primary_10_3390_sym16121651 crossref_primary_10_1016_j_jmsy_2024_08_015 crossref_primary_10_1109_ACCESS_2024_3365632 crossref_primary_10_3390_electronics13193833 crossref_primary_10_1016_j_eswa_2023_121487 crossref_primary_10_1016_j_irbm_2020_12_002 crossref_primary_10_3390_app13179867 crossref_primary_10_1016_j_knosys_2023_110451 crossref_primary_10_1016_j_atech_2022_100036 crossref_primary_10_35234_fumbd_1099000 crossref_primary_10_1016_j_patcog_2021_107980 crossref_primary_10_3390_electronics12061352 crossref_primary_10_1038_s41598_022_22586_2 crossref_primary_10_1109_TIM_2023_3328707 crossref_primary_10_3390_bioengineering10121435 crossref_primary_10_1145_3568423 crossref_primary_10_2139_ssrn_4182236 crossref_primary_10_1145_3605775 crossref_primary_10_1038_s41598_019_47193_6 crossref_primary_10_1016_j_knosys_2024_112904 crossref_primary_10_3233_JIFS_223971 crossref_primary_10_1016_j_mlwa_2025_100638 crossref_primary_10_1080_21681163_2024_2361739 crossref_primary_10_1109_JSTARS_2025_3528650 crossref_primary_10_1177_1475921721998957 crossref_primary_10_3390_rs11030227 crossref_primary_10_1016_j_patcog_2021_107976 crossref_primary_10_1002_nag_3668 crossref_primary_10_1016_j_ijleo_2020_165096 crossref_primary_10_1093_ee_nvae085 crossref_primary_10_1109_TPAMI_2019_2954501 crossref_primary_10_1016_j_compbiomed_2022_105233 crossref_primary_10_3390_s18113910 crossref_primary_10_1039_D3MH00180F crossref_primary_10_3390_math10152819 crossref_primary_10_1155_2022_2243891 crossref_primary_10_1007_s11042_023_15281_5 crossref_primary_10_1007_s00521_023_09147_y crossref_primary_10_1109_TPAMI_2023_3294394 crossref_primary_10_1016_j_neucom_2019_02_040 crossref_primary_10_1109_TGRS_2022_3143528 crossref_primary_10_1109_ACCESS_2019_2962833 crossref_primary_10_3788_LOP240653 crossref_primary_10_3390_asi7040061 crossref_primary_10_1016_j_mri_2024_01_017 crossref_primary_10_1016_j_tsep_2023_101717 crossref_primary_10_1007_s42979_023_02218_w crossref_primary_10_1080_02678292_2023_2292635 crossref_primary_10_1088_1757_899X_928_3_032010 crossref_primary_10_1007_s10489_020_01932_9 crossref_primary_10_1080_01431161_2022_2032453 crossref_primary_10_1088_1742_6596_2273_1_012026 crossref_primary_10_1186_s40323_020_00153_6 crossref_primary_10_1016_j_entcom_2024_100817 crossref_primary_10_3390_atmos13122124 crossref_primary_10_1002_arp_1763 crossref_primary_10_1007_s11356_024_32807_y crossref_primary_10_1109_TSMC_2022_3158276 crossref_primary_10_1109_TEM_2024_3481439 crossref_primary_10_1016_j_neuroimage_2021_118048 crossref_primary_10_1109_TGRS_2023_3307609 crossref_primary_10_1109_ACCESS_2024_3419911 crossref_primary_10_3390_s21134284 crossref_primary_10_1155_2022_6544282 crossref_primary_10_1109_TGRS_2022_3200545 crossref_primary_10_1016_j_eswa_2023_121371 crossref_primary_10_1142_S1758825123500941 crossref_primary_10_33790_jiti1100102 crossref_primary_10_1016_j_physa_2024_129611 crossref_primary_10_4018_IJSWIS_359985 crossref_primary_10_3390_rs16224225 crossref_primary_10_1016_j_entcom_2024_100847 crossref_primary_10_3390_su151914125 crossref_primary_10_3390_ijgi11100497 crossref_primary_10_1155_2022_5031941 crossref_primary_10_3390_jimaging8020030 crossref_primary_10_1016_j_aei_2023_102332 crossref_primary_10_1109_TFUZZ_2024_3387429 crossref_primary_10_1016_j_aci_2019_11_004 crossref_primary_10_12677_CSA_2021_1112314 crossref_primary_10_1016_j_ijrmms_2021_104745 crossref_primary_10_1016_j_jtice_2024_105719 crossref_primary_10_1016_j_cmpb_2020_105816 crossref_primary_10_3390_healthcare10010109 crossref_primary_10_1049_el_2018_5051 crossref_primary_10_1016_j_artmed_2019_101711 crossref_primary_10_1007_s12559_023_10238_0 crossref_primary_10_1364_AO_516204 crossref_primary_10_1007_s11042_023_15873_1 crossref_primary_10_1109_ACCESS_2022_3154061 crossref_primary_10_1109_JSTARS_2021_3073149 crossref_primary_10_1615_JMachLearnModelComput_2024053706 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_3390_sym15020535 crossref_primary_10_1016_j_patcog_2021_107899 crossref_primary_10_1109_JSEN_2024_3394556 crossref_primary_10_1142_S021800142359005X crossref_primary_10_1109_TGRS_2020_3018135 crossref_primary_10_1016_j_apgeog_2025_103605 crossref_primary_10_3389_frcmn_2021_656786 crossref_primary_10_1016_j_optcom_2023_129711 crossref_primary_10_1016_j_future_2023_02_005 crossref_primary_10_1016_j_entcom_2024_100860 crossref_primary_10_1016_j_ijrefrig_2024_01_006 crossref_primary_10_7717_peerj_13537 crossref_primary_10_1134_S1062873824709905 crossref_primary_10_1109_TETCI_2024_3386916 crossref_primary_10_1007_s11554_022_01207_1 crossref_primary_10_16984_saufenbilder_1302803 crossref_primary_10_1016_j_imu_2024_101504 crossref_primary_10_1002_ps_6804 crossref_primary_10_1016_j_ecolind_2024_111806 crossref_primary_10_1051_e3sconf_202338909048 crossref_primary_10_1016_j_compbiomed_2023_107760 crossref_primary_10_1002_elan_202300207 crossref_primary_10_1049_el_2018_7671 crossref_primary_10_7717_peerj_cs_2041 crossref_primary_10_1186_s40537_020_00387_6 crossref_primary_10_18307_2023_0206 crossref_primary_10_1109_ACCESS_2019_2936591 crossref_primary_10_1016_j_rser_2023_113843 crossref_primary_10_3390_app15020563 crossref_primary_10_22469_jkslp_2022_33_3_142 crossref_primary_10_1016_j_bspc_2022_103824 crossref_primary_10_1002_ps_6810 crossref_primary_10_1016_j_ast_2024_109030 crossref_primary_10_3390_app11209616 crossref_primary_10_3390_rs16020341 crossref_primary_10_3390_s21082664 crossref_primary_10_7717_peerj_cs_2031 crossref_primary_10_1016_j_infsof_2024_107409 crossref_primary_10_1002_joc_8276 crossref_primary_10_1016_j_est_2022_106298 crossref_primary_10_1007_s12229_024_09299_z crossref_primary_10_1093_mnras_stab3786 crossref_primary_10_3390_e25071018 crossref_primary_10_1038_s41598_024_79368_1 crossref_primary_10_12677_CSA_2021_116180 crossref_primary_10_1016_j_neuroimage_2023_119904 crossref_primary_10_1007_s11082_022_04290_7 crossref_primary_10_1016_j_scitotenv_2023_163562 crossref_primary_10_1016_j_physleta_2020_126442 crossref_primary_10_1016_j_csite_2024_105334 crossref_primary_10_1177_18761364241305552 crossref_primary_10_1016_j_jhydrol_2025_132677 crossref_primary_10_1145_3374748 crossref_primary_10_1109_JPETS_2018_2881429 crossref_primary_10_1007_s00170_021_08462_9 crossref_primary_10_1177_1094342020953196 crossref_primary_10_3390_s23104800 crossref_primary_10_1109_TKDE_2024_3440654 crossref_primary_10_3390_ijerph182413409 crossref_primary_10_1016_j_patcog_2021_108304 crossref_primary_10_3390_sym13081543 crossref_primary_10_1007_s00216_021_03749_y crossref_primary_10_1177_14759217231218477 crossref_primary_10_1186_s12859_023_05330_z crossref_primary_10_1016_j_scitotenv_2024_172319 crossref_primary_10_3390_electronics13010150 crossref_primary_10_1016_j_ijhydene_2024_11_268 crossref_primary_10_1038_s41598_025_87782_2 crossref_primary_10_1016_j_net_2023_07_007 crossref_primary_10_1016_j_optlaseng_2021_106934 crossref_primary_10_26425_2658_3445_2022_5_3_73_82 crossref_primary_10_1088_1361_6501_abc6e3 crossref_primary_10_1111_jcmm_16288 crossref_primary_10_1109_JSTARS_2021_3138187 crossref_primary_10_1051_e3sconf_202452002021 crossref_primary_10_1109_ACCESS_2024_3430325 crossref_primary_10_23736_S2785_1265_24_01888_3 crossref_primary_10_1016_j_knosys_2024_111594 crossref_primary_10_1007_s10462_024_10836_w crossref_primary_10_1016_j_rpor_2020_03_015 crossref_primary_10_1111_eufm_12365 crossref_primary_10_3390_computers13120343 crossref_primary_10_1007_s11042_023_16217_9 crossref_primary_10_1016_j_engappai_2024_109987 crossref_primary_10_3788_LOP223239 crossref_primary_10_1080_0954898X_2024_2350578 crossref_primary_10_1080_24725579_2024_2398592 crossref_primary_10_3390_act12070274 crossref_primary_10_1016_j_patcog_2021_108324 crossref_primary_10_1093_mnras_stad2852 crossref_primary_10_1016_j_patcog_2018_04_011 crossref_primary_10_3390_electronics11223746 crossref_primary_10_3390_mi14050959 crossref_primary_10_1007_s12145_025_01793_1 crossref_primary_10_1111_exsy_12504 crossref_primary_10_1007_s11831_024_10148_w crossref_primary_10_11728_cjss2025_01_2024_0034 crossref_primary_10_1016_j_bspc_2021_102663 crossref_primary_10_1109_JSTARS_2020_3014966 crossref_primary_10_4108_eetiot_5046 crossref_primary_10_3390_app12126045 crossref_primary_10_1016_j_fcr_2023_109145 crossref_primary_10_1016_j_compbiomed_2024_108971 crossref_primary_10_1016_j_chemolab_2021_104404 crossref_primary_10_1109_ACCESS_2019_2933437 crossref_primary_10_3390_cancers16040750 crossref_primary_10_1155_2024_2644725 crossref_primary_10_1016_j_camwa_2024_05_013 crossref_primary_10_3390_computers11050083 crossref_primary_10_3390_rs14040812 crossref_primary_10_3389_fmed_2024_1497309 crossref_primary_10_3390_rs14040819 crossref_primary_10_1016_j_cja_2023_12_009 crossref_primary_10_1142_S0129065724500357 crossref_primary_10_1038_s41598_025_94315_4 crossref_primary_10_1016_j_jclepro_2023_139771 crossref_primary_10_1016_j_patcog_2019_106979 crossref_primary_10_1016_j_jfoodeng_2022_111198 crossref_primary_10_1080_10408347_2021_1969886 crossref_primary_10_1109_TKDE_2023_3333824 crossref_primary_10_3390_en16124636 crossref_primary_10_1109_TIM_2020_3032218 crossref_primary_10_1016_j_specom_2021_05_010 crossref_primary_10_46387_bjesr_1528035 crossref_primary_10_1016_j_neucom_2024_128102 crossref_primary_10_1007_s00521_023_09121_8 crossref_primary_10_5534_wjmh_240054 crossref_primary_10_1016_j_jprocont_2022_07_006 crossref_primary_10_3390_s23031486 crossref_primary_10_1039_D3AN01797D crossref_primary_10_3390_electronics9010153 crossref_primary_10_1038_s41598_021_95240_y crossref_primary_10_1007_s11265_023_01894_4 crossref_primary_10_1016_j_seta_2022_102071 crossref_primary_10_1109_JPROC_2021_3098483 crossref_primary_10_1109_TGRS_2019_2951433 crossref_primary_10_1016_j_patcog_2021_108361 crossref_primary_10_1109_TCCN_2024_3435478 crossref_primary_10_3390_app14125113 crossref_primary_10_1002_cem_3304 crossref_primary_10_1080_19440049_2024_2358518 crossref_primary_10_1016_j_energy_2023_127865 crossref_primary_10_1111_coin_12361 crossref_primary_10_1016_j_patcog_2021_108368 crossref_primary_10_1007_s11694_022_01473_4 crossref_primary_10_3390_ijerph17072270 crossref_primary_10_2320_matertrans_MT_M2022214 crossref_primary_10_1016_j_energy_2024_132257 crossref_primary_10_1016_j_neucom_2019_06_080 crossref_primary_10_1177_20503121241274197 crossref_primary_10_1016_j_procir_2020_04_158 crossref_primary_10_1109_ICJECE_2023_3289609 crossref_primary_10_1016_j_coastaleng_2019_103593 crossref_primary_10_56130_tucbis_1307926 crossref_primary_10_1016_j_cec_2022_100014 crossref_primary_10_1016_j_neucom_2019_06_084 crossref_primary_10_1016_j_patcog_2021_108396 crossref_primary_10_1007_s40846_020_00574_z crossref_primary_10_1016_j_compind_2024_104215 crossref_primary_10_3390_e22050517 crossref_primary_10_1016_j_techfore_2021_121067 crossref_primary_10_3390_info16030195 crossref_primary_10_1155_2018_5034684 crossref_primary_10_1007_s00500_022_07179_5 crossref_primary_10_3390_ijms252111649 crossref_primary_10_3390_electronics14010107 crossref_primary_10_1107_S2052252524002392 crossref_primary_10_1016_j_jhydrol_2022_128111 crossref_primary_10_1007_s11042_020_09495_0 crossref_primary_10_1063_5_0138504 crossref_primary_10_1049_iet_ipr_2017_0184 crossref_primary_10_1109_JPROC_2024_3520707 crossref_primary_10_1109_TIE_2019_2907440 crossref_primary_10_1016_j_eja_2019_01_004 crossref_primary_10_1371_journal_pone_0284791 crossref_primary_10_1299_jamdsm_2024jamdsm0097 crossref_primary_10_3390_jsan11030040 crossref_primary_10_1016_j_ress_2023_109837 crossref_primary_10_3390_ma14216311 crossref_primary_10_3390_rs13173460 crossref_primary_10_32604_cmc_2024_055007 crossref_primary_10_1016_j_engappai_2023_106003 crossref_primary_10_1016_j_envc_2023_100679 crossref_primary_10_3389_fncom_2023_1153572 crossref_primary_10_3390_photonics9030165 crossref_primary_10_3390_s24123763 crossref_primary_10_1016_j_postharvbio_2019_111060 crossref_primary_10_51300_jidm_2022_58 crossref_primary_10_3390_sym16040464 crossref_primary_10_1038_s41598_022_26213_y crossref_primary_10_1007_s11633_022_1375_7 crossref_primary_10_1016_j_neucom_2018_04_061 crossref_primary_10_1016_j_procs_2023_01_204 crossref_primary_10_1016_j_asoc_2022_109715 crossref_primary_10_1007_s41060_024_00578_x crossref_primary_10_1121_10_0003339 crossref_primary_10_1088_1361_6595_adb515 crossref_primary_10_1109_ACCESS_2020_2985127 crossref_primary_10_1007_s10853_021_06630_6 crossref_primary_10_3390_rs12213537 crossref_primary_10_1038_s41598_024_82586_2 crossref_primary_10_1190_geo2021_0449_1 crossref_primary_10_3390_cancers15154002 crossref_primary_10_1155_2021_3900254 crossref_primary_10_1299_transjsme_24_00072 crossref_primary_10_1109_TGRS_2024_3397861 crossref_primary_10_1007_s11042_023_17982_3 crossref_primary_10_1109_ACCESS_2023_3305954 crossref_primary_10_1063_5_0136492 crossref_primary_10_1007_s12520_022_01501_w crossref_primary_10_3390_rs15194675 crossref_primary_10_1016_j_patcog_2022_109202 crossref_primary_10_1016_j_jenvman_2024_122805 crossref_primary_10_3389_fnhum_2023_1169949 crossref_primary_10_1109_TSMC_2021_3096529 crossref_primary_10_1016_j_neucom_2021_03_007 crossref_primary_10_1109_LGRS_2024_3392426 crossref_primary_10_1007_s00170_024_14808_w crossref_primary_10_1016_j_patcog_2022_109206 crossref_primary_10_3390_electronics11223798 crossref_primary_10_1016_j_isprsjprs_2019_09_006 crossref_primary_10_1109_TVT_2023_3239402 crossref_primary_10_3390_buildings11040165 crossref_primary_10_1088_1361_6501_ad4fb4 crossref_primary_10_1007_s11265_023_01895_3 crossref_primary_10_1093_rasti_rzae026 crossref_primary_10_1016_j_health_2023_100259 crossref_primary_10_1155_2022_3732351 crossref_primary_10_1063_5_0194393 crossref_primary_10_1155_2022_1761635 crossref_primary_10_3390_en14051355 crossref_primary_10_3390_s24041330 crossref_primary_10_47115_bsagriculture_1536744 crossref_primary_10_32604_cmc_2024_057684 crossref_primary_10_1093_bib_bbae528 crossref_primary_10_1016_j_measurement_2024_115515 crossref_primary_10_3390_rs12142215 crossref_primary_10_1016_j_patcog_2018_07_023 crossref_primary_10_1007_s11036_024_02298_9 crossref_primary_10_1007_s11063_022_10898_3 crossref_primary_10_1016_j_jmsy_2024_12_005 crossref_primary_10_1021_acs_jcim_4c01749 crossref_primary_10_3788_AOS230776 crossref_primary_10_1016_j_neucom_2024_129280 crossref_primary_10_1016_j_pss_2023_105802 crossref_primary_10_26634_jmat_12_1_19398 crossref_primary_10_3390_mi16010055 crossref_primary_10_1177_10775463241238839 crossref_primary_10_1007_s12021_019_09448_5 crossref_primary_10_1016_j_energy_2022_125501 crossref_primary_10_1016_j_jafr_2023_100503 crossref_primary_10_1016_j_ijleo_2020_164261 crossref_primary_10_1016_j_asoc_2021_108178 crossref_primary_10_1109_ACCESS_2019_2928025 crossref_primary_10_32604_cmes_2024_052549 crossref_primary_10_1038_s41598_023_42191_1 crossref_primary_10_1016_j_measurement_2020_107619 crossref_primary_10_1109_TMLCN_2023_3270131 crossref_primary_10_1007_s11802_025_5783_5 crossref_primary_10_1007_s13369_024_08854_5 crossref_primary_10_1109_JAS_2023_124170 crossref_primary_10_1016_j_inpa_2021_01_002 crossref_primary_10_1016_j_health_2023_100221 crossref_primary_10_1109_TCBB_2022_3170719 crossref_primary_10_3390_atmos15091085 crossref_primary_10_1039_D4NH00592A crossref_primary_10_1016_j_patcog_2020_107702 crossref_primary_10_1016_j_geothermics_2022_102576 crossref_primary_10_1016_j_iot_2024_101164 crossref_primary_10_1016_j_aca_2019_06_012 crossref_primary_10_1088_1361_6501_ad5b11 crossref_primary_10_1109_TGRS_2024_3511614 crossref_primary_10_1007_s00170_024_14305_0 crossref_primary_10_1371_journal_pone_0302664 crossref_primary_10_1016_j_scitotenv_2024_177459 crossref_primary_10_1016_j_jobe_2021_103098 crossref_primary_10_1080_00051144_2021_2008620 crossref_primary_10_1109_ACCESS_2020_3005684 crossref_primary_10_4018_IJDST_317937 crossref_primary_10_1016_j_patcog_2022_109256 crossref_primary_10_3390_s19235287 crossref_primary_10_1016_j_knosys_2024_112195 crossref_primary_10_1007_s11042_022_12310_7 crossref_primary_10_1002_mus_28023 crossref_primary_10_1061_JITSE4_ISENG_2247 crossref_primary_10_54097_hset_v61i_10291 crossref_primary_10_1109_JIOT_2024_3360715 crossref_primary_10_1080_23249935_2024_2409229 crossref_primary_10_3390_app15052589 crossref_primary_10_1016_j_chiabu_2022_105688 crossref_primary_10_3390_app14135524 crossref_primary_10_1016_j_patcog_2020_107760 crossref_primary_10_1016_j_patcog_2022_109268 crossref_primary_10_3390_jmse12112002 crossref_primary_10_1007_s41605_025_00537_5 crossref_primary_10_1063_5_0004631 crossref_primary_10_1093_bioinformatics_btaa477 crossref_primary_10_1016_j_compbiomed_2021_105021 crossref_primary_10_1155_2022_7587157 crossref_primary_10_1177_03611981231156576 crossref_primary_10_3390_info14040231 crossref_primary_10_1109_TCDS_2022_3153676 crossref_primary_10_3390_s25051405 crossref_primary_10_1016_j_iswa_2021_200049 crossref_primary_10_1007_s12596_024_01831_z crossref_primary_10_1016_j_fuel_2022_126419 crossref_primary_10_1109_TIM_2022_3146521 crossref_primary_10_1016_j_tibtech_2022_10_010 crossref_primary_10_1016_j_jobe_2020_101827 crossref_primary_10_1016_j_mechmat_2023_104726 crossref_primary_10_1109_ACCESS_2019_2947160 crossref_primary_10_1016_j_tifs_2025_104964 crossref_primary_10_1109_TITS_2019_2918923 crossref_primary_10_1002_adfm_202108044 crossref_primary_10_1007_s42690_024_01406_2 crossref_primary_10_1109_OJCSYS_2023_3316090 crossref_primary_10_1109_TNNLS_2021_3072491 crossref_primary_10_1186_s40537_024_00991_w crossref_primary_10_3390_jmse12122295 crossref_primary_10_3390_bioengineering10111319 crossref_primary_10_3390_electronics10040427 crossref_primary_10_1007_s10462_024_10871_7 crossref_primary_10_1007_s44285_025_00038_3 crossref_primary_10_1016_j_ress_2022_109066 crossref_primary_10_1186_s12859_023_05135_0 crossref_primary_10_1021_acs_jcim_3c01030 crossref_primary_10_1007_s40820_023_01235_x crossref_primary_10_1109_ACCESS_2020_2997969 crossref_primary_10_1109_JSTSP_2024_3416851 crossref_primary_10_1155_2023_6266209 crossref_primary_10_3389_fninf_2019_00030 crossref_primary_10_1016_j_est_2023_107093 crossref_primary_10_1016_j_ijrmms_2019_104084 crossref_primary_10_1109_TII_2019_2908211 crossref_primary_10_1016_j_compstruc_2021_106484 crossref_primary_10_1016_j_lwt_2022_113490 crossref_primary_10_3390_computers12090170 crossref_primary_10_1007_s43069_024_00395_9 crossref_primary_10_3390_rs15112730 crossref_primary_10_3390_s19132854 crossref_primary_10_1016_j_cmpbup_2021_100023 crossref_primary_10_1016_j_jpowsour_2024_235674 crossref_primary_10_1111_exsy_13578 crossref_primary_10_1002_cem_70018 crossref_primary_10_1139_cjce_2023_0570 crossref_primary_10_1109_TPAMI_2022_3204971 crossref_primary_10_1002_sam_11455 crossref_primary_10_1016_j_susoc_2021_08_001 crossref_primary_10_3390_s20185051 crossref_primary_10_3390_en16010076 crossref_primary_10_1049_ipr2_12146 crossref_primary_10_3390_s24010197 crossref_primary_10_1103_PhysRevC_111_014325 crossref_primary_10_1016_j_neunet_2022_07_035 crossref_primary_10_1166_jmihi_2021_3315 crossref_primary_10_1109_ACCESS_2020_2978804 crossref_primary_10_2478_amns_2024_2435 crossref_primary_10_1109_ACCESS_2020_3027044 crossref_primary_10_1007_s11030_024_10937_2 crossref_primary_10_1016_j_engappai_2024_108062 crossref_primary_10_3390_make6030096 crossref_primary_10_3390_app15052525 crossref_primary_10_1093_asj_sjae201 crossref_primary_10_4155_fmc_2023_0093 crossref_primary_10_1109_ACCESS_2025_3541585 crossref_primary_10_3389_fcell_2023_1174936 crossref_primary_10_1016_j_psep_2023_07_059 crossref_primary_10_1111_maps_13663 crossref_primary_10_1615_IntJMedMushrooms_2022046298 crossref_primary_10_1007_s11740_020_01007_1 crossref_primary_10_1080_19361610_2025_2453309 crossref_primary_10_1088_1361_6668_ad3d10 crossref_primary_10_1002_tbio_202300005 crossref_primary_10_1016_j_patcog_2020_107788 crossref_primary_10_1109_ACCESS_2022_3176965 crossref_primary_10_1016_j_ijcce_2025_01_004 crossref_primary_10_3390_sym16091151 crossref_primary_10_31436_iiumej_v26i1_3379 crossref_primary_10_1007_s13246_022_01137_z crossref_primary_10_3390_agriculture11080707 crossref_primary_10_31590_ejosat_1013489 crossref_primary_10_1016_j_atech_2022_100166 crossref_primary_10_3390_en17153757 crossref_primary_10_1016_j_bspc_2023_105926 crossref_primary_10_1016_j_catena_2024_108275 crossref_primary_10_1109_ACCESS_2019_2940557 crossref_primary_10_2174_1872212115666210715163919 crossref_primary_10_3390_rs15112776 crossref_primary_10_1007_s11042_024_18354_1 crossref_primary_10_1007_s42979_024_03185_6 crossref_primary_10_1364_OE_27_027308 crossref_primary_10_1088_2632_2153_ad3c0f crossref_primary_10_1109_TIP_2021_3064256 crossref_primary_10_1155_2024_5587728 crossref_primary_10_3390_math7121170 crossref_primary_10_3390_electronics12051208 crossref_primary_10_1109_TMAG_2023_3299110 crossref_primary_10_1111_1365_2664_14280 crossref_primary_10_1155_2022_8032726 crossref_primary_10_3390_electronics12061378 crossref_primary_10_3390_diagnostics11081485 crossref_primary_10_37394_232018_2021_9_1 crossref_primary_10_7717_peerj_cs_2362 crossref_primary_10_1371_journal_pcbi_1010778 crossref_primary_10_1016_j_knosys_2021_107535 crossref_primary_10_1155_2022_7494108 crossref_primary_10_1002_mp_14640 crossref_primary_10_3390_make5040094 crossref_primary_10_1016_j_bspc_2022_103992 crossref_primary_10_1002_ajpa_24286 crossref_primary_10_1016_j_compbiomed_2020_103871 crossref_primary_10_1109_JSTARS_2024_3372138 crossref_primary_10_1016_j_compag_2024_108950 crossref_primary_10_3390_polym15061520 crossref_primary_10_1016_j_iot_2020_100305 crossref_primary_10_1016_j_knosys_2023_111327 crossref_primary_10_1364_PRJ_416246 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_3390_informatics8020033 crossref_primary_10_3390_sym17030410 crossref_primary_10_1007_s11042_023_14940_x crossref_primary_10_1016_j_dld_2024_04_019 crossref_primary_10_3390_s18061746 crossref_primary_10_1109_ACCESS_2021_3096548 crossref_primary_10_1109_JSEN_2020_3023471 crossref_primary_10_3390_make3010011 crossref_primary_10_1002_cpe_6143 crossref_primary_10_1016_j_neucom_2023_127218 crossref_primary_10_1016_j_compgeo_2024_106177 crossref_primary_10_1109_ACCESS_2024_3454825 crossref_primary_10_1016_j_rser_2020_109792 crossref_primary_10_1016_j_seppur_2023_124891 crossref_primary_10_1007_s11071_024_09608_6 crossref_primary_10_1109_ACCESS_2019_2924443 crossref_primary_10_3390_s24061844 crossref_primary_10_1016_j_eswa_2024_125950 crossref_primary_10_1371_journal_pone_0220677 crossref_primary_10_1109_LGRS_2023_3312677 crossref_primary_10_3390_drones9030226 crossref_primary_10_3390_app132312808 crossref_primary_10_1016_j_cirpj_2020_11_009 crossref_primary_10_1109_LGRS_2020_3005982 crossref_primary_10_1109_JSTARS_2024_3405580 crossref_primary_10_1186_s40644_024_00654_2 crossref_primary_10_1016_j_infsof_2020_106486 crossref_primary_10_3390_insects15070557 crossref_primary_10_32604_iasc_2022_023455 crossref_primary_10_32604_cmc_2023_042361 crossref_primary_10_1016_j_eswa_2022_117761 crossref_primary_10_1109_TTE_2023_3293551 crossref_primary_10_1016_j_bspc_2024_107235 crossref_primary_10_1177_15330338231199287 crossref_primary_10_1364_OE_470146 crossref_primary_10_1016_j_sna_2024_116052 crossref_primary_10_3390_s23198191 crossref_primary_10_1007_s00521_021_05758_5 crossref_primary_10_1093_mnras_stad1842 crossref_primary_10_1007_s10851_022_01124_9 crossref_primary_10_3389_fpsyg_2022_1049401 crossref_primary_10_1007_s11629_024_8971_7 crossref_primary_10_1016_j_measurement_2021_109771 crossref_primary_10_1016_j_spasta_2024_100811 crossref_primary_10_3390_s24185995 crossref_primary_10_1007_s40996_021_00668_x crossref_primary_10_1063_5_0237910 crossref_primary_10_1111_jen_13223 crossref_primary_10_21597_jist_1093732 crossref_primary_10_1016_j_epsr_2022_109065 crossref_primary_10_1016_j_cropro_2023_106302 crossref_primary_10_1016_j_enconman_2022_116385 crossref_primary_10_1016_j_jhydrol_2021_127244 crossref_primary_10_1007_s00466_023_02324_9 crossref_primary_10_1016_j_isprsjprs_2020_07_007 crossref_primary_10_1016_j_bios_2022_114996 crossref_primary_10_1063_9_0000849 crossref_primary_10_1109_TNNLS_2023_3243000 crossref_primary_10_1109_TDEI_2023_3264728 crossref_primary_10_1007_s11063_019_10156_z crossref_primary_10_1007_s10619_021_07361_y crossref_primary_10_1007_s41062_022_00793_0 crossref_primary_10_1109_ACCESS_2020_3039862 crossref_primary_10_1016_j_asej_2021_10_017 crossref_primary_10_4103_tjo_TJO_D_23_00012 crossref_primary_10_1016_j_envsoft_2024_106307 crossref_primary_10_3389_frwa_2020_00028 crossref_primary_10_1016_j_aei_2023_102075 crossref_primary_10_3390_app12083804 crossref_primary_10_1016_j_jpi_2022_100101 crossref_primary_10_1051_e3sconf_202454401020 crossref_primary_10_1016_j_compag_2024_109414 crossref_primary_10_5194_gmd_13_2631_2020 crossref_primary_10_1007_s13239_019_00421_6 crossref_primary_10_1080_17460441_2023_2251400 crossref_primary_10_3390_math11051245 crossref_primary_10_1016_j_patcog_2019_06_011 crossref_primary_10_1016_j_patcog_2019_06_012 crossref_primary_10_1016_j_ijft_2024_100590 crossref_primary_10_3390_atmos14020368 crossref_primary_10_1016_j_compchemeng_2020_107099 crossref_primary_10_1007_s11042_022_12128_3 crossref_primary_10_1016_j_neuroscience_2024_03_007 crossref_primary_10_1109_TMI_2020_2968770 crossref_primary_10_1007_s10527_024_10361_8 crossref_primary_10_1007_s41870_024_02149_6 crossref_primary_10_1016_j_patcog_2022_108750 crossref_primary_10_1053_j_semdp_2023_02_002 crossref_primary_10_1155_2023_6928871 crossref_primary_10_1016_j_engstruct_2022_115172 crossref_primary_10_1016_j_bios_2024_116414 crossref_primary_10_1109_ACCESS_2023_3321290 crossref_primary_10_1109_TSG_2024_3448618 crossref_primary_10_1016_j_neucom_2020_05_102 crossref_primary_10_3390_app14010040 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_3390_s24185965 crossref_primary_10_1016_j_patcog_2018_12_019 crossref_primary_10_1111_ahe_13073 crossref_primary_10_1016_j_bspc_2022_103923 crossref_primary_10_1155_2021_1165296 crossref_primary_10_3389_fncom_2021_760554 crossref_primary_10_1117_1_JRS_17_016505 crossref_primary_10_14801_jkiit_2021_19_3_1 crossref_primary_10_1080_19475705_2021_1968043 crossref_primary_10_3390_pr8010073 crossref_primary_10_1002_tpg2_20470 crossref_primary_10_1080_00288330_2023_2261872 crossref_primary_10_1007_s11063_023_11418_7 crossref_primary_10_1016_j_neucom_2020_05_114 crossref_primary_10_1016_j_saa_2024_124295 crossref_primary_10_1007_s00521_020_05321_8 crossref_primary_10_1109_TII_2019_2960837 crossref_primary_10_1016_j_ins_2020_12_084 crossref_primary_10_1016_j_conbuildmat_2023_132684 crossref_primary_10_1109_ACCESS_2024_3521497 crossref_primary_10_3390_machines12050306 crossref_primary_10_12677_MOS_2023_125410 crossref_primary_10_1002_cpe_6964 crossref_primary_10_1016_j_cviu_2019_01_001 crossref_primary_10_1007_s41105_024_00563_8 crossref_primary_10_1109_ACCESS_2019_2907071 crossref_primary_10_1016_j_procs_2022_11_237 crossref_primary_10_1016_j_imu_2024_101475 crossref_primary_10_1155_2021_6690539 crossref_primary_10_3390_coatings14121539 crossref_primary_10_1016_j_petrol_2020_108118 crossref_primary_10_3390_s22052026 crossref_primary_10_1088_1402_4896_adb34a crossref_primary_10_1016_j_esd_2023_04_004 crossref_primary_10_1002_adma_202306606 crossref_primary_10_1039_D3JA00453H crossref_primary_10_1002_cpe_5663 crossref_primary_10_1016_j_engfailanal_2023_107228 crossref_primary_10_1186_s13677_020_00203_9 crossref_primary_10_1155_2020_8859489 crossref_primary_10_1016_j_cosrev_2020_100303 crossref_primary_10_1016_j_eml_2021_101566 crossref_primary_10_1016_j_cosrev_2020_100302 crossref_primary_10_1016_j_cosrev_2020_100301 crossref_primary_10_1186_s13635_020_0102_6 crossref_primary_10_1063_5_0005194 crossref_primary_10_1002_advs_202204723 crossref_primary_10_3390_s24092923 crossref_primary_10_1007_s10844_023_00813_0 crossref_primary_10_1007_s11042_019_08028_8 crossref_primary_10_1109_ACCESS_2025_3530900 crossref_primary_10_1088_1361_6501_ad60ea crossref_primary_10_1038_s42256_024_00966_9 crossref_primary_10_1016_j_postharvbio_2021_111778 crossref_primary_10_3390_agriengineering2030029 crossref_primary_10_3390_rs16173249 crossref_primary_10_1016_j_jhydrol_2024_130846 crossref_primary_10_23919_JSEE_2022_000100 crossref_primary_10_1111_exsy_13658 crossref_primary_10_1093_molbev_msae223 crossref_primary_10_1007_s10844_022_00768_8 crossref_primary_10_1016_j_artmed_2023_102638 crossref_primary_10_1186_s40359_024_02248_w crossref_primary_10_1016_j_patcog_2020_107801 crossref_primary_10_1109_TPDS_2023_3321755 crossref_primary_10_1007_s13369_022_07412_1 crossref_primary_10_3390_s22207935 crossref_primary_10_4236_jcc_2022_104005 crossref_primary_10_3390_s22166081 crossref_primary_10_1080_19475705_2023_2187271 crossref_primary_10_1088_1361_6501_ad13e5 crossref_primary_10_1016_j_artmed_2021_102059 crossref_primary_10_1007_s11042_023_14816_0 crossref_primary_10_1007_s13369_022_07086_9 crossref_primary_10_32604_cmes_2023_026065 crossref_primary_10_1186_s12859_024_05967_4 crossref_primary_10_3390_s20247099 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_2166_hydro_2022_132 crossref_primary_10_1007_s13369_022_06734_4 crossref_primary_10_1007_s42452_023_05277_z crossref_primary_10_1016_j_neucom_2020_10_039 crossref_primary_10_1007_s00530_024_01259_2 crossref_primary_10_3390_rs16071235 crossref_primary_10_54097_hset_v62i_10424 crossref_primary_10_1007_s00521_024_09771_2 crossref_primary_10_3390_electronics10101187 crossref_primary_10_1016_j_trac_2025_118243 crossref_primary_10_3390_s23094369 crossref_primary_10_3390_electronics12204362 crossref_primary_10_3390_app12188972 crossref_primary_10_3390_atmos14111698 crossref_primary_10_1016_j_net_2022_07_016 crossref_primary_10_1109_JSEN_2024_3454153 crossref_primary_10_1515_bams_2020_0040 crossref_primary_10_3390_app14146388 crossref_primary_10_1007_s11227_023_05757_4 crossref_primary_10_1016_j_compbiolchem_2024_108201 crossref_primary_10_3390_sym15050964 crossref_primary_10_1016_j_jclepro_2024_143492 crossref_primary_10_1016_j_istruc_2024_107144 crossref_primary_10_1016_j_marpetgeo_2024_106992 crossref_primary_10_1016_j_eja_2020_126030 crossref_primary_10_1155_2020_8863388 crossref_primary_10_3390_s22010400 crossref_primary_10_1016_j_trc_2022_103854 crossref_primary_10_1016_j_fuel_2024_133427 crossref_primary_10_3390_f14061080 crossref_primary_10_1016_j_apor_2024_104145 crossref_primary_10_3390_rs16163000 crossref_primary_10_1109_ACCESS_2019_2930238 crossref_primary_10_1109_TIM_2023_3301047 crossref_primary_10_3390_electronics13142873 crossref_primary_10_1016_j_renene_2025_122342 crossref_primary_10_1016_j_compag_2018_09_021 crossref_primary_10_1155_2021_7167891 crossref_primary_10_1016_j_ijepes_2025_110562 crossref_primary_10_1049_tje2_70032 crossref_primary_10_1093_bib_bbaa237 crossref_primary_10_1007_s13042_024_02453_4 crossref_primary_10_3847_1538_4357_ac9ea7 crossref_primary_10_3390_s24113630 crossref_primary_10_1109_TIM_2022_3201927 crossref_primary_10_1007_s42417_023_01014_3 crossref_primary_10_3390_su15129210 crossref_primary_10_1016_j_envres_2024_119478 crossref_primary_10_3390_electronics13234688 crossref_primary_10_1109_ACCESS_2024_3468723 crossref_primary_10_1016_j_jfca_2025_107394 crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_1109_TPAMI_2024_3417451 crossref_primary_10_4103_digm_digm_16_18 crossref_primary_10_7554_eLife_84042 crossref_primary_10_1016_j_egyr_2023_01_032 crossref_primary_10_1016_j_matpr_2021_02_244 crossref_primary_10_3389_fenvs_2022_886841 crossref_primary_10_1016_j_oceaneng_2022_113106 crossref_primary_10_1186_s12916_022_02549_0 crossref_primary_10_3390_electronics12143097 crossref_primary_10_1002_itl2_537 crossref_primary_10_1117_1_JRS_13_022007 crossref_primary_10_1038_s41598_022_05727_5 crossref_primary_10_1016_j_ijrefrig_2023_11_025 crossref_primary_10_1371_journal_pone_0281568 crossref_primary_10_3390_a16020113 crossref_primary_10_3390_agronomy14020341 crossref_primary_10_1016_j_ucl_2023_06_002 crossref_primary_10_3390_rs13030389 crossref_primary_10_1109_ACCESS_2023_3334394 crossref_primary_10_1016_j_energy_2025_134569 crossref_primary_10_1063_5_0159264 crossref_primary_10_1007_s00170_023_12453_3 crossref_primary_10_3390_biology11121732 crossref_primary_10_1007_s11634_021_00485_0 crossref_primary_10_1016_j_neucom_2023_126609 crossref_primary_10_2298_CSIS210617055X crossref_primary_10_1007_s00521_021_06592_5 crossref_primary_10_1016_j_neucom_2020_10_065 crossref_primary_10_4204_EPTCS_364_9 crossref_primary_10_1016_j_eswa_2020_113591 crossref_primary_10_1016_j_future_2021_11_032 crossref_primary_10_1016_j_compag_2020_105700 crossref_primary_10_1109_TIM_2021_3132088 crossref_primary_10_1016_j_scitotenv_2024_176857 crossref_primary_10_1016_j_neucom_2018_05_137 crossref_primary_10_1016_j_patcog_2019_107187 crossref_primary_10_1021_acs_chemrev_3c00708 crossref_primary_10_3390_app11094292 crossref_primary_10_3390_app13148502 crossref_primary_10_1016_j_neunet_2019_01_013 crossref_primary_10_1186_s13007_023_01056_4 crossref_primary_10_1007_s00521_025_11085_w crossref_primary_10_1103_PhysRevA_110_032434 crossref_primary_10_1093_bib_bbab523 crossref_primary_10_26636_jtit_2022_164922 crossref_primary_10_47933_ijeir_772514 crossref_primary_10_1007_s00256_020_03433_9 crossref_primary_10_32604_cmc_2023_035881 crossref_primary_10_1270_jsbbs_21053 crossref_primary_10_1016_j_patcog_2019_107176 crossref_primary_10_1007_s10479_022_04931_w crossref_primary_10_1007_s11042_022_12845_9 crossref_primary_10_29328_journal_ibm_1001027 crossref_primary_10_3389_feart_2023_1136346 crossref_primary_10_1016_j_patcog_2019_107180 crossref_primary_10_1155_stc_7386022 crossref_primary_10_3390_informatics10010024 crossref_primary_10_1109_TITS_2019_2906821 crossref_primary_10_1177_03611981241258753 crossref_primary_10_1109_TDEI_2023_3306324 crossref_primary_10_3389_fnins_2023_1169187 crossref_primary_10_1109_TIM_2023_3244822 crossref_primary_10_3233_WEB_221800 crossref_primary_10_3390_electronics13122403 crossref_primary_10_1007_s10462_023_10590_5 crossref_primary_10_1016_j_jpowsour_2023_233472 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1007_s00521_021_06806_w crossref_primary_10_3390_biomedinformatics3020031 crossref_primary_10_1016_j_compbiomed_2021_105127 crossref_primary_10_1142_S0217751X22502190 crossref_primary_10_1088_1361_6463_ac8126 crossref_primary_10_1021_acs_iecr_9b06295 crossref_primary_10_1109_TIP_2019_2928144 crossref_primary_10_1016_j_mtcomm_2024_108595 crossref_primary_10_1155_2022_2432351 crossref_primary_10_3390_foods11040602 crossref_primary_10_3390_math11214550 crossref_primary_10_3389_fpls_2024_1373590 crossref_primary_10_1007_s12530_021_09386_1 crossref_primary_10_3390_app10051569 crossref_primary_10_1016_j_procs_2022_01_087 crossref_primary_10_3390_app13084781 crossref_primary_10_1016_j_patcog_2019_107156 crossref_primary_10_1007_s11042_024_18738_3 crossref_primary_10_1007_s41939_024_00612_2 crossref_primary_10_1016_j_envpol_2022_119857 crossref_primary_10_1016_j_patcog_2019_107160 crossref_primary_10_3390_app12199691 crossref_primary_10_1088_3050_2454_ada036 crossref_primary_10_1109_ACCESS_2023_3312191 crossref_primary_10_3390_s22072547 crossref_primary_10_1016_j_jobe_2024_111663 crossref_primary_10_1007_s00530_020_00741_x crossref_primary_10_1007_s11042_020_10114_1 crossref_primary_10_1016_j_patcog_2019_107143 crossref_primary_10_1016_j_patcog_2019_107147 crossref_primary_10_3390_jcm13133750 crossref_primary_10_1007_s42417_023_01165_3 crossref_primary_10_1016_j_cose_2023_103665 crossref_primary_10_1016_j_engappai_2024_109288 crossref_primary_10_1029_2022WR032553 crossref_primary_10_1109_JPROC_2021_3117472 crossref_primary_10_1016_j_compbiomed_2022_105460 crossref_primary_10_1007_s11042_019_7379_9 crossref_primary_10_1007_s10559_023_00569_z crossref_primary_10_1242_jeb_249232 crossref_primary_10_1155_2022_4778245 crossref_primary_10_1016_j_cej_2024_150266 crossref_primary_10_3390_s24051635 crossref_primary_10_1016_j_talanta_2020_121926 crossref_primary_10_3390_pr13040934 crossref_primary_10_3389_fpls_2024_1354428 crossref_primary_10_1109_ACCESS_2022_3180073 crossref_primary_10_1016_j_neucom_2022_11_078 crossref_primary_10_3390_s22093468 crossref_primary_10_1109_TGRS_2024_3514854 crossref_primary_10_3389_fmars_2024_1492572 crossref_primary_10_3389_fnins_2022_920820 crossref_primary_10_1016_j_etran_2025_100406 crossref_primary_10_1109_JSTARS_2023_3323486 crossref_primary_10_3233_JIFS_231368 crossref_primary_10_1055_s_0044_1788317 crossref_primary_10_1515_eng_2022_0588 crossref_primary_10_1109_ACCESS_2019_2902185 crossref_primary_10_1016_j_jfranklin_2024_107424 crossref_primary_10_1017_dap_2024_49 crossref_primary_10_1007_s00500_023_08373_9 crossref_primary_10_1007_s13355_023_00849_2 crossref_primary_10_3390_electronics9101631 crossref_primary_10_1371_journal_pone_0270826 crossref_primary_10_1016_j_dcan_2022_12_012 crossref_primary_10_3390_rs12101685 crossref_primary_10_3389_fpls_2024_1459515 crossref_primary_10_1016_j_bspc_2022_104417 crossref_primary_10_1108_ILT_03_2024_0081 crossref_primary_10_1109_JQE_2021_3130935 crossref_primary_10_3389_fpls_2024_1389961 crossref_primary_10_3390_s22072559 crossref_primary_10_1038_s41598_024_83543_9 crossref_primary_10_3390_s24061992 crossref_primary_10_3390_jimaging8110298 crossref_primary_10_1109_TGRS_2020_2999371 crossref_primary_10_3390_su15097179 crossref_primary_10_1080_01431161_2024_2365811 crossref_primary_10_1016_j_apenergy_2024_124206 crossref_primary_10_1109_TNSM_2023_3239847 crossref_primary_10_1016_j_mex_2024_102946 crossref_primary_10_32604_iasc_2021_016966 crossref_primary_10_3390_s22072579 crossref_primary_10_1109_TIP_2021_3120054 crossref_primary_10_1016_j_inffus_2023_102068 crossref_primary_10_2319_021220_100_1 crossref_primary_10_1162_neco_a_01446 crossref_primary_10_34133_plantphenomics_0204 crossref_primary_10_1016_j_istruc_2024_107928 crossref_primary_10_1109_TCBB_2020_3034922 crossref_primary_10_4018_IJSIR_302606 crossref_primary_10_1109_TIM_2023_3280500 crossref_primary_10_1515_teme_2024_0099 crossref_primary_10_1016_j_compchemeng_2023_108293 crossref_primary_10_1016_j_apacoust_2024_110138 crossref_primary_10_3390_axioms12090862 crossref_primary_10_28979_jarnas_953634 crossref_primary_10_1016_j_measurement_2021_109813 crossref_primary_10_1007_s11263_023_01900_z crossref_primary_10_1007_s10462_024_10745_y crossref_primary_10_1007_s44196_024_00450_7 crossref_primary_10_17341_gazimmfd_435217 crossref_primary_10_1155_2021_1783246 crossref_primary_10_1016_j_iliver_2023_02_002 crossref_primary_10_1364_AOP_484119 crossref_primary_10_1016_j_addma_2024_104208 crossref_primary_10_1088_1741_2552_ad5048 crossref_primary_10_1097_CCO_0000000000000796 crossref_primary_10_1016_j_mtcomm_2024_109847 crossref_primary_10_1016_j_neucom_2020_04_010 crossref_primary_10_1109_JAS_2022_105743 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_3390_fermentation9070629 crossref_primary_10_1016_j_aca_2023_341129 crossref_primary_10_1093_ijlct_ctae047 crossref_primary_10_3390_jmse12020311 crossref_primary_10_1016_j_cma_2023_116041 crossref_primary_10_1016_j_aiia_2021_05_003 crossref_primary_10_1007_s11356_022_24471_x crossref_primary_10_3389_fgene_2020_00513 crossref_primary_10_3390_healthcare12020125 crossref_primary_10_1016_j_engappai_2024_109376 crossref_primary_10_3390_electronics13081541 crossref_primary_10_1016_j_future_2021_06_030 crossref_primary_10_1016_j_tws_2024_112255 crossref_primary_10_3390_f13122041 crossref_primary_10_1093_mnras_stad1709 crossref_primary_10_1016_j_patcog_2021_108508 crossref_primary_10_1016_j_ecoenv_2023_115066 crossref_primary_10_1002_cpe_7547 crossref_primary_10_1109_TIP_2023_3279525 crossref_primary_10_1007_s13762_021_03179_4 crossref_primary_10_1016_j_advwatres_2020_103840 crossref_primary_10_1016_j_engappai_2020_103615 crossref_primary_10_3390_app13010569 crossref_primary_10_3390_atmos14071123 crossref_primary_10_1016_j_csbj_2024_07_003 crossref_primary_10_1016_j_measurement_2021_109864 crossref_primary_10_1016_j_yexcr_2022_113278 crossref_primary_10_3390_microorganisms11041071 crossref_primary_10_3390_ijgi8070300 crossref_primary_10_1007_s10853_024_09507_6 crossref_primary_10_1016_j_patcog_2024_110980 crossref_primary_10_3389_fphy_2024_1337421 crossref_primary_10_3724_SP_J_1089_2022_19037 crossref_primary_10_3390_machines12040214 crossref_primary_10_1051_shsconf_202214403013 crossref_primary_10_1016_j_envsoft_2023_105654 crossref_primary_10_1016_j_compind_2021_103506 crossref_primary_10_1016_j_imavis_2018_09_016 crossref_primary_10_1109_JIOT_2023_3341811 crossref_primary_10_1002_cepa_2053 crossref_primary_10_1016_j_jphotochem_2022_114321 crossref_primary_10_1016_j_cropro_2024_106734 crossref_primary_10_1016_j_comcom_2020_02_044 crossref_primary_10_1016_j_engappai_2024_108007 crossref_primary_10_1016_j_pnucene_2022_104191 crossref_primary_10_1088_1742_6596_2711_1_012015 crossref_primary_10_3390_rs15061540 crossref_primary_10_1186_s12859_023_05243_x crossref_primary_10_1007_s11042_019_07813_9 crossref_primary_10_1016_j_hydroa_2024_100190 crossref_primary_10_12688_openreseurope_17424_1 crossref_primary_10_1007_s11571_022_09927_7 crossref_primary_10_32604_csse_2024_052931 crossref_primary_10_1016_j_patcog_2022_108835 crossref_primary_10_1109_JSTSP_2023_3262357 crossref_primary_10_1007_s11042_024_18248_2 crossref_primary_10_1038_s41598_023_37087_z crossref_primary_10_1007_s10489_021_02445_9 crossref_primary_10_1007_s11356_023_28877_z crossref_primary_10_1016_j_eswa_2023_121178 crossref_primary_10_1177_27551857241250014 crossref_primary_10_1016_j_microrel_2024_115374 crossref_primary_10_1007_s00138_022_01312_y crossref_primary_10_3390_info11020125 crossref_primary_10_1016_j_ensm_2024_103860 crossref_primary_10_1016_j_scico_2023_103056 crossref_primary_10_1109_ACCESS_2020_2971319 crossref_primary_10_1002_qute_202000103 crossref_primary_10_3389_fmed_2023_1233724 crossref_primary_10_1007_s11082_024_06321_x crossref_primary_10_1002_jtr_2419 crossref_primary_10_1007_JHEP10_2021_184 crossref_primary_10_1145_3614095 crossref_primary_10_1115_1_4064705 crossref_primary_10_1016_j_agwat_2024_108972 crossref_primary_10_3390_e20110823 crossref_primary_10_1016_j_measurement_2022_111590 crossref_primary_10_1016_j_actaastro_2019_03_072 crossref_primary_10_1016_j_jclepro_2023_136060 crossref_primary_10_1142_S0218126622500475 crossref_primary_10_1007_s12065_024_00985_w crossref_primary_10_1016_j_asoc_2024_112188 crossref_primary_10_1016_j_jvcir_2022_103659 crossref_primary_10_3390_rs16183452 crossref_primary_10_1007_s11042_021_11529_0 crossref_primary_10_1016_j_measen_2023_100752 crossref_primary_10_1007_s11356_023_28285_3 crossref_primary_10_1371_journal_pone_0288935 crossref_primary_10_1007_s11356_023_28032_8 crossref_primary_10_1051_0004_6361_202449149 crossref_primary_10_3390_math11051127 crossref_primary_10_1016_j_jsv_2024_118255 crossref_primary_10_3390_app131810418 crossref_primary_10_1109_ACCESS_2024_3350430 crossref_primary_10_1016_j_patcog_2023_109656 crossref_primary_10_3390_e22111314 crossref_primary_10_1021_acs_jcim_3c00761 crossref_primary_10_1002_jmri_28315 crossref_primary_10_1016_j_jobe_2025_112448 crossref_primary_10_3390_antibiotics11101451 crossref_primary_10_1016_j_neucom_2019_03_013 crossref_primary_10_1145_3631429 crossref_primary_10_1016_j_csbj_2022_06_018 crossref_primary_10_17671_gazibtd_799370 crossref_primary_10_3389_fenvs_2023_1285471 crossref_primary_10_1007_s13198_024_02645_9 crossref_primary_10_1109_OJCOMS_2024_3437357 crossref_primary_10_2174_2666255816666230815121119 crossref_primary_10_1364_OE_550831 crossref_primary_10_14801_jkiit_2023_21_11_1 crossref_primary_10_1088_1742_6596_2774_1_012046 crossref_primary_10_3390_info15070409 crossref_primary_10_1016_j_isatra_2021_03_002 crossref_primary_10_1016_j_aca_2021_338697 crossref_primary_10_3390_s22218543 crossref_primary_10_1016_j_jobe_2023_106886 crossref_primary_10_1109_TASE_2022_3173368 crossref_primary_10_1186_s12859_022_04794_9 crossref_primary_10_3389_fgene_2024_1408688 crossref_primary_10_3390_mi13050716 crossref_primary_10_1109_ACCESS_2020_3037333 crossref_primary_10_1007_s10462_020_09825_6 crossref_primary_10_1016_j_aei_2024_102463 crossref_primary_10_1016_j_optlaseng_2019_02_009 crossref_primary_10_3390_ma16227213 crossref_primary_10_1016_j_conengprac_2020_104630 crossref_primary_10_1007_s12024_025_00985_x crossref_primary_10_1007_s11571_023_09944_0 crossref_primary_10_1016_j_engfracmech_2023_109651 crossref_primary_10_1016_j_seppur_2019_116467 crossref_primary_10_1002_ima_22574 crossref_primary_10_1109_TCSVT_2020_2974768 crossref_primary_10_1088_1742_6596_2010_1_012001 crossref_primary_10_1088_2631_8695_acae1d crossref_primary_10_1007_s00138_021_01237_y crossref_primary_10_1007_s11128_024_04363_4 crossref_primary_10_1016_j_ufug_2023_127970 crossref_primary_10_1007_s00521_022_06907_0 crossref_primary_10_1051_bioconf_202414201004 crossref_primary_10_1016_j_asoc_2021_107596 crossref_primary_10_1016_j_knosys_2020_106062 crossref_primary_10_3390_cancers13194961 crossref_primary_10_3389_fpubh_2024_1426168 crossref_primary_10_1016_j_apenergy_2021_117819 crossref_primary_10_1109_ACCESS_2020_2979219 crossref_primary_10_1088_1361_6501_ab230b crossref_primary_10_1016_j_jvcir_2022_103685 crossref_primary_10_1016_j_jfca_2024_107131 crossref_primary_10_1016_j_bspc_2023_105263 crossref_primary_10_3390_electronics10020182 crossref_primary_10_1016_j_energy_2024_132495 crossref_primary_10_3390_app10124089 crossref_primary_10_3389_fsufs_2024_1401825 crossref_primary_10_1242_bio_060533 crossref_primary_10_1016_j_autcon_2024_105884 crossref_primary_10_1109_TIM_2023_3284958 crossref_primary_10_1016_j_asoc_2024_112118 crossref_primary_10_1016_j_neucom_2025_129533 crossref_primary_10_32362_2500_316X_2022_10_5_28_37 crossref_primary_10_3390_su15021150 crossref_primary_10_1007_s11761_023_00361_z crossref_primary_10_1016_j_ijleo_2020_165764 crossref_primary_10_1016_j_autcon_2024_105894 crossref_primary_10_1016_j_ijtst_2024_06_006 crossref_primary_10_1049_iet_ipr_2019_0241 crossref_primary_10_1109_TIM_2023_3301902 crossref_primary_10_1007_s00521_021_05848_4 crossref_primary_10_1007_s10462_022_10213_5 crossref_primary_10_1016_j_conengprac_2020_104673 crossref_primary_10_1109_MCAS_2019_2945210 crossref_primary_10_1007_s11042_020_08928_0 crossref_primary_10_1016_j_cma_2025_117926 crossref_primary_10_3390_math10214089 crossref_primary_10_1016_j_trac_2025_118156 crossref_primary_10_1021_acssensors_3c01273 crossref_primary_10_1016_j_jjimei_2022_100062 crossref_primary_10_1016_j_jpdc_2023_104778 crossref_primary_10_3390_agriculture12071033 crossref_primary_10_3390_s22166193 crossref_primary_10_1002_ima_22654 crossref_primary_10_1016_j_asoc_2025_112740 crossref_primary_10_1016_j_jisa_2019_102419 crossref_primary_10_1080_15376494_2022_2111009 crossref_primary_10_1016_j_eswa_2023_121956 crossref_primary_10_1016_j_eswa_2023_120621 crossref_primary_10_1088_1755_1315_355_1_012003 crossref_primary_10_1002_adma_201904020 crossref_primary_10_1016_j_autcon_2020_103371 crossref_primary_10_1016_j_patcog_2022_108587 crossref_primary_10_1109_ACCESS_2020_3021943 crossref_primary_10_1016_j_dibe_2023_100298 crossref_primary_10_1007_s11263_018_1125_z crossref_primary_10_1007_s10796_022_10352_8 crossref_primary_10_1007_s11042_023_15254_8 crossref_primary_10_17482_uumfd_1076377 crossref_primary_10_1016_j_eng_2024_08_023 crossref_primary_10_1109_TIA_2020_2984617 crossref_primary_10_1109_TIV_2019_2938109 crossref_primary_10_1016_j_compbiomed_2021_104317 crossref_primary_10_1007_s00371_024_03411_5 crossref_primary_10_3390_bdcc7030136 crossref_primary_10_1007_s11709_024_1134_7 crossref_primary_10_1016_j_bspc_2021_102943 crossref_primary_10_3389_fbioe_2024_1228846 crossref_primary_10_1016_j_watres_2025_123172 crossref_primary_10_1016_j_vibspec_2022_103450 crossref_primary_10_1016_j_wneu_2022_07_041 crossref_primary_10_1088_1755_1315_653_1_012030 crossref_primary_10_3390_agronomy12102551 crossref_primary_10_1080_08839514_2024_2355760 crossref_primary_10_1016_j_cmpb_2023_107493 crossref_primary_10_3390_s22228986 crossref_primary_10_1155_2021_6664569 crossref_primary_10_1016_j_cie_2020_106530 crossref_primary_10_1016_j_petrol_2021_109089 crossref_primary_10_31857_S0370274X24120227 crossref_primary_10_4108_eetsis_5667 crossref_primary_10_3390_s23010153 crossref_primary_10_1016_j_patcog_2024_111022 crossref_primary_10_1016_j_artmed_2023_102555 crossref_primary_10_1109_TCBB_2023_3322697 crossref_primary_10_3390_app12136595 crossref_primary_10_3390_s22155497 crossref_primary_10_1109_TCBB_2019_2963867 crossref_primary_10_1016_j_geoen_2023_211715 crossref_primary_10_1016_j_oceaneng_2024_117161 crossref_primary_10_1109_ACCESS_2022_3227134 crossref_primary_10_1134_S1054661823010017 crossref_primary_10_1016_j_tra_2024_104300 crossref_primary_10_3389_fcvm_2023_1279324 crossref_primary_10_3390_foods14050825 crossref_primary_10_1016_j_compbiomed_2019_103542 crossref_primary_10_3390_a15120454 crossref_primary_10_1007_s11600_022_00877_6 crossref_primary_10_1038_s41598_023_49589_x crossref_primary_10_1016_j_plaphe_2025_100004 crossref_primary_10_1109_ACCESS_2024_3467996 crossref_primary_10_1016_j_caeai_2022_100115 crossref_primary_10_1063_5_0206608 crossref_primary_10_3390_a15120466 crossref_primary_10_3390_environments10100167 crossref_primary_10_3390_s24227319 crossref_primary_10_3390_su13095304 crossref_primary_10_1016_j_enconman_2024_119326 crossref_primary_10_1016_j_jrmge_2022_06_007 crossref_primary_10_1109_ACCESS_2024_3391416 crossref_primary_10_35940_ijitee_F8804_0410621 crossref_primary_10_3390_agriculture10100436 crossref_primary_10_1051_epjconf_202328713020 crossref_primary_10_3390_app132413316 crossref_primary_10_3390_w16233503 crossref_primary_10_1016_j_bspc_2021_102906 crossref_primary_10_1038_s41598_024_65693_y crossref_primary_10_1016_j_compbiomed_2024_108370 crossref_primary_10_1016_j_energy_2025_135537 crossref_primary_10_1109_JSTARS_2024_3379350 crossref_primary_10_1016_j_anucene_2023_110208 crossref_primary_10_1016_j_bdr_2021_100286 crossref_primary_10_1186_s40537_024_00910_z crossref_primary_10_3390_atmos15030288 crossref_primary_10_1016_j_patcog_2022_109018 crossref_primary_10_3389_fgene_2023_1238095 crossref_primary_10_1117_1_JEI_28_2_023020 crossref_primary_10_1007_s00041_024_10069_z crossref_primary_10_1016_j_chemolab_2018_07_001 crossref_primary_10_1016_j_nucengdes_2025_113918 crossref_primary_10_20295_2413_2527_2024_137_26_31 crossref_primary_10_17798_bitlisfen_1346730 crossref_primary_10_3389_fpace_2024_1475139 crossref_primary_10_1016_j_cageo_2025_105853 crossref_primary_10_1016_j_patcog_2022_109024 crossref_primary_10_1016_j_est_2023_108181 crossref_primary_10_1016_j_patter_2021_100323 crossref_primary_10_1016_j_patcog_2019_107072 crossref_primary_10_1109_TCSI_2023_3344550 crossref_primary_10_1002_ese3_1405 crossref_primary_10_3390_bioengineering9090430 crossref_primary_10_1016_j_eswa_2023_122402 crossref_primary_10_1007_s10333_022_00908_4 crossref_primary_10_3390_s22166107 crossref_primary_10_1007_s10586_024_04658_2 crossref_primary_10_1016_j_cosrev_2021_100370 crossref_primary_10_1016_j_ultrasmedbio_2023_03_013 crossref_primary_10_1016_j_cosrev_2021_100374 crossref_primary_10_1109_ACCESS_2020_3040286 crossref_primary_10_3390_computers12080151 crossref_primary_10_3390_en16186517 crossref_primary_10_1111_1755_0998_13379 crossref_primary_10_1016_j_cosrev_2021_100379 crossref_primary_10_21837_pm_v21i28_1312 crossref_primary_10_1109_JSTARS_2023_3328403 crossref_primary_10_1016_j_enconman_2023_117707 crossref_primary_10_1080_10618562_2023_2225416 crossref_primary_10_3390_electronics12030478 crossref_primary_10_1016_j_saa_2020_118380 crossref_primary_10_1016_j_comnet_2025_111226 crossref_primary_10_1155_2023_9982080 crossref_primary_10_1007_s10010_019_00354_5 crossref_primary_10_1007_s00521_021_06033_3 crossref_primary_10_1016_j_eswa_2021_115525 crossref_primary_10_1016_j_rser_2023_113576 crossref_primary_10_1007_s12559_023_10113_y crossref_primary_10_1111_exsy_13393 crossref_primary_10_1007_s11042_022_13644_y crossref_primary_10_1016_j_saa_2021_119522 crossref_primary_10_1109_ACCESS_2020_2967090 crossref_primary_10_3390_s23083998 crossref_primary_10_1016_j_bios_2024_117086 crossref_primary_10_1016_j_patcog_2019_107038 crossref_primary_10_1016_j_chb_2024_108245 crossref_primary_10_1111_ffe_14291 crossref_primary_10_1155_2023_9790005 crossref_primary_10_1016_j_conbuildmat_2023_134229 crossref_primary_10_1007_s00521_020_04969_6 crossref_primary_10_1088_1361_6560_ac508d crossref_primary_10_1364_OE_443127 crossref_primary_10_3389_fgene_2024_1375481 crossref_primary_10_1016_j_patcog_2020_107513 crossref_primary_10_1155_2018_5781591 crossref_primary_10_1016_j_oceaneng_2025_120676 crossref_primary_10_1177_14759217241255042 crossref_primary_10_1016_j_cma_2023_115909 crossref_primary_10_1016_j_engappai_2025_110494 crossref_primary_10_1109_JSTARS_2021_3133021 crossref_primary_10_3389_fphy_2024_1362690 crossref_primary_10_1016_j_matcom_2024_11_004 crossref_primary_10_1016_j_egyr_2023_05_229 crossref_primary_10_1016_j_xcrp_2024_102116 crossref_primary_10_32604_biocell_2023_025905 crossref_primary_10_1007_s42452_024_06207_3 crossref_primary_10_1177_15589250241228266 crossref_primary_10_1109_ACCESS_2024_3444483 crossref_primary_10_1016_j_autcon_2022_104408 crossref_primary_10_3389_fpls_2019_01422 crossref_primary_10_1016_j_geoen_2023_211794 crossref_primary_10_1016_j_jhydrol_2023_130085 crossref_primary_10_1016_j_ijtst_2022_07_003 crossref_primary_10_3389_fpls_2023_1173036 crossref_primary_10_1364_OL_484392 crossref_primary_10_3390_en16186551 crossref_primary_10_1016_j_energy_2024_130881 crossref_primary_10_1109_TSMC_2020_3048950 crossref_primary_10_1016_j_scitotenv_2024_173273 crossref_primary_10_1016_j_engfailanal_2025_109332 crossref_primary_10_1016_j_conbuildmat_2023_134297 crossref_primary_10_1108_ACMM_03_2023_2769 crossref_primary_10_3390_app10062104 crossref_primary_10_1016_j_inffus_2023_01_015 crossref_primary_10_1080_03772063_2022_2083027 crossref_primary_10_1109_ACCESS_2023_3335196 crossref_primary_10_1145_3715098 crossref_primary_10_1007_s12206_024_1018_8 crossref_primary_10_1016_j_ijbiomac_2023_128802 crossref_primary_10_1049_iet_ipr_2018_5613 crossref_primary_10_1177_1548512920983549 crossref_primary_10_1016_j_ijggc_2020_103189 crossref_primary_10_1016_j_jhydrol_2020_125033 crossref_primary_10_1016_j_advwatres_2024_104833 crossref_primary_10_1007_s13735_024_00322_y crossref_primary_10_1080_17434440_2022_2014319 crossref_primary_10_1007_s42484_021_00056_8 crossref_primary_10_3390_a16020077 crossref_primary_10_1038_s41598_022_09453_w crossref_primary_10_1002_aic_18456 crossref_primary_10_3390_act14030113 crossref_primary_10_3390_make7010023 crossref_primary_10_1016_j_trac_2024_117794 crossref_primary_10_1016_j_cjca_2023_12_025 crossref_primary_10_31590_ejosat_1176648 crossref_primary_10_1016_j_ecoinf_2024_102681 crossref_primary_10_1016_j_energy_2024_130866 crossref_primary_10_1016_j_ins_2025_122113 crossref_primary_10_1088_2057_1976_ada6bd crossref_primary_10_1109_ACCESS_2021_3054117 crossref_primary_10_1109_TITS_2023_3311397 crossref_primary_10_1109_TSC_2023_3303191 crossref_primary_10_1016_j_heliyon_2024_e32215 crossref_primary_10_3389_fevo_2023_1275600 crossref_primary_10_1007_s11036_024_02413_w crossref_primary_10_1016_j_tsep_2024_103063 crossref_primary_10_1109_TVT_2023_3311011 crossref_primary_10_3390_rs14194686 crossref_primary_10_1016_j_aej_2025_01_077 crossref_primary_10_1109_ACCESS_2021_3116131 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1016_j_apenergy_2021_117061 crossref_primary_10_1038_s41598_022_17263_3 crossref_primary_10_1016_j_scienta_2019_109133 crossref_primary_10_32604_cmc_2022_018181 crossref_primary_10_3390_s24175523 crossref_primary_10_1038_s41598_023_28240_9 crossref_primary_10_1002_aic_18558 crossref_primary_10_1109_ACCESS_2018_2888882 crossref_primary_10_1109_ACCESS_2022_3201338 crossref_primary_10_1038_s41598_024_51258_6 crossref_primary_10_1007_s11831_024_10216_1 crossref_primary_10_1109_JSTSP_2020_2972775 crossref_primary_10_1016_j_energy_2021_120996 crossref_primary_10_1109_JSEN_2024_3371354 crossref_primary_10_1016_j_compag_2023_108456 crossref_primary_10_1109_ACCESS_2024_3362965 crossref_primary_10_32604_cmc_2021_014759 crossref_primary_10_1155_2021_5514224 crossref_primary_10_1016_j_aej_2025_01_095 crossref_primary_10_1038_s41598_022_21604_7 crossref_primary_10_1109_ACCESS_2019_2897078 crossref_primary_10_1109_ACCESS_2021_3074559 crossref_primary_10_1109_TNSM_2023_3273860 crossref_primary_10_1016_j_patcog_2020_107468 crossref_primary_10_1109_ACCESS_2020_3033027 crossref_primary_10_1007_s00521_024_09779_8 crossref_primary_10_1016_j_patcog_2020_107474 crossref_primary_10_1016_j_sedgeo_2020_105790 crossref_primary_10_1016_j_patcog_2020_107475 crossref_primary_10_1109_ACCESS_2024_3514093 crossref_primary_10_1109_JIOT_2024_3408634 crossref_primary_10_5194_hess_25_4435_2021 crossref_primary_10_1071_WR18119 crossref_primary_10_1016_j_eswa_2022_116611 crossref_primary_10_1021_jacs_4c11686 crossref_primary_10_3390_app13148332 crossref_primary_10_1038_s41598_020_63566_8 crossref_primary_10_1016_j_cirpj_2022_01_008 crossref_primary_10_1007_s11135_023_01681_0 crossref_primary_10_1109_ACCESS_2024_3408712 crossref_primary_10_1007_s12652_023_04514_y crossref_primary_10_1007_s11042_023_16687_x crossref_primary_10_3390_su13031224 crossref_primary_10_1002_cpe_70011 crossref_primary_10_3390_app13148306 crossref_primary_10_1177_03019233241301144 crossref_primary_10_1007_s11831_021_09551_4 crossref_primary_10_1002_cyto_a_24917 crossref_primary_10_1007_s11042_019_08355_w crossref_primary_10_1016_j_compag_2022_107269 crossref_primary_10_1371_journal_pone_0196251 crossref_primary_10_3389_fnins_2024_1279708 crossref_primary_10_1364_BOE_400816 crossref_primary_10_1109_TIP_2022_3183434 crossref_primary_10_1080_10447318_2024_2348229 crossref_primary_10_1109_TITS_2023_3303835 crossref_primary_10_1016_j_apenergy_2023_121703 crossref_primary_10_1093_mnras_stac2144 crossref_primary_10_1002_jsfa_13752 crossref_primary_10_1007_s11430_022_1050_2 crossref_primary_10_5194_gmd_14_3421_2021 crossref_primary_10_1016_j_phycom_2024_102303 crossref_primary_10_1016_j_jwpe_2024_106354 crossref_primary_10_1109_LGRS_2021_3109342 crossref_primary_10_1016_j_patter_2023_100860 crossref_primary_10_1109_TGRS_2021_3130406 crossref_primary_10_1360_SSI_2022_0239 crossref_primary_10_3390_en13102509 crossref_primary_10_1186_s12859_021_04527_4 crossref_primary_10_1016_j_jksuci_2020_03_002 crossref_primary_10_1088_1742_6596_2196_1_012022 crossref_primary_10_3390_app12084079 crossref_primary_10_1007_s11069_022_05363_2 crossref_primary_10_1038_s41558_022_01489_0 crossref_primary_10_1109_ACCESS_2022_3194652 crossref_primary_10_1093_bioinformatics_btae147 crossref_primary_10_1109_JSEN_2024_3369062 crossref_primary_10_1016_j_patcog_2019_107075 crossref_primary_10_1063_5_0134421 crossref_primary_10_3390_ijms22062903 crossref_primary_10_1016_j_procs_2020_09_038 crossref_primary_10_1007_s44196_023_00301_x crossref_primary_10_1016_j_procs_2019_09_400 crossref_primary_10_1038_s10038_023_01213_6 crossref_primary_10_1016_j_patcog_2019_107084 crossref_primary_10_1016_j_knosys_2023_111123 crossref_primary_10_3390_toxics12120921 crossref_primary_10_1109_TMRB_2023_3269856 crossref_primary_10_1142_S0219467825500147 crossref_primary_10_1111_jon_12838 crossref_primary_10_3390_app12168140 crossref_primary_10_1016_j_neucom_2020_06_110 crossref_primary_10_3390_app8081286 crossref_primary_10_1007_s11263_019_01247_4 crossref_primary_10_3390_s22135053 crossref_primary_10_1016_j_soildyn_2024_109127 crossref_primary_10_1051_e3sconf_202131004002 crossref_primary_10_1007_s00371_021_02324_x crossref_primary_10_1109_JLT_2022_3146839 crossref_primary_10_3390_s20113085 crossref_primary_10_1002_cpe_7626 crossref_primary_10_3390_bioengineering11101034 crossref_primary_10_1007_s11760_024_03639_7 crossref_primary_10_1016_j_geoen_2024_213392 crossref_primary_10_3390_machines10050319 crossref_primary_10_1007_s11042_023_14995_w crossref_primary_10_3390_en17164132 crossref_primary_10_1109_TNNLS_2021_3104392 crossref_primary_10_1016_j_acha_2024_101669 crossref_primary_10_1109_ACCESS_2023_3258399 crossref_primary_10_1038_s41597_023_02003_7 crossref_primary_10_1016_j_ijpharm_2023_123001 crossref_primary_10_1109_ACCESS_2024_3359367 crossref_primary_10_1016_j_patcog_2023_109778 crossref_primary_10_1016_j_teler_2023_100053 crossref_primary_10_1016_j_rineng_2021_100225 crossref_primary_10_1016_j_jacc_2024_08_053 crossref_primary_10_1038_s41524_020_00380_w crossref_primary_10_1080_09537287_2024_2320790 crossref_primary_10_1109_JSTARS_2020_3044250 crossref_primary_10_1109_OJITS_2023_3335817 crossref_primary_10_1016_j_isprsjprs_2021_12_005 crossref_primary_10_1016_j_aej_2024_08_074 crossref_primary_10_32604_cmc_2022_020431 crossref_primary_10_1002_widm_1551 crossref_primary_10_1109_TGRS_2023_3283508 crossref_primary_10_1007_s12652_019_01310_5 crossref_primary_10_1016_j_mlwa_2021_100058 crossref_primary_10_1016_j_compag_2022_106802 crossref_primary_10_1016_j_eswa_2024_123592 crossref_primary_10_1016_j_frl_2023_104458 crossref_primary_10_1007_s10664_024_10501_4 crossref_primary_10_1016_j_energy_2024_133011 crossref_primary_10_1155_2020_4608647 crossref_primary_10_1364_JOSAB_544692 crossref_primary_10_1002_jnm_70000 crossref_primary_10_1063_5_0134464 crossref_primary_10_1080_23729333_2022_2150379 crossref_primary_10_1063_5_0100236 crossref_primary_10_3390_math11143153 crossref_primary_10_1016_j_ijmecsci_2024_109672 crossref_primary_10_1063_5_0009326 crossref_primary_10_1016_j_compag_2024_109617 crossref_primary_10_1016_j_engappai_2023_107139 crossref_primary_10_1016_j_measurement_2022_112122 crossref_primary_10_1190_geo2021_0474_1 crossref_primary_10_1016_j_apacoust_2022_109052 crossref_primary_10_1016_j_celrep_2023_112904 crossref_primary_10_1016_j_ymeth_2024_04_003 crossref_primary_10_1080_21693277_2024_2378199 crossref_primary_10_1016_j_patcog_2018_11_009 crossref_primary_10_1016_j_asoc_2024_112015 crossref_primary_10_1109_ACCESS_2021_3110874 crossref_primary_10_1016_j_mlwa_2021_100037 crossref_primary_10_3390_math11020307 crossref_primary_10_3390_rs11172065 crossref_primary_10_1016_j_jag_2024_103718 crossref_primary_10_1007_s00466_024_02554_5 crossref_primary_10_3390_hydrology11100173 crossref_primary_10_1080_00207543_2023_2227903 crossref_primary_10_1093_bib_bbab160 crossref_primary_10_1016_j_envres_2024_120500 crossref_primary_10_1016_j_imu_2020_100412 crossref_primary_10_1016_j_infrared_2024_105265 crossref_primary_10_1007_s42979_023_02592_5 crossref_primary_10_1145_3613963 crossref_primary_10_1016_j_jrras_2023_100757 crossref_primary_10_3389_fnins_2024_1306047 crossref_primary_10_1007_s12596_023_01156_3 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_1016_j_engappai_2023_107121 crossref_primary_10_1016_j_isatra_2021_11_004 crossref_primary_10_1016_j_knosys_2024_112343 crossref_primary_10_1142_S0129065724500047 crossref_primary_10_1155_2022_7490363 crossref_primary_10_1038_s41598_022_17620_2 crossref_primary_10_1016_j_neucom_2021_06_003 crossref_primary_10_3390_drones7090559 crossref_primary_10_1002_ima_22663 crossref_primary_10_1080_17538947_2023_2298245 crossref_primary_10_3390_aerospace8040112 crossref_primary_10_3390_math11020321 crossref_primary_10_1007_s12043_023_02653_7 crossref_primary_10_1016_j_tafmec_2020_102728 crossref_primary_10_1109_TC_2020_2965518 crossref_primary_10_1088_1742_6596_1757_1_012083 crossref_primary_10_1049_ipr2_12835 crossref_primary_10_1360_SSTe_2022_0077 crossref_primary_10_1093_bib_bbae208 crossref_primary_10_1016_j_imavis_2023_104894 crossref_primary_10_3390_machines11100960 crossref_primary_10_1016_j_compositesb_2023_110907 crossref_primary_10_1016_j_compag_2021_106261 crossref_primary_10_1016_j_engappai_2022_104904 crossref_primary_10_1088_1742_6596_1918_4_042152 crossref_primary_10_1016_j_measurement_2022_111759 crossref_primary_10_1155_2022_1702766 crossref_primary_10_3390_app13074356 crossref_primary_10_1007_s00521_021_06715_y crossref_primary_10_3389_fpls_2023_1269371 crossref_primary_10_1088_1742_6596_1820_1_012004 crossref_primary_10_3390_agronomy13122915 crossref_primary_10_1016_j_cropro_2024_107035 crossref_primary_10_1080_23311916_2024_2307174 crossref_primary_10_1016_j_aej_2024_10_022 crossref_primary_10_1080_21680566_2022_2116125 crossref_primary_10_3390_s22082932 crossref_primary_10_1109_ACCESS_2025_3544923 crossref_primary_10_11834_jig_220079 crossref_primary_10_1007_s11128_023_04143_6 crossref_primary_10_1049_iet_ipr_2020_0444 crossref_primary_10_1109_TCYB_2020_3034605 crossref_primary_10_1016_j_compenvurbsys_2023_101968 crossref_primary_10_3390_machines11100940 crossref_primary_10_1016_j_rse_2020_111970 crossref_primary_10_1109_ACCESS_2020_2984383 crossref_primary_10_36548_jaicn_2022_4_005 crossref_primary_10_1631_FITEE_2000181 crossref_primary_10_1016_j_cmpb_2021_106510 crossref_primary_10_3389_fbrio_2024_1326958 crossref_primary_10_1016_j_measurement_2019_107450 crossref_primary_10_1080_15481603_2024_2393489 crossref_primary_10_26634_jdp_7_4_17682 crossref_primary_10_3390_electronics12010113 crossref_primary_10_1038_s41598_022_21294_1 crossref_primary_10_1587_transfun_2022EAP1100 crossref_primary_10_1007_s00500_024_10313_0 crossref_primary_10_1038_s41467_024_55525_y crossref_primary_10_1109_ACCESS_2023_3328768 crossref_primary_10_1007_s12559_020_09744_2 crossref_primary_10_1088_2058_9565_ab9f93 crossref_primary_10_1016_j_media_2025_103454 crossref_primary_10_4015_S1016237224500352 crossref_primary_10_1016_j_media_2025_103455 crossref_primary_10_1057_s41278_023_00278_6 crossref_primary_10_1007_s10845_020_01715_6 crossref_primary_10_1007_s12065_022_00780_5 crossref_primary_10_1007_s42979_023_02245_7 crossref_primary_10_1016_j_fuproc_2023_107673 crossref_primary_10_3390_cancers14174342 crossref_primary_10_1109_TNNLS_2023_3273503 crossref_primary_10_1016_j_procs_2024_04_208 crossref_primary_10_1007_s11704_024_40610_8 crossref_primary_10_1016_j_dsp_2025_105178 crossref_primary_10_1016_j_jksuci_2023_04_006 crossref_primary_10_1109_ACCESS_2023_3235866 crossref_primary_10_3390_biomimetics8020187 crossref_primary_10_1061_JTEPBS_0000432 crossref_primary_10_1142_S0218539324500189 crossref_primary_10_1016_j_eswa_2023_119559 crossref_primary_10_1016_j_wasec_2023_100141 crossref_primary_10_3847_1538_4357_ab275e crossref_primary_10_1007_s40098_024_01065_7 crossref_primary_10_1002_cpe_5920 crossref_primary_10_1016_j_jestch_2024_101794 crossref_primary_10_1080_01431161_2020_1856964 crossref_primary_10_1016_j_patcog_2020_107608 crossref_primary_10_1109_JTEHM_2023_3290036 crossref_primary_10_1364_OE_522516 crossref_primary_10_1007_s00034_024_02898_6 crossref_primary_10_1155_2018_4189150 crossref_primary_10_1002_int_23054 crossref_primary_10_1016_j_procs_2021_05_023 crossref_primary_10_7717_peerj_cs_798 crossref_primary_10_35784_acs_2023_37 crossref_primary_10_1016_j_patcog_2020_107610 crossref_primary_10_1016_j_scitotenv_2023_166168 crossref_primary_10_1109_TIP_2018_2878975 crossref_primary_10_2478_ausi_2023_0006 crossref_primary_10_1016_j_patcog_2024_111153 crossref_primary_10_1016_j_softx_2019_100311 crossref_primary_10_2174_1570180820666230427151812 crossref_primary_10_1088_1361_6501_ad15de crossref_primary_10_1177_18724981251319630 crossref_primary_10_1016_j_eswa_2023_119534 crossref_primary_10_5194_tc_16_1447_2022 crossref_primary_10_1007_s11119_023_10073_1 crossref_primary_10_1016_j_vehcom_2022_100470 crossref_primary_10_1016_j_ymssp_2022_109642 crossref_primary_10_1109_JPROC_2024_3429360 crossref_primary_10_1016_j_ymssp_2022_109634 crossref_primary_10_1007_s11276_021_02645_8 crossref_primary_10_1016_j_geoen_2024_213279 crossref_primary_10_1016_j_heliyon_2023_e14453 crossref_primary_10_3389_fpls_2023_1102855 crossref_primary_10_1007_s44196_022_00133_1 crossref_primary_10_1016_j_patcog_2024_111138 crossref_primary_10_1007_s00521_022_07099_3 crossref_primary_10_1109_ACCESS_2022_3216393 crossref_primary_10_1109_TPAMI_2024_3457538 crossref_primary_10_1016_j_eswa_2022_117062 crossref_primary_10_1016_j_egyr_2022_03_013 crossref_primary_10_1002_ima_22703 crossref_primary_10_1177_00202940241230488 crossref_primary_10_1016_j_vehcom_2022_100471 crossref_primary_10_1155_2019_6134610 crossref_primary_10_1088_1361_6501_ac4598 crossref_primary_10_1007_s11042_024_18714_x crossref_primary_10_1145_3696113 crossref_primary_10_3390_nano14020165 crossref_primary_10_1016_j_engappai_2023_106562 crossref_primary_10_1016_j_agwat_2024_109268 crossref_primary_10_1007_s13735_021_00205_6 crossref_primary_10_1007_s00500_023_08865_8 crossref_primary_10_1109_ACCESS_2024_3512185 crossref_primary_10_1007_s00530_022_00955_1 crossref_primary_10_1016_j_physa_2024_130226 crossref_primary_10_1177_09544100241253317 crossref_primary_10_1109_JSEN_2024_3409776 crossref_primary_10_1115_1_4063985 crossref_primary_10_1080_03772063_2019_1644974 crossref_primary_10_1109_TBC_2022_3224249 crossref_primary_10_24012_dumf_492433 crossref_primary_10_3390_sci6040077 crossref_primary_10_1016_j_measurement_2023_113382 crossref_primary_10_1109_TGRS_2021_3106681 crossref_primary_10_3390_ma15031157 crossref_primary_10_1088_1361_6501_abe0d9 crossref_primary_10_3390_electronics12092027 crossref_primary_10_1109_ACCESS_2020_2994592 crossref_primary_10_1016_j_patcog_2020_107659 crossref_primary_10_3389_fpls_2020_01086 crossref_primary_10_1016_j_ymeth_2022_11_001 crossref_primary_10_1016_j_geoen_2024_212854 crossref_primary_10_1007_s10343_022_00764_6 crossref_primary_10_1016_j_eswa_2025_126468 crossref_primary_10_3390_en17163877 crossref_primary_10_1061__ASCE_IS_1943_555X_0000545 crossref_primary_10_1029_2022SW003064 crossref_primary_10_3390_bios12090700 crossref_primary_10_1016_j_acha_2020_05_007 crossref_primary_10_1007_s11042_024_20323_7 crossref_primary_10_1016_j_compeleceng_2023_109012 crossref_primary_10_1016_j_pacs_2021_100241 crossref_primary_10_3390_su16041710 crossref_primary_10_3390_app14020525 crossref_primary_10_1016_j_pepi_2021_106653 crossref_primary_10_1016_j_cviu_2023_103909 crossref_primary_10_1007_s12567_023_00510_2 crossref_primary_10_3390_math10081285 crossref_primary_10_1038_s41598_020_66505_9 crossref_primary_10_1080_02564602_2020_1823252 crossref_primary_10_1155_2022_2549683 crossref_primary_10_1093_bib_bbac631 crossref_primary_10_1016_j_measurement_2021_110545 crossref_primary_10_1088_1742_6596_2664_1_012007 crossref_primary_10_1016_j_neucom_2023_126896 crossref_primary_10_3233_MGS_230034 crossref_primary_10_1155_2022_6173981 crossref_primary_10_1162_neco_a_01273 crossref_primary_10_1016_j_ymeth_2022_03_001 crossref_primary_10_3389_fpls_2020_583438 crossref_primary_10_1186_s13007_022_00929_4 crossref_primary_10_1111_exsy_13454 crossref_primary_10_1016_j_cej_2018_04_087 crossref_primary_10_1038_s41598_022_21646_x crossref_primary_10_3390_pr8111480 crossref_primary_10_3390_ma15092984 crossref_primary_10_3390_mi13122231 crossref_primary_10_1109_ACCESS_2024_3455255 crossref_primary_10_1109_TSP_2021_3089927 crossref_primary_10_3390_agriculture14040584 crossref_primary_10_1016_j_patcog_2020_107692 crossref_primary_10_1109_TITS_2019_2897377 crossref_primary_10_1007_s00170_022_08836_7 crossref_primary_10_1007_s00224_022_10112_w crossref_primary_10_1007_s10489_022_03781_0 crossref_primary_10_1016_j_engappai_2023_107822 crossref_primary_10_32604_jai_2024_054314 crossref_primary_10_1007_s40684_023_00528_1 crossref_primary_10_1021_acsomega_2c02665 crossref_primary_10_3390_app14219819 crossref_primary_10_3390_s20205896 crossref_primary_10_3390_w14091384 crossref_primary_10_1021_acsami_4c11087 crossref_primary_10_1016_j_eswa_2022_117925 crossref_primary_10_1002_dac_4685 crossref_primary_10_1016_j_knosys_2023_111301 crossref_primary_10_1016_j_precisioneng_2024_07_006 crossref_primary_10_1049_ipr2_13105 crossref_primary_10_2139_ssrn_3882570 crossref_primary_10_1109_ACCESS_2023_3268797 crossref_primary_10_1109_TAI_2023_3240674 crossref_primary_10_1016_j_rser_2022_112282 crossref_primary_10_1016_j_elerap_2025_101484 crossref_primary_10_1109_TNSRE_2020_3019063 crossref_primary_10_1109_JIOT_2019_2901348 crossref_primary_10_1016_j_bspc_2024_106194 crossref_primary_10_1016_j_heliyon_2023_e23324 crossref_primary_10_3390_electronics10121393 crossref_primary_10_1007_s12046_021_01787_x crossref_primary_10_1111_2041_210X_13775 crossref_primary_10_1016_j_saa_2024_123976 crossref_primary_10_1093_mnras_stz2851 crossref_primary_10_3390_app13095231 crossref_primary_10_1002_adsr_202200072 crossref_primary_10_1088_1742_6596_2014_1_012020 crossref_primary_10_1016_j_ultras_2021_106661 crossref_primary_10_1007_s12145_024_01438_9 crossref_primary_10_1002_aisy_202100285 crossref_primary_10_1007_s11053_024_10438_x crossref_primary_10_1007_s11042_019_08158_z crossref_primary_10_1016_S2589_7500_21_00278_8 crossref_primary_10_1016_j_infsof_2023_107148 crossref_primary_10_3389_fmars_2023_1162064 crossref_primary_10_1007_s11042_025_20735_z crossref_primary_10_3390_agriculture12020129 crossref_primary_10_1007_s44163_023_00062_8 crossref_primary_10_4018_IJCINI_2020010103 crossref_primary_10_1016_j_mehy_2020_109761 crossref_primary_10_1038_s41598_023_38532_9 crossref_primary_10_32604_iasc_2023_032530 crossref_primary_10_1016_j_compgeo_2023_105935 crossref_primary_10_3390_bdcc9010005 crossref_primary_10_1002_cpe_6486 crossref_primary_10_1016_j_patcog_2023_110003 crossref_primary_10_7734_COSEIK_2019_32_4_265 crossref_primary_10_1007_s10845_021_01829_5 crossref_primary_10_3390_s24103123 crossref_primary_10_1002_mp_16702 crossref_primary_10_1016_j_neucom_2019_08_101 crossref_primary_10_1016_j_compeleceng_2021_107461 crossref_primary_10_1016_j_eswa_2022_117846 crossref_primary_10_1109_COMST_2023_3298300 crossref_primary_10_1016_j_compag_2023_108577 crossref_primary_10_1016_j_infsof_2023_107169 crossref_primary_10_3390_s23167111 crossref_primary_10_3390_pr11071917 crossref_primary_10_1109_ACCESS_2024_3361756 crossref_primary_10_3390_en17174457 crossref_primary_10_1016_j_compag_2024_109719 crossref_primary_10_1029_2018WR023528 crossref_primary_10_1016_j_intell_2024_101832 crossref_primary_10_1016_j_engappai_2020_103831 crossref_primary_10_1016_j_chemolab_2022_104711 crossref_primary_10_1016_j_patcog_2020_107584 crossref_primary_10_1109_TIM_2023_3265128 crossref_primary_10_1016_j_chemosphere_2023_140476 crossref_primary_10_2166_wcc_2024_389 crossref_primary_10_1016_j_mineng_2023_108523 crossref_primary_10_1016_j_jspr_2023_102242 crossref_primary_10_3390_s24217035 crossref_primary_10_1007_s00158_022_03359_x crossref_primary_10_1109_TGRS_2024_3371714 crossref_primary_10_1051_e3sconf_202336902003 crossref_primary_10_3390_agronomy14123068 crossref_primary_10_1007_s10845_023_02183_4 crossref_primary_10_1016_j_ipm_2024_103914 crossref_primary_10_3390_app12052570 crossref_primary_10_1016_j_radphyschem_2025_112681 crossref_primary_10_3390_s24010177 crossref_primary_10_3390_machines11070677 crossref_primary_10_1088_1361_6595_acb28c crossref_primary_10_1007_s11042_023_17112_z crossref_primary_10_1007_s11831_023_09986_x crossref_primary_10_1016_j_compeleceng_2019_106533 crossref_primary_10_1109_ACCESS_2020_2989273 crossref_primary_10_1007_s13369_023_08534_w crossref_primary_10_1371_journal_pone_0298102 crossref_primary_10_3390_electronics10212697 crossref_primary_10_1117_1_JRS_18_014507 crossref_primary_10_1016_j_eswa_2023_122283 crossref_primary_10_3390_rs14215305 crossref_primary_10_1007_s12559_024_10374_1 crossref_primary_10_1016_j_oceaneng_2022_110650 crossref_primary_10_3390_su151310543 crossref_primary_10_3390_rs14194763 crossref_primary_10_1049_itr2_12385 crossref_primary_10_1016_j_compbiomed_2022_106156 crossref_primary_10_2139_ssrn_4605153 crossref_primary_10_3390_app132111776 crossref_primary_10_1016_j_matdes_2020_109180 crossref_primary_10_3390_w15152704 crossref_primary_10_1371_journal_pdig_0000678 crossref_primary_10_1080_14737175_2021_1951234 crossref_primary_10_1016_j_ijinfomgt_2020_102205 crossref_primary_10_1016_j_jhydrol_2019_124296 crossref_primary_10_17221_21_2022_CJFS crossref_primary_10_3748_wjg_v30_i39_4267 crossref_primary_10_1007_s12065_019_00344_0 crossref_primary_10_3934_era_2022008 crossref_primary_10_1007_s10278_024_01050_9 crossref_primary_10_1111_jgh_15502 crossref_primary_10_3389_fmars_2022_947394 crossref_primary_10_1088_1538_3873_acf8f7 crossref_primary_10_2478_jaiscr_2025_0006 crossref_primary_10_1007_s40747_023_01119_y crossref_primary_10_1007_s00704_023_04775_9 crossref_primary_10_1007_s00521_024_10252_9 crossref_primary_10_1007_s12539_019_00351_w crossref_primary_10_3390_diagnostics13213384 crossref_primary_10_1016_j_apor_2023_103587 crossref_primary_10_1016_j_scrs_2024_101003 crossref_primary_10_1016_j_jcp_2024_113708 crossref_primary_10_1587_elex_21_20240382 crossref_primary_10_1109_ACCESS_2020_3043386 crossref_primary_10_1080_21642583_2022_2091060 crossref_primary_10_3390_s18061828 crossref_primary_10_1155_2022_1715226 crossref_primary_10_1109_JPROC_2023_3238524 crossref_primary_10_3390_electronics12040858 crossref_primary_10_1109_ACCESS_2021_3085114 crossref_primary_10_1007_s11042_020_09491_4 crossref_primary_10_1090_mcom_3781 crossref_primary_10_1016_j_measurement_2019_05_057 crossref_primary_10_1002_cpe_5130 crossref_primary_10_1016_j_compstruct_2023_117701 crossref_primary_10_2139_ssrn_4005974 crossref_primary_10_3390_app10186507 crossref_primary_10_1109_JSTARS_2021_3049905 crossref_primary_10_1016_j_ast_2021_107297 crossref_primary_10_1080_03081060_2024_2340640 crossref_primary_10_1177_14759217231193102 crossref_primary_10_1007_s43452_025_01147_0 crossref_primary_10_3233_HIS_240006 crossref_primary_10_4028_www_scientific_net_KEM_827_476 crossref_primary_10_3390_agronomy12112723 crossref_primary_10_1016_j_patcog_2022_108614 crossref_primary_10_1038_s41598_021_84358_8 crossref_primary_10_1016_j_procs_2020_02_243 crossref_primary_10_1038_s41598_021_87496_1 crossref_primary_10_1109_JOE_2024_3429653 crossref_primary_10_3390_s24248148 crossref_primary_10_1007_s11042_021_11593_6 crossref_primary_10_1016_j_eswa_2024_123447 crossref_primary_10_1016_j_knosys_2022_109935 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_3390_foods12010141 crossref_primary_10_1109_ACCESS_2024_3365274 crossref_primary_10_1016_j_autcon_2020_103526 crossref_primary_10_1177_14759217241228150 crossref_primary_10_1007_s00521_019_04282_x crossref_primary_10_1029_2023JF007336 crossref_primary_10_1021_acs_jcim_8b00368 crossref_primary_10_1016_j_jpowsour_2024_234808 crossref_primary_10_3390_jimaging10100248 crossref_primary_10_1007_s00521_019_04665_0 crossref_primary_10_1109_JSTARS_2024_3402388 crossref_primary_10_1145_3634703 crossref_primary_10_1007_s12652_021_03253_2 crossref_primary_10_1016_j_saa_2022_121560 crossref_primary_10_1007_s11042_024_19750_3 crossref_primary_10_1155_2022_3995209 crossref_primary_10_1109_MCE_2024_3387019 crossref_primary_10_1186_s12938_025_01333_4 crossref_primary_10_1016_j_ecolmodel_2023_110545 crossref_primary_10_1109_TGRS_2024_3434403 crossref_primary_10_1155_2021_9928073 crossref_primary_10_1016_j_renene_2022_05_123 crossref_primary_10_1016_j_atmosres_2024_107307 crossref_primary_10_1016_j_future_2019_09_001 crossref_primary_10_1016_j_engappai_2022_104953 crossref_primary_10_1109_ACCESS_2022_3206963 crossref_primary_10_3390_en18061463 crossref_primary_10_1016_j_jpha_2024_101103 crossref_primary_10_1109_TIA_2021_3072025 crossref_primary_10_1016_j_knosys_2021_107446 crossref_primary_10_1016_j_nima_2023_168942 crossref_primary_10_1111_2041_210X_14281 crossref_primary_10_7717_peerj_18822 crossref_primary_10_1038_s41598_022_15533_8 crossref_primary_10_1088_1361_665X_acd3c8 crossref_primary_10_1007_s10096_020_03901_z crossref_primary_10_1177_01423312241252459 crossref_primary_10_1002_advs_202106043 crossref_primary_10_1016_j_procs_2018_08_282 crossref_primary_10_1007_s11063_022_10894_7 crossref_primary_10_1007_s42835_023_01391_5 crossref_primary_10_1016_j_cliser_2023_100408 crossref_primary_10_1016_j_patcog_2023_109867 crossref_primary_10_1109_ACCESS_2022_3171811 crossref_primary_10_1145_3643678 crossref_primary_10_1002_adfm_202213711 crossref_primary_10_3390_en16166049 crossref_primary_10_1007_s00521_020_05246_2 crossref_primary_10_1016_j_autcon_2025_105973 crossref_primary_10_1038_s41598_023_49075_4 crossref_primary_10_3389_fpubh_2024_1431757 crossref_primary_10_3390_s18092955 crossref_primary_10_3390_ijms231810396 crossref_primary_10_1007_s40747_023_01333_8 crossref_primary_10_3390_en15031215 crossref_primary_10_1088_1742_6596_2310_1_012076 crossref_primary_10_1038_s41598_025_89421_2 crossref_primary_10_1016_j_egyr_2024_04_039 crossref_primary_10_1016_j_eswa_2024_125215 crossref_primary_10_1109_ACCESS_2021_3058387 crossref_primary_10_1109_TSMC_2018_2850149 crossref_primary_10_3389_fnins_2022_979787 crossref_primary_10_4018_IJITSA_344019 crossref_primary_10_1109_LMWC_2022_3208355 crossref_primary_10_3390_diagnostics14131402 crossref_primary_10_3389_fmolb_2021_768106 crossref_primary_10_1093_bib_bbae338 crossref_primary_10_3390_s24020348 crossref_primary_10_1109_OJCAS_2022_3184302 crossref_primary_10_1097_AUD_0000000000001443 crossref_primary_10_21605_cukurovaumfd_1230792 crossref_primary_10_3390_rs17010124 crossref_primary_10_1038_s41598_022_09370_y crossref_primary_10_1016_j_compbiolchem_2021_107584 crossref_primary_10_1088_1361_6560_ac8964 crossref_primary_10_2118_215117_PA crossref_primary_10_1016_j_apenergy_2024_123920 crossref_primary_10_5194_se_11_1527_2020 crossref_primary_10_1109_ACCESS_2021_3097969 crossref_primary_10_1007_s00138_018_0990_3 crossref_primary_10_1007_s41871_023_00193_7 crossref_primary_10_1080_10106049_2024_2375585 crossref_primary_10_1007_s10009_023_00701_6 crossref_primary_10_3390_app10144710 crossref_primary_10_1016_j_enganabound_2024_105826 crossref_primary_10_1016_j_asoc_2022_108885 crossref_primary_10_1002_aisy_202400429 crossref_primary_10_1016_j_ejrh_2023_101326 crossref_primary_10_1145_3479428 crossref_primary_10_1016_j_jdent_2019_103226 crossref_primary_10_1016_j_jtbi_2023_111636 crossref_primary_10_3390_math12233661 crossref_primary_10_1016_j_earscirev_2021_103858 crossref_primary_10_1109_JSEN_2024_3423324 crossref_primary_10_1109_ACCESS_2020_2996250 crossref_primary_10_1093_mnras_stac281 crossref_primary_10_1088_1367_2630_ac71be crossref_primary_10_3390_electronics13040773 crossref_primary_10_3390_ijms25168660 crossref_primary_10_3390_mi15080985 crossref_primary_10_2478_rgg_2024_0017 crossref_primary_10_1051_0004_6361_202452379 crossref_primary_10_1016_j_compag_2024_109032 crossref_primary_10_3233_JIFS_210100 crossref_primary_10_1155_2022_2178579 crossref_primary_10_14201_ADCAIJ20211016376 crossref_primary_10_1364_OE_26_022603 crossref_primary_10_3390_machines10060422 crossref_primary_10_1016_j_displa_2024_102958 crossref_primary_10_1016_j_patcog_2021_108063 crossref_primary_10_5937_tehnika2304433P crossref_primary_10_3233_JIFS_231032 crossref_primary_10_1109_TFUZZ_2021_3062899 crossref_primary_10_1016_j_knosys_2022_110210 crossref_primary_10_1109_ACCESS_2024_3399114 crossref_primary_10_1088_2632_2153_ace417 crossref_primary_10_3390_pr10091867 crossref_primary_10_1109_ACCESS_2019_2919566 crossref_primary_10_1002_acm2_13337 crossref_primary_10_1002_cjoc_202100591 crossref_primary_10_1109_TIM_2020_2998233 crossref_primary_10_1117_1_JEI_32_4_043008 crossref_primary_10_1016_j_engappai_2025_110265 crossref_primary_10_7498_aps_70_20210684 crossref_primary_10_1103_PhysRevD_110_063011 crossref_primary_10_3390_rs15204985 crossref_primary_10_1002_spy2_164 crossref_primary_10_1007_s00530_024_01578_4 crossref_primary_10_1049_joe_2019_1153 crossref_primary_10_3390_photonics11111085 crossref_primary_10_1016_j_ijleo_2021_168037 crossref_primary_10_1109_ACCESS_2023_3301160 crossref_primary_10_1016_j_compbiomed_2022_105737 crossref_primary_10_3390_app13127276 crossref_primary_10_1088_1742_6596_2762_1_012006 crossref_primary_10_1016_j_csl_2021_101204 crossref_primary_10_1038_s41598_020_58103_6 crossref_primary_10_1016_j_actaastro_2020_11_035 crossref_primary_10_1109_ACCESS_2021_3114968 crossref_primary_10_1515_revneuro_2018_0050 crossref_primary_10_1109_TAES_2022_3169454 crossref_primary_10_32604_cmes_2021_014669 crossref_primary_10_3390_electronics12092138 crossref_primary_10_1109_ACCESS_2022_3163247 crossref_primary_10_1016_j_patcog_2024_110398 crossref_primary_10_1016_j_est_2024_114959 crossref_primary_10_1016_j_measurement_2023_113911 crossref_primary_10_1016_j_ijsolstr_2025_113223 crossref_primary_10_1016_j_aei_2022_101643 crossref_primary_10_1109_COMST_2023_3323091 crossref_primary_10_1007_s00362_019_01138_3 crossref_primary_10_1002_tee_23543 crossref_primary_10_1016_j_jestch_2025_101977 crossref_primary_10_1109_ACCESS_2023_3326421 crossref_primary_10_1049_ipr2_13097 crossref_primary_10_3390_s20216247 crossref_primary_10_3390_electronics11234008 crossref_primary_10_3390_su12229490 crossref_primary_10_1103_PhysRevD_102_092003 crossref_primary_10_1155_2021_6664776 crossref_primary_10_4155_fmc_2021_0063 crossref_primary_10_1016_j_oceaneng_2021_108803 crossref_primary_10_3390_brainsci10020064 crossref_primary_10_3390_electronics12244956 crossref_primary_10_1109_ACCESS_2020_2975350 crossref_primary_10_4995_var_2021_15329 crossref_primary_10_3390_rs15204971 crossref_primary_10_1016_j_jfca_2024_106930 crossref_primary_10_3390_idr14060090 crossref_primary_10_1109_ACCESS_2022_3186701 crossref_primary_10_1155_2024_5134326 crossref_primary_10_1007_s11042_024_19419_x crossref_primary_10_3390_math11194147 crossref_primary_10_1109_TVT_2023_3247442 crossref_primary_10_3390_atmos14060953 crossref_primary_10_1007_s43069_023_00278_5 crossref_primary_10_1016_j_biocon_2021_109102 crossref_primary_10_1007_s10826_019_01689_x crossref_primary_10_1155_2023_2354728 crossref_primary_10_1177_20552076241272632 crossref_primary_10_3390_agronomy11081480 crossref_primary_10_1080_10589759_2024_2422527 crossref_primary_10_1007_s12652_021_03688_7 crossref_primary_10_1007_s11227_018_2600_6 crossref_primary_10_1007_s40747_024_01622_w crossref_primary_10_1111_exsy_13141 crossref_primary_10_1117_1_JMI_4_4_044504 crossref_primary_10_1016_j_cie_2022_108213 crossref_primary_10_1364_OPTCON_485728 crossref_primary_10_1145_3679010 crossref_primary_10_1016_j_patcog_2024_110351 crossref_primary_10_1109_ACCESS_2021_3076571 crossref_primary_10_1016_j_procs_2021_01_059 crossref_primary_10_17780_ksujes_1208283 crossref_primary_10_1109_ACCESS_2023_3281859 crossref_primary_10_3389_fncom_2023_1091180 crossref_primary_10_1016_j_jocs_2022_101865 crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_3390_app14020642 crossref_primary_10_3390_jimaging9010001 crossref_primary_10_3390_s20123539 crossref_primary_10_3390_biomimetics7040241 crossref_primary_10_1088_1742_6596_1547_1_012020 crossref_primary_10_1016_j_measurement_2025_116755 crossref_primary_10_1016_j_saa_2023_122686 crossref_primary_10_3389_fmed_2023_1278232 crossref_primary_10_1016_j_aeolia_2022_100801 crossref_primary_10_1109_ACCESS_2024_3355547 crossref_primary_10_1111_1541_4337_13110 crossref_primary_10_1016_j_compstruct_2022_116354 crossref_primary_10_1016_j_measurement_2022_111808 crossref_primary_10_1007_s10462_022_10272_8 crossref_primary_10_1007_s40735_022_00671_3 crossref_primary_10_1111_1755_0998_14015 crossref_primary_10_1007_s42600_024_00338_7 crossref_primary_10_1016_j_measurement_2024_116450 crossref_primary_10_36680_j_itcon_2020_021 crossref_primary_10_3390_bdcc7020108 crossref_primary_10_1109_LSP_2021_3056901 crossref_primary_10_3390_mca26010017 crossref_primary_10_1109_ACCESS_2025_3542425 crossref_primary_10_1007_s00371_021_02352_7 crossref_primary_10_1051_bioconf_202411301014 crossref_primary_10_1016_j_csbj_2024_10_018 crossref_primary_10_1007_s10845_024_02372_9 crossref_primary_10_1088_1361_6501_aca115 crossref_primary_10_1109_ACCESS_2024_3469537 crossref_primary_10_1007_s10596_022_10181_3 crossref_primary_10_1007_s13369_024_09639_6 crossref_primary_10_1177_14759217221098569 crossref_primary_10_1007_s40820_024_01489_z crossref_primary_10_1088_1742_6596_1387_1_012124 crossref_primary_10_1016_j_engappai_2022_105698 crossref_primary_10_3390_rs13214262 crossref_primary_10_1016_j_patcog_2018_09_015 crossref_primary_10_1109_TCAD_2020_2966451 crossref_primary_10_1016_j_compbiomed_2022_106216 crossref_primary_10_3390_rs15030765 crossref_primary_10_1016_j_eja_2024_127332 crossref_primary_10_1097_BPO_0000000000002611 crossref_primary_10_7717_peerj_cs_1453 crossref_primary_10_1007_s00521_020_05151_8 crossref_primary_10_1016_j_cpan_2024_11_001 crossref_primary_10_1109_TIP_2024_3388895 crossref_primary_10_4018_IJSSCI_328771 crossref_primary_10_1016_j_eja_2025_127617 crossref_primary_10_1021_acs_jpclett_4c01911 crossref_primary_10_1016_j_jclepro_2024_143963 crossref_primary_10_3390_v15081749 crossref_primary_10_1016_j_patcog_2018_09_007 crossref_primary_10_3389_feart_2022_999530 crossref_primary_10_3389_fnins_2019_00810 crossref_primary_10_1109_TITS_2020_3008935 crossref_primary_10_3390_s23135922 crossref_primary_10_1002_jtr_2812 crossref_primary_10_1145_3592615 crossref_primary_10_1016_j_engappai_2025_110217 crossref_primary_10_1097_CMR_0000000000000922 crossref_primary_10_1016_j_fochx_2023_100690 crossref_primary_10_1145_3631130 crossref_primary_10_1016_j_scs_2021_102830 crossref_primary_10_3390_s20051340 crossref_primary_10_1016_j_jrras_2024_101265 crossref_primary_10_1016_j_cjca_2018_04_032 crossref_primary_10_1109_TGRS_2023_3257039 crossref_primary_10_1109_TCBB_2023_3339645 crossref_primary_10_1109_JSTARS_2021_3129182 crossref_primary_10_3389_frai_2023_1062230 crossref_primary_10_1109_ACCESS_2024_3406736 crossref_primary_10_2478_jaiscr_2022_0012 crossref_primary_10_3390_app13116515 crossref_primary_10_7769_gesec_v15i12_4570 crossref_primary_10_1007_s13369_024_09954_y crossref_primary_10_3390_app122010476 crossref_primary_10_1109_TIP_2022_3208735 crossref_primary_10_1007_s00521_023_08870_w crossref_primary_10_1016_j_patcog_2023_110129 crossref_primary_10_1007_s10772_024_10134_4 crossref_primary_10_55708_js0308002 crossref_primary_10_1016_j_nanoen_2024_110186 crossref_primary_10_3390_chemosensors12070140 crossref_primary_10_3233_JIFS_210932 crossref_primary_10_3390_diagnostics12112833 crossref_primary_10_1016_j_ins_2021_02_024 crossref_primary_10_3389_fnins_2018_00689 crossref_primary_10_3389_fenvs_2023_1156248 crossref_primary_10_7498_aps_72_20222381 crossref_primary_10_1016_j_engappai_2022_105775 crossref_primary_10_1007_s10483_023_2992_6 crossref_primary_10_1002_qre_2983 crossref_primary_10_1016_j_inffus_2024_102695 crossref_primary_10_3389_fspas_2022_1031407 crossref_primary_10_3390_app9204364 crossref_primary_10_1145_3688001 crossref_primary_10_1016_j_mejo_2023_105810 crossref_primary_10_1016_j_eswa_2022_116868 crossref_primary_10_3390_app11010089 crossref_primary_10_1364_OL_505232 crossref_primary_10_3390_info14060349 crossref_primary_10_1007_s00170_023_12700_7 crossref_primary_10_1016_j_csbj_2024_01_011 crossref_primary_10_1007_s11269_024_03937_2 crossref_primary_10_32604_cmc_2023_033860 crossref_primary_10_1016_j_patcog_2020_107231 crossref_primary_10_1016_j_energy_2025_134804 crossref_primary_10_3390_electronics12234796 crossref_primary_10_1016_j_jksuci_2024_102208 crossref_primary_10_1016_j_compbiomed_2022_106246 crossref_primary_10_1109_COMST_2023_3273121 crossref_primary_10_1016_j_patcog_2018_10_027 crossref_primary_10_4015_S1016237223500126 crossref_primary_10_1016_j_fbio_2022_101658 crossref_primary_10_1615_CritRevBiomedEng_2022041571 crossref_primary_10_1002_ppj2_70001 crossref_primary_10_1155_2022_9291971 crossref_primary_10_1007_s42835_022_01159_3 crossref_primary_10_1016_j_bspc_2019_101589 crossref_primary_10_1016_j_engappai_2024_108592 crossref_primary_10_1016_j_apenergy_2024_124763 crossref_primary_10_15212_CVIA_2023_0011 crossref_primary_10_3390_wevj15080344 crossref_primary_10_1016_j_oceaneng_2024_117718 crossref_primary_10_1016_j_engappai_2022_105743 crossref_primary_10_1002_int_22883 crossref_primary_10_1109_ACCESS_2020_3008255 crossref_primary_10_1016_j_knosys_2024_112526 crossref_primary_10_1016_j_patcog_2020_107298 crossref_primary_10_3390_s23146507 crossref_primary_10_1016_j_wavemoti_2025_103514 crossref_primary_10_1016_j_geoen_2024_212656 crossref_primary_10_54097_fcis_v4i3_10736 crossref_primary_10_1038_s41598_023_47904_0 crossref_primary_10_3390_su15054341 crossref_primary_10_1016_j_jlumin_2022_119637 crossref_primary_10_3390_s21113664 crossref_primary_10_1002_stc_3090 crossref_primary_10_1016_j_chb_2022_107418 crossref_primary_10_1093_bioinformatics_btad052 crossref_primary_10_1007_s11042_023_15576_7 crossref_primary_10_1016_j_dss_2021_113494 crossref_primary_10_1109_ACCESS_2020_2990181 crossref_primary_10_2478_aei_2023_0006 crossref_primary_10_1007_s11770_025_1175_2 crossref_primary_10_1016_j_ccst_2025_100374 crossref_primary_10_1016_j_patcog_2019_04_005 crossref_primary_10_3390_electronics11020227 crossref_primary_10_1016_j_ogla_2021_11_003 crossref_primary_10_2139_ssrn_4566310 crossref_primary_10_1016_j_patcog_2020_107273 crossref_primary_10_1109_ACCESS_2023_3250661 crossref_primary_10_1007_s00371_024_03471_7 crossref_primary_10_3390_math12142256 crossref_primary_10_1016_j_ecoinf_2019_01_012 crossref_primary_10_1007_s40745_022_00389_6 crossref_primary_10_1088_2632_2153_acd90f crossref_primary_10_1088_1361_6501_ac8ca5 crossref_primary_10_3390_rs16203823 crossref_primary_10_1039_D3TC02980H crossref_primary_10_1109_TIP_2020_3026632 crossref_primary_10_1007_s13042_024_02177_5 crossref_primary_10_1016_j_aei_2021_101427 crossref_primary_10_1007_s11082_023_06149_x crossref_primary_10_1142_S0218001421500300 crossref_primary_10_1109_ACCESS_2023_3242234 crossref_primary_10_1016_j_neucom_2021_09_053 crossref_primary_10_1142_S179396232541003X crossref_primary_10_1016_j_powtec_2024_120333 crossref_primary_10_1109_ACCESS_2024_3388490 crossref_primary_10_1007_s10614_025_10901_8 crossref_primary_10_3390_s19081933 crossref_primary_10_3390_sym14020295 crossref_primary_10_14358_PERS_22_00111R2 crossref_primary_10_1007_s10872_020_00557_3 crossref_primary_10_3390_s19143174 crossref_primary_10_1016_j_compeleceng_2019_04_002 crossref_primary_10_1007_s13369_020_04839_2 crossref_primary_10_1016_j_rse_2024_114290 crossref_primary_10_5194_hess_23_2561_2019 crossref_primary_10_1115_1_4066128 crossref_primary_10_1016_j_matt_2020_10_005 crossref_primary_10_1016_j_eswa_2023_122191 crossref_primary_10_1016_j_comcom_2022_10_010 crossref_primary_10_1007_s42835_021_00993_1 crossref_primary_10_3390_s23239337 crossref_primary_10_1109_TKDE_2024_3475809 crossref_primary_10_3389_fbioe_2023_1302983 crossref_primary_10_3390_rs11070755 crossref_primary_10_1177_1077546319900115 crossref_primary_10_1061__ASCE_WR_1943_5452_0001394 crossref_primary_10_1038_s41746_023_00840_9 crossref_primary_10_3390_electronics12040926 crossref_primary_10_3390_w12051369 crossref_primary_10_1016_j_neucom_2020_11_058 crossref_primary_10_1109_ACCESS_2023_3322147 crossref_primary_10_1109_TMRB_2020_3048255 crossref_primary_10_1007_s00521_023_09153_0 crossref_primary_10_1016_j_inffus_2024_102616 crossref_primary_10_1007_s11517_019_02066_y crossref_primary_10_1007_s00371_024_03436_w crossref_primary_10_1109_TIP_2021_3060255 crossref_primary_10_1016_j_envc_2024_100876 crossref_primary_10_3390_rs13132627 crossref_primary_10_1088_1361_6501_ad8ee4 crossref_primary_10_46947_joaasr632024942 crossref_primary_10_1007_s11042_023_17938_7 crossref_primary_10_1007_s10499_024_01528_x crossref_primary_10_1145_3583682 crossref_primary_10_1038_s41598_025_93628_8 crossref_primary_10_1155_2022_7196040 crossref_primary_10_1051_itmconf_20257403008 crossref_primary_10_1038_s41598_024_53749_y crossref_primary_10_1007_s11042_020_08751_7 crossref_primary_10_3390_s22186828 crossref_primary_10_1364_OSAC_405929 crossref_primary_10_1016_j_patcog_2021_108002 crossref_primary_10_1111_jfpe_13998 crossref_primary_10_3390_rs10050719 crossref_primary_10_1021_acs_jafc_3c05029 crossref_primary_10_1007_s00348_022_03540_4 crossref_primary_10_3389_fphy_2023_1259273 crossref_primary_10_1007_s10115_022_01695_4 crossref_primary_10_3390_s19081917 crossref_primary_10_1016_j_asoc_2025_112997 crossref_primary_10_3390_s23031349 crossref_primary_10_1155_2022_6927400 crossref_primary_10_1007_s12524_024_02022_w crossref_primary_10_1016_j_rser_2023_114193 crossref_primary_10_1016_j_sab_2023_106852 crossref_primary_10_1007_s11042_025_20747_9 crossref_primary_10_23919_cje_2021_00_149 crossref_primary_10_1016_j_patcog_2021_108025 crossref_primary_10_1109_ACCESS_2024_3502766 crossref_primary_10_1007_s11227_022_04784_x crossref_primary_10_1016_j_egyai_2023_100330 crossref_primary_10_1016_j_compbiomed_2023_107034 crossref_primary_10_54691_zs78vp41 crossref_primary_10_3390_math12243950 crossref_primary_10_1088_1361_6587_adab18 crossref_primary_10_3390_jimaging8070190 crossref_primary_10_1109_ACCESS_2019_2950286 crossref_primary_10_1142_S0219467823500341 crossref_primary_10_3390_machines10010028 crossref_primary_10_1080_10589759_2025_2451772 crossref_primary_10_1007_s11042_024_18418_2 crossref_primary_10_1007_s10489_020_02006_6 crossref_primary_10_3390_diagnostics11101856 crossref_primary_10_1109_TMECH_2020_3027912 crossref_primary_10_1109_TVT_2022_3192850 crossref_primary_10_3390_app122312052 crossref_primary_10_1016_j_jsv_2024_118773 crossref_primary_10_1007_s12145_021_00621_6 crossref_primary_10_1039_D4JA00238E crossref_primary_10_1007_s11042_022_12200_y crossref_primary_10_1007_s41062_021_00718_3 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_1021_acs_iecr_0c05045 crossref_primary_10_1016_j_eswa_2022_117282 crossref_primary_10_1016_j_eja_2025_127512 crossref_primary_10_1109_ACCESS_2021_3068897 crossref_primary_10_1109_LGRS_2022_3177231 crossref_primary_10_1007_s11042_021_11262_8 crossref_primary_10_1016_j_eswa_2023_122935 crossref_primary_10_1016_j_neucom_2020_02_053 crossref_primary_10_1016_j_compag_2024_109122 crossref_primary_10_3390_agronomy12081876 crossref_primary_10_1007_s11042_023_16612_2 crossref_primary_10_3233_JIFS_223304 crossref_primary_10_35234_fumbd_1137246 crossref_primary_10_1016_j_compag_2021_106040 crossref_primary_10_1016_j_energy_2020_117858 crossref_primary_10_1007_s00500_025_10496_0 crossref_primary_10_1016_j_autcon_2024_105325 crossref_primary_10_1007_s10773_023_05460_3 crossref_primary_10_3390_agronomy12081843 crossref_primary_10_3389_fncom_2020_00031 crossref_primary_10_3390_atmos15010121 crossref_primary_10_1016_j_engappai_2023_106355 crossref_primary_10_1109_TMM_2021_3068833 crossref_primary_10_1109_TIM_2025_3551032 crossref_primary_10_1016_j_bspc_2021_102812 crossref_primary_10_1109_TNSRE_2023_3297654 crossref_primary_10_1016_j_bspc_2021_102814 crossref_primary_10_1016_j_cacint_2022_100098 crossref_primary_10_1007_s13735_023_00285_6 crossref_primary_10_1016_j_neucom_2019_05_020 crossref_primary_10_1155_2021_5486328 crossref_primary_10_1016_j_compag_2021_106067 crossref_primary_10_3390_s25061924 crossref_primary_10_1007_s12561_024_09421_0 crossref_primary_10_3390_app15010193 crossref_primary_10_1016_j_ress_2024_109966 crossref_primary_10_1016_j_engappai_2023_107661 crossref_primary_10_3390_s22124626 crossref_primary_10_3390_rs14246219 crossref_primary_10_3390_s21165526 crossref_primary_10_1109_TCSS_2022_3217790 crossref_primary_10_1364_PRJ_484662 crossref_primary_10_1016_j_jvcir_2024_104287 crossref_primary_10_1109_ACCESS_2023_3289078 crossref_primary_10_3390_s20164638 crossref_primary_10_1103_PhysRevA_110_012448 crossref_primary_10_1109_JSEN_2023_3261325 crossref_primary_10_1109_JSTARS_2022_3229062 crossref_primary_10_1109_ACCESS_2024_3399222 crossref_primary_10_1016_j_engappai_2023_106305 crossref_primary_10_1371_journal_pone_0303644 crossref_primary_10_1016_j_ejrh_2024_101716 crossref_primary_10_1109_TMM_2020_3040539 crossref_primary_10_1088_2053_1583_ad4661 crossref_primary_10_1016_j_ipm_2024_103671 crossref_primary_10_1063_5_0163759 crossref_primary_10_1007_s11571_024_10115_y crossref_primary_10_1177_09544070231205063 crossref_primary_10_1109_ACCESS_2020_3047186 crossref_primary_10_1016_j_jclepro_2022_133968 crossref_primary_10_1016_j_jobe_2022_105674 crossref_primary_10_1016_j_inffus_2024_102801 crossref_primary_10_3233_ICA_200638 crossref_primary_10_1080_09537287_2024_2361766 crossref_primary_10_3390_en14248583 crossref_primary_10_1016_j_hsr_2023_100126 crossref_primary_10_1002_ima_22945 crossref_primary_10_1016_j_geomorph_2024_109185 crossref_primary_10_1021_acs_jcim_1c01531 crossref_primary_10_1007_s11042_020_10238_4 crossref_primary_10_1142_S1752890922410124 crossref_primary_10_1016_j_istruc_2024_107583 crossref_primary_10_1109_TCYB_2024_3482352 crossref_primary_10_1061__ASCE_EM_1943_7889_0002062 crossref_primary_10_1007_s11801_023_2165_3 crossref_primary_10_1007_s10791_024_09463_4 crossref_primary_10_1007_s13198_022_01846_4 crossref_primary_10_3390_s23135819 crossref_primary_10_1016_j_jbi_2023_104357 crossref_primary_10_1007_s00158_020_02788_w crossref_primary_10_1016_j_infrared_2022_104303 crossref_primary_10_3389_fenrg_2021_804405 crossref_primary_10_1038_s41598_020_65235_2 crossref_primary_10_1155_2021_9022558 crossref_primary_10_1016_j_cma_2024_116804 crossref_primary_10_1016_j_smhl_2025_100540 crossref_primary_10_1016_j_patcog_2020_107407 crossref_primary_10_1016_j_neunet_2021_06_028 crossref_primary_10_1016_j_engfailanal_2024_108343 crossref_primary_10_1016_j_autcon_2021_103591 crossref_primary_10_1063_5_0200395 crossref_primary_10_1109_JSTARS_2024_3474689 crossref_primary_10_1146_annurev_chembioeng_122120_023514 crossref_primary_10_1155_2021_6646187 crossref_primary_10_4103_idoj_idoj_460_24 crossref_primary_10_1155_2022_1314459 crossref_primary_10_1016_j_buildenv_2024_112426 crossref_primary_10_1029_2024JB029728 crossref_primary_10_1016_j_fuel_2025_135073 crossref_primary_10_1016_j_patcog_2020_107413 crossref_primary_10_3390_land13122113 crossref_primary_10_1371_journal_pone_0311269 crossref_primary_10_2139_ssrn_4184202 crossref_primary_10_1007_s11071_023_08405_x crossref_primary_10_1109_ACCESS_2019_2901289 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122131 crossref_primary_10_1016_j_ifacol_2022_09_464 crossref_primary_10_1016_j_actaastro_2024_10_066 crossref_primary_10_3390_brainsci12091233 crossref_primary_10_1111_exsy_13271 crossref_primary_10_1016_j_ecmx_2024_100671 crossref_primary_10_3390_jimaging6030009 crossref_primary_10_1371_journal_pone_0299265 crossref_primary_10_1109_ACCESS_2023_3343759 crossref_primary_10_1016_j_yofte_2024_103943 crossref_primary_10_1016_j_mfglet_2020_01_001 crossref_primary_10_3389_fphy_2023_1290880 crossref_primary_10_1109_ACCESS_2024_3525263 crossref_primary_10_1103_PhysRevApplied_20_024072 crossref_primary_10_1177_09544100231158421 crossref_primary_10_1142_S0218213023500380 crossref_primary_10_3390_s22113966 crossref_primary_10_1109_TITS_2023_3308903 crossref_primary_10_1016_j_measurement_2024_115254 crossref_primary_10_3847_1538_4357_acc8d5 crossref_primary_10_3390_constrmater4010005 crossref_primary_10_1007_s10845_020_01606_w crossref_primary_10_1007_s00146_025_02231_y crossref_primary_10_1016_j_compag_2024_109180 crossref_primary_10_1061__ASCE_GM_1943_5622_0002074 crossref_primary_10_1016_j_ijforecast_2020_10_007 crossref_primary_10_1109_ACCESS_2019_2950240 crossref_primary_10_1016_j_asoc_2022_109259 crossref_primary_10_1029_2021WR030595 crossref_primary_10_1088_1361_6587_ac97be crossref_primary_10_3390_s21248409 crossref_primary_10_1016_j_measurement_2024_115222 crossref_primary_10_3390_s24196398 crossref_primary_10_3390_electronics10232949 crossref_primary_10_3390_agriculture14122263 crossref_primary_10_1016_j_ijforecast_2019_03_029 crossref_primary_10_1109_ACCESS_2023_3347289 crossref_primary_10_1016_j_eswa_2019_04_071 crossref_primary_10_1016_j_jnca_2021_103160 crossref_primary_10_1016_j_jappgeo_2025_105621 crossref_primary_10_3390_app131810067 crossref_primary_10_1002_ps_7990 crossref_primary_10_1080_01431161_2023_2218972 crossref_primary_10_1109_ACCESS_2022_3203706 crossref_primary_10_1109_TETCI_2021_3083428 crossref_primary_10_1109_TFUZZ_2024_3372608 crossref_primary_10_51707_2618_0529_2023_27_08 crossref_primary_10_1016_j_apsadv_2023_100523 crossref_primary_10_3233_JIFS_219246 crossref_primary_10_1002_ese3_1352 crossref_primary_10_1007_s10586_024_04720_z crossref_primary_10_1016_j_pss_2024_106029 crossref_primary_10_1016_j_jpowsour_2024_234680 crossref_primary_10_1016_j_aei_2024_102810 crossref_primary_10_1109_JIOT_2021_3055804 crossref_primary_10_1177_14613484221129754 crossref_primary_10_1049_elp2_12063 crossref_primary_10_4018_IJDWM_315823 crossref_primary_10_1007_s11227_023_05441_7 crossref_primary_10_32604_cmes_2024_051762 crossref_primary_10_1007_s11432_024_4205_8 crossref_primary_10_1016_j_microrel_2020_113648 crossref_primary_10_1007_s00371_024_03365_8 crossref_primary_10_1007_s13246_020_00934_8 crossref_primary_10_1002_cpe_7033 crossref_primary_10_1017_hpl_2023_1 crossref_primary_10_1053_j_semnuclmed_2022_11_003 crossref_primary_10_1007_s11042_022_13425_7 crossref_primary_10_1002_aisy_202300353 crossref_primary_10_1109_TNNLS_2021_3107049 crossref_primary_10_3390_agronomy12071620 crossref_primary_10_1002_ps_5349 crossref_primary_10_1109_JSEN_2024_3389050 crossref_primary_10_17350_HJSE19030000329 crossref_primary_10_32604_cmc_2023_033733 crossref_primary_10_1109_ACCESS_2019_2903859 crossref_primary_10_3233_IDT_230145 crossref_primary_10_3389_fpls_2021_789630 crossref_primary_10_1109_JSTARS_2023_3333268 crossref_primary_10_1007_s40747_022_00815_5 crossref_primary_10_1007_s11042_023_17759_8 crossref_primary_10_3390_rs15082015 crossref_primary_10_1002_smll_202312283 crossref_primary_10_3390_rs16132261 crossref_primary_10_1109_JPHOT_2024_3410392 crossref_primary_10_31083_j_fbl2703099 crossref_primary_10_1080_10298436_2021_1921773 crossref_primary_10_1016_j_ecoinf_2024_102549 crossref_primary_10_1016_j_bspc_2021_103325 crossref_primary_10_1016_j_comcom_2022_05_035 crossref_primary_10_1051_itmconf_20257002020 crossref_primary_10_1109_TGRS_2024_3355460 crossref_primary_10_3390_s20236888 crossref_primary_10_1002_clem_16 crossref_primary_10_3390_foods11182915 crossref_primary_10_3390_ma16175977 crossref_primary_10_3390_s21010310 crossref_primary_10_3390_sym15051036 crossref_primary_10_1007_s10209_022_00910_x crossref_primary_10_1016_j_optlastec_2023_110005 crossref_primary_10_33851_JMIS_2023_10_2_145 crossref_primary_10_1109_TSM_2019_2963656 crossref_primary_10_1016_j_ijthermalsci_2022_107802 crossref_primary_10_1109_JIOT_2023_3314717 crossref_primary_10_3390_ani13081376 crossref_primary_10_1109_TITS_2021_3134222 crossref_primary_10_1016_j_datak_2024_102278 crossref_primary_10_1109_ACCESS_2024_3356122 crossref_primary_10_3389_fpls_2020_00821 crossref_primary_10_1109_ACCESS_2023_3289863 crossref_primary_10_1186_s12859_022_04798_5 crossref_primary_10_1016_j_jag_2024_103831 crossref_primary_10_1016_j_future_2023_09_020 crossref_primary_10_1016_j_compscitech_2024_110464 crossref_primary_10_1007_s40435_019_00544_7 crossref_primary_10_3390_rs14102433 crossref_primary_10_3390_plants13091177 crossref_primary_10_3390_su13126527 crossref_primary_10_1109_ACCESS_2024_3425166 crossref_primary_10_3390_s20226626 crossref_primary_10_1016_j_measurement_2023_113209 crossref_primary_10_1016_j_tsep_2024_103188 crossref_primary_10_1016_j_energy_2024_130270 crossref_primary_10_3390_en16227635 crossref_primary_10_1186_s40537_023_00858_6 crossref_primary_10_1183_16000617_0251_2023 crossref_primary_10_1021_acs_chemrev_3c00223 crossref_primary_10_1186_s12859_019_2927_x crossref_primary_10_1016_j_jtice_2023_105211 crossref_primary_10_3390_modelling4020010 crossref_primary_10_3390_s21061951 crossref_primary_10_1016_j_comcom_2022_05_001 crossref_primary_10_1109_TCDS_2021_3100883 crossref_primary_10_1038_s41586_024_07293_4 crossref_primary_10_1109_OJVT_2024_3422253 crossref_primary_10_3390_math12193105 crossref_primary_10_1016_j_pdpdt_2024_104030 crossref_primary_10_1007_s42405_019_00233_x crossref_primary_10_1111_coin_70029 crossref_primary_10_3390_s20236838 crossref_primary_10_1016_j_procir_2020_05_107 crossref_primary_10_1007_s00500_019_03878_8 crossref_primary_10_1007_s10845_024_02354_x crossref_primary_10_3390_s24196313 crossref_primary_10_1088_1748_0221_19_07_P07004 crossref_primary_10_3390_bdcc6040150 crossref_primary_10_1088_1742_6596_1952_4_042023 crossref_primary_10_1007_s10338_022_00340_5 crossref_primary_10_1016_j_jocs_2023_101943 crossref_primary_10_3390_atmos16030294 crossref_primary_10_1007_s12652_022_03698_z crossref_primary_10_1063_5_0144593 crossref_primary_10_1109_TIP_2019_2957929 crossref_primary_10_1016_j_infsof_2023_107328 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_1007_s11517_024_03076_1 crossref_primary_10_1016_j_ins_2018_10_041 crossref_primary_10_1109_JSTARS_2021_3109439 crossref_primary_10_1109_TIE_2019_2902817 crossref_primary_10_1016_j_jobe_2024_110836 crossref_primary_10_1016_j_energy_2024_132899 crossref_primary_10_1016_j_eswa_2021_116461 crossref_primary_10_1007_s13735_020_00200_3 crossref_primary_10_1109_JSEN_2023_3329497 crossref_primary_10_1007_s10329_024_01123_x crossref_primary_10_1016_j_ijsolstr_2024_113024 crossref_primary_10_1007_s11042_024_19071_5 crossref_primary_10_32604_csse_2023_027221 crossref_primary_10_3103_S1060992X21010100 crossref_primary_10_1007_s11042_023_17230_8 crossref_primary_10_1109_JSTARS_2020_3002787 crossref_primary_10_2478_aei_2022_0010 crossref_primary_10_1061_JCEMD4_COENG_14919 crossref_primary_10_1109_JETCAS_2022_3227471 crossref_primary_10_1016_j_iintel_2024_100122 crossref_primary_10_1007_s11633_020_1248_x crossref_primary_10_1177_00405175221130773 crossref_primary_10_1364_AO_546273 crossref_primary_10_1007_s00603_022_02805_y crossref_primary_10_3390_e27030279 crossref_primary_10_1007_s11276_024_03815_0 crossref_primary_10_1109_TVLSI_2020_2987202 crossref_primary_10_52876_jcs_939875 crossref_primary_10_1016_j_jhydrol_2023_129977 crossref_primary_10_1016_j_sna_2024_115956 crossref_primary_10_1111_jfpe_14519 crossref_primary_10_1007_s10208_024_09656_9 crossref_primary_10_1016_j_envres_2024_118591 crossref_primary_10_1016_j_optlaseng_2022_107078 crossref_primary_10_1007_s10278_024_01350_0 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_3390_ai5030074 crossref_primary_10_3390_ai5030076 crossref_primary_10_3390_app13053245 crossref_primary_10_3390_rs11070859 crossref_primary_10_1109_TAES_2023_3334216 crossref_primary_10_25100_iyc_v25i3_12845 crossref_primary_10_2478_jaiscr_2021_0017 crossref_primary_10_1016_j_engappai_2024_108420 crossref_primary_10_3390_rs14061516 crossref_primary_10_1016_j_powtec_2024_119464 crossref_primary_10_1080_01969722_2022_2110685 crossref_primary_10_1177_09544100221097586 crossref_primary_10_1038_s41598_023_47546_2 crossref_primary_10_3390_s19143051 crossref_primary_10_1016_j_irfa_2023_102738 crossref_primary_10_1587_elex_17_20200308 crossref_primary_10_1007_s12551_022_01040_7 crossref_primary_10_1016_j_compeleceng_2022_108447 crossref_primary_10_1021_acs_jcim_3c01602 crossref_primary_10_3390_s19224933 crossref_primary_10_1007_s00339_022_06365_4 crossref_primary_10_1109_ACCESS_2022_3151186 crossref_primary_10_3390_app14177824 crossref_primary_10_1016_j_knosys_2024_112667 crossref_primary_10_1142_S021972002350004X crossref_primary_10_1016_j_aci_2018_06_002 crossref_primary_10_1109_TCDS_2022_3232569 crossref_primary_10_1109_ACCESS_2020_3016888 crossref_primary_10_3390_app12126283 crossref_primary_10_1016_j_cageo_2021_104890 crossref_primary_10_1007_s11042_022_12410_4 crossref_primary_10_1007_s11119_023_10106_9 crossref_primary_10_1093_mnras_stac457 crossref_primary_10_1155_2019_7541814 crossref_primary_10_1007_s13753_024_00592_4 crossref_primary_10_1016_j_snb_2021_130986 crossref_primary_10_1007_s10489_023_04486_8 crossref_primary_10_1016_j_est_2024_114245 crossref_primary_10_1016_j_patcog_2021_108106 crossref_primary_10_1080_01431161_2021_1913297 crossref_primary_10_1016_j_procs_2018_10_512 crossref_primary_10_1021_acsami_3c16165 crossref_primary_10_1016_j_geoen_2024_213007 crossref_primary_10_3390_s20041020 crossref_primary_10_1007_s44254_023_00047_x crossref_primary_10_1016_j_bbcan_2021_188588 crossref_primary_10_3390_su151310388 crossref_primary_10_1016_j_iswa_2024_200363 crossref_primary_10_1016_j_patcog_2021_108135 crossref_primary_10_1016_j_patcog_2018_05_016 crossref_primary_10_1142_S0219519423400894 crossref_primary_10_3390_s23010315 crossref_primary_10_1016_j_compmedimag_2022_102151 crossref_primary_10_1016_j_patcog_2018_05_010 crossref_primary_10_1038_s41598_024_58810_4 crossref_primary_10_1016_j_gsf_2020_04_003 crossref_primary_10_1038_s41598_024_81749_5 crossref_primary_10_3390_electronics10141664 crossref_primary_10_1007_s00138_024_01613_4 crossref_primary_10_1007_s12561_022_09352_8 crossref_primary_10_1016_j_ecolind_2024_112501 crossref_primary_10_1109_TGRS_2021_3117940 crossref_primary_10_1016_j_taml_2022_100384 crossref_primary_10_1016_j_measen_2024_101091 crossref_primary_10_1038_s41598_022_13652_w crossref_primary_10_3390_app13053289 crossref_primary_10_1016_j_acalib_2023_102736 crossref_primary_10_1109_TMM_2018_2879750 crossref_primary_10_3389_fenrg_2020_607826 crossref_primary_10_3390_fi14120349 crossref_primary_10_1007_s10344_021_01549_4 crossref_primary_10_3389_fcvm_2023_1245614 crossref_primary_10_3390_app13148034 crossref_primary_10_1007_s00477_022_02352_6 crossref_primary_10_1007_s12206_022_0703_8 crossref_primary_10_1109_TVCG_2020_3030418 crossref_primary_10_1007_s00521_021_06743_8 crossref_primary_10_3390_nano13020329 crossref_primary_10_1016_j_iswa_2024_200383 crossref_primary_10_1007_s11517_018_1933_x crossref_primary_10_1007_s12083_024_01650_w crossref_primary_10_3389_fchem_2022_818974 crossref_primary_10_1109_ACCESS_2021_3061313 crossref_primary_10_1049_iet_ipr_2020_1048 crossref_primary_10_1016_j_patcog_2021_108159 crossref_primary_10_1016_j_artmed_2020_101792 crossref_primary_10_1016_j_engappai_2023_106395 crossref_primary_10_1016_j_neucom_2019_05_075 crossref_primary_10_3390_app12147188 crossref_primary_10_1186_s12911_022_01826_5 crossref_primary_10_3233_WEB_230363 crossref_primary_10_3390_land12111977 crossref_primary_10_1016_j_comcom_2024_06_015 crossref_primary_10_1109_TIP_2019_2958404 crossref_primary_10_1016_j_ijhydene_2023_03_097 crossref_primary_10_3390_s19183992 crossref_primary_10_3390_rs11141687 crossref_primary_10_52547_jgit_9_4_109 crossref_primary_10_3390_app11136060 crossref_primary_10_3390_diagnostics14070690 crossref_primary_10_1007_s13139_023_00821_6 crossref_primary_10_1016_j_compbiomed_2023_107153 crossref_primary_10_1007_s00330_023_09742_6 crossref_primary_10_1109_ACCESS_2020_2978344 |
Cites_doi | 10.1109/TPAMI.2015.2389824 10.1016/S0031-3203(96)00044-1 10.1016/S0031-3203(01)00178-9 10.1137/090752286 10.1016/j.patcog.2016.06.013 10.1007/s11263-015-0822-0 10.1016/j.patcog.2015.08.027 10.1016/j.patcog.2015.02.003 10.1016/j.patcog.2011.05.017 10.1109/TPAMI.2012.231 10.1016/j.patcog.2016.07.001 10.1109/TPAMI.2016.2577031 10.1016/j.patcog.2012.03.004 10.1016/j.patcog.2015.04.018 10.1016/j.patcog.2012.10.006 10.1109/TNN.2010.2066286 10.1016/j.patcog.2017.06.006 10.1016/j.patcog.2011.09.021 10.1109/TPAMI.2012.59 10.1109/TIP.2016.2605305 10.1109/18.532878 10.1016/j.patrec.2017.08.001 10.1016/j.patcog.2017.06.009 10.1016/j.patcog.2003.10.012 10.3390/s101211259 10.1016/j.patcog.2015.11.019 10.1016/j.patcog.2012.09.015 10.1016/j.patcog.2012.07.013 10.1080/09548980701418942 10.1007/s11263-015-0823-z 10.1016/j.patcog.2017.06.002 10.1109/TPAMI.2016.2572683 10.1016/S0031-3203(01)00129-7 10.1016/j.patcog.2016.05.019 10.1016/j.patrec.2017.04.004 10.1007/s00365-006-0663-2 10.1016/j.patcog.2014.08.013 10.1113/jphysiol.1968.sp008455 10.1038/381607a0 10.1162/neco.1997.9.8.1735 10.1109/78.134406 10.1109/TPAMI.2015.2439281 10.1016/0893-6080(88)90469-8 10.1016/S0893-6080(98)00116-6 10.1016/j.patcog.2015.04.019 10.1109/MSP.2012.2211477 10.1016/j.asoc.2015.06.048 10.1016/j.patcog.2017.01.032 10.1109/MSP.2012.2205597 10.1016/j.patcog.2016.03.023 10.1016/j.patcog.2016.01.027 10.1016/j.patrec.2015.10.013 10.1109/LSP.2015.2441781 10.1016/j.patcog.2014.04.018 10.1109/29.21701 10.1109/5.726791 10.1109/LSP.2017.2657381 10.1109/TPAMI.2009.167 10.1016/j.patcog.2016.12.005 10.1364/AO.29.004790 10.1109/TIP.2016.2531289 10.1049/ip-vis:19941301 10.1016/j.patcog.2016.09.022 10.1109/TPAMI.2011.235 10.1109/TPAMI.2013.122 10.1162/089976600300015015 10.1016/j.patcog.2015.04.005 10.1109/TMI.2003.815867 10.1016/j.patcog.2016.10.023 10.1016/j.patcog.2010.09.020 10.1016/j.patcog.2014.11.006 10.1142/S0218001493000339 10.1016/j.patcog.2017.04.027 10.1016/j.patcog.2016.07.026 10.1016/0031-3203(81)90028-5 10.1109/TPAMI.2016.2599174 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2017.10.013 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 377 |
ExternalDocumentID | 10_1016_j_patcog_2017_10_013 S0031320317304120 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-ccd3be2e5c4497d20abbe35d415d73b810de6e002c29dcb215b39f3f436fac073 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 02:36:26 EDT 2025 Fri Feb 23 02:25:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-ccd3be2e5c4497d20abbe35d415d73b810de6e002c29dcb215b39f3f436fac073 |
ORCID | 0000-0002-3437-5084 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2017_10_013 crossref_citationtrail_10_1016_j_patcog_2017_10_013 elsevier_sciencedirect_doi_10_1016_j_patcog_2017_10_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 2018-05-00 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0041) 2016 Ng, Zeng, Zhang, Yeung, Pedrycz (bib0079) 2016; 60 X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1736–1744. Xu, Huang, Zhang, Tao (bib0100) 2015 Moczulski, Denil, Appleyard, de Freitas (bib0145) 2016 Pluim, Maintz, Viergever (bib0187) 2003; 22 Patacchiola, Cangelosi (bib0220) 2017; 71 Delakis, Garcia (bib0235) 2008 Zhang (bib0061) 2004 Choromanska, Henaff, Mathieu, Arous, LeCun (bib0101) 2015 Xu, Su (bib0236) 2015 Kümmerer, Theis, Bethge (bib0252) 2015 Han, Mao, Dally (bib0146) 2016 Sercu, Goel (bib0294) 2016 Cao, Liu, Yang, Yu, Wang, Wang, Huang, Wang, Huang, Xu (bib0031) 2015 Qian (bib0108) 1999; 12 Gidaris, Komodakis (bib0205) 2015 Gers, Schmidhuber, Cummins (bib0242) 2000; 12 Wang, Lu, Li, Jiang, Liu (bib0306) 2015 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0199) 2014 Presti, La Cascia (bib0255) 2016; 53 Paine, Jin, Yang, Lin, Huang (bib0115) 2011 Vig, Dorr, Cox (bib0251) 2014 Tang, Lee, Suen (bib0229) 1996; 29 Sercu, Goel (bib0040) 2016 Deng (bib0062) 2012; 29 Zuo, Wang, Shuai, Zhao, Yang (bib0170) 2015; 48 Yu, Xiong, Droppo, Stolcke, Ye, Li, Zweig (bib0297) 2016 Chen, Raitio, Valentini-Botinhao, Yamagishi, Ling (bib0299) 2014 J. Gu, C. Jianfei, G. Wang, T. Chen, Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376, 2017. Farabet, Couprie, Najman, LeCun (bib0276) 2013; 35 Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (bib0172) 2015; 111 Ji, Xu, Yang, Yu (bib0265) 2013; 35 Abdel-Hamid, Mohamed, Jiang, Penn (bib0289) 2012 Shi, Bai, Yao (bib0243) 2015 Lin, Shen, Lu, Jia (bib0186) 2015 Jaderberg, Simonyan, Vedaldi, Zisserman (bib0240) 2015 Rippel, Snoek, Adams (bib0048) 2015 Weinberger, Dasgupta, Langford, Smola, Attenberg (bib0164) 2009 Z. Yan, V. Jagadeesh, D. DeCoste, W. Di, R. Piramuthu, Hd-cnn: hierarchical deep convolutional neural network for image classification, in: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2740–2748. Yu, Wang, Chen, Wei (bib0046) 2014 Yao, Yu, Seide, Su, Deng, Gong (bib0288) 2012 Zhang, Lee, Lee, EDU (bib0033) 2016 Prechelt (bib0118) 2012 volume abs/1412.6115, 2014. Goodfellow, Ibarz, Arnoud, Shet (bib0239) 2014 Bai, Shi, Zhang, Cai, Qi (bib0233) 2017; 66 Dong, Loy, He, Tang (bib0036) 2016; 38 Le, Sarlós, Smola (bib0141) 2013; 85 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0010) 2015 Tang (bib0019) 2013 Das, Agrawal, Zitnick, Parikh, Batra (bib0035) 2016 Zhang, Itoh, Tanida, Ichioka (bib0006) 1990; 29 Paulin, Revaud, Harchaoui, Perronnin, Schmid (bib0097) 2014 He, Zhang, Ren, Sun (bib0056) 2015 Hauberg, Freifeld, Larsen, Fisher III, Hansen (bib0098) 2016 Liu, Lin, Shen (bib0273) 2015; 48 Liu, Wang, Foroosh, Tappen, Pensky (bib0165) 2015 Zeiler, Krishnan, Taylor, Fergus (bib0026) 2010 Sutskever, Martens, Dahl, Hinton (bib0103) 2013 Gomez, Nicolaou, Karatzas (bib0234) 2017; 67 El Ayadi, Kamel, Karray (bib0284) 2011; 44 Kim, Smaragdis (bib0147) 2016 Liu, Han, Zhang, Wen, Liu (bib0249) 2015 Fan, Xu, Wu, Gong (bib0216) 2010; 21 Sullivan (bib0151) 1996; 42 Chen, Yuille (bib0226) 2015 Clevert, Unterthiner, Hochreiter (bib0058) 2016 Liu, Luo, Qiu, Wang, Tang (bib0072) 2016 Xiao, Zhang, Yang, Peng, Zhang (bib0176) 2014 Pedersoli, Vedaldi, Gonzalez, Roca (bib0195) 2015; 48 Li, Wang, Tian, Ding (bib0194) 2015; 48 Denton, Chintala, Fergus (bib0086) 2015 Cheng, Yu, Feris, Kumar, Choudhary, Chang (bib0144) 2015 Lu, Javidi, Lazebnik (bib0212) 2016 Yu, Hermann, Blunsom, Pulman (bib0310) 2014 Yang, Luo, Loy, Tang (bib0180) 2015 Hadsell, Chopra, LeCun (bib0066) 2006 Zeiler, Fergus (bib0011) 2014 Mariet, Sra (bib0161) 2015 Yu, Koltun (bib0037) 2016 Li, Li, Porikli (bib0217) 2014 Nogueira, Penatti, dos Santos (bib0169) 2017; 61 Reed, Akata, Yan, Logeswaran, Schiele, Lee (bib0085) 2016 Li, Yu (bib0248) 2015 LeCun, Bottou, Orr, Müller (bib0013) 2012 Gkioxari, Girshick, Malik (bib0262) 2015 Yin, Schütze (bib0313) 2015 Ren, He, Girshick, Sun (bib0204) 2017; 39 Mirza, Osindero (bib0077) 2014 Saxe, McClelland, Ganguli (bib0105) 2014 Huang, Siniscalchi, Lee (bib0301) 2017 Chen, Guan, Wang (bib0153) 2010; 10 Doersch, Gupta, Efros (bib0106) 2015 Xu, Wang, Chen, Li (bib0057) 2015 Lin, Chen, Yan (bib0018) 2014 Nair, Hinton (bib0014) 2010 Peng, Zhang, Zhang (bib0275) 2013; 46 Gong, Wang, Guo, Lazebnik (bib0052) 2014 Zhou, Lu, Li, Tian (bib0154) 2012 Zhang, Wei, Wu, Cai, Lu, Nguyen, Do (bib0190) 2016; 25 Guo, Lai (bib0254) 2014; 47 Tóth (bib0295) 2014 Wijnhoven, de With (bib0021) 2010 Guo, Yao, Chen (bib0157) 2016 Tousch, Herbin, Audibert (bib0173) 2012; 45 Kingma, Ba (bib0109) 2015 Palaz, Collobert, Doss (bib0291) 2013 Zinkevich, Weimer, Li, Smola (bib0022) 2010 Jégou, Perronnin, Douze, Sanchez, Perez, Schmid (bib0053) 2012; 34 Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (bib0087) 2016 Mishkin, Matas (bib0102) 2016 Ngiam, Chen, Chia, Koh, Le, Ng (bib0023) 2010 Wang, Wang, Wang (bib0175) 2015 Gkioxari, Girshick, Malik (bib0259) 2015 Liu, Anguelov, Erhan, Szegedy, Reed (bib0211) 2016 Waibel, Hanazawa, Hinton, Shikano, Lang (bib0298) 1989; 37 Tompson, Jain, LeCun, Bregler (bib0224) 2014 D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al., Deep speech 2: End-to-end speech recognition in english and mandarin, 2016, pp. 173–182. Wang, Manning (bib0090) 2013 Oseledets (bib0140) 2011; 33 Abdel-Hamid, Mohamed, Jiang, Deng, Penn, Yu (bib0290) 2014 Hecht-Nielsen (bib0005) 1988; 1 J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, 2014. Minervini, Fischbach, Scharr, Tsaftaris (bib0181) 2016; 81 Xiao, Xu, Yang, Zhang, Peng, Zhang (bib0191) 2015 He, Zhang, Ren, Sun (bib0203) 2015; 37 Dean, Corrado, Monga, Chen, Devin, Mao, Senior, Tucker, Yang, Le (bib0114) 2012 Girshick, Iandola, Darrell, Malik (bib0197) 2015 Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bib0314) 2011; 12 Wan, Zeiler, Zhang, Cun, Fergus (bib0045) 2013 H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250, 2016. Shuai, Wang, Zuo, Wang, Zhao (bib0279) 2015 Fukushima, Miyake (bib0002) 1982 Han, Pool, Tran, Dally (bib0156) 2015 Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (bib0017) 2012 Felzenszwalb, Girshick, McAllester, Ramanan (bib0207) 2010; 32 Zhou, Zheng, Zhu, Latecki (bib0272) 2016; 59 Zeiler, Ranzato, Monga, Mao, Yang, Le, Nguyen, Senior, Vanhoucke, Dean (bib0055) 2013 Wen, Wu, Wang, Chen, Li (bib0166) 2016 M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild with convolutional neural networks, volume 116, 2016, pp. 1–20. Ding, Lin, Wang, Chao (bib0071) 2015; 48 Shen, Gan, Zeng (bib0124) 2016 Simonyan, Zisserman (bib0268) 2014 Denil, Shakibi, Dinh, de Freitas (bib0136) 2013 Zagoruyko, Komodakis (bib0125) 2016 Hyvärinen, Köster (bib0043) 2007; 18 Eslami, Heess, Weber, Tassa, Kavukcuoglu, Hinton (bib0083) 2016 Sohn, Lee, Yan (bib0084) 2015 Goodfellow, Warde-Farley, Mirza, Courville, Bengio (bib0059) 2013 Jung, Kim, Jain (bib0231) 2004; 37 Niu, Suen (bib0007) 2012; 45 Shuai, Zuo, Wang, Wang (bib0281) 2016 Zhang, Yao, Shi, Bai (bib0238) 2015 Uria, Murray, Renals, Valentini-Botinhao, Bridle (bib0300) 2015 Xie, Yang, Wang, Lin (bib0099) 2015 Zhang, Song (bib0213) 2013; 46 Visin, Kastner, Courville, Bengio, Matteucci, Cho (bib0029) 2015 Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks using vector quantization, in: arXiv preprint Huang, Qiao, Tang (bib0237) 2014 Endres, Hoiem (bib0200) 2014; 36 Shi, Petterson, Dror, Langford, Smola, Vishwanathan (bib0163) 2009; 10 Krause, Gebru, Deng, Li, Fei-Fei (bib0188) 2014 Srivastava, Greff, Schmidhuber (bib0122) 2015 Lin, RoyChowdhury, Maji (bib0192) 2015 Hong, You, Kwak, Han (bib0219) 2015 Vaillant, Monrocq, Le Cun (bib0198) 1994; 141 S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, Cudnn: efficient primitives for deep learningabs/1410.0759 (2014). Wang, Oates (bib0024) 2015 Loshchilov, Hutter (bib0110) 2017 Zhang, Yao, Sun, Lu (bib0214) 2013; 46 Nowlan, Platt (bib0196) 1994 Kingma, Welling (bib0073) 2014 Pinheiro, Collobert (bib0278) 2014 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (bib0286) 2012; 29 Sainath, Kingsbury, Mohamed, Dahl, Saon, Soltau, Beran, Aravkin, Ramabhadran (bib0296) 2013 Yang, Patras (bib0093) 2015 Mostajabi, Yadollahpour, Shakhnarovich (bib0282) 2015 Xue, Li, Gong (bib0135) 2013 Krause, Jin, Yang, Fei-Fei (bib0189) 2015 Pratt (bib0155) 1988 Chen, Wilson, Tyree, Weinberger, Chen (bib0162) 2015 Long, Shelhamer, Darrell (bib0028) 2017; 39 Recht, Re, Wright, Niu (bib0113) 2011 Le Cun, Denker, Henderson, Howard, Hubbard, Jackel (bib0003) 1989 Zheng, Liu, Chen, Ge, Zhao (bib0025) 2014 Vasilache, Johnson, Mathieu, Chintala, Piantino, LeCun (bib0131) 2015 Kalchbrenner, Grefenstette, Blunsom (bib0311) 2014 Oquab, Bottou, Laptev, Sivic (bib0258) 2014 Collobert, Weston (bib0309) 2008 Shrivastava, Gupta, Girshick (bib0209) 2016 Olshausen (bib0081) 1996; 381 LeCun, Bottou, Bengio, Haffner (bib0004) 1998; 86 Dasgupta, Kumar, Sarlós (bib0142) 2011 Kim, Jernite, Sontag, Rush (bib0304) 2016 Wang, Ge, Li, Fang (bib0264) 2017; 92 Zhang, Bengio, Hardt, Recht, Vinyals (bib0119) 2017 Chéron, Laptev, Schmid (bib0269) 2015 Courbariaux, Bengio (bib0150) 2016 Jaderberg, Vedaldi, Zisserman (bib0244) 2014 Zhou, Wu, Ni, Zhou, Wen, Zou (bib0149) 2016 Wang, Wu, Coates, Ng (bib0015) 2012 Hoshen, Weiss, Wilson (bib0292) 2015 Tompson, Goroshin, Jain, LeCun, Bregler (bib0092) 2015 Simo-Serra, Trulls, Ferraz, Kokkinos, Moreno-Noguer (bib0208) 2014 Rastegari, Ordonez, Redmon, Farhadi (bib0148) 2016 Nishi, Miura (bib0221) 2017 Zhao, Ouyang, Li, Wang (bib0247) 2015 Glorot, Bengio (bib0104) 2010 Jozefowicz, Vinyals, Schuster, Shazeer, Wu (bib0303) 2016 Im, Ahn, Memisevic, Bengio (b Zhuang (10.1016/j.patcog.2017.10.013_bib0116) 2013 Dasgupta (10.1016/j.patcog.2017.10.013_bib0142) 2011 10.1016/j.patcog.2017.10.013_bib0245 Zhang (10.1016/j.patcog.2017.10.013_bib0190) 2016; 25 Endres (10.1016/j.patcog.2017.10.013_bib0200) 2014; 36 Vaillant (10.1016/j.patcog.2017.10.013_bib0198) 1994; 141 Zhang (10.1016/j.patcog.2017.10.013_bib0213) 2013; 46 Yu (10.1016/j.patcog.2017.10.013_bib0310) 2014 Saxe (10.1016/j.patcog.2017.10.013_bib0105) 2014 Srinivas (10.1016/j.patcog.2017.10.013_bib0160) 2015 Tang (10.1016/j.patcog.2017.10.013_bib0019) 2013 Boureau (10.1016/j.patcog.2017.10.013_bib0016) 2010 Lin (10.1016/j.patcog.2017.10.013_bib0199) 2014 Sainath (10.1016/j.patcog.2017.10.013_bib0296) 2013 Lu (10.1016/j.patcog.2017.10.013_bib0212) 2016 Chen (10.1016/j.patcog.2017.10.013_bib0283) 2015 Lin (10.1016/j.patcog.2017.10.013_bib0068) 2017 Lin (10.1016/j.patcog.2017.10.013_bib0186) 2015 Chéron (10.1016/j.patcog.2017.10.013_bib0269) 2015 Liu (10.1016/j.patcog.2017.10.013_bib0072) 2016 Zeiler (10.1016/j.patcog.2017.10.013_bib0027) 2011 Xu (10.1016/j.patcog.2017.10.013_bib0057) 2015 Zeiler (10.1016/j.patcog.2017.10.013_bib0047) 2013 Nogueira (10.1016/j.patcog.2017.10.013_bib0169) 2017; 61 Xie (10.1016/j.patcog.2017.10.013_bib0094) 2015 Chen (10.1016/j.patcog.2017.10.013_bib0218) 2016; 38 Sohn (10.1016/j.patcog.2017.10.013_bib0084) 2015 Tikhonov (10.1016/j.patcog.2017.10.013_bib0089) 1943; 39 He (10.1016/j.patcog.2017.10.013_bib0050) 2015; 37 Tóth (10.1016/j.patcog.2017.10.013_bib0295) 2014 Yao (10.1016/j.patcog.2017.10.013_bib0288) 2012 Kim (10.1016/j.patcog.2017.10.013_bib0304) 2016 Yang (10.1016/j.patcog.2017.10.013_bib0093) 2015 Le Cun (10.1016/j.patcog.2017.10.013_bib0003) 1989 Huang (10.1016/j.patcog.2017.10.013_bib0129) 2016 Lee (10.1016/j.patcog.2017.10.013_bib0082) 2006 Jung (10.1016/j.patcog.2017.10.013_bib0231) 2004; 37 Jaderberg (10.1016/j.patcog.2017.10.013_bib0240) 2015 Kümmerer (10.1016/j.patcog.2017.10.013_bib0252) 2015 Moczulski (10.1016/j.patcog.2017.10.013_bib0145) 2016 He (10.1016/j.patcog.2017.10.013_bib0241) 2016 Guo (10.1016/j.patcog.2017.10.013_bib0254) 2014; 47 Das (10.1016/j.patcog.2017.10.013_bib0035) 2016 Denton (10.1016/j.patcog.2017.10.013_bib0086) 2015 Vinciarelli (10.1016/j.patcog.2017.10.013_bib0230) 2002; 35 He (10.1016/j.patcog.2017.10.013_bib0123) 2016 Nowlan (10.1016/j.patcog.2017.10.013_bib0196) 1994 Wan (10.1016/j.patcog.2017.10.013_bib0045) 2013 Singh (10.1016/j.patcog.2017.10.013_bib0126) 2016 Springenberg (10.1016/j.patcog.2017.10.013_bib0060) 2013 Chopra (10.1016/j.patcog.2017.10.013_bib0065) 2005 Zhang (10.1016/j.patcog.2017.10.013_bib0119) 2017 Egmont-Petersen (10.1016/j.patcog.2017.10.013_bib0168) 2002; 35 Long (10.1016/j.patcog.2017.10.013_bib0028) 2017; 39 Madjarov (10.1016/j.patcog.2017.10.013_bib0020) 2012; 45 LeCun (10.1016/j.patcog.2017.10.013_bib0004) 1998; 86 Zeiler (10.1016/j.patcog.2017.10.013_bib0026) 2010 Xie (10.1016/j.patcog.2017.10.013_bib0099) 2015 Courbariaux (10.1016/j.patcog.2017.10.013_bib0150) 2016 Zheng (10.1016/j.patcog.2017.10.013_bib0025) 2014 Srivastava (10.1016/j.patcog.2017.10.013_bib0122) 2015 Tran (10.1016/j.patcog.2017.10.013_bib0266) 2015 Shi (10.1016/j.patcog.2017.10.013_bib0163) 2009; 10 Gers (10.1016/j.patcog.2017.10.013_bib0242) 2000; 12 Hinton (10.1016/j.patcog.2017.10.013_bib0286) 2012; 29 10.1016/j.patcog.2017.10.013_bib0132 Mathieu (10.1016/j.patcog.2017.10.013_bib0049) 2014 10.1016/j.patcog.2017.10.013_bib0130 10.1016/j.patcog.2017.10.013_bib0257 Schaul (10.1016/j.patcog.2017.10.013_bib0111) 2013 Ngiam (10.1016/j.patcog.2017.10.013_bib0023) 2010 Jain (10.1016/j.patcog.2017.10.013_bib0223) 2014 Vincent (10.1016/j.patcog.2017.10.013_bib0078) 2008 Zhang (10.1016/j.patcog.2017.10.013_bib0214) 2013; 46 El Ayadi (10.1016/j.patcog.2017.10.013_bib0284) 2011; 44 Fukushima (10.1016/j.patcog.2017.10.013_bib0002) 1982 Uijlings (10.1016/j.patcog.2017.10.013_bib0185) 2013; 104 Zeiler (10.1016/j.patcog.2017.10.013_bib0055) 2013 Salamon (10.1016/j.patcog.2017.10.013_bib0095) 2017; 24 Patacchiola (10.1016/j.patcog.2017.10.013_bib0220) 2017; 71 Oseledets (10.1016/j.patcog.2017.10.013_bib0140) 2011; 33 Cheng (10.1016/j.patcog.2017.10.013_bib0144) 2015 Khosla (10.1016/j.patcog.2017.10.013_bib0179) 2011; 2 Donahue (10.1016/j.patcog.2017.10.013_bib0270) 2017; 39 Oquab (10.1016/j.patcog.2017.10.013_bib0258) 2014 Gkioxari (10.1016/j.patcog.2017.10.013_bib0261) 2015 Szegedy (10.1016/j.patcog.2017.10.013_bib0042) 2017 Shaham (10.1016/j.patcog.2017.10.013_bib0067) 2017 Zuo (10.1016/j.patcog.2017.10.013_bib0170) 2015; 48 Zhang (10.1016/j.patcog.2017.10.013_bib0112) 2015 Presti (10.1016/j.patcog.2017.10.013_bib0255) 2016; 53 Zhou (10.1016/j.patcog.2017.10.013_bib0034) 2016 Pan (10.1016/j.patcog.2017.10.013_bib0253) 2015 Liu (10.1016/j.patcog.2017.10.013_bib0273) 2015; 48 Chen (10.1016/j.patcog.2017.10.013_bib0153) 2010; 10 Doersch (10.1016/j.patcog.2017.10.013_bib0106) 2015 LeCun (10.1016/j.patcog.2017.10.013_bib0013) 2012 Yu (10.1016/j.patcog.2017.10.013_bib0143) 2014 Eslami (10.1016/j.patcog.2017.10.013_bib0083) 2016 Zhang (10.1016/j.patcog.2017.10.013_bib0263) 2016; 25 Nishi (10.1016/j.patcog.2017.10.013_bib0221) 2017 Yin (10.1016/j.patcog.2017.10.013_bib0313) 2015 Szegedy (10.1016/j.patcog.2017.10.013_bib0041) 2016 Wijnhoven (10.1016/j.patcog.2017.10.013_bib0021) 2010 Prechelt (10.1016/j.patcog.2017.10.013_bib0118) 2012 Wang (10.1016/j.patcog.2017.10.013_bib0246) 2015 Sercu (10.1016/j.patcog.2017.10.013_bib0294) 2016 Zagoruyko (10.1016/j.patcog.2017.10.013_bib0125) 2016 He (10.1016/j.patcog.2017.10.013_bib0250) 2015; 115 Krause (10.1016/j.patcog.2017.10.013_bib0188) 2014 Conneau (10.1016/j.patcog.2017.10.013_bib0315) 2016 Deng (10.1016/j.patcog.2017.10.013_bib0287) 2013 Waibel (10.1016/j.patcog.2017.10.013_bib0298) 1989; 37 10.1016/j.patcog.2017.10.013_bib0280 Han (10.1016/j.patcog.2017.10.013_bib0146) 2016 Kingma (10.1016/j.patcog.2017.10.013_bib0109) 2015 10.1016/j.patcog.2017.10.013_bib0152 Yann N. Dauphin (10.1016/j.patcog.2017.10.013_bib0308) 2017 Tousch (10.1016/j.patcog.2017.10.013_bib0173) 2012; 45 Yoo (10.1016/j.patcog.2017.10.013_bib0206) 2015 Zhang (10.1016/j.patcog.2017.10.013_bib0215) 2015; 48 Xu (10.1016/j.patcog.2017.10.013_bib0100) 2015 10.1016/j.patcog.2017.10.013_bib0159 Zhao (10.1016/j.patcog.2017.10.013_bib0247) 2015 Mirza (10.1016/j.patcog.2017.10.013_bib0077) 2014 Zhang (10.1016/j.patcog.2017.10.013_bib0238) 2015 Fan (10.1016/j.patcog.2017.10.013_bib0216) 2010; 21 Loshchilov (10.1016/j.patcog.2017.10.013_bib0110) 2017 Lavin (10.1016/j.patcog.2017.10.013_bib0133) 2016 Xiao (10.1016/j.patcog.2017.10.013_bib0191) 2015 Pedersoli (10.1016/j.patcog.2017.10.013_bib0195) 2015; 48 Gidaris (10.1016/j.patcog.2017.10.013_bib0205) 2015 Dong (10.1016/j.patcog.2017.10.013_bib0036) 2016; 38 Sainath (10.1016/j.patcog.2017.10.013_bib0134) 2013 Sullivan (10.1016/j.patcog.2017.10.013_bib0151) 1996; 42 Jégou (10.1016/j.patcog.2017.10.013_bib0053) 2012; 34 Jaderberg (10.1016/j.patcog.2017.10.013_bib0244) 2014 Deng (10.1016/j.patcog.2017.10.013_bib0285) 1991; 39 Olshausen (10.1016/j.patcog.2017.10.013_bib0081) 1996; 381 Paine (10.1016/j.patcog.2017.10.013_sbref0115) 2011 Branson (10.1016/j.patcog.2017.10.013_bib0183) 2014 Redmon (10.1016/j.patcog.2017.10.013_bib0210) 2016 Liu (10.1016/j.patcog.2017.10.013_bib0070) 2016 Jozefowicz (10.1016/j.patcog.2017.10.013_bib0303) 2016 Farabet (10.1016/j.patcog.2017.10.013_bib0276) 2013; 35 Simonyan (10.1016/j.patcog.2017.10.013_bib0009) 2015 Tang (10.1016/j.patcog.2017.10.013_bib0229) 1996; 29 Noh (10.1016/j.patcog.2017.10.013_bib0030) 2015 Fu (10.1016/j.patcog.2017.10.013_bib0271) 1981; 13 Hadsell (10.1016/j.patcog.2017.10.013_bib0066) 2006 Wen (10.1016/j.patcog.2017.10.013_bib0166) 2016 Pluim (10.1016/j.patcog.2017.10.013_bib0187) 2003; 22 Zhang (10.1016/j.patcog.2017.10.013_bib0256) 2016; 60 Zhang (10.1016/j.patcog.2017.10.013_bib0006) 1990; 29 Cao (10.1016/j.patcog.2017.10.013_bib0031) 2015 10.1016/j.patcog.2017.10.013_bib0177 Wang (10.1016/j.patcog.2017.10.013_bib0306) 2015 Li (10.1016/j.patcog.2017.10.013_bib0194) 2015; 48 Bagherinezhad (10.1016/j.patcog.2017.10.013_bib0167) 2017 Wang (10.1016/j.patcog.2017.10.013_bib0090) 2013 Targ (10.1016/j.patcog.2017.10.013_sbref0127) 2016 Szegedy (10.1016/j.patcog.2017.10.013_bib0010) 2015 Zhang (10.1016/j.patcog.2017.10.013_bib0184) 2014 He (10.1016/j.patcog.2017.10.013_bib0012) 2016 Ioffe (10.1016/j.patcog.2017.10.013_bib0120) 2015 Goodfellow (10.1016/j.patcog.2017.10.013_bib0059) 2013 Liu (10.1016/j.patcog.2017.10.013_bib0211) 2016 Shi (10.1016/j.patcog.2017.10.013_bib0243) 2015 Yu (10.1016/j.patcog.2017.10.013_bib0297) 2016 10.1016/j.patcog.2017.10.013_bib0293 Huang (10.1016/j.patcog.2017.10.013_bib0301) 2017 Sutskever (10.1016/j.patcog.2017.10.013_bib0103) 2013 Rippel (10.1016/j.patcog.2017.10.013_bib0048) 2015 Vasilache (10.1016/j.patcog.2017.10.013_bib0131) 2015 Shen (10.1016/j.patcog.2017.10.013_bib0124) 2016 Abdel-Hamid (10.1016/j.patcog.2017.10.013_bib0290) 2014 Ba (10.1016/j.patcog.2017.10.013_bib0091) 2013 Wang (10.1016/j.patcog.2017.10.013_bib0264) 2017; 92 Shuai (10.1016/j.patcog.2017.10.013_bib0279) 2015 He (10.1016/j.patcog.2017.10.013_bib0203) 2015; 37 Zhou (10.1016/j.patcog.2017.10.013_sbref0147) 2016 Gomez (10.1016/j.patcog.2017.10.013_bib0234) 2017; 67 Zeiler (10.1016/j.patcog.2017.10.013_bib0011) 2014 Bu (10.1016/j.patcog.2017.10.013_bib0274) 2016; 59 Eigen (10.1016/j.patcog.2017.10.013_bib0096) 2015 Hochreiter (10.1016/j.patcog.2017.10.013_bib0121) 1997; 9 Collobert (10.1016/j.patcog.2017.10.013_bib0314) 2011; 12 Eskenazi (10.1016/j.patcog.2017.10.013_bib0232) 2017; 64 Collobert (10.1016/j.patcog.2017.10.013_bib0309) 2008 Huang (10.1016/j.patcog.2017.10.013_bib0237) 2014 Kalchbrenner (10.1016/j.patcog.2017.10.013_bib0311) 2014 Mariet (10.1016/j.patcog.2017.10.013_bib0161) 2015 Lin (10.1016/j.patcog.2017.10.013_bib0018) 2014 Shuai (10.1016/j.patcog.2017.10.013_bib0281) 2016 Yao (10.1016/j.patcog.2017.10.013_bib0117) 2007; 26 Salimans (10.1016/j.patcog.2017.10.013_bib0087) 2016 Guo (10.1016/j.patcog.2017.10.013_bib0157) 2016 Hubel (10.1016/j.patcog.2017.10.013_bib0001) 1968 Fan (10.1016/j.patcog.2017.10.013_bib0227) 2015 Visin (10.1016/j.pat |
References_xml | – start-page: 588 year: 2013 end-page: 595 ident: bib0260 article-title: Poselet conditioned pictorial structures publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 886 year: 2015 end-page: 890 ident: bib0238 article-title: Automatic discrimination of text and non-text natural images publication-title: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR) – start-page: 842 year: 2015 end-page: 850 ident: bib0191 article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2016 ident: bib0039 article-title: Wavenet: a generative model for raw audio publication-title: CoRR abs/1609.03499 – volume: 71 start-page: 132 year: 2017 end-page: 143 ident: bib0220 article-title: Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods publication-title: Pattern Recognit. – start-page: 770 year: 2016 end-page: 778 ident: bib0012 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 44 start-page: 572 year: 2011 end-page: 587 ident: bib0284 article-title: Survey on speech emotion recognition: features, classification schemes, and databases publication-title: Pattern Recognit. – start-page: 2377 year: 2015 end-page: 2385 ident: bib0122 article-title: Training very deep networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 1080 year: 2015 end-page: 1088 ident: bib0261 article-title: Contextual action recognition with r*CNN publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 834 year: 2014 end-page: 849 ident: bib0184 article-title: Part-based r-cnns for fine-grained category detection publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 1746 year: 2014 end-page: 1751 ident: bib0312 article-title: Convolutional neural networks for sentence classification publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) – start-page: 646 year: 2016 end-page: 661 ident: bib0316 article-title: Deep networks with stochastic depth publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – year: 2012 ident: bib0017 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: CoRR abs/1207.0580 – start-page: 1725 year: 2014 end-page: 1732 ident: bib0267 article-title: Large-scale video classification with convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2365 year: 2013 end-page: 2369 ident: bib0135 article-title: Restructuring of deep neural network acoustic models with singular value decomposition publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH) – start-page: 2650 year: 2015 end-page: 2658 ident: bib0096 article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 3973 year: 2015 end-page: 3981 ident: bib0180 article-title: A large-scale car dataset for fine-grained categorization and verification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 26 year: 2014 end-page: 33 ident: bib0188 article-title: Learning features and parts for fine-grained recognition publication-title: Proceedings of the International Conference on Pattern Recognition (ICPR) – start-page: 73 year: 2012 end-page: 86 ident: bib0051 article-title: Unsupervised discovery of mid-level discriminative patches publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – year: 2016 ident: bib0150 article-title: Binarynet: training deep neural networks with weights and activations constrained to+ 1 or-1 publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 3429 year: 2016 end-page: 3433 ident: bib0294 article-title: Advances in very deep convolutional neural networks for LVCSR publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH) – start-page: 1134 year: 2015 end-page: 1142 ident: bib0205 article-title: Object detection via a multi-region and semantic segmentation-aware cnn model publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 315 year: 2013 end-page: 320 ident: bib0296 article-title: Improvements to deep convolutional neural networks for LVCSR publication-title: Proceedings of the Automatic Speech Recognition and Understanding (ASRU) Workshops – start-page: 1735 year: 2006 end-page: 1742 ident: bib0066 article-title: Dimensionality reduction by learning an invariant mapping publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 580 year: 2014 end-page: 587 ident: bib0202 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2595 year: 2010 end-page: 2603 ident: bib0022 article-title: Parallelized stochastic gradient descent publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 1379 year: 2016 end-page: 1387 ident: bib0157 article-title: Dynamic network surgery for efficient DNNs publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 45 start-page: 3084 year: 2012 end-page: 3104 ident: bib0020 article-title: An extensive experimental comparison of methods for multi-label learning publication-title: Pattern Recognit. – start-page: 2645 year: 2015 end-page: 2654 ident: bib0099 article-title: Hyper-class augmented and regularized deep learning for fine-grained image classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 497 year: 2014 end-page: 511 ident: bib0237 article-title: Robust scene text detection with convolution neural network induced mser trees publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 3620 year: 2016 end-page: 3629 ident: bib0281 article-title: Dag-recurrent neural networks for scene labeling publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2014 ident: bib0183 article-title: Improved bird species recognition using pose normalized deep convolutional nets publication-title: Proceedings of the British Machine Vision Conference (BMVC) – volume: 22 start-page: 986 year: 2003 end-page: 1004 ident: bib0187 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging – start-page: 249 year: 2010 end-page: 256 ident: bib0104 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) – start-page: 901 year: 1994 end-page: 908 ident: bib0196 article-title: A convolutional neural network hand tracker publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 10 start-page: 11259 year: 2010 end-page: 11273 ident: bib0153 article-title: Approximate nearest neighbor search by residual vector quantization publication-title: Sensors – volume: 60 start-page: 875 year: 2016 end-page: 889 ident: bib0079 article-title: Dual autoencoders features for imbalance classification problem publication-title: Pattern Recognit. – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: bib0204 article-title: Faster r-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) – year: 2017 ident: bib0067 article-title: Learning by coincidence: siamese networks and common variable learning publication-title: Pattern Recognit. – start-page: 2094 year: 2013 end-page: 2102 ident: bib0174 article-title: Discriminative transfer learning with tree-based priors publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 740 year: 2014 end-page: 755 ident: bib0199 article-title: Microsoft Coco: Common Objects in Context publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 70 start-page: 60 year: 2017 end-page: 74 ident: bib0201 article-title: Textproposals: a text-specific selective search algorithm for word spotting in the wild publication-title: Pattern Recognit. – start-page: 37 year: 2015 end-page: 45 ident: bib0107 article-title: Learning to see by moving publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 387 year: 2015 end-page: 394 ident: bib0236 article-title: Robust seed localization and growing with deep convolutional features for scene text detection publication-title: Proceedings of the International Conference on Multimedia Retrieval (ICMR) – start-page: 1279 year: 2010 end-page: 1287 ident: bib0023 article-title: Tiled convolutional neural networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – year: 2017 ident: bib0221 article-title: Generation of human depth images with body part labels for complex human pose recognition publication-title: Pattern Recognit. – start-page: 1078 year: 2014 end-page: 1082 ident: bib0295 article-title: Convolutional deep maxout networks for phone recognition. publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH) – year: 2011 ident: bib0115 article-title: GPU asynchronous stochastic gradient descent to speed up neural network training publication-title: CoRR – volume: 18 start-page: 81 year: 2007 end-page: 100 ident: bib0043 article-title: Complex cell pooling and the statistics of natural images publication-title: Network – start-page: 82 year: 2014 end-page: 90 ident: bib0278 article-title: Recurrent convolutional neural networks for scene labeling publication-title: Proceedings of the International Conference on Machine Learning (ICML) – reference: D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al., Deep speech 2: End-to-end speech recognition in english and mandarin, 2016, pp. 173–182. – year: 2014 ident: bib0217 article-title: Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking publication-title: Proceedings of the British Machine Vision Conference (BMVC) – reference: , volume abs/1412.6115, 2014. – start-page: 807 year: 2010 end-page: 814 ident: bib0014 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 24 start-page: 279 year: 2017 end-page: 283 ident: bib0095 article-title: Deep convolutional neural networks and data augmentation for environmental sound classification publication-title: Signal Process. Lett. (SPL) – start-page: 806 year: 2015 end-page: 814 ident: bib0165 article-title: Sparse convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2013 ident: bib0277 article-title: Indoor semantic segmentation using depth information publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – reference: J. Gu, C. Jianfei, G. Wang, T. Chen, Stack-captioning: coarse-to-fine learning for image captioning, volume abs/1709.03376, 2017. – start-page: 28 year: 2016 end-page: 36 ident: bib0126 article-title: Swapout: learning an ensemble of deep architectures publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 2921 year: 2016 end-page: 2929 ident: bib0034 article-title: Learning deep features for discriminative localization publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, Cudnn: efficient primitives for deep learningabs/1410.0759 (2014). – start-page: 215 year: 1968 end-page: 243 ident: bib0001 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J. Physiol. – volume: 59 start-page: 188 year: 2016 end-page: 198 ident: bib0274 article-title: Scene parsing using inference embedded deep networks publication-title: Pattern Recognit. – volume: 48 start-page: 3004 year: 2015 end-page: 3015 ident: bib0170 article-title: Exemplar based deep discriminative and shareable feature learning for scene image classification publication-title: Pattern Recognit. – year: 2016 ident: bib0303 article-title: Exploring the limits of language modeling publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – volume: 10 start-page: 2615 year: 2009 end-page: 2637 ident: bib0163 article-title: Hash kernels for structured data publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 3517 year: 2013 end-page: 3521 ident: bib0055 article-title: On rectified linear units for speech processing publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) – reference: M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild with convolutional neural networks, volume 116, 2016, pp. 1–20. – start-page: 2285 year: 2015 end-page: 2294 ident: bib0162 article-title: Compressing neural networks with the hashing trick publication-title: Proceedings of the International Conference on Machine Learning (ICML) – year: 2015 ident: bib0131 article-title: Fast convolutional nets with fbfft: aGPU performance evaluation publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 4278 year: 2017 end-page: 4284 ident: bib0042 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 512 year: 2014 end-page: 528 ident: bib0244 article-title: Deep features for text spotting publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 13 start-page: 3 year: 1981 end-page: 16 ident: bib0271 article-title: A survey on image segmentation publication-title: Pattern Recognit. – volume: 30 year: 2013 ident: bib0054 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 61 start-page: 539 year: 2017 end-page: 556 ident: bib0169 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. – year: 2015 ident: bib0160 article-title: Data-free parameter pruning for deep neural networks publication-title: Proceedings of the British Machine Vision Conference (BMVC) – start-page: 1113 year: 2009 end-page: 1120 ident: bib0164 article-title: Feature hashing for large scale multitask learning publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 53 start-page: 130 year: 2016 end-page: 147 ident: bib0255 article-title: 3D skeleton-based human action classification: a survey publication-title: Pattern Recognit. – volume: 7 start-page: 669 year: 1993 end-page: 688 ident: bib0064 article-title: Signature verification using a siamese time delay neural network publication-title: Int. J. Pattern Recognit. Artif. Intell. (IJPRAI) – start-page: 4489 year: 2015 end-page: 4497 ident: bib0266 article-title: Learning spatiotemporal features with 3d convolutional networks publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – volume: 35 start-page: 2279 year: 2002 end-page: 2301 ident: bib0168 article-title: Image processing with neural networksa review publication-title: Pattern Recognit. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0121 article-title: Long short-term memory publication-title: Neural Comput. – start-page: 2741 year: 2016 end-page: 2749 ident: bib0304 article-title: Character-aware neural language models publication-title: Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) – volume: 2 start-page: 1 year: 2011 ident: bib0179 article-title: Novel dataset for fine-grained image categorization: stanford dogs publication-title: Proceedings of the IEEE International Conference on Computer Vision (CVPR Workshops – start-page: 612 year: 2016 end-page: 621 ident: bib0033 article-title: Augmenting supervised neural networks with unsupervised objectives for large-scale image classification publication-title: Proceedings of the International Conference on Machine Learning (ICML) – year: 2016 ident: bib0158 article-title: Designing energy-efficient convolutional neural networks using energy-aware pruning publication-title: CoRR abs/1611.05128 – start-page: 118 year: 2013 end-page: 126 ident: bib0090 article-title: Fast dropout training publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 71 start-page: 118 year: 2017 end-page: 131 ident: bib0182 article-title: Lg-cnn: from local parts to global discrimination for fine-grained recognition publication-title: Pattern Recognit. – start-page: 290 year: 2008 end-page: 294 ident: bib0235 article-title: Text detection with convolutional neural networks publication-title: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP) – volume: 51 start-page: 148 year: 2016 end-page: 175 ident: bib0193 article-title: Human detection from images and videos: a survey publication-title: Pattern Recognit. – start-page: 169 year: 2012 end-page: 178 ident: bib0154 article-title: Scalar quantization for large scale image search publication-title: Proceedings of the 20th ACM International Conference on Multimedia – reference: P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks (2014). – start-page: 2470 year: 2015 end-page: 2478 ident: bib0262 article-title: Actions and attributes from wholes and parts publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – year: 2015 ident: bib0175 article-title: Learning fine-grained features via a CNN tree for large-scale classification publication-title: CoRR abs/1511.04534 – start-page: 815 year: 2015 end-page: 823 ident: bib0069 article-title: Facenet: a unified embedding for face recognition and clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 4700 year: 2016 end-page: 4708 ident: bib0129 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 66 start-page: 437 year: 2017 end-page: 446 ident: bib0233 article-title: Text/non-text image classification in the wild with convolutional neural networks publication-title: Pattern Recognit. – start-page: 3304 year: 2012 end-page: 3308 ident: bib0015 article-title: End-to-end text recognition with convolutional neural networks publication-title: Proceedings of the International Conference on Pattern Recognition (ICPR) – year: 2016 ident: bib0146 article-title: Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 525 year: 2016 end-page: 542 ident: bib0148 article-title: Xnor-net: imagenet classification using binary convolutional neural networks publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 249 year: 2013 end-page: 256 ident: bib0116 article-title: A fast parallel SGD for matrix factorization in shared memory systems publication-title: Proceedings of the ACM conference on Recommender systems RecSys – start-page: 2857 year: 2015 end-page: 2865 ident: bib0144 article-title: An exploration of parameter redundancy in deep networks with circulant projections publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – year: 2014 ident: bib0223 article-title: Learning human pose estimation features with convolutional networks publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 3581 year: 2014 end-page: 3589 ident: bib0075 article-title: Semi-supervised learning with deep generative models publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – year: 2015 ident: bib0283 article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 2351 year: 2016 end-page: 2359 ident: bib0212 article-title: Adaptive object detection using adjacency and zoom prediction publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 3084 year: 2013 end-page: 3092 ident: bib0091 article-title: Adaptive dropout for training deep neural networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – year: 2015 ident: bib0252 article-title: Deep gaze i: boosting saliency prediction with feature maps trained on imagenet publication-title: Proceedings of the International Conference on Learning Representations (ICLR) Workshops – start-page: 1666 year: 2015 end-page: 1674 ident: bib0186 article-title: Deep lac: deep localization, alignment and classification for fine-grained recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 92 start-page: 33 year: 2017 end-page: 40 ident: bib0264 article-title: Three-stream CNNs for action recognition publication-title: Pattern Recognit. Lett. – volume: 29 start-page: 141 year: 2012 end-page: 142 ident: bib0062 article-title: The mnist database of handwritten digit images for machine learning research publication-title: IEEE Signal Process. Mag. – start-page: 1060 year: 2016 end-page: 1069 ident: bib0085 article-title: Generative adversarial text to image synthesis publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 1 start-page: 445 year: 1988 end-page: 448 ident: bib0005 article-title: Theory of the backpropagation neural network publication-title: Neural Networks – year: 2017 ident: bib0307 article-title: An empirical study of language CNN for image captioning publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – volume: 63 start-page: 499 year: 2017 end-page: 510 ident: bib0080 article-title: Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction publication-title: Pattern Recognit. – reference: B. Shuai, Z. Zuo, W. Gang, Quaddirectional 2d-recurrent neural networks for image labeling 22(11) (2015b) 1990–1994. – volume: 12 start-page: 2493 year: 2011 end-page: 2537 ident: bib0314 article-title: Natural language processing (almost) from scratch publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 1232 year: 2012 end-page: 1240 ident: bib0114 article-title: Large scale distributed deep networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 597 year: 2015 end-page: 606 ident: bib0219 article-title: Online tracking by learning discriminative saliency map with convolutional neural network publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 39 start-page: 1677 year: 1991 end-page: 1681 ident: bib0285 article-title: Phonemic hidden ,Markov models with continuous mixture output densities for large vocabulary word recognition publication-title: IEEE Trans. Signal Process. – volume: 48 start-page: 3542 year: 2015 end-page: 3559 ident: bib0194 article-title: Feature representation for statistical-learning-based object detection: a review publication-title: Pattern Recognit. – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: bib0203 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: bib0172 article-title: The pascal visual object classes challenge: a retrospective publication-title: Int. J. Conflict Violence (IJCV) – start-page: 1319 year: 2013 end-page: 1327 ident: bib0059 article-title: Maxout networks publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 177 year: 2014 end-page: 186 ident: bib0176 article-title: Error-driven incremental learning in deep convolutional neural network for large-scale image classification publication-title: Proceedings of the ACM Multimedia Conference – reference: X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1736–1744. – volume: 60 start-page: 86 year: 2016 end-page: 105 ident: bib0256 article-title: Rgb-d-based action recognition datasets: a survey publication-title: Pattern Recognit. – year: 2015 ident: bib0101 article-title: The loss surfaces of multilayer networks publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) – year: 2016 ident: bib0038 article-title: Neural machine translation in linear time publication-title: CoRR abs/1610.10099 – reference: Z. Yan, V. Jagadeesh, D. DeCoste, W. Di, R. Piramuthu, Hd-cnn: hierarchical deep convolutional neural network for image classification, in: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2740–2748. – volume: 39 start-page: 677 year: 2017 end-page: 691 ident: bib0270 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) – year: 2015 ident: bib0009 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – year: 2013 ident: bib0060 article-title: Improving deep neural networks with probabilistic maxout units publication-title: CoRR abs/1312.6116 – year: 2016 ident: bib0040 article-title: Dense prediction on sequences with time-dilated convolutions for speech recognition publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) Workshops – year: 2017 ident: bib0301 article-title: Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation publication-title: Pattern Recognit. Lett. – volume: 104 start-page: 154 year: 2013 end-page: 171 ident: bib0185 article-title: Selective search for object recognition publication-title: Int. J. Conflict Violence (IJCV) – year: 2017 ident: bib0167 article-title: Lcnn: Lookup-based convolutional neural network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2016 ident: bib0058 article-title: Fast and accurate deep network learning by exponential linear units (elus) publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – volume: 85 year: 2013 ident: bib0141 article-title: Fastfood-approximating kernel expansions in loglinear time publication-title: Proceedings of the International Conference on Machine Learning (ICML) – year: 2015 ident: bib0240 article-title: Deep structured output learning for unconstrained text recognition publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 658 year: 2016 end-page: 666 ident: bib0088 article-title: Generating images with perceptual similarity metrics based on deep networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – year: 2016 ident: bib0102 article-title: All you need is a good init publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – year: 2015 ident: bib0024 article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks publication-title: Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Workshops – start-page: 2672 year: 2014 end-page: 2680 ident: bib0076 article-title: Generative adversarial nets publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 47 start-page: 3343 year: 2014 end-page: 3361 ident: bib0254 article-title: A survey on still image based human action recognition publication-title: Pattern Recognit. – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: bib0286 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. – start-page: 366 year: 2012 end-page: 369 ident: bib0288 article-title: Adaptation of context-dependent deep neural networks for automatic speech recognition publication-title: Proceedings of the Spoken Language Technology (SLT) – start-page: 2659 year: 2015 end-page: 2667 ident: bib0206 article-title: Attentionnet: Aggregating weak directions for accurate object detection publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 6655 year: 2013 end-page: 6659 ident: bib0134 article-title: Low-rank matrix factorization for deep neural network training with high-dimensional output targets publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) – reference: Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks using vector quantization, in: arXiv preprint – year: 2014 ident: bib0239 article-title: Multi-digit number recognition from street view imagery using deep convolutional neural networks publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: bib0242 article-title: Learning to forget: continual prediction with lstm publication-title: Neural Comput. – start-page: 4249 year: 2015 end-page: 4258 ident: bib0279 article-title: Integrating parametric and non-parametric models for scene labeling publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 35 start-page: 1433 year: 2002 end-page: 1446 ident: bib0230 article-title: A survey on off-line cursive word recognition publication-title: Pattern Recognit. – volume: 32 start-page: 1627 year: 2010 end-page: 1645 ident: bib0207 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) – start-page: 9 year: 2012 end-page: 48 ident: bib0013 article-title: Efficient backprop publication-title: Neural Networks: Tricks of the Trade - Second Edition – start-page: 21 year: 2016 end-page: 37 ident: bib0211 article-title: SSD: single shot multibox detector publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 307 year: 2014 end-page: 315 ident: bib0044 article-title: Signal recovery from pooling representations publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 46 start-page: 397 year: 2013 end-page: 411 ident: bib0213 article-title: Real-time visual tracking via online weighted multiple instance learning publication-title: Pattern Recognit. – start-page: 3483 year: 2015 end-page: 3491 ident: bib0084 article-title: Learning structured output representation using deep conditional generative models publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 1395 year: 2015 end-page: 1403 ident: bib0094 article-title: Holistically-nested edge detection publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – year: 2014 ident: bib0073 article-title: Auto-encoding variational bayes publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – volume: 61 start-page: 610 year: 2017 end-page: 628 ident: bib0171 article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order publication-title: Pattern Recognit. – start-page: 1 year: 2015 end-page: 9 ident: bib0010 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 48 start-page: 2993 year: 2015 end-page: 3003 ident: bib0071 article-title: Deep feature learning with relative distance comparison for person re-identification publication-title: Pattern Recognit. – year: 2013 ident: bib0047 article-title: Stochastic pooling for regularization of deep convolutional neural networks publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 177 year: 1988 end-page: 185 ident: bib0155 article-title: Comparing biases for minimal network construction with back-propagation publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 1347 year: 2015 end-page: 1355 ident: bib0227 article-title: Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 932 year: 2016 end-page: 937 ident: bib0035 article-title: Human attention in visual question answering: Do humans and deep networks look at the same regions? publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) – volume: 48 start-page: 1844 year: 2015 end-page: 1853 ident: bib0195 article-title: A coarse-to-fine approach for fast deformable object detection publication-title: Pattern Recognit. – start-page: 1567 year: 2015 end-page: 1576 ident: bib0306 article-title: cnn: a convolutional architecture for word sequence prediction publication-title: Proceedings of the Association for Computational Linguistics (ACL) – start-page: 1954 year: 2014 end-page: 1958 ident: bib0299 article-title: Dnn-based stochastic postfilter for hmm-based speech synthesis. publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH) – start-page: 1096 year: 2016 end-page: 1104 ident: bib0072 article-title: Deepfashion: powering robust clothes recognition and retrieval with rich annotations publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 46 start-page: 1772 year: 2013 end-page: 1788 ident: bib0214 article-title: Sparse coding based visual tracking: review and experimental comparison publication-title: Pattern Recognit. – start-page: 2059 year: 2017 end-page: 2065 ident: bib0074 article-title: Denoising criterion for variational auto-encoding framework publication-title: Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) – start-page: 2148 year: 2013 end-page: 2156 ident: bib0136 article-title: Predicting parameters in deep learning publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 45 start-page: 1318 year: 2012 end-page: 1325 ident: bib0007 article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits publication-title: Pattern Recognit. – year: 2016 ident: bib0127 article-title: Resnet in resnet: generalizing residual architectures publication-title: CoRR – start-page: 1449 year: 2015 end-page: 1457 ident: bib0192 article-title: Bilinear CNN models for fine-grained visual recognition publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – volume: 48 start-page: 580 year: 2015 end-page: 590 ident: bib0215 article-title: Multi-target tracking by learning local-to-global trajectory models publication-title: Pattern Recognit. – year: 2014 ident: bib0018 article-title: Network in network publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 392 year: 2014 end-page: 407 ident: bib0052 article-title: Multi-scale orderless pooling of deep convolutional activation features publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 33 start-page: 2295 year: 2011 end-page: 2317 ident: bib0140 article-title: Tensor-train decomposition publication-title: SIAM J. Sci. Comput. – volume: 45 start-page: 333 year: 2012 end-page: 345 ident: bib0173 article-title: Semantic hierarchies for image annotation: a survey publication-title: Pattern Recognit. – start-page: 2524 year: 2015 end-page: 2532 ident: bib0100 article-title: Augmenting strong supervision using web data for fine-grained categorization publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 936 year: 2016 end-page: 941 ident: bib0124 article-title: Weighted residuals for very deep networks publication-title: Proceedings of the International Conference on Systems and Informatics (ICSAI) – start-page: 801 year: 2006 end-page: 808 ident: bib0082 article-title: Efficient sparse coding algorithms publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 3376 year: 2015 end-page: 3385 ident: bib0282 article-title: Feedforward semantic segmentation with zoom-out features publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2470 year: 2015 end-page: 2478 ident: bib0259 article-title: Actions and attributes from wholes and parts publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – year: 2014 ident: bib0290 article-title: Convolutional neural networks for speech recognition publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – year: 2017 ident: bib0110 article-title: Sgdr: Stochastic gradient descent with warm restarts publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – year: 2015 ident: bib0029 article-title: Reseg: a recurrent neural network for object segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops – year: 2015 ident: bib0057 article-title: Empirical evaluation of rectified activations in convolutional network publication-title: Proceedings of the International Conference on Machine Learning (ICML) Workshop – volume: 42 start-page: 1365 year: 1996 end-page: 1374 ident: bib0151 article-title: Efficient scalar quantization of exponential and Laplacian random variables publication-title: IEEE Trans. Inf. Theory – start-page: 302 year: 2014 end-page: 315 ident: bib0228 article-title: Modeep: A deep learning framework using motion features for human pose estimation publication-title: Proceedings of the Asian Conference on Computer Vision (ACCV) – volume: 25 start-page: 5479 year: 2016 end-page: 5490 ident: bib0263 article-title: Action recognition in still images with minimum annotation efforts publication-title: IEEE Trans. Image Process. – volume: 37 start-page: 977 year: 2004 end-page: 997 ident: bib0231 article-title: Text information extraction in images and video: a survey publication-title: Pattern Recognit. – start-page: 343 year: 2013 end-page: 351 ident: bib0111 article-title: No more pesky learning rates publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 946 year: 2014 end-page: 954 ident: bib0143 article-title: Circulant binary embedding publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 1747 year: 2016 end-page: 1756 ident: bib0302 article-title: Pixel recurrent neural networks publication-title: Proceedings of the International Conference on Machine Learning (ICML) – year: 2004 ident: bib0061 article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 1799 year: 2014 end-page: 1807 ident: bib0224 article-title: Joint training of a convolutional network and a graphical model for human pose estimation publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 12 start-page: 145 year: 1999 end-page: 151 ident: bib0108 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. – start-page: 2528 year: 2010 end-page: 2535 ident: bib0026 article-title: Deconvolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 693 year: 2011 end-page: 701 ident: bib0113 article-title: Hogwild: a lock-free approach to parallelizing stochastic gradient descent publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 2019 year: 2014 end-page: 2026 ident: bib0178 article-title: Birdsnap: large-scale fine-grained visual categorization of birds publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 36 start-page: 222 year: 2014 end-page: 234 ident: bib0200 article-title: Category independent object proposals publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) – start-page: 4685 year: 2015 end-page: 4693 ident: bib0093 article-title: Mirror, mirror on the wall, tell me, is the error small? publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 39 start-page: 640 year: 2017 end-page: 651 ident: bib0028 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) – start-page: 818 year: 2014 end-page: 833 ident: bib0011 article-title: Visualizing and understanding convolutional networks publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 133 year: 2017 end-page: 141 ident: bib0068 article-title: Deephash: getting regularization, depth and fine-tuning right publication-title: Proceedings of the International Conference on Multimedia Retrieval (ICMR) – volume: PP start-page: 1 year: 2016 ident: bib0128 article-title: Residual networks of residual networks: multilevel residual networks publication-title: IEEE Trans. Circuits Syst. Video Technol. (TCSVT) – start-page: 2449 year: 2015 end-page: 2457 ident: bib0048 article-title: Spectral representations for convolutional neural networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 2798 year: 2014 end-page: 2805 ident: bib0251 article-title: Large-scale optimization of hierarchical features for saliency prediction in natural images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 5546 year: 2015 end-page: 5555 ident: bib0189 article-title: Fine-grained recognition without part annotations publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 87.1 year: 2016 end-page: 87.12 ident: bib0125 article-title: Wide residual networks publication-title: Proceedings of the British Machine Vision Conference (BMVC) – start-page: 3945 year: 2015 end-page: 3954 ident: bib0226 article-title: Parsing occluded people by flexible compositions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1139 year: 2013 end-page: 1147 ident: bib0103 article-title: On the importance of initialization and momentum in deep learning publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 342 year: 2016 end-page: 350 ident: bib0098 article-title: Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data augmentation publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) – volume: 29 start-page: 1931 year: 1996 end-page: 1952 ident: bib0229 article-title: Automatic document processing: a survey publication-title: Pattern Recognit. – start-page: 160 year: 2008 end-page: 167 ident: bib0309 article-title: A unified architecture for natural language processing: deep neural networks with multitask learning publication-title: Proceedings of the International Conference on Machine Learning (ICML) – reference: J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, 2014. – start-page: 779 year: 2016 end-page: 788 ident: bib0210 article-title: You only look once: unified, real-time object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 507 year: 2016 end-page: 516 ident: bib0063 article-title: Large-margin softmax loss for convolutional neural networks publication-title: Proceedings of the International Conference on Machine Learning (ICML) – year: 2015 ident: bib0243 article-title: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition publication-title: CoRR abs/1507.05717 – start-page: 655 year: 2014 end-page: 665 ident: bib0311 article-title: A convolutional neural network for modelling sentences publication-title: Proceedings of the Association for Computational Linguistics (ACL) – start-page: 1269 year: 2014 end-page: 1277 ident: bib0137 article-title: Exploiting linear structure within convolutional networks for efficient evaluation publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 437 year: 2015 end-page: 446 ident: bib0197 article-title: Deformable part models are convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 396 year: 1989 end-page: 404 ident: bib0003 article-title: Handwritten digit recognition with a back-propagation network publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 67 start-page: 85 year: 2017 end-page: 96 ident: bib0234 article-title: Improving patch-based scene text script identification with ensembles of conjoined networks publication-title: Pattern Recognit. – start-page: 298 year: 2014 end-page: 310 ident: bib0025 article-title: Time series classification using multi-channels deep convolutional neural networks publication-title: Proceedings of the International Conference on Web-Age Information Management (WAIM) – start-page: 4013 year: 2016 end-page: 4021 ident: bib0133 article-title: Fast algorithms for convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1520 year: 2015 end-page: 1528 ident: bib0030 article-title: Learning deconvolution network for semantic segmentation publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – year: 2014 ident: bib0105 article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 204 year: 2015 end-page: 214 ident: bib0313 article-title: Multichannel variable-size convolution for sentence classification publication-title: Proceedings of the Conference on Natural Language Learning (CoNLL) – year: 2017 ident: bib0119 article-title: Understanding deep learning requires rethinking generalization publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – year: 2013 ident: bib0019 article-title: Deep learning using linear support vector machines publication-title: Proceedings of the International Conference on Machine Learning (ICML) Workshops – start-page: 761 year: 2016 end-page: 769 ident: bib0209 article-title: Training region-based object detectors with online hard example mining publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 539 year: 2005 end-page: 546 ident: bib0065 article-title: Learning a similarity metric discriminatively, with application to face verification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 64 start-page: 1 year: 2017 end-page: 14 ident: bib0232 article-title: A comprehensive survey of mostly textual document segmentation algorithms since 2008 publication-title: Pattern Recognit. – start-page: 1135 year: 2015 end-page: 1143 ident: bib0156 article-title: Learning both weights and connections for efficient neural network publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 115 start-page: 330 year: 2015 end-page: 344 ident: bib0250 article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection publication-title: Inter. J. Comput. Vis. – year: 2016 ident: bib0145 article-title: Acdc: a structured efficient linear layer publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 1717 year: 2014 end-page: 1724 ident: bib0258 article-title: Learning and transferring mid-level image representations using convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 46 start-page: 1020 year: 2013 end-page: 1038 ident: bib0275 article-title: A survey of graph theoretical approaches to image segmentation publication-title: Pattern Recognit. – year: 2016 ident: bib0037 article-title: Multi-scale context aggregation by dilated convolutions publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 933 year: 2017 end-page: 941 ident: bib0308 article-title: Language modeling with gated convolutional networks publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 2226 year: 2016 end-page: 2234 ident: bib0087 article-title: Improved techniques for training GANs publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 1422 year: 2015 end-page: 1430 ident: bib0106 article-title: Unsupervised visual representation learning by context prediction publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 53 year: 2012 end-page: 67 ident: bib0118 article-title: Early stopping - but when? publication-title: Neural Networks: Tricks of the Trade - Second Edition – start-page: 8604 year: 2013 end-page: 8608 ident: bib0287 article-title: Recent advances in deep learning for speech research at Microsoft publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) – volume: 21 start-page: 1610 year: 2010 end-page: 1623 ident: bib0216 article-title: Human tracking using convolutional neural networks publication-title: IEEE Trans. Neural Netw. (TNN) – start-page: 364 year: 2014 end-page: 375 ident: bib0046 article-title: Mixed pooling for convolutional neural networks publication-title: Proceedings of the Rough Sets and Knowledge Technology (RSKT) – year: 2014 ident: bib0208 article-title: Fracking deep convolutional image descriptors publication-title: CoRR abs/1412.6537 – year: 2015 ident: bib0161 article-title: Diversity networks publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – volume: 35 start-page: 1915 year: 2013 end-page: 1929 ident: bib0276 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) – start-page: 630 year: 2016 end-page: 645 ident: bib0123 article-title: Identity mappings in deep residual networks publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – year: 2016 ident: bib0147 article-title: Bitwise neural networks publication-title: Proceedings of the International Conference on Machine Learning (ICML) Workshops – year: 2016 ident: bib0315 article-title: Very deep convolutional networks for natural language processing publication-title: CoRR abs/1606.01781 – start-page: 267 year: 1982 end-page: 285 ident: bib0002 article-title: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition publication-title: Competition and Cooperation in Neural Nets – start-page: 3183 year: 2015 end-page: 3192 ident: bib0246 article-title: Deep networks for saliency detection via local estimation and global search publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2018 year: 2011 end-page: 2025 ident: bib0027 article-title: Adaptive deconvolutional networks for mid and high level feature learning publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 1653 year: 2014 end-page: 1660 ident: bib0222 article-title: Deeppose: human pose estimation via deep neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0004 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – start-page: 1486 year: 2015 end-page: 1494 ident: bib0086 article-title: Deep generative image models using a Laplacian pyramid of adversarial networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 38 start-page: 295 year: 2016 end-page: 307 ident: bib0036 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) – start-page: 3501 year: 2016 end-page: 3508 ident: bib0241 article-title: Reading scene text in deep convolutional sequences publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2015 ident: bib0253 article-title: End-to-end convolutional network for saliency prediction publication-title: CoRR abs/1507.01422 – reference: H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: a data-driven neuron pruning approach towards efficient deep architectures, volume abs/1607.03250, 2016. – volume: 59 start-page: 312 year: 2016 end-page: 324 ident: bib0272 article-title: Multi-scale context for scene labeling via flexible segmentation graph publication-title: Pattern Recognit. – start-page: 1096 year: 2008 end-page: 1103 ident: bib0078 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 3225 year: 2016 end-page: 3233 ident: bib0083 article-title: Attend, infer, repeat: fast scene understanding with generative models publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 685 year: 2015 end-page: 693 ident: bib0112 article-title: Deep learning with elastic averaging SGD publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – year: 2014 ident: bib0310 article-title: Deep learning for answer sentence selection publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) Workshop – year: 2014 ident: bib0049 article-title: Fast training of convolutional networks through FFTs publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 648 year: 2015 end-page: 656 ident: bib0092 article-title: Efficient object localization using convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 3218 year: 2015 end-page: 3226 ident: bib0269 article-title: P-CNN: pose-based CNN features for action recognition publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 3646 year: 2014 end-page: 3653 ident: bib0097 article-title: Transformation pursuit for image classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2167 year: 2016 end-page: 2175 ident: bib0070 article-title: Deep relative distance learning: tell the difference between similar vehicles publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 543 year: 2016 end-page: 559 ident: bib0032 article-title: Top-down neural attention by excitation backprop publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – year: 2015 ident: bib0109 article-title: Adam: A method for stochastic optimization publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 1073 year: 2011 end-page: 1081 ident: bib0142 article-title: Fast locality-sensitive hashing publication-title: Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD) – start-page: 424 year: 2010 end-page: 427 ident: bib0021 article-title: Fast training of object detection using stochastic gradient descent publication-title: International Conference on Pattern Recognition (ICPR) – start-page: 111 year: 2010 end-page: 118 ident: bib0016 article-title: A theoretical analysis of feature pooling in visual recognition publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 26 start-page: 289 year: 2007 end-page: 315 ident: bib0117 article-title: On early stopping in gradient descent learning publication-title: Constructive Approx. – start-page: 2956 year: 2015 end-page: 2964 ident: bib0031 article-title: Look and think twice: capturing top-down visual attention with feedback convolutional neural networks publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: bib0050 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) – volume: 38 start-page: 1088 year: 2016 end-page: 1098 ident: bib0218 article-title: Cnntracker: online discriminative object tracking via deep convolutional neural network publication-title: Appl. Soft Comput. – year: 2014 ident: bib0077 article-title: Conditional generative adversarial nets publication-title: CoRR abs/1411.1784 – volume: 141 start-page: 245 year: 1994 end-page: 250 ident: bib0198 article-title: Original approach for the localisation of objects in images publication-title: IEE Proc.-Vis. Image Signal Process. – start-page: 4277 year: 2012 end-page: 4280 ident: bib0289 article-title: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) – volume: 25 start-page: 1713 year: 2016 end-page: 1725 ident: bib0190 article-title: Weakly supervised fine-grained categorization with part-based image representation publication-title: IEEE Trans. Image Process. – start-page: 448 year: 2015 end-page: 456 ident: bib0120 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 1265 year: 2015 end-page: 1274 ident: bib0247 article-title: Saliency detection by multi-context deep learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 5455 year: 2015 end-page: 5463 ident: bib0248 article-title: Visual saliency based on multiscale deep features publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 442 year: 2015 end-page: 450 ident: bib0139 article-title: Tensorizing neural networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 1058 year: 2013 end-page: 1066 ident: bib0045 article-title: Regularization of neural networks using dropconnect publication-title: Proceedings of the International Conference on Machine Learning (ICML) – start-page: 568 year: 2014 end-page: 576 ident: bib0268 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – start-page: 2074 year: 2016 end-page: 2082 ident: bib0166 article-title: Learning structured sparsity in deep neural networks publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS) – volume: 81 start-page: 80 year: 2016 end-page: 89 ident: bib0181 article-title: Finely-grained annotated datasets for image-based plant phenotyping publication-title: Pattern Recognit. Lett. – volume: 34 start-page: 1704 year: 2012 end-page: 1716 ident: bib0053 article-title: Aggregating local image descriptors into compact codes publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) – year: 2016 ident: bib0149 article-title: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients publication-title: CoRR – volume: 39 start-page: 195 year: 1943 end-page: 198 ident: bib0089 article-title: On the stability of inverse problems publication-title: Dokl. Akad. Nauk SSSR – volume: 35 start-page: 221 year: 2013 end-page: 231 ident: bib0265 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) – volume: 37 start-page: 328 year: 1989 end-page: 339 ident: bib0298 article-title: Phoneme recognition using time-delay neural networks publication-title: IEEE Trans. Acoustics, Speech, Signal Process. – volume: 48 start-page: 2983 year: 2015 end-page: 2992 ident: bib0273 article-title: CRF learning with CNN features for image segmentation publication-title: Pattern Recognit. – start-page: 1026 year: 2015 end-page: 1034 ident: bib0056 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification publication-title: Proceedings of the International Conference on Computer Vision (ICCV) – start-page: 1766 year: 2013 end-page: 1770 ident: bib0291 article-title: Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH) – start-page: 4465 year: 2015 end-page: 4469 ident: bib0300 article-title: Modelling acoustic feature dependencies with artificial neural networks: Trajectory-rnade publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) – volume: 381 start-page: 607 year: 1996 ident: bib0081 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – start-page: 2818 year: 2016 end-page: 2826 ident: bib0041 article-title: Rethinking the inception architecture for computer vision publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0008 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Conflict Violence (IJCV) – start-page: 17 year: 2016 end-page: 21 ident: bib0297 article-title: Deep convolutional neural networks with layer-wise context expansion and attention publication-title: Proceedings of the International Speech Communication Association (INTERSPEECH) – volume: 29 start-page: 4790 year: 1990 end-page: 4797 ident: bib0006 article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture publication-title: Appl. Opt. – start-page: 362 year: 2015 end-page: 370 ident: bib0249 article-title: Predicting eye fixations using convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 4624 year: 2015 end-page: 4628 ident: bib0292 article-title: Speech acoustic modeling from raw multichannel waveforms publication-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) – year: 2014 ident: bib0138 article-title: Speeding up convolutional neural networks with low rank expansions publication-title: Proceedings of the British Machine Vision Conference (BMVC) – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0050 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2015.2389824 – start-page: 901 year: 1994 ident: 10.1016/j.patcog.2017.10.013_bib0196 article-title: A convolutional neural network hand tracker – volume: 29 start-page: 1931 issue: 12 year: 1996 ident: 10.1016/j.patcog.2017.10.013_bib0229 article-title: Automatic document processing: a survey publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00044-1 – start-page: 1449 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0192 article-title: Bilinear CNN models for fine-grained visual recognition – start-page: 761 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0209 article-title: Training region-based object detectors with online hard example mining – start-page: 2528 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0026 article-title: Deconvolutional networks – year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0277 article-title: Indoor semantic segmentation using depth information – start-page: 806 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0165 article-title: Sparse convolutional neural networks – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0018 article-title: Network in network – start-page: 249 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0104 article-title: Understanding the difficulty of training deep feedforward neural networks – start-page: 37 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0107 article-title: Learning to see by moving – start-page: 1520 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0030 article-title: Learning deconvolution network for semantic segmentation – volume: 35 start-page: 2279 issue: 10 year: 2002 ident: 10.1016/j.patcog.2017.10.013_bib0168 article-title: Image processing with neural networksa review publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(01)00178-9 – ident: 10.1016/j.patcog.2017.10.013_bib0293 – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 10.1016/j.patcog.2017.10.013_bib0140 article-title: Tensor-train decomposition publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – start-page: 3501 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0241 article-title: Reading scene text in deep convolutional sequences – start-page: 3581 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0075 article-title: Semi-supervised learning with deep generative models – start-page: 1058 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0045 article-title: Regularization of neural networks using dropconnect – start-page: 204 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0313 article-title: Multichannel variable-size convolution for sentence classification – ident: 10.1016/j.patcog.2017.10.013_bib0132 – start-page: 267 year: 1982 ident: 10.1016/j.patcog.2017.10.013_bib0002 article-title: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0008 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Conflict Violence (IJCV) – start-page: 1096 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0072 article-title: Deepfashion: powering robust clothes recognition and retrieval with rich annotations – start-page: 815 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0069 article-title: Facenet: a unified embedding for face recognition and clustering – start-page: 160 year: 2008 ident: 10.1016/j.patcog.2017.10.013_bib0309 article-title: A unified architecture for natural language processing: deep neural networks with multitask learning – year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0060 article-title: Improving deep neural networks with probabilistic maxout units publication-title: CoRR abs/1312.6116 – start-page: 302 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0228 article-title: Modeep: A deep learning framework using motion features for human pose estimation – start-page: 3304 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0015 article-title: End-to-end text recognition with convolutional neural networks – start-page: 4278 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0042 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – start-page: 1134 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0205 article-title: Object detection via a multi-region and semantic segmentation-aware cnn model – start-page: 2285 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0162 article-title: Compressing neural networks with the hashing trick – start-page: 646 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0316 article-title: Deep networks with stochastic depth – volume: 60 start-page: 875 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0079 article-title: Dual autoencoders features for imbalance classification problem publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.013 – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0243 article-title: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition publication-title: CoRR abs/1507.05717 – volume: 12 start-page: 2493 year: 2011 ident: 10.1016/j.patcog.2017.10.013_bib0314 article-title: Natural language processing (almost) from scratch publication-title: J. Mach. Learn. Res. (JMLR) – volume: PP start-page: 1 issue: 99 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0128 article-title: Residual networks of residual networks: multilevel residual networks publication-title: IEEE Trans. Circuits Syst. Video Technol. (TCSVT) – volume: 115 start-page: 330 issue: 3 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0250 article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection publication-title: Inter. J. Comput. Vis. doi: 10.1007/s11263-015-0822-0 – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0310 article-title: Deep learning for answer sentence selection – start-page: 507 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0063 article-title: Large-margin softmax loss for convolutional neural networks – start-page: 1799 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0224 article-title: Joint training of a convolutional network and a graphical model for human pose estimation – volume: 51 start-page: 148 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0193 article-title: Human detection from images and videos: a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.08.027 – start-page: 315 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0296 article-title: Improvements to deep convolutional neural networks for LVCSR – start-page: 4685 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0093 article-title: Mirror, mirror on the wall, tell me, is the error small? – start-page: 1379 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0157 article-title: Dynamic network surgery for efficient DNNs – volume: 48 start-page: 3004 issue: 10 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0170 article-title: Exemplar based deep discriminative and shareable feature learning for scene image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.02.003 – start-page: 3483 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0084 article-title: Learning structured output representation using deep conditional generative models – start-page: 1279 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0023 article-title: Tiled convolutional neural networks – start-page: 448 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0120 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: J. Mach. Learn. Res. (JMLR) – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0161 article-title: Diversity networks – volume: 45 start-page: 333 issue: 1 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0173 article-title: Semantic hierarchies for image annotation: a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.05.017 – start-page: 2672 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0076 article-title: Generative adversarial nets – volume: 35 start-page: 1915 issue: 8 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0276 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2012.231 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0315 article-title: Very deep convolutional networks for natural language processing publication-title: CoRR abs/1606.01781 – start-page: 3429 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0294 article-title: Advances in very deep convolutional neural networks for LVCSR – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0073 article-title: Auto-encoding variational bayes – start-page: 3225 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0083 article-title: Attend, infer, repeat: fast scene understanding with generative models – start-page: 658 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0088 article-title: Generating images with perceptual similarity metrics based on deep networks – start-page: 4465 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0300 article-title: Modelling acoustic feature dependencies with artificial neural networks: Trajectory-rnade – start-page: 1766 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0291 article-title: Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks – start-page: 568 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0268 article-title: Two-stream convolutional networks for action recognition in videos – volume: 61 start-page: 539 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0169 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.001 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0147 article-title: Bitwise neural networks – ident: 10.1016/j.patcog.2017.10.013_bib0159 – start-page: 1395 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0094 article-title: Holistically-nested edge detection – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0204 article-title: Faster r-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2016.2577031 – volume: 45 start-page: 3084 issue: 9 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0020 article-title: An extensive experimental comparison of methods for multi-label learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.03.004 – start-page: 1725 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0267 article-title: Large-scale video classification with convolutional neural networks – volume: 48 start-page: 3542 issue: 11 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0194 article-title: Feature representation for statistical-learning-based object detection: a review publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.018 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0303 article-title: Exploring the limits of language modeling – year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0017 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: CoRR abs/1207.0580 – volume: 46 start-page: 1772 issue: 7 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0214 article-title: Sparse coding based visual tracking: review and experimental comparison publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.10.006 – start-page: 3945 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0226 article-title: Parsing occluded people by flexible compositions – start-page: 512 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0244 article-title: Deep features for text spotting – start-page: 655 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0311 article-title: A convolutional neural network for modelling sentences – start-page: 1135 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0156 article-title: Learning both weights and connections for efficient neural network – start-page: 366 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0288 article-title: Adaptation of context-dependent deep neural networks for automatic speech recognition – start-page: 2741 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0304 article-title: Character-aware neural language models – start-page: 1567 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0306 article-title: gen cnn: a convolutional architecture for word sequence prediction – volume: 85 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0141 article-title: Fastfood-approximating kernel expansions in loglinear time – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0049 article-title: Fast training of convolutional networks through FFTs – year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0307 article-title: An empirical study of language CNN for image captioning – start-page: 1096 year: 2008 ident: 10.1016/j.patcog.2017.10.013_bib0078 article-title: Extracting and composing robust features with denoising autoencoders – volume: 21 start-page: 1610 issue: 10 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0216 article-title: Human tracking using convolutional neural networks publication-title: IEEE Trans. Neural Netw. (TNN) doi: 10.1109/TNN.2010.2066286 – start-page: 82 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0278 article-title: Recurrent convolutional neural networks for scene labeling – start-page: 1232 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0114 article-title: Large scale distributed deep networks – year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0221 article-title: Generation of human depth images with body part labels for complex human pose recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.006 – volume: 39 start-page: 195 year: 1943 ident: 10.1016/j.patcog.2017.10.013_bib0089 article-title: On the stability of inverse problems – year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0167 article-title: Lcnn: Lookup-based convolutional neural network – start-page: 6655 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0134 article-title: Low-rank matrix factorization for deep neural network training with high-dimensional output targets – start-page: 1653 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0222 article-title: Deeppose: human pose estimation via deep neural networks – volume: 45 start-page: 1318 issue: 4 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0007 article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.09.021 – start-page: 1735 year: 2006 ident: 10.1016/j.patcog.2017.10.013_bib0066 article-title: Dimensionality reduction by learning an invariant mapping – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0223 article-title: Learning human pose estimation features with convolutional networks – start-page: 1026 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0056 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification – start-page: 290 year: 2008 ident: 10.1016/j.patcog.2017.10.013_bib0235 article-title: Text detection with convolutional neural networks – volume: 35 start-page: 221 issue: 1 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0265 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2012.59 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0145 article-title: Acdc: a structured efficient linear layer – start-page: 2470 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0259 article-title: Actions and attributes from wholes and parts – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0203 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2015.2389824 – volume: 25 start-page: 5479 issue: 11 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0263 article-title: Action recognition in still images with minimum annotation efforts publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2605305 – start-page: 2365 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0135 article-title: Restructuring of deep neural network acoustic models with singular value decomposition – start-page: 2226 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0087 article-title: Improved techniques for training GANs – start-page: 3084 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0091 article-title: Adaptive dropout for training deep neural networks – year: 2016 ident: 10.1016/j.patcog.2017.10.013_sbref0147 article-title: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients publication-title: CoRR – volume: 42 start-page: 1365 issue: 5 year: 1996 ident: 10.1016/j.patcog.2017.10.013_bib0151 article-title: Efficient scalar quantization of exponential and Laplacian random variables publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.532878 – year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0301 article-title: Hierarchical bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.08.001 – start-page: 1747 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0302 article-title: Pixel recurrent neural networks – start-page: 87.1 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0125 article-title: Wide residual networks – start-page: 612 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0033 article-title: Augmenting supervised neural networks with unsupervised objectives for large-scale image classification – start-page: 28 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0126 article-title: Swapout: learning an ensemble of deep architectures – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0029 article-title: Reseg: a recurrent neural network for object segmentation – start-page: 801 year: 2006 ident: 10.1016/j.patcog.2017.10.013_bib0082 article-title: Efficient sparse coding algorithms – start-page: 2094 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0174 article-title: Discriminative transfer learning with tree-based priors – start-page: 2148 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0136 article-title: Predicting parameters in deep learning – start-page: 2059 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0074 article-title: Denoising criterion for variational auto-encoding framework – volume: 71 start-page: 132 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0220 article-title: Head pose estimation in the wild using convolutional neural networks and adaptive gradient methods publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.009 – year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0067 article-title: Learning by coincidence: siamese networks and common variable learning publication-title: Pattern Recognit. – start-page: 3376 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0282 article-title: Feedforward semantic segmentation with zoom-out features – start-page: 3218 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0269 article-title: P-CNN: pose-based CNN features for action recognition – start-page: 424 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0021 article-title: Fast training of object detection using stochastic gradient descent – start-page: 1954 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0299 article-title: Dnn-based stochastic postfilter for hmm-based speech synthesis. – ident: 10.1016/j.patcog.2017.10.013_bib0257 – year: 2004 ident: 10.1016/j.patcog.2017.10.013_bib0061 article-title: Solving large scale linear prediction problems using stochastic gradient descent algorithms – start-page: 1666 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0186 article-title: Deep lac: deep localization, alignment and classification for fine-grained recognition – start-page: 497 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0237 article-title: Robust scene text detection with convolution neural network induced mser trees – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0101 article-title: The loss surfaces of multilayer networks – start-page: 4489 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0266 article-title: Learning spatiotemporal features with 3d convolutional networks – ident: 10.1016/j.patcog.2017.10.013_bib0305 – start-page: 2659 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0206 article-title: Attentionnet: Aggregating weak directions for accurate object detection – start-page: 1073 year: 2011 ident: 10.1016/j.patcog.2017.10.013_bib0142 article-title: Fast locality-sensitive hashing – volume: 104 start-page: 154 issue: 2 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0185 article-title: Selective search for object recognition publication-title: Int. J. Conflict Violence (IJCV) – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0009 article-title: Very deep convolutional networks for large-scale image recognition – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0040 article-title: Dense prediction on sequences with time-dilated convolutions for speech recognition – start-page: 2645 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0099 article-title: Hyper-class augmented and regularized deep learning for fine-grained image classification – start-page: 2921 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0034 article-title: Learning deep features for discriminative localization – start-page: 3183 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0246 article-title: Deep networks for saliency detection via local estimation and global search – start-page: 396 year: 1989 ident: 10.1016/j.patcog.2017.10.013_bib0003 article-title: Handwritten digit recognition with a back-propagation network – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0160 article-title: Data-free parameter pruning for deep neural networks – ident: 10.1016/j.patcog.2017.10.013_bib0130 – volume: 37 start-page: 977 issue: 5 year: 2004 ident: 10.1016/j.patcog.2017.10.013_bib0231 article-title: Text information extraction in images and video: a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2003.10.012 – volume: 10 start-page: 11259 issue: 12 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0153 article-title: Approximate nearest neighbor search by residual vector quantization publication-title: Sensors doi: 10.3390/s101211259 – volume: 53 start-page: 130 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0255 article-title: 3D skeleton-based human action classification: a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.11.019 – volume: 46 start-page: 1020 issue: 3 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0275 article-title: A survey of graph theoretical approaches to image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.09.015 – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0290 article-title: Convolutional neural networks for speech recognition – start-page: 53 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0118 article-title: Early stopping - but when? – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0109 article-title: Adam: A method for stochastic optimization – start-page: 779 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0210 article-title: You only look once: unified, real-time object detection – start-page: 740 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0199 article-title: Microsoft Coco: Common Objects in Context – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0058 article-title: Fast and accurate deep network learning by exponential linear units (elus) – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0175 article-title: Learning fine-grained features via a CNN tree for large-scale classification publication-title: CoRR abs/1511.04534 – start-page: 946 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0143 article-title: Circulant binary embedding – volume: 46 start-page: 397 issue: 1 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0213 article-title: Real-time visual tracking via online weighted multiple instance learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.013 – start-page: 111 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0016 article-title: A theoretical analysis of feature pooling in visual recognition – start-page: 818 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0011 article-title: Visualizing and understanding convolutional networks – volume: 18 start-page: 81 issue: 2 year: 2007 ident: 10.1016/j.patcog.2017.10.013_bib0043 article-title: Complex cell pooling and the statistics of natural images publication-title: Network doi: 10.1080/09548980701418942 – ident: 10.1016/j.patcog.2017.10.013_bib0245 doi: 10.1007/s11263-015-0823-z – start-page: 2857 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0144 article-title: An exploration of parameter redundancy in deep networks with circulant projections – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0183 article-title: Improved bird species recognition using pose normalized deep convolutional nets – start-page: 5455 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0248 article-title: Visual saliency based on multiscale deep features – start-page: 1078 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0295 article-title: Convolutional deep maxout networks for phone recognition. – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0131 article-title: Fast convolutional nets with fbfft: aGPU performance evaluation – start-page: 1060 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0085 article-title: Generative adversarial text to image synthesis – start-page: 8604 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0287 article-title: Recent advances in deep learning for speech research at Microsoft – volume: 71 start-page: 118 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0182 article-title: Lg-cnn: from local parts to global discrimination for fine-grained recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.002 – ident: 10.1016/j.patcog.2017.10.013_bib0152 – start-page: 4249 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0279 article-title: Integrating parametric and non-parametric models for scene labeling – volume: 39 start-page: 640 issue: 4 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0028 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2016.2572683 – start-page: 2524 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0100 article-title: Augmenting strong supervision using web data for fine-grained categorization – volume: 35 start-page: 1433 issue: 7 year: 2002 ident: 10.1016/j.patcog.2017.10.013_bib0230 article-title: A survey on off-line cursive word recognition publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(01)00129-7 – volume: 60 start-page: 86 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0256 article-title: Rgb-d-based action recognition datasets: a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.019 – volume: 92 start-page: 33 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0264 article-title: Three-stream CNNs for action recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.04.004 – start-page: 648 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0092 article-title: Efficient object localization using convolutional networks – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0077 article-title: Conditional generative adversarial nets publication-title: CoRR abs/1411.1784 – start-page: 442 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0139 article-title: Tensorizing neural networks – volume: 26 start-page: 289 issue: 2 year: 2007 ident: 10.1016/j.patcog.2017.10.013_bib0117 article-title: On early stopping in gradient descent learning publication-title: Constructive Approx. doi: 10.1007/s00365-006-0663-2 – year: 2011 ident: 10.1016/j.patcog.2017.10.013_sbref0115 article-title: GPU asynchronous stochastic gradient descent to speed up neural network training publication-title: CoRR – start-page: 17 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0297 article-title: Deep convolutional neural networks with layer-wise context expansion and attention – start-page: 693 year: 2011 ident: 10.1016/j.patcog.2017.10.013_bib0113 article-title: Hogwild: a lock-free approach to parallelizing stochastic gradient descent – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.patcog.2017.10.013_bib0179 article-title: Novel dataset for fine-grained image categorization: stanford dogs – volume: 48 start-page: 580 issue: 2 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0215 article-title: Multi-target tracking by learning local-to-global trajectory models publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.08.013 – start-page: 26 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0188 article-title: Learning features and parts for fine-grained recognition – start-page: 437 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0197 article-title: Deformable part models are convolutional neural networks – start-page: 215 year: 1968 ident: 10.1016/j.patcog.2017.10.013_bib0001 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1968.sp008455 – start-page: 3517 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0055 article-title: On rectified linear units for speech processing – start-page: 543 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0032 article-title: Top-down neural attention by excitation backprop – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0012 article-title: Deep residual learning for image recognition – start-page: 21 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0211 article-title: SSD: single shot multibox detector – volume: 381 start-page: 607 issue: 6583 year: 1996 ident: 10.1016/j.patcog.2017.10.013_bib0081 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – start-page: 2798 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0251 article-title: Large-scale optimization of hierarchical features for saliency prediction in natural images – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0024 article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks – start-page: 2074 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0166 article-title: Learning structured sparsity in deep neural networks – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.patcog.2017.10.013_bib0121 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 2167 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0070 article-title: Deep relative distance learning: tell the difference between similar vehicles – start-page: 1422 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0106 article-title: Unsupervised visual representation learning by context prediction – start-page: 249 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0116 article-title: A fast parallel SGD for matrix factorization in shared memory systems – start-page: 2019 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0178 article-title: Birdsnap: large-scale fine-grained visual categorization of birds – start-page: 1319 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0059 article-title: Maxout networks – start-page: 2018 year: 2011 ident: 10.1016/j.patcog.2017.10.013_bib0027 article-title: Adaptive deconvolutional networks for mid and high level feature learning – volume: 39 start-page: 1677 issue: 7 year: 1991 ident: 10.1016/j.patcog.2017.10.013_bib0285 article-title: Phonemic hidden ,Markov models with continuous mixture output densities for large vocabulary word recognition publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.134406 – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0036 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) doi: 10.1109/TPAMI.2015.2439281 – start-page: 2449 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0048 article-title: Spectral representations for convolutional neural networks – start-page: 936 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0124 article-title: Weighted residuals for very deep networks – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0150 article-title: Binarynet: training deep neural networks with weights and activations constrained to+ 1 or-1 – start-page: 2956 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0031 article-title: Look and think twice: capturing top-down visual attention with feedback convolutional neural networks – start-page: 307 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0044 article-title: Signal recovery from pooling representations – start-page: 525 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0148 article-title: Xnor-net: imagenet classification using binary convolutional neural networks – start-page: 2377 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0122 article-title: Training very deep networks – start-page: 1265 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0247 article-title: Saliency detection by multi-context deep learning – volume: 1 start-page: 445 issue: Supplement-1 year: 1988 ident: 10.1016/j.patcog.2017.10.013_bib0005 article-title: Theory of the backpropagation neural network publication-title: Neural Networks doi: 10.1016/0893-6080(88)90469-8 – start-page: 1139 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0103 article-title: On the importance of initialization and momentum in deep learning – start-page: 685 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0112 article-title: Deep learning with elastic averaging SGD – volume: 12 start-page: 145 issue: 1 year: 1999 ident: 10.1016/j.patcog.2017.10.013_bib0108 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00116-6 – volume: 48 start-page: 2983 issue: 10 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0273 article-title: CRF learning with CNN features for image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.019 – start-page: 2650 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0096 article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture – start-page: 3646 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0097 article-title: Transformation pursuit for image classification – start-page: 177 year: 1988 ident: 10.1016/j.patcog.2017.10.013_bib0155 article-title: Comparing biases for minimal network construction with back-propagation – start-page: 364 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0046 article-title: Mixed pooling for convolutional neural networks – start-page: 807 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0014 article-title: Rectified linear units improve restricted Boltzmann machines – start-page: 118 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0090 article-title: Fast dropout training – start-page: 177 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0176 article-title: Error-driven incremental learning in deep convolutional neural network for large-scale image classification – start-page: 73 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0051 article-title: Unsupervised discovery of mid-level discriminative patches – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0283 article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs – volume: 29 start-page: 141 issue: 6 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0062 article-title: The mnist database of handwritten digit images for machine learning research publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2211477 – start-page: 133 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0068 article-title: Deephash: getting regularization, depth and fine-tuning right – start-page: 2595 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0022 article-title: Parallelized stochastic gradient descent – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0217 article-title: Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking – volume: 38 start-page: 1088 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0218 article-title: Cnntracker: online discriminative object tracking via deep convolutional neural network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.048 – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0252 article-title: Deep gaze i: boosting saliency prediction with feature maps trained on imagenet – year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0119 article-title: Understanding deep learning requires rethinking generalization – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0138 article-title: Speeding up convolutional neural networks with low rank expansions – volume: 67 start-page: 85 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0234 article-title: Improving patch-based scene text script identification with ensembles of conjoined networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.032 – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0239 article-title: Multi-digit number recognition from street view imagery using deep convolutional neural networks – start-page: 4700 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0129 article-title: Densely connected convolutional networks – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0146 article-title: Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding – start-page: 1717 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0258 article-title: Learning and transferring mid-level image representations using convolutional neural networks – start-page: 4277 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0289 article-title: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0286 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – start-page: 834 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0184 article-title: Part-based r-cnns for fine-grained category detection – volume: 59 start-page: 312 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0272 article-title: Multi-scale context for scene labeling via flexible segmentation graph publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.023 – start-page: 1 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0010 article-title: Going deeper with convolutions – volume: 59 start-page: 188 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0274 article-title: Scene parsing using inference embedded deep networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.01.027 – volume: 81 start-page: 80 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0181 article-title: Finely-grained annotated datasets for image-based plant phenotyping publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.10.013 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_sbref0127 article-title: Resnet in resnet: generalizing residual architectures publication-title: CoRR – year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0110 article-title: Sgdr: Stochastic gradient descent with warm restarts – start-page: 362 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0249 article-title: Predicting eye fixations using convolutional neural networks – ident: 10.1016/j.patcog.2017.10.013_bib0280 doi: 10.1109/LSP.2015.2441781 – volume: 47 start-page: 3343 issue: 10 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0254 article-title: A survey on still image based human action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.04.018 – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0057 article-title: Empirical evaluation of rectified activations in convolutional network – volume: 37 start-page: 328 issue: 3 year: 1989 ident: 10.1016/j.patcog.2017.10.013_bib0298 article-title: Phoneme recognition using time-delay neural networks publication-title: IEEE Trans. Acoustics, Speech, Signal Process. doi: 10.1109/29.21701 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.patcog.2017.10.013_bib0004 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – start-page: 298 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0025 article-title: Time series classification using multi-channels deep convolutional neural networks – year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0047 article-title: Stochastic pooling for regularization of deep convolutional neural networks – volume: 24 start-page: 279 issue: 3 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0095 article-title: Deep convolutional neural networks and data augmentation for environmental sound classification publication-title: Signal Process. Lett. (SPL) doi: 10.1109/LSP.2017.2657381 – volume: 32 start-page: 1627 issue: 9 year: 2010 ident: 10.1016/j.patcog.2017.10.013_bib0207 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2009.167 – start-page: 932 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0035 article-title: Human attention in visual question answering: Do humans and deep networks look at the same regions? – start-page: 342 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0098 article-title: Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data augmentation – volume: 66 start-page: 437 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0233 article-title: Text/non-text image classification in the wild with convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.12.005 – start-page: 2818 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0041 article-title: Rethinking the inception architecture for computer vision – start-page: 169 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0154 article-title: Scalar quantization for large scale image search – start-page: 5546 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0189 article-title: Fine-grained recognition without part annotations – year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0019 article-title: Deep learning using linear support vector machines – start-page: 2470 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0262 article-title: Actions and attributes from wholes and parts – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0102 article-title: All you need is a good init – volume: 29 start-page: 4790 issue: 32 year: 1990 ident: 10.1016/j.patcog.2017.10.013_bib0006 article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture publication-title: Appl. Opt. doi: 10.1364/AO.29.004790 – volume: 25 start-page: 1713 issue: 4 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0190 article-title: Weakly supervised fine-grained categorization with part-based image representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2531289 – start-page: 539 year: 2005 ident: 10.1016/j.patcog.2017.10.013_bib0065 article-title: Learning a similarity metric discriminatively, with application to face verification – start-page: 343 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0111 article-title: No more pesky learning rates – volume: 141 start-page: 245 issue: 4 year: 1994 ident: 10.1016/j.patcog.2017.10.013_bib0198 article-title: Original approach for the localisation of objects in images publication-title: IEE Proc.-Vis. Image Signal Process. doi: 10.1049/ip-vis:19941301 – start-page: 597 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0219 article-title: Online tracking by learning discriminative saliency map with convolutional neural network – start-page: 1486 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0086 article-title: Deep generative image models using a Laplacian pyramid of adversarial networks – start-page: 630 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0123 article-title: Identity mappings in deep residual networks – start-page: 886 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0238 article-title: Automatic discrimination of text and non-text natural images – volume: 10 start-page: 2615 year: 2009 ident: 10.1016/j.patcog.2017.10.013_bib0163 article-title: Hash kernels for structured data publication-title: J. Mach. Learn. Res. (JMLR) – ident: 10.1016/j.patcog.2017.10.013_bib0225 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0037 article-title: Multi-scale context aggregation by dilated convolutions – start-page: 1080 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0261 article-title: Contextual action recognition with r*CNN – volume: 63 start-page: 499 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0080 article-title: Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.022 – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0208 article-title: Fracking deep convolutional image descriptors publication-title: CoRR abs/1412.6537 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0158 article-title: Designing energy-efficient convolutional neural networks using energy-aware pruning publication-title: CoRR abs/1611.05128 – start-page: 3973 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0180 article-title: A large-scale car dataset for fine-grained categorization and verification – volume: 30 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0054 article-title: Rectifier nonlinearities improve neural network acoustic models – ident: 10.1016/j.patcog.2017.10.013_bib0177 – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0253 article-title: End-to-end convolutional network for saliency prediction publication-title: CoRR abs/1507.01422 – volume: 34 start-page: 1704 issue: 9 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0053 article-title: Aggregating local image descriptors into compact codes publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2011.235 – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0172 article-title: The pascal visual object classes challenge: a retrospective publication-title: Int. J. Conflict Violence (IJCV) – volume: 36 start-page: 222 issue: 2 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0200 article-title: Category independent object proposals publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2013.122 – start-page: 4013 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0133 article-title: Fast algorithms for convolutional neural networks – year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0105 article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks – volume: 12 start-page: 2451 issue: 10 year: 2000 ident: 10.1016/j.patcog.2017.10.013_bib0242 article-title: Learning to forget: continual prediction with lstm publication-title: Neural Comput. doi: 10.1162/089976600300015015 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0039 article-title: Wavenet: a generative model for raw audio publication-title: CoRR abs/1609.03499 – start-page: 842 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0191 article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification – year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0240 article-title: Deep structured output learning for unconstrained text recognition – volume: 48 start-page: 2993 issue: 10 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0071 article-title: Deep feature learning with relative distance comparison for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.005 – start-page: 392 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0052 article-title: Multi-scale orderless pooling of deep convolutional activation features – start-page: 1269 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0137 article-title: Exploiting linear structure within convolutional networks for efficient evaluation – volume: 22 start-page: 986 issue: 8 year: 2003 ident: 10.1016/j.patcog.2017.10.013_bib0187 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.815867 – start-page: 1113 year: 2009 ident: 10.1016/j.patcog.2017.10.013_bib0164 article-title: Feature hashing for large scale multitask learning – volume: 64 start-page: 1 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0232 article-title: A comprehensive survey of mostly textual document segmentation algorithms since 2008 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.10.023 – volume: 44 start-page: 572 issue: 3 year: 2011 ident: 10.1016/j.patcog.2017.10.013_bib0284 article-title: Survey on speech emotion recognition: features, classification schemes, and databases publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.09.020 – volume: 48 start-page: 1844 issue: 5 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0195 article-title: A coarse-to-fine approach for fast deformable object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.11.006 – start-page: 387 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0236 article-title: Robust seed localization and growing with deep convolutional features for scene text detection – volume: 7 start-page: 669 issue: 4 year: 1993 ident: 10.1016/j.patcog.2017.10.013_bib0064 article-title: Signature verification using a siamese time delay neural network publication-title: Int. J. Pattern Recognit. Artif. Intell. (IJPRAI) doi: 10.1142/S0218001493000339 – start-page: 2351 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0212 article-title: Adaptive object detection using adjacency and zoom prediction – volume: 70 start-page: 60 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0201 article-title: Textproposals: a text-specific selective search algorithm for word spotting in the wild publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.04.027 – start-page: 3620 year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0281 article-title: Dag-recurrent neural networks for scene labeling – start-page: 933 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0308 article-title: Language modeling with gated convolutional networks – start-page: 1347 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0227 article-title: Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation – start-page: 4624 year: 2015 ident: 10.1016/j.patcog.2017.10.013_bib0292 article-title: Speech acoustic modeling from raw multichannel waveforms – volume: 61 start-page: 610 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0171 article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.026 – volume: 13 start-page: 3 issue: 1 year: 1981 ident: 10.1016/j.patcog.2017.10.013_bib0271 article-title: A survey on image segmentation publication-title: Pattern Recognit. doi: 10.1016/0031-3203(81)90028-5 – year: 2016 ident: 10.1016/j.patcog.2017.10.013_bib0038 article-title: Neural machine translation in linear time publication-title: CoRR abs/1610.10099 – start-page: 9 year: 2012 ident: 10.1016/j.patcog.2017.10.013_bib0013 article-title: Efficient backprop – start-page: 1746 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0312 article-title: Convolutional neural networks for sentence classification – start-page: 580 year: 2014 ident: 10.1016/j.patcog.2017.10.013_bib0202 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – start-page: 588 year: 2013 ident: 10.1016/j.patcog.2017.10.013_bib0260 article-title: Poselet conditioned pictorial structures – volume: 39 start-page: 677 issue: 4 year: 2017 ident: 10.1016/j.patcog.2017.10.013_bib0270 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: IEEE Trans. Pattern Anal.Mach.Intell. (PAMI) doi: 10.1109/TPAMI.2016.2599174 |
SSID | ssj0017142 |
Score | 2.7135797 |
Snippet | •We give an overview of the basic components of CNN.•We discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 354 |
SubjectTerms | Convolutional neural network Deep learning |
Title | Recent advances in convolutional neural networks |
URI | https://dx.doi.org/10.1016/j.patcog.2017.10.013 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZHycHrtkl28zqWYqmKPVnoLWRfUpG02PTqb3cm2RQFUfCSkGU3hC-z82C_mQG4tSrMKIORaSUwQJGRZQW6DUyajGsbpiYrKDn5aRZP5-JhES06MG5zYYhW6XR_o9Nrbe1Ghg7N4Xq5pBxfKjuIFxRSEYQUtwuRkJQPPnY0D-rv3VQM5wGj2W36XM3xWqO6W70QwSsZEMcr4D-bpy8mZ3IEB85X9EbN5xxDx5QncNj2YfDctjwFH30_tB2eO8_feMvSIza5kyp8BVWtrG8153tzBvPJ3fN4ylwnBKbQpa-YUppLE5pICZElOvQLKQ2PNFpfnXCZBr42sUHlhshrJdGMS55ZbgWPbaFwF59Dt1yV5gI8Hgmr4wJdHWUxtpKZ4GnhW4ESpTG4i3vAWwBy5cqEU7eKt7zlg73mDWw5wUajCFsP2G7VuimT8cf8pMU2__a7c9Tkv668_PfKK9jHp7RhK15Dt3rfmhv0KCrZr0WmD3uj-8fp7BPIisuF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke9CLb7E-c_C6NsluXsdSLKl9nFrobcm-pCJpsfX_O5tsREEUvCSwyYTly-w82G9mAe6NDDNbwUiUZJigiMiQAsMGInRGlQlTnRW2OHk6i_MFe1pGyxYMmloYS6t0tr-26ZW1diM9h2Zvs1rZGl_bdhAvqKQsCDFv79juVFEbOv3ROJ99biYkAaubhtOAWIGmgq6ieW3Q4q2fLccrebA0r4D-7KG-eJ3hERy4cNHr1zM6hpYuT-CwOYrBcyvzFHwM_9B9eG5Lf-utSs8Syp1i4Sds48rqVtG-t2ewGD7OBzlxhyEQiVH9jkipqNChjiRjWaJCvxBC00ihA1YJFWngKx1rtG8IvpICPbmgmaGG0dgUEhfyObTLdakvwKMRMyouMNqRBtMrkTGaFr5hqFQK87u4C7QBgEvXKdweWPHKG0rYC69h4xY2O4qwdYF8Sm3qThl_vJ802PJvf5yjMf9V8vLfknewl8-nEz4ZzcZXsI9P0pq8eA3t3du7vsEAYydunQJ9ANRBzjY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+convolutional+neural+networks&rft.jtitle=Pattern+recognition&rft.au=Gu%2C+Jiuxiang&rft.au=Wang%2C+Zhenhua&rft.au=Kuen%2C+Jason&rft.au=Ma%2C+Lianyang&rft.date=2018-05-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=77&rft.spage=354&rft.epage=377&rft_id=info:doi/10.1016%2Fj.patcog.2017.10.013&rft.externalDocID=S0031320317304120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |