Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation

•The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep auto-encoder, and domain adaptation is used for feature alignment.•The practical scenarios in fault diagnosis are considered where only the target-mach...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 383; pp. 235 - 247
Main Authors Li, Xiang, Jia, Xiao-Dong, Zhang, Wei, Ma, Hui, Luo, Zhong, Li, Xu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep auto-encoder, and domain adaptation is used for feature alignment.•The practical scenarios in fault diagnosis are considered where only the target-machine data in healthy state are available .•Different fault locations and severities are both considered in the cross-machine fault diagnosis.•Experiments on three rotating machinery datasets validate the effectiveness of the proposed method. Recently, due to the rising industrial demands for intelligent machinery fault diagnosis with strong generalization, transfer learning techniques have been used to enhance adaptability of data-driven approaches. Particularly, the domain shift problem where training and testing data are sampled from different operating conditions of the same machine is well addressed. However, it is still difficult to prepare sufficient labeled data on the tested machine. Therefore, the idea of transferring fault diagnosis knowledge learned from one machine to different but related machines is motivated, and that is realized through a deep learning-based method in this paper. Features of different equipments are first projected into the same subspace using an auto-encoder structure, and cross-machine adaptation algorithm is adopted for knowledge generalization, where the distribution discrepancy between data from different machines is minimized. Experiments on three rolling bearing datasets are implemented to validate the proposed method. The results suggest it is feasible to transfer fault diagnosis knowledge across different machines, and the proposed method offers a novel and promising approach for knowledge generalization.
AbstractList •The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep auto-encoder, and domain adaptation is used for feature alignment.•The practical scenarios in fault diagnosis are considered where only the target-machine data in healthy state are available .•Different fault locations and severities are both considered in the cross-machine fault diagnosis.•Experiments on three rotating machinery datasets validate the effectiveness of the proposed method. Recently, due to the rising industrial demands for intelligent machinery fault diagnosis with strong generalization, transfer learning techniques have been used to enhance adaptability of data-driven approaches. Particularly, the domain shift problem where training and testing data are sampled from different operating conditions of the same machine is well addressed. However, it is still difficult to prepare sufficient labeled data on the tested machine. Therefore, the idea of transferring fault diagnosis knowledge learned from one machine to different but related machines is motivated, and that is realized through a deep learning-based method in this paper. Features of different equipments are first projected into the same subspace using an auto-encoder structure, and cross-machine adaptation algorithm is adopted for knowledge generalization, where the distribution discrepancy between data from different machines is minimized. Experiments on three rolling bearing datasets are implemented to validate the proposed method. The results suggest it is feasible to transfer fault diagnosis knowledge across different machines, and the proposed method offers a novel and promising approach for knowledge generalization.
Author Luo, Zhong
Li, Xu
Li, Xiang
Jia, Xiao-Dong
Ma, Hui
Zhang, Wei
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0003-0569-2176
  surname: Li
  fullname: Li, Xiang
  organization: College of Sciences, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Xiao-Dong
  surname: Jia
  fullname: Jia, Xiao-Dong
  organization: NSF I/UCR Center for Intelligent Maintenance Systems, Department of Mechanical Engineering, University of Cincinnati, Cincinna 45221, USA
– sequence: 3
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
– sequence: 4
  givenname: Hui
  surname: Ma
  fullname: Ma, Hui
  organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China
– sequence: 5
  givenname: Zhong
  surname: Luo
  fullname: Luo, Zhong
  organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China
– sequence: 6
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  email: lixu@ral.neu.edu.cn
  organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
BookMark eNqFkL1OwzAUhS1UJNrCGzD4BRL8kyYxAxKq-KlUiQVm68Z2WleJHdkuiLcnJUwMMN3h6Du651ugmfPOIHRNSU4JLW8OuTNH5fucESpyynLC-Rma07piWc3qcobmRLBVxjhlF2gR44EQWlEm5khuXDJdZ3fGJayCjzHrQe2tM7iFY5ewtrBzPtqIYRiCHzP8YdMea2MGDMfkM-OU1yZgcBpr34N1GDQMCZL17hKdt9BFc_Vzl-jt8eF1_ZxtX5426_ttpjgpU6ZUAUQVwhRQNQ0XK6LqshyzQgjG2oorWjQEoKwbqBvFdcs4qRTwUqw4YZwv0e3U-70hmFYqO32QAthOUiJPquRBTqrkSZWkTI6qRrj4BQ_B9hA-_8PuJsyMw96tCTIqO9ow2gajktTe_l3wBYYmiWU
CitedBy_id crossref_primary_10_1016_j_isatra_2021_11_019
crossref_primary_10_1016_j_rineng_2024_102622
crossref_primary_10_1007_s40435_020_00700_4
crossref_primary_10_1016_j_knosys_2022_108851
crossref_primary_10_1016_j_ymssp_2021_108487
crossref_primary_10_1109_TII_2024_3488780
crossref_primary_10_1088_1361_6501_ac6f46
crossref_primary_10_3390_s20133753
crossref_primary_10_1109_TIM_2022_3197792
crossref_primary_10_1016_j_jsv_2021_116245
crossref_primary_10_1016_j_knosys_2022_109930
crossref_primary_10_1016_j_neucom_2020_05_040
crossref_primary_10_1016_j_neucom_2022_02_050
crossref_primary_10_1007_s00170_021_07784_y
crossref_primary_10_1038_s41598_024_83867_6
crossref_primary_10_1016_j_isatra_2024_08_012
crossref_primary_10_1109_TII_2022_3228395
crossref_primary_10_1016_j_eswa_2024_124094
crossref_primary_10_3390_math12030481
crossref_primary_10_1088_1361_6501_ac471d
crossref_primary_10_3233_JIFS_213340
crossref_primary_10_3390_app11177983
crossref_primary_10_1016_j_knosys_2021_106974
crossref_primary_10_1109_TIM_2021_3116309
crossref_primary_10_1016_j_knosys_2020_106695
crossref_primary_10_2139_ssrn_4195981
crossref_primary_10_1016_j_ymssp_2024_111837
crossref_primary_10_1088_1361_6501_abe163
crossref_primary_10_1109_TIE_2020_3040669
crossref_primary_10_1016_j_jmsy_2021_03_024
crossref_primary_10_1016_j_neucom_2020_05_064
crossref_primary_10_3390_math10030455
crossref_primary_10_1109_JIOT_2024_3421326
crossref_primary_10_1016_j_measurement_2021_109834
crossref_primary_10_1155_2022_5420478
crossref_primary_10_3390_s21041417
crossref_primary_10_1109_JSEN_2024_3365297
crossref_primary_10_1016_j_scs_2024_105430
crossref_primary_10_1109_TIM_2020_3043098
crossref_primary_10_1186_s10033_021_00566_3
crossref_primary_10_1016_j_simpat_2022_102659
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_1007_s10845_021_01777_0
crossref_primary_10_1109_TIM_2022_3180416
crossref_primary_10_1016_j_isatra_2020_05_041
crossref_primary_10_1016_j_ress_2024_110638
crossref_primary_10_1109_TII_2021_3107781
crossref_primary_10_1016_j_procir_2024_08_312
crossref_primary_10_1177_01423312241265774
crossref_primary_10_1109_ACCESS_2021_3053075
crossref_primary_10_1155_2022_4648311
crossref_primary_10_1016_j_measurement_2021_109352
crossref_primary_10_1016_j_neunet_2021_11_003
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_1088_1361_6501_ad2052
crossref_primary_10_1177_10775463231191679
crossref_primary_10_1109_TIM_2024_3472786
crossref_primary_10_1109_TIM_2021_3112800
crossref_primary_10_3390_s20102813
crossref_primary_10_1016_j_measurement_2021_109467
crossref_primary_10_1155_2022_5266054
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_3390_sym14122654
crossref_primary_10_1088_1361_6501_ad0683
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1016_j_eswa_2020_114022
crossref_primary_10_1016_j_isatra_2021_12_037
crossref_primary_10_1088_1361_6501_abd7a9
crossref_primary_10_1088_1361_6501_ac15dc
crossref_primary_10_3390_s21175830
crossref_primary_10_1016_j_knosys_2022_110199
crossref_primary_10_1016_j_eswa_2022_117408
crossref_primary_10_1177_14759217241310525
crossref_primary_10_1016_j_neucom_2022_03_005
crossref_primary_10_1109_TIM_2023_3331436
crossref_primary_10_3390_app13137593
crossref_primary_10_1016_j_measurement_2021_109650
crossref_primary_10_1016_j_measurement_2022_111455
crossref_primary_10_1016_j_neucom_2020_05_014
crossref_primary_10_23919_JSEE_2023_000129
crossref_primary_10_1016_j_jmsy_2020_04_017
crossref_primary_10_1016_j_isatra_2020_08_010
crossref_primary_10_1017_dce_2025_7
crossref_primary_10_1016_j_measurement_2022_110889
crossref_primary_10_1016_j_aei_2021_101480
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1016_j_ress_2022_109025
crossref_primary_10_3390_electronics14030515
crossref_primary_10_1016_j_cja_2021_10_006
crossref_primary_10_1007_s11431_020_1679_x
crossref_primary_10_1007_s40435_020_00675_2
crossref_primary_10_1016_j_sigpro_2024_109806
crossref_primary_10_1109_TIE_2021_3121748
crossref_primary_10_1109_TIM_2023_3244237
crossref_primary_10_1080_10589759_2025_2452364
crossref_primary_10_1088_2631_8695_ad907b
crossref_primary_10_3390_electronics14050855
crossref_primary_10_1007_s40430_024_05224_y
crossref_primary_10_1016_j_measurement_2021_109359
crossref_primary_10_1177_14759217241256690
crossref_primary_10_3390_s25020325
crossref_primary_10_1177_1475921720929939
crossref_primary_10_1109_ACCESS_2021_3110947
Cites_doi 10.1109/TII.2017.2672988
10.1038/323533a0
10.1109/TCST.2017.2789188
10.1016/j.neucom.2018.05.024
10.3390/s17020425
10.1016/j.jsv.2005.03.007
10.1016/j.ymssp.2017.06.022
10.1016/j.sigpro.2018.12.005
10.1109/TIE.2014.2364548
10.1016/j.jsv.2016.10.043
10.1109/TIE.2016.2627020
10.1016/j.neucom.2019.04.010
10.1109/TIE.2016.2519325
10.1109/TIE.2018.2868023
10.1016/j.neucom.2018.07.034
10.1109/TIM.2019.2913058
10.1016/j.neucom.2018.05.021
10.1109/TIE.2018.2877090
10.1016/j.ymssp.2015.04.021
10.1016/j.sigpro.2016.07.028
10.1016/j.neucom.2017.05.063
10.1016/j.engfailanal.2015.06.004
10.1109/TIE.2017.2782232
10.1007/s11071-019-05176-2
10.1109/TIE.2017.2677327
10.1016/j.measurement.2016.04.007
10.1016/j.neucom.2017.02.045
10.1016/j.ress.2017.11.021
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.12.033
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 247
ExternalDocumentID 10_1016_j_neucom_2019_12_033
S0925231219317369
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-cc4a0c49e4a7bb3950c866c3049922f73c14b0aa68ba8bc3df2307ca369530233
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 22:56:07 EDT 2025
Tue Jul 01 01:46:46 EDT 2025
Fri Feb 23 02:49:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fault diagnosis
Auto-encoder
Model generalization
Rolling bearing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-cc4a0c49e4a7bb3950c866c3049922f73c14b0aa68ba8bc3df2307ca369530233
ORCID 0000-0003-0569-2176
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2019_12_033
crossref_primary_10_1016_j_neucom_2019_12_033
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_12_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-28
PublicationDateYYYYMMDD 2020-03-28
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gong, Grauman, Sha (bib0025) 2013; 28
Liu, Gao, Chen (bib0020) 2017; 64
G. Csurka, Domain adaptation for visual applications: a comprehensive survey, arXiv
Maaten, Hinton (bib0051) 2008; 9
Qiu, Lee, Lin, Yu (bib0049) 2006; 289
Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0039) 2012; 13
Yu, Lin, Ma, Li, Zeng (bib0004) 2019
Wang, Wang, Wang (bib0017) 2018; 310
Zhang, Peng, Li, Chen, Zhang (bib0034) 2017; 17
Guo, Li, Jia, Lei, Lin (bib0012) 2017; 240
Ma, Zeng, Feng, Pang, Wang, Wen (bib0005) 2015; 55
Yu, Zhao (bib0010) 2019
Shao, McAleer, Yan, Baldi (bib0036) 2018
Zhang, Li, Peng, Chen, Zhang (bib0050) 2018; 100
Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (bib0038) 2017; 388
Li, Zhang, Ding, Li (bib0022) 2019
D. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv
Wang, Schneider (bib0024) 2014
(2015).
Rumelhart, Hinton, Williams (bib0043) 1986; 323
Li, Ding, Sun (bib0015) 2018; 172
Yosinski, Clune, Bengio, Lipson (bib0026) 2014
An, Li, Wang, Xin, Xu (bib0030) 2019; 352
Simani, Farsoni, Castaldi (bib0021) 2015; 62
(2017).
Dahl, Sainath, Hinton (bib0046) 2013
Yu, Zhao (bib0007) 2018; 65
Long, Cao, Wang, Jordan (bib0029) 2015; 37
Gretton, Sejdinovic, Strathmann, Balakrishnan, Pontil, Fukumizu, Sriperumbudur (bib0040) 2012
Li, Zhang, Ding (bib0035) 2019; 66
Wu, Yuan, Dong, Lin, Liu (bib0013) 2018; 275
Smith, Randall (bib0047) 2015; 64–65
Lee, Qiu, Yu, Lin (bib0048) 2007
Sun, Zhao, Yan, Shao, Chen (bib0014) 2017; 13
Shen, Chen, Yan, Gao (bib0023) 2015
Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (bib0027) 2014; 32
Tan, Zhang, Pan, Yang (bib0003) 2017
Luo, Wang, Tang, Wang (bib0006) 2019; 98
Chai, Zhao (bib0011) 2019
Xie, Zhang, Duan, Wang (bib0033) 2016
Liu, Zhou, Xu, Zheng, Peng, Jiang (bib0016) 2018; 315
Li, Zhang, Ding (bib0032) 2018; 310
Sun, Shao, Zhao, Yan, Zhang, Chen (bib0045) 2016; 89
(2014).
Glorot, Bengio (bib0042) 2010; 9
Li, Zhang, Ding, Sun (bib0028) 2019; 157
Yu, Zhao (bib0008) 2019; 27
Guo, Lei, Xing, Yan, Li (bib0037) 2018; 66
Lu, Liang, Cheng, Meng, Yang, Zhang (bib0002) 2017; 64
Li, Zhang, Xu, Ding (bib0031) 2019
Yu, Zhao (bib0009) 2019
Lu, Wang, Qin, Ma (bib0019) 2017; 130
G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv
Lei, Jia, Lin, Xing, Ding (bib0018) 2016; 63
Yu (10.1016/j.neucom.2019.12.033_sbref0003) 2019
Lu (10.1016/j.neucom.2019.12.033_bib0019) 2017; 130
Donahue (10.1016/j.neucom.2019.12.033_bib0027) 2014; 32
Lee (10.1016/j.neucom.2019.12.033_sbref0045) 2007
Ma (10.1016/j.neucom.2019.12.033_bib0005) 2015; 55
Wang (10.1016/j.neucom.2019.12.033_bib0024) 2014
Yosinski (10.1016/j.neucom.2019.12.033_bib0026) 2014
An (10.1016/j.neucom.2019.12.033_bib0030) 2019; 352
Luo (10.1016/j.neucom.2019.12.033_bib0006) 2019; 98
Lei (10.1016/j.neucom.2019.12.033_bib0018) 2016; 63
Dahl (10.1016/j.neucom.2019.12.033_bib0046) 2013
Li (10.1016/j.neucom.2019.12.033_sbref0021) 2019
Gretton (10.1016/j.neucom.2019.12.033_bib0040) 2012
Sun (10.1016/j.neucom.2019.12.033_bib0045) 2016; 89
Guo (10.1016/j.neucom.2019.12.033_bib0037) 2018; 66
Maaten (10.1016/j.neucom.2019.12.033_bib0051) 2008; 9
Chai (10.1016/j.neucom.2019.12.033_sbref0010) 2019
Xie (10.1016/j.neucom.2019.12.033_bib0033) 2016
Simani (10.1016/j.neucom.2019.12.033_bib0021) 2015; 62
Li (10.1016/j.neucom.2019.12.033_bib0032) 2018; 310
Rumelhart (10.1016/j.neucom.2019.12.033_bib0043) 1986; 323
Lu (10.1016/j.neucom.2019.12.033_bib0002) 2017; 64
Yu (10.1016/j.neucom.2019.12.033_bib0009) 2019
Smith (10.1016/j.neucom.2019.12.033_bib0047) 2015; 64–65
Yu (10.1016/j.neucom.2019.12.033_bib0007) 2018; 65
Tan (10.1016/j.neucom.2019.12.033_bib0003) 2017
Li (10.1016/j.neucom.2019.12.033_bib0035) 2019; 66
Long (10.1016/j.neucom.2019.12.033_bib0029) 2015; 37
Guo (10.1016/j.neucom.2019.12.033_bib0012) 2017; 240
10.1016/j.neucom.2019.12.033_bib0044
10.1016/j.neucom.2019.12.033_bib0001
Abdeljaber (10.1016/j.neucom.2019.12.033_bib0038) 2017; 388
Liu (10.1016/j.neucom.2019.12.033_bib0020) 2017; 64
10.1016/j.neucom.2019.12.033_bib0041
Shao (10.1016/j.neucom.2019.12.033_sbref0035) 2018
Zhang (10.1016/j.neucom.2019.12.033_bib0034) 2017; 17
Yu (10.1016/j.neucom.2019.12.033_bib0010) 2019
Qiu (10.1016/j.neucom.2019.12.033_bib0049) 2006; 289
Gong (10.1016/j.neucom.2019.12.033_bib0025) 2013; 28
Li (10.1016/j.neucom.2019.12.033_bib0015) 2018; 172
Sun (10.1016/j.neucom.2019.12.033_bib0014) 2017; 13
Wang (10.1016/j.neucom.2019.12.033_bib0017) 2018; 310
Zhang (10.1016/j.neucom.2019.12.033_bib0050) 2018; 100
Yu (10.1016/j.neucom.2019.12.033_bib0008) 2019; 27
Glorot (10.1016/j.neucom.2019.12.033_bib0042) 2010; 9
Wu (10.1016/j.neucom.2019.12.033_bib0013) 2018; 275
Li (10.1016/j.neucom.2019.12.033_bib0028) 2019; 157
Gretton (10.1016/j.neucom.2019.12.033_bib0039) 2012; 13
Li (10.1016/j.neucom.2019.12.033_sbref0030) 2019
Liu (10.1016/j.neucom.2019.12.033_bib0016) 2018; 315
Shen (10.1016/j.neucom.2019.12.033_bib0023) 2015
References_xml – reference: G. Csurka, Domain adaptation for visual applications: a comprehensive survey, arXiv:
– volume: 62
  start-page: 3775
  year: 2015
  end-page: 3782
  ident: bib0021
  article-title: Fault diagnosis of a wind turbine benchmark via identified fuzzy models
  publication-title: IEEE Trans. Ind. Electron.
– volume: 157
  start-page: 180
  year: 2019
  end-page: 197
  ident: bib0028
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Processing
– volume: 64
  start-page: 2296
  year: 2017
  end-page: 2305
  ident: bib0002
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– year: 2019
  ident: bib0031
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Trans. Ind. Electron.
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  ident: bib0047
  article-title: Rolling element bearing diagnostics using the case western reserve university data: a benchmark study
  publication-title: Mech. Syst. Signal Process.
– volume: 98
  start-page: 113
  year: 2019
  end-page: 128
  ident: bib0006
  article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system
  publication-title: Nonlinear Dyn.
– volume: 315
  start-page: 412
  year: 2018
  end-page: 424
  ident: bib0016
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0033
  article-title: On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis
  publication-title: Proceedings of IEEE International Conference on Prognostics and Health Management
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib0043
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 66
  start-page: 5525
  year: 2019
  end-page: 5534
  ident: bib0035
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 63
  start-page: 3137
  year: 2016
  end-page: 3147
  ident: bib0018
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 8609
  year: 2013
  end-page: 8613
  ident: bib0046
  article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout
  publication-title: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2019
  ident: bib0004
  article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 55
  start-page: 224
  year: 2015
  end-page: 245
  ident: bib0005
  article-title: Review on dynamics of cracked gear systems
  publication-title: Eng. Fail. Anal.
– reference: (2015).
– year: 2019
  ident: bib0011
  article-title: Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification
  publication-title: IEEE Trans. Ind. Inf.
– volume: 13
  start-page: 1350
  year: 2017
  end-page: 1359
  ident: bib0014
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Trans. Ind. Inf.
– volume: 28
  start-page: 222
  year: 2013
  end-page: 230
  ident: bib0025
  article-title: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation
  publication-title: Proceedings of Thirtieth International Conference on Machine Learning
– volume: 289
  start-page: 1066
  year: 2006
  end-page: 1090
  ident: bib0049
  article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
  publication-title: J. Sound Vib.
– volume: 64
  start-page: 5678
  year: 2017
  end-page: 5689
  ident: bib0020
  article-title: Takagisugeno fuzzy model based fault estimation and signal compensation with application to wind turbines
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: bib0026
  article-title: How transferable are features in deep neural networks?
  publication-title: Proceedings of Twenty-seventh International Conference on Neural Information Processing Systems
– volume: 27
  start-page: 1317
  year: 2019
  end-page: 1325
  ident: bib0008
  article-title: Online fault diagnosis in industrial processes using multimodel exponential discriminant analysis algorithm
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 66
  start-page: 7316
  year: 2018
  end-page: 7325
  ident: bib0037
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans. Ind. Electron.
– volume: 275
  start-page: 167
  year: 2018
  end-page: 179
  ident: bib0013
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: bib0039
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2625
  ident: bib0051
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 240
  start-page: 98
  year: 2017
  end-page: 109
  ident: bib0012
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0045
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– reference: (2017).
– volume: 310
  start-page: 77
  year: 2018
  end-page: 95
  ident: bib0032
  article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
  publication-title: Neurocomputing
– volume: 388
  start-page: 154
  year: 2017
  end-page: 170
  ident: bib0038
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
– year: 2007
  ident: bib0048
  article-title: Rexnord technical services (2007). IMS, university of cincinnati. “bearing data set”
  publication-title: NASA Ames Prognostics Data Repository
– volume: 310
  start-page: 213
  year: 2018
  end-page: 222
  ident: bib0017
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
– reference: D. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0015
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib0042
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J. Mach. Learn. Res.
– year: 2012
  ident: bib0040
  article-title: Optimal Kernel Choice for Large-scale Two-sample Tests
– volume: 65
  start-page: 5931
  year: 2018
  end-page: 5940
  ident: bib0007
  article-title: Sparse exponential discriminant analysis and its application to fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– year: 2018
  ident: bib0036
  article-title: Highly-accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 2604
  year: 2017
  end-page: 2610
  ident: bib0003
  article-title: Distant domain transfer learning
  publication-title: Proceedings of AAAI
– volume: 352
  start-page: 42
  year: 2019
  end-page: 53
  ident: bib0030
  article-title: Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method
  publication-title: Neurocomputing
– year: 2019
  ident: bib0022
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 17
  start-page: 425
  year: 2017
  ident: bib0034
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
  publication-title: Sensors
– reference: (2014).
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0023
  article-title: Bearing fault diagnosis based on SVD feature extraction and transfer learning classification
  publication-title: Proceedings of Prognostics and System Health Management Conference (PHM)
– reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv:
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib0010
  article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 1898
  year: 2014
  end-page: 1906
  ident: bib0024
  article-title: Flexible transfer learning under support and model shift
  publication-title: Proceedings of Twenty-seventh International Conference on Neural Information Processing Systems
– volume: 32
  start-page: 647
  year: 2014
  end-page: 655
  ident: bib0027
  article-title: Decaf: a deep convolutional activation feature for generic visual recognition
  publication-title: Proceedings of Thirty-first International Conference on Machine Learning
– volume: 100
  start-page: 439
  year: 2018
  end-page: 453
  ident: bib0050
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Signal Process
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib0009
  article-title: Online fault diagnosis for industrial processes with bayesian network-based probabilistic ensemble learning strategy
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 37
  start-page: 97
  year: 2015
  end-page: 105
  ident: bib0029
  article-title: Learning transferable features with deep adaptation networks
  publication-title: Proceedings of Thirty-second International Conference on Machine Learning
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: bib0019
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
– volume: 13
  start-page: 1350
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0014
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2672988
– volume: 9
  start-page: 249
  year: 2010
  ident: 10.1016/j.neucom.2019.12.033_bib0042
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2019.12.033_bib0041
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.neucom.2019.12.033_bib0051
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.neucom.2019.12.033_bib0043
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 27
  start-page: 1317
  issue: 3
  year: 2019
  ident: 10.1016/j.neucom.2019.12.033_bib0008
  article-title: Online fault diagnosis in industrial processes using multimodel exponential discriminant analysis algorithm
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2017.2789188
– volume: 310
  start-page: 213
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0017
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– start-page: 3320
  year: 2014
  ident: 10.1016/j.neucom.2019.12.033_bib0026
  article-title: How transferable are features in deep neural networks?
– year: 2019
  ident: 10.1016/j.neucom.2019.12.033_sbref0030
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Trans. Ind. Electron.
– year: 2012
  ident: 10.1016/j.neucom.2019.12.033_bib0040
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2019.12.033_bib0023
  article-title: Bearing fault diagnosis based on SVD feature extraction and transfer learning classification
– volume: 17
  start-page: 425
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0034
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
  publication-title: Sensors
  doi: 10.3390/s17020425
– volume: 28
  start-page: 222
  year: 2013
  ident: 10.1016/j.neucom.2019.12.033_bib0025
  article-title: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation
– volume: 289
  start-page: 1066
  issue: 45
  year: 2006
  ident: 10.1016/j.neucom.2019.12.033_bib0049
  article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.03.007
– year: 2018
  ident: 10.1016/j.neucom.2019.12.033_sbref0035
  article-title: Highly-accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2019.12.033_bib0009
  article-title: Online fault diagnosis for industrial processes with bayesian network-based probabilistic ensemble learning strategy
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 1898
  year: 2014
  ident: 10.1016/j.neucom.2019.12.033_bib0024
  article-title: Flexible transfer learning under support and model shift
– volume: 100
  start-page: 439
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0050
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2017.06.022
– volume: 157
  start-page: 180
  year: 2019
  ident: 10.1016/j.neucom.2019.12.033_bib0028
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2018.12.005
– year: 2007
  ident: 10.1016/j.neucom.2019.12.033_sbref0045
  article-title: Rexnord technical services (2007). IMS, university of cincinnati. “bearing data set”
  publication-title: NASA Ames Prognostics Data Repository
– volume: 62
  start-page: 3775
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2019.12.033_bib0021
  article-title: Fault diagnosis of a wind turbine benchmark via identified fuzzy models
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2364548
– volume: 388
  start-page: 154
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0038
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.043
– year: 2019
  ident: 10.1016/j.neucom.2019.12.033_sbref0010
  article-title: Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification
  publication-title: IEEE Trans. Ind. Inf.
– volume: 64
  start-page: 2296
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0002
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2627020
– volume: 352
  start-page: 42
  year: 2019
  ident: 10.1016/j.neucom.2019.12.033_bib0030
  article-title: Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.010
– start-page: 2604
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0003
  article-title: Distant domain transfer learning
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  ident: 10.1016/j.neucom.2019.12.033_bib0018
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2519325
– volume: 32
  start-page: 647
  year: 2014
  ident: 10.1016/j.neucom.2019.12.033_bib0027
  article-title: Decaf: a deep convolutional activation feature for generic visual recognition
– volume: 37
  start-page: 97
  year: 2015
  ident: 10.1016/j.neucom.2019.12.033_bib0029
  article-title: Learning transferable features with deep adaptation networks
– start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2019.12.033_bib0033
  article-title: On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis
– volume: 66
  start-page: 5525
  issue: 7
  year: 2019
  ident: 10.1016/j.neucom.2019.12.033_bib0035
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2868023
– volume: 315
  start-page: 412
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0016
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.034
– year: 2019
  ident: 10.1016/j.neucom.2019.12.033_sbref0003
  article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2913058
– volume: 310
  start-page: 77
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0032
  article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.021
– volume: 66
  start-page: 7316
  issue: 9
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0037
  article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2877090
– ident: 10.1016/j.neucom.2019.12.033_bib0001
– volume: 64–65
  start-page: 100
  year: 2015
  ident: 10.1016/j.neucom.2019.12.033_bib0047
  article-title: Rolling element bearing diagnostics using the case western reserve university data: a benchmark study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.021
– year: 2019
  ident: 10.1016/j.neucom.2019.12.033_sbref0021
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 130
  start-page: 377
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0019
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 275
  start-page: 167
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0013
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– volume: 55
  start-page: 224
  year: 2015
  ident: 10.1016/j.neucom.2019.12.033_bib0005
  article-title: Review on dynamics of cracked gear systems
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2015.06.004
– volume: 65
  start-page: 5931
  issue: 7
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0007
  article-title: Sparse exponential discriminant analysis and its application to fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2782232
– volume: 98
  start-page: 113
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2019.12.033_bib0006
  article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05176-2
– ident: 10.1016/j.neucom.2019.12.033_bib0044
– volume: 64
  start-page: 5678
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0020
  article-title: Takagisugeno fuzzy model based fault estimation and signal compensation with application to wind turbines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2677327
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.neucom.2019.12.033_bib0045
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 240
  start-page: 98
  year: 2017
  ident: 10.1016/j.neucom.2019.12.033_bib0012
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 13
  start-page: 723
  year: 2012
  ident: 10.1016/j.neucom.2019.12.033_bib0039
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– start-page: 8609
  year: 2013
  ident: 10.1016/j.neucom.2019.12.033_bib0046
  article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2019.12.033_bib0010
  article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 172
  start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2019.12.033_bib0015
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
SSID ssj0017129
Score 2.5804393
Snippet •The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 235
SubjectTerms Auto-encoder
Deep learning
Fault diagnosis
Model generalization
Rolling bearing
Title Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation
URI https://dx.doi.org/10.1016/j.neucom.2019.12.033
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1djfJPnIsxdIq9qKF3sJskoWVdrvo7tXfbrKPoiAKXpdkCLOTeeWbGYRumWIxT4AToJEhPLABaxwbIBAp4fzbVNQJ_adFOFvyh1Ww6qFJVwvjYJWt7m90eq2t2y-jlpujIstGz54lZr0Te-WsDWShK-LjPHJSfvexg3n4kU-bfns0IG51Vz5XY7xyUznMiDWCok4KMvazefpicqZH6KD1FfG4Oc4x6pn8BB12cxhwey1PkZzv-mqWuKZLNjVG0uAUqnWJdYOny95x10Icu_wr1sYUGKpyS1w7S21pQq6x3m4gyzFoKJp3-jO0nN6_TGakHZxAlI0ASqIUB09xYThEScJE4Kk4DJV7UROUphFTPk88gDBOIE4U06mDgyuwTKyHCLFz1M-3ublA2DpkNAERxKEHXHAGzAfwTRrasAS4TgeIdfySqu0q7oZbrGUHH3uVDZel47L0qbRcHiCy21U0XTX-WB91v0J-kw5pFf-vOy__vfMK7VMXW3uM0Pga9cu3ytxYB6RMhrWEDdHeeP44W3wCYPzbpw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClQAGVV_GBHt1NbOfhAwcERbu8LoDEzZ04jrQIsivICnHhT_EHGeexKlLVSkhco8wkGU_m5c8zAHvSylRlqDiKxHEVUcKapg45Jlb7-LbQdUH__CLuX6uTm-hmBl67szAeVtna_sam19a6vdJrpdkbD4e9y4CYUXRCvxz5QBnrFll56p6fKG973B8c0SL_EOL419Vhn7ejBbilGLni1ioMrNJOYZJlUkeBTePY-j0nLUSRSBuqLECM0wzTzMq88IBpi_SYesyOJL6zMK_IXPixCT9fpriSMAlF0-BPRNy_XnderwaVlW7iQSrkdXVdhZTy7_7wDx93vAxf2uCUHTTfvwIzrvwKS93gB9bagVUwg2kjz4rVfPl9Dcp0rMDJXcXyBsA3fGRdz3LmC74sd27McFKNuO-fmRNPLHOWj-5xWDLMcdwAA9bg-lPEuQ5z5ah034BRBCgy1FEaB6i0kihDxNAVMeVBqPJiA2QnL2PbNuZ-msad6fBqt6aRsvFSNqEwJOUN4FOqcdPG4z_3J91SmHfqaMjT_JNy88OUu7DQvzo_M2eDi9MtWBQ-sQ8kF-k2zFUPE7dD0U-Vfa-1jcHvz1bvNxiyFog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+cross-machine+fault+diagnosis+approach+with+deep+auto-encoder+and+domain+adaptation&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Xiang&rft.au=Jia%2C+Xiao-Dong&rft.au=Zhang%2C+Wei&rft.au=Ma%2C+Hui&rft.date=2020-03-28&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=383&rft.spage=235&rft.epage=247&rft_id=info:doi/10.1016%2Fj.neucom.2019.12.033&rft.externalDocID=S0925231219317369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon