Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation
•The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep auto-encoder, and domain adaptation is used for feature alignment.•The practical scenarios in fault diagnosis are considered where only the target-mach...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 383; pp. 235 - 247 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
28.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep auto-encoder, and domain adaptation is used for feature alignment.•The practical scenarios in fault diagnosis are considered where only the target-machine data in healthy state are available .•Different fault locations and severities are both considered in the cross-machine fault diagnosis.•Experiments on three rotating machinery datasets validate the effectiveness of the proposed method.
Recently, due to the rising industrial demands for intelligent machinery fault diagnosis with strong generalization, transfer learning techniques have been used to enhance adaptability of data-driven approaches. Particularly, the domain shift problem where training and testing data are sampled from different operating conditions of the same machine is well addressed. However, it is still difficult to prepare sufficient labeled data on the tested machine. Therefore, the idea of transferring fault diagnosis knowledge learned from one machine to different but related machines is motivated, and that is realized through a deep learning-based method in this paper. Features of different equipments are first projected into the same subspace using an auto-encoder structure, and cross-machine adaptation algorithm is adopted for knowledge generalization, where the distribution discrepancy between data from different machines is minimized. Experiments on three rolling bearing datasets are implemented to validate the proposed method. The results suggest it is feasible to transfer fault diagnosis knowledge across different machines, and the proposed method offers a novel and promising approach for knowledge generalization. |
---|---|
AbstractList | •The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep auto-encoder, and domain adaptation is used for feature alignment.•The practical scenarios in fault diagnosis are considered where only the target-machine data in healthy state are available .•Different fault locations and severities are both considered in the cross-machine fault diagnosis.•Experiments on three rotating machinery datasets validate the effectiveness of the proposed method.
Recently, due to the rising industrial demands for intelligent machinery fault diagnosis with strong generalization, transfer learning techniques have been used to enhance adaptability of data-driven approaches. Particularly, the domain shift problem where training and testing data are sampled from different operating conditions of the same machine is well addressed. However, it is still difficult to prepare sufficient labeled data on the tested machine. Therefore, the idea of transferring fault diagnosis knowledge learned from one machine to different but related machines is motivated, and that is realized through a deep learning-based method in this paper. Features of different equipments are first projected into the same subspace using an auto-encoder structure, and cross-machine adaptation algorithm is adopted for knowledge generalization, where the distribution discrepancy between data from different machines is minimized. Experiments on three rolling bearing datasets are implemented to validate the proposed method. The results suggest it is feasible to transfer fault diagnosis knowledge across different machines, and the proposed method offers a novel and promising approach for knowledge generalization. |
Author | Luo, Zhong Li, Xu Li, Xiang Jia, Xiao-Dong Ma, Hui Zhang, Wei |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0003-0569-2176 surname: Li fullname: Li, Xiang organization: College of Sciences, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Xiao-Dong surname: Jia fullname: Jia, Xiao-Dong organization: NSF I/UCR Center for Intelligent Maintenance Systems, Department of Mechanical Engineering, University of Cincinnati, Cincinna 45221, USA – sequence: 3 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China – sequence: 4 givenname: Hui surname: Ma fullname: Ma, Hui organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China – sequence: 5 givenname: Zhong surname: Luo fullname: Luo, Zhong organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China – sequence: 6 givenname: Xu surname: Li fullname: Li, Xu email: lixu@ral.neu.edu.cn organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
BookMark | eNqFkL1OwzAUhS1UJNrCGzD4BRL8kyYxAxKq-KlUiQVm68Z2WleJHdkuiLcnJUwMMN3h6Du651ugmfPOIHRNSU4JLW8OuTNH5fucESpyynLC-Rma07piWc3qcobmRLBVxjhlF2gR44EQWlEm5khuXDJdZ3fGJayCjzHrQe2tM7iFY5ewtrBzPtqIYRiCHzP8YdMea2MGDMfkM-OU1yZgcBpr34N1GDQMCZL17hKdt9BFc_Vzl-jt8eF1_ZxtX5426_ttpjgpU6ZUAUQVwhRQNQ0XK6LqshyzQgjG2oorWjQEoKwbqBvFdcs4qRTwUqw4YZwv0e3U-70hmFYqO32QAthOUiJPquRBTqrkSZWkTI6qRrj4BQ_B9hA-_8PuJsyMw96tCTIqO9ow2gajktTe_l3wBYYmiWU |
CitedBy_id | crossref_primary_10_1016_j_isatra_2021_11_019 crossref_primary_10_1016_j_rineng_2024_102622 crossref_primary_10_1007_s40435_020_00700_4 crossref_primary_10_1016_j_knosys_2022_108851 crossref_primary_10_1016_j_ymssp_2021_108487 crossref_primary_10_1109_TII_2024_3488780 crossref_primary_10_1088_1361_6501_ac6f46 crossref_primary_10_3390_s20133753 crossref_primary_10_1109_TIM_2022_3197792 crossref_primary_10_1016_j_jsv_2021_116245 crossref_primary_10_1016_j_knosys_2022_109930 crossref_primary_10_1016_j_neucom_2020_05_040 crossref_primary_10_1016_j_neucom_2022_02_050 crossref_primary_10_1007_s00170_021_07784_y crossref_primary_10_1038_s41598_024_83867_6 crossref_primary_10_1016_j_isatra_2024_08_012 crossref_primary_10_1109_TII_2022_3228395 crossref_primary_10_1016_j_eswa_2024_124094 crossref_primary_10_3390_math12030481 crossref_primary_10_1088_1361_6501_ac471d crossref_primary_10_3233_JIFS_213340 crossref_primary_10_3390_app11177983 crossref_primary_10_1016_j_knosys_2021_106974 crossref_primary_10_1109_TIM_2021_3116309 crossref_primary_10_1016_j_knosys_2020_106695 crossref_primary_10_2139_ssrn_4195981 crossref_primary_10_1016_j_ymssp_2024_111837 crossref_primary_10_1088_1361_6501_abe163 crossref_primary_10_1109_TIE_2020_3040669 crossref_primary_10_1016_j_jmsy_2021_03_024 crossref_primary_10_1016_j_neucom_2020_05_064 crossref_primary_10_3390_math10030455 crossref_primary_10_1109_JIOT_2024_3421326 crossref_primary_10_1016_j_measurement_2021_109834 crossref_primary_10_1155_2022_5420478 crossref_primary_10_3390_s21041417 crossref_primary_10_1109_JSEN_2024_3365297 crossref_primary_10_1016_j_scs_2024_105430 crossref_primary_10_1109_TIM_2020_3043098 crossref_primary_10_1186_s10033_021_00566_3 crossref_primary_10_1016_j_simpat_2022_102659 crossref_primary_10_1007_s10462_022_10230_4 crossref_primary_10_1007_s10845_021_01777_0 crossref_primary_10_1109_TIM_2022_3180416 crossref_primary_10_1016_j_isatra_2020_05_041 crossref_primary_10_1016_j_ress_2024_110638 crossref_primary_10_1109_TII_2021_3107781 crossref_primary_10_1016_j_procir_2024_08_312 crossref_primary_10_1177_01423312241265774 crossref_primary_10_1109_ACCESS_2021_3053075 crossref_primary_10_1155_2022_4648311 crossref_primary_10_1016_j_measurement_2021_109352 crossref_primary_10_1016_j_neunet_2021_11_003 crossref_primary_10_1109_ACCESS_2023_3239784 crossref_primary_10_1088_1361_6501_ad2052 crossref_primary_10_1177_10775463231191679 crossref_primary_10_1109_TIM_2024_3472786 crossref_primary_10_1109_TIM_2021_3112800 crossref_primary_10_3390_s20102813 crossref_primary_10_1016_j_measurement_2021_109467 crossref_primary_10_1155_2022_5266054 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_3390_sym14122654 crossref_primary_10_1088_1361_6501_ad0683 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1016_j_eswa_2020_114022 crossref_primary_10_1016_j_isatra_2021_12_037 crossref_primary_10_1088_1361_6501_abd7a9 crossref_primary_10_1088_1361_6501_ac15dc crossref_primary_10_3390_s21175830 crossref_primary_10_1016_j_knosys_2022_110199 crossref_primary_10_1016_j_eswa_2022_117408 crossref_primary_10_1177_14759217241310525 crossref_primary_10_1016_j_neucom_2022_03_005 crossref_primary_10_1109_TIM_2023_3331436 crossref_primary_10_3390_app13137593 crossref_primary_10_1016_j_measurement_2021_109650 crossref_primary_10_1016_j_measurement_2022_111455 crossref_primary_10_1016_j_neucom_2020_05_014 crossref_primary_10_23919_JSEE_2023_000129 crossref_primary_10_1016_j_jmsy_2020_04_017 crossref_primary_10_1016_j_isatra_2020_08_010 crossref_primary_10_1017_dce_2025_7 crossref_primary_10_1016_j_measurement_2022_110889 crossref_primary_10_1016_j_aei_2021_101480 crossref_primary_10_1109_ACCESS_2021_3134628 crossref_primary_10_1016_j_ress_2022_109025 crossref_primary_10_3390_electronics14030515 crossref_primary_10_1016_j_cja_2021_10_006 crossref_primary_10_1007_s11431_020_1679_x crossref_primary_10_1007_s40435_020_00675_2 crossref_primary_10_1016_j_sigpro_2024_109806 crossref_primary_10_1109_TIE_2021_3121748 crossref_primary_10_1109_TIM_2023_3244237 crossref_primary_10_1080_10589759_2025_2452364 crossref_primary_10_1088_2631_8695_ad907b crossref_primary_10_3390_electronics14050855 crossref_primary_10_1007_s40430_024_05224_y crossref_primary_10_1016_j_measurement_2021_109359 crossref_primary_10_1177_14759217241256690 crossref_primary_10_3390_s25020325 crossref_primary_10_1177_1475921720929939 crossref_primary_10_1109_ACCESS_2021_3110947 |
Cites_doi | 10.1109/TII.2017.2672988 10.1038/323533a0 10.1109/TCST.2017.2789188 10.1016/j.neucom.2018.05.024 10.3390/s17020425 10.1016/j.jsv.2005.03.007 10.1016/j.ymssp.2017.06.022 10.1016/j.sigpro.2018.12.005 10.1109/TIE.2014.2364548 10.1016/j.jsv.2016.10.043 10.1109/TIE.2016.2627020 10.1016/j.neucom.2019.04.010 10.1109/TIE.2016.2519325 10.1109/TIE.2018.2868023 10.1016/j.neucom.2018.07.034 10.1109/TIM.2019.2913058 10.1016/j.neucom.2018.05.021 10.1109/TIE.2018.2877090 10.1016/j.ymssp.2015.04.021 10.1016/j.sigpro.2016.07.028 10.1016/j.neucom.2017.05.063 10.1016/j.engfailanal.2015.06.004 10.1109/TIE.2017.2782232 10.1007/s11071-019-05176-2 10.1109/TIE.2017.2677327 10.1016/j.measurement.2016.04.007 10.1016/j.neucom.2017.02.045 10.1016/j.ress.2017.11.021 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2019.12.033 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 247 |
ExternalDocumentID | 10_1016_j_neucom_2019_12_033 S0925231219317369 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-cc4a0c49e4a7bb3950c866c3049922f73c14b0aa68ba8bc3df2307ca369530233 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 22:56:07 EDT 2025 Tue Jul 01 01:46:46 EDT 2025 Fri Feb 23 02:49:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Fault diagnosis Auto-encoder Model generalization Rolling bearing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-cc4a0c49e4a7bb3950c866c3049922f73c14b0aa68ba8bc3df2307ca369530233 |
ORCID | 0000-0003-0569-2176 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2019_12_033 crossref_primary_10_1016_j_neucom_2019_12_033 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_12_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-28 |
PublicationDateYYYYMMDD | 2020-03-28 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gong, Grauman, Sha (bib0025) 2013; 28 Liu, Gao, Chen (bib0020) 2017; 64 G. Csurka, Domain adaptation for visual applications: a comprehensive survey, arXiv Maaten, Hinton (bib0051) 2008; 9 Qiu, Lee, Lin, Yu (bib0049) 2006; 289 Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0039) 2012; 13 Yu, Lin, Ma, Li, Zeng (bib0004) 2019 Wang, Wang, Wang (bib0017) 2018; 310 Zhang, Peng, Li, Chen, Zhang (bib0034) 2017; 17 Guo, Li, Jia, Lei, Lin (bib0012) 2017; 240 Ma, Zeng, Feng, Pang, Wang, Wen (bib0005) 2015; 55 Yu, Zhao (bib0010) 2019 Shao, McAleer, Yan, Baldi (bib0036) 2018 Zhang, Li, Peng, Chen, Zhang (bib0050) 2018; 100 Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (bib0038) 2017; 388 Li, Zhang, Ding, Li (bib0022) 2019 D. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv Wang, Schneider (bib0024) 2014 (2015). Rumelhart, Hinton, Williams (bib0043) 1986; 323 Li, Ding, Sun (bib0015) 2018; 172 Yosinski, Clune, Bengio, Lipson (bib0026) 2014 An, Li, Wang, Xin, Xu (bib0030) 2019; 352 Simani, Farsoni, Castaldi (bib0021) 2015; 62 (2017). Dahl, Sainath, Hinton (bib0046) 2013 Yu, Zhao (bib0007) 2018; 65 Long, Cao, Wang, Jordan (bib0029) 2015; 37 Gretton, Sejdinovic, Strathmann, Balakrishnan, Pontil, Fukumizu, Sriperumbudur (bib0040) 2012 Li, Zhang, Ding (bib0035) 2019; 66 Wu, Yuan, Dong, Lin, Liu (bib0013) 2018; 275 Smith, Randall (bib0047) 2015; 64–65 Lee, Qiu, Yu, Lin (bib0048) 2007 Sun, Zhao, Yan, Shao, Chen (bib0014) 2017; 13 Shen, Chen, Yan, Gao (bib0023) 2015 Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (bib0027) 2014; 32 Tan, Zhang, Pan, Yang (bib0003) 2017 Luo, Wang, Tang, Wang (bib0006) 2019; 98 Chai, Zhao (bib0011) 2019 Xie, Zhang, Duan, Wang (bib0033) 2016 Liu, Zhou, Xu, Zheng, Peng, Jiang (bib0016) 2018; 315 Li, Zhang, Ding (bib0032) 2018; 310 Sun, Shao, Zhao, Yan, Zhang, Chen (bib0045) 2016; 89 (2014). Glorot, Bengio (bib0042) 2010; 9 Li, Zhang, Ding, Sun (bib0028) 2019; 157 Yu, Zhao (bib0008) 2019; 27 Guo, Lei, Xing, Yan, Li (bib0037) 2018; 66 Lu, Liang, Cheng, Meng, Yang, Zhang (bib0002) 2017; 64 Li, Zhang, Xu, Ding (bib0031) 2019 Yu, Zhao (bib0009) 2019 Lu, Wang, Qin, Ma (bib0019) 2017; 130 G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv Lei, Jia, Lin, Xing, Ding (bib0018) 2016; 63 Yu (10.1016/j.neucom.2019.12.033_sbref0003) 2019 Lu (10.1016/j.neucom.2019.12.033_bib0019) 2017; 130 Donahue (10.1016/j.neucom.2019.12.033_bib0027) 2014; 32 Lee (10.1016/j.neucom.2019.12.033_sbref0045) 2007 Ma (10.1016/j.neucom.2019.12.033_bib0005) 2015; 55 Wang (10.1016/j.neucom.2019.12.033_bib0024) 2014 Yosinski (10.1016/j.neucom.2019.12.033_bib0026) 2014 An (10.1016/j.neucom.2019.12.033_bib0030) 2019; 352 Luo (10.1016/j.neucom.2019.12.033_bib0006) 2019; 98 Lei (10.1016/j.neucom.2019.12.033_bib0018) 2016; 63 Dahl (10.1016/j.neucom.2019.12.033_bib0046) 2013 Li (10.1016/j.neucom.2019.12.033_sbref0021) 2019 Gretton (10.1016/j.neucom.2019.12.033_bib0040) 2012 Sun (10.1016/j.neucom.2019.12.033_bib0045) 2016; 89 Guo (10.1016/j.neucom.2019.12.033_bib0037) 2018; 66 Maaten (10.1016/j.neucom.2019.12.033_bib0051) 2008; 9 Chai (10.1016/j.neucom.2019.12.033_sbref0010) 2019 Xie (10.1016/j.neucom.2019.12.033_bib0033) 2016 Simani (10.1016/j.neucom.2019.12.033_bib0021) 2015; 62 Li (10.1016/j.neucom.2019.12.033_bib0032) 2018; 310 Rumelhart (10.1016/j.neucom.2019.12.033_bib0043) 1986; 323 Lu (10.1016/j.neucom.2019.12.033_bib0002) 2017; 64 Yu (10.1016/j.neucom.2019.12.033_bib0009) 2019 Smith (10.1016/j.neucom.2019.12.033_bib0047) 2015; 64–65 Yu (10.1016/j.neucom.2019.12.033_bib0007) 2018; 65 Tan (10.1016/j.neucom.2019.12.033_bib0003) 2017 Li (10.1016/j.neucom.2019.12.033_bib0035) 2019; 66 Long (10.1016/j.neucom.2019.12.033_bib0029) 2015; 37 Guo (10.1016/j.neucom.2019.12.033_bib0012) 2017; 240 10.1016/j.neucom.2019.12.033_bib0044 10.1016/j.neucom.2019.12.033_bib0001 Abdeljaber (10.1016/j.neucom.2019.12.033_bib0038) 2017; 388 Liu (10.1016/j.neucom.2019.12.033_bib0020) 2017; 64 10.1016/j.neucom.2019.12.033_bib0041 Shao (10.1016/j.neucom.2019.12.033_sbref0035) 2018 Zhang (10.1016/j.neucom.2019.12.033_bib0034) 2017; 17 Yu (10.1016/j.neucom.2019.12.033_bib0010) 2019 Qiu (10.1016/j.neucom.2019.12.033_bib0049) 2006; 289 Gong (10.1016/j.neucom.2019.12.033_bib0025) 2013; 28 Li (10.1016/j.neucom.2019.12.033_bib0015) 2018; 172 Sun (10.1016/j.neucom.2019.12.033_bib0014) 2017; 13 Wang (10.1016/j.neucom.2019.12.033_bib0017) 2018; 310 Zhang (10.1016/j.neucom.2019.12.033_bib0050) 2018; 100 Yu (10.1016/j.neucom.2019.12.033_bib0008) 2019; 27 Glorot (10.1016/j.neucom.2019.12.033_bib0042) 2010; 9 Wu (10.1016/j.neucom.2019.12.033_bib0013) 2018; 275 Li (10.1016/j.neucom.2019.12.033_bib0028) 2019; 157 Gretton (10.1016/j.neucom.2019.12.033_bib0039) 2012; 13 Li (10.1016/j.neucom.2019.12.033_sbref0030) 2019 Liu (10.1016/j.neucom.2019.12.033_bib0016) 2018; 315 Shen (10.1016/j.neucom.2019.12.033_bib0023) 2015 |
References_xml | – reference: G. Csurka, Domain adaptation for visual applications: a comprehensive survey, arXiv: – volume: 62 start-page: 3775 year: 2015 end-page: 3782 ident: bib0021 article-title: Fault diagnosis of a wind turbine benchmark via identified fuzzy models publication-title: IEEE Trans. Ind. Electron. – volume: 157 start-page: 180 year: 2019 end-page: 197 ident: bib0028 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Processing – volume: 64 start-page: 2296 year: 2017 end-page: 2305 ident: bib0002 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Trans. Ind. Electron. – year: 2019 ident: bib0031 article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places publication-title: IEEE Trans. Ind. Electron. – volume: 64–65 start-page: 100 year: 2015 end-page: 131 ident: bib0047 article-title: Rolling element bearing diagnostics using the case western reserve university data: a benchmark study publication-title: Mech. Syst. Signal Process. – volume: 98 start-page: 113 year: 2019 end-page: 128 ident: bib0006 article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system publication-title: Nonlinear Dyn. – volume: 315 start-page: 412 year: 2018 end-page: 424 ident: bib0016 article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks publication-title: Neurocomputing – start-page: 1 year: 2016 end-page: 6 ident: bib0033 article-title: On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis publication-title: Proceedings of IEEE International Conference on Prognostics and Health Management – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib0043 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 66 start-page: 5525 year: 2019 end-page: 5534 ident: bib0035 article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Trans. Ind. Electron. – volume: 63 start-page: 3137 year: 2016 end-page: 3147 ident: bib0018 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Trans. Ind. Electron. – start-page: 8609 year: 2013 end-page: 8613 ident: bib0046 article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout publication-title: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2019 ident: bib0004 article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery publication-title: IEEE Trans. Instrum. Meas. – volume: 55 start-page: 224 year: 2015 end-page: 245 ident: bib0005 article-title: Review on dynamics of cracked gear systems publication-title: Eng. Fail. Anal. – reference: (2015). – year: 2019 ident: bib0011 article-title: Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification publication-title: IEEE Trans. Ind. Inf. – volume: 13 start-page: 1350 year: 2017 end-page: 1359 ident: bib0014 article-title: Convolutional discriminative feature learning for induction motor fault diagnosis publication-title: IEEE Trans. Ind. Inf. – volume: 28 start-page: 222 year: 2013 end-page: 230 ident: bib0025 article-title: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation publication-title: Proceedings of Thirtieth International Conference on Machine Learning – volume: 289 start-page: 1066 year: 2006 end-page: 1090 ident: bib0049 article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics publication-title: J. Sound Vib. – volume: 64 start-page: 5678 year: 2017 end-page: 5689 ident: bib0020 article-title: Takagisugeno fuzzy model based fault estimation and signal compensation with application to wind turbines publication-title: IEEE Trans. Ind. Electron. – start-page: 3320 year: 2014 end-page: 3328 ident: bib0026 article-title: How transferable are features in deep neural networks? publication-title: Proceedings of Twenty-seventh International Conference on Neural Information Processing Systems – volume: 27 start-page: 1317 year: 2019 end-page: 1325 ident: bib0008 article-title: Online fault diagnosis in industrial processes using multimodel exponential discriminant analysis algorithm publication-title: IEEE Trans. Control Syst. Technol. – volume: 66 start-page: 7316 year: 2018 end-page: 7325 ident: bib0037 article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Trans. Ind. Electron. – volume: 275 start-page: 167 year: 2018 end-page: 179 ident: bib0013 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing – volume: 13 start-page: 723 year: 2012 end-page: 773 ident: bib0039 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 2579 year: 2008 end-page: 2625 ident: bib0051 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 240 start-page: 98 year: 2017 end-page: 109 ident: bib0012 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing – volume: 89 start-page: 171 year: 2016 end-page: 178 ident: bib0045 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement – reference: (2017). – volume: 310 start-page: 77 year: 2018 end-page: 95 ident: bib0032 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing – volume: 388 start-page: 154 year: 2017 end-page: 170 ident: bib0038 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. – year: 2007 ident: bib0048 article-title: Rexnord technical services (2007). IMS, university of cincinnati. “bearing data set” publication-title: NASA Ames Prognostics Data Repository – volume: 310 start-page: 213 year: 2018 end-page: 222 ident: bib0017 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing – reference: D. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: bib0015 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. – volume: 9 start-page: 249 year: 2010 end-page: 256 ident: bib0042 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: J. Mach. Learn. Res. – year: 2012 ident: bib0040 article-title: Optimal Kernel Choice for Large-scale Two-sample Tests – volume: 65 start-page: 5931 year: 2018 end-page: 5940 ident: bib0007 article-title: Sparse exponential discriminant analysis and its application to fault diagnosis publication-title: IEEE Trans. Ind. Electron. – year: 2018 ident: bib0036 article-title: Highly-accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Trans. Ind. Inf. – start-page: 2604 year: 2017 end-page: 2610 ident: bib0003 article-title: Distant domain transfer learning publication-title: Proceedings of AAAI – volume: 352 start-page: 42 year: 2019 end-page: 53 ident: bib0030 article-title: Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method publication-title: Neurocomputing – year: 2019 ident: bib0022 article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning publication-title: IEEE Trans. Ind. Inf. – volume: 17 start-page: 425 year: 2017 ident: bib0034 article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals publication-title: Sensors – reference: (2014). – start-page: 1 year: 2015 end-page: 6 ident: bib0023 article-title: Bearing fault diagnosis based on SVD feature extraction and transfer learning classification publication-title: Proceedings of Prognostics and System Health Management Conference (PHM) – reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv: – start-page: 1 year: 2019 end-page: 9 ident: bib0010 article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net publication-title: IEEE Trans. Control Syst. Technol. – start-page: 1898 year: 2014 end-page: 1906 ident: bib0024 article-title: Flexible transfer learning under support and model shift publication-title: Proceedings of Twenty-seventh International Conference on Neural Information Processing Systems – volume: 32 start-page: 647 year: 2014 end-page: 655 ident: bib0027 article-title: Decaf: a deep convolutional activation feature for generic visual recognition publication-title: Proceedings of Thirty-first International Conference on Machine Learning – volume: 100 start-page: 439 year: 2018 end-page: 453 ident: bib0050 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Signal Process – start-page: 1 year: 2019 end-page: 11 ident: bib0009 article-title: Online fault diagnosis for industrial processes with bayesian network-based probabilistic ensemble learning strategy publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 37 start-page: 97 year: 2015 end-page: 105 ident: bib0029 article-title: Learning transferable features with deep adaptation networks publication-title: Proceedings of Thirty-second International Conference on Machine Learning – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: bib0019 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing – volume: 13 start-page: 1350 issue: 3 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0014 article-title: Convolutional discriminative feature learning for induction motor fault diagnosis publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2672988 – volume: 9 start-page: 249 year: 2010 ident: 10.1016/j.neucom.2019.12.033_bib0042 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2019.12.033_bib0041 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.neucom.2019.12.033_bib0051 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.neucom.2019.12.033_bib0043 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 27 start-page: 1317 issue: 3 year: 2019 ident: 10.1016/j.neucom.2019.12.033_bib0008 article-title: Online fault diagnosis in industrial processes using multimodel exponential discriminant analysis algorithm publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2017.2789188 – volume: 310 start-page: 213 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0017 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 – start-page: 3320 year: 2014 ident: 10.1016/j.neucom.2019.12.033_bib0026 article-title: How transferable are features in deep neural networks? – year: 2019 ident: 10.1016/j.neucom.2019.12.033_sbref0030 article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places publication-title: IEEE Trans. Ind. Electron. – year: 2012 ident: 10.1016/j.neucom.2019.12.033_bib0040 – start-page: 1 year: 2015 ident: 10.1016/j.neucom.2019.12.033_bib0023 article-title: Bearing fault diagnosis based on SVD feature extraction and transfer learning classification – volume: 17 start-page: 425 issue: 2 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0034 article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals publication-title: Sensors doi: 10.3390/s17020425 – volume: 28 start-page: 222 year: 2013 ident: 10.1016/j.neucom.2019.12.033_bib0025 article-title: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation – volume: 289 start-page: 1066 issue: 45 year: 2006 ident: 10.1016/j.neucom.2019.12.033_bib0049 article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.03.007 – year: 2018 ident: 10.1016/j.neucom.2019.12.033_sbref0035 article-title: Highly-accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Trans. Ind. Inf. – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2019.12.033_bib0009 article-title: Online fault diagnosis for industrial processes with bayesian network-based probabilistic ensemble learning strategy publication-title: IEEE Trans. Autom. Sci. Eng. – start-page: 1898 year: 2014 ident: 10.1016/j.neucom.2019.12.033_bib0024 article-title: Flexible transfer learning under support and model shift – volume: 100 start-page: 439 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0050 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2017.06.022 – volume: 157 start-page: 180 year: 2019 ident: 10.1016/j.neucom.2019.12.033_bib0028 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Processing doi: 10.1016/j.sigpro.2018.12.005 – year: 2007 ident: 10.1016/j.neucom.2019.12.033_sbref0045 article-title: Rexnord technical services (2007). IMS, university of cincinnati. “bearing data set” publication-title: NASA Ames Prognostics Data Repository – volume: 62 start-page: 3775 issue: 6 year: 2015 ident: 10.1016/j.neucom.2019.12.033_bib0021 article-title: Fault diagnosis of a wind turbine benchmark via identified fuzzy models publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2364548 – volume: 388 start-page: 154 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0038 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.043 – year: 2019 ident: 10.1016/j.neucom.2019.12.033_sbref0010 article-title: Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification publication-title: IEEE Trans. Ind. Inf. – volume: 64 start-page: 2296 issue: 3 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0002 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2627020 – volume: 352 start-page: 42 year: 2019 ident: 10.1016/j.neucom.2019.12.033_bib0030 article-title: Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.010 – start-page: 2604 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0003 article-title: Distant domain transfer learning – volume: 63 start-page: 3137 issue: 5 year: 2016 ident: 10.1016/j.neucom.2019.12.033_bib0018 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2519325 – volume: 32 start-page: 647 year: 2014 ident: 10.1016/j.neucom.2019.12.033_bib0027 article-title: Decaf: a deep convolutional activation feature for generic visual recognition – volume: 37 start-page: 97 year: 2015 ident: 10.1016/j.neucom.2019.12.033_bib0029 article-title: Learning transferable features with deep adaptation networks – start-page: 1 year: 2016 ident: 10.1016/j.neucom.2019.12.033_bib0033 article-title: On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis – volume: 66 start-page: 5525 issue: 7 year: 2019 ident: 10.1016/j.neucom.2019.12.033_bib0035 article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2868023 – volume: 315 start-page: 412 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0016 article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.034 – year: 2019 ident: 10.1016/j.neucom.2019.12.033_sbref0003 article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2913058 – volume: 310 start-page: 77 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0032 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.021 – volume: 66 start-page: 7316 issue: 9 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0037 article-title: Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2877090 – ident: 10.1016/j.neucom.2019.12.033_bib0001 – volume: 64–65 start-page: 100 year: 2015 ident: 10.1016/j.neucom.2019.12.033_bib0047 article-title: Rolling element bearing diagnostics using the case western reserve university data: a benchmark study publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.021 – year: 2019 ident: 10.1016/j.neucom.2019.12.033_sbref0021 article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning publication-title: IEEE Trans. Ind. Inf. – volume: 130 start-page: 377 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0019 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.07.028 – volume: 275 start-page: 167 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0013 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 55 start-page: 224 year: 2015 ident: 10.1016/j.neucom.2019.12.033_bib0005 article-title: Review on dynamics of cracked gear systems publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2015.06.004 – volume: 65 start-page: 5931 issue: 7 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0007 article-title: Sparse exponential discriminant analysis and its application to fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2782232 – volume: 98 start-page: 113 issue: 1 year: 2019 ident: 10.1016/j.neucom.2019.12.033_bib0006 article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05176-2 – ident: 10.1016/j.neucom.2019.12.033_bib0044 – volume: 64 start-page: 5678 issue: 7 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0020 article-title: Takagisugeno fuzzy model based fault estimation and signal compensation with application to wind turbines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2677327 – volume: 89 start-page: 171 year: 2016 ident: 10.1016/j.neucom.2019.12.033_bib0045 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 240 start-page: 98 year: 2017 ident: 10.1016/j.neucom.2019.12.033_bib0012 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.045 – volume: 13 start-page: 723 year: 2012 ident: 10.1016/j.neucom.2019.12.033_bib0039 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. – start-page: 8609 year: 2013 ident: 10.1016/j.neucom.2019.12.033_bib0046 article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2019.12.033_bib0010 article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net publication-title: IEEE Trans. Control Syst. Technol. – volume: 172 start-page: 1 year: 2018 ident: 10.1016/j.neucom.2019.12.033_bib0015 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 |
SSID | ssj0017129 |
Score | 2.5804393 |
Snippet | •The challenging cross-machine transfer learning problem in fault diagnosis is investigated.•The machine-invariant features are extracted using deep... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 235 |
SubjectTerms | Auto-encoder Deep learning Fault diagnosis Model generalization Rolling bearing |
Title | Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation |
URI | https://dx.doi.org/10.1016/j.neucom.2019.12.033 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1djfJPnIsxdIq9qKF3sJskoWVdrvo7tXfbrKPoiAKXpdkCLOTeeWbGYRumWIxT4AToJEhPLABaxwbIBAp4fzbVNQJ_adFOFvyh1Ww6qFJVwvjYJWt7m90eq2t2y-jlpujIstGz54lZr0Te-WsDWShK-LjPHJSfvexg3n4kU-bfns0IG51Vz5XY7xyUznMiDWCok4KMvazefpicqZH6KD1FfG4Oc4x6pn8BB12cxhwey1PkZzv-mqWuKZLNjVG0uAUqnWJdYOny95x10Icu_wr1sYUGKpyS1w7S21pQq6x3m4gyzFoKJp3-jO0nN6_TGakHZxAlI0ASqIUB09xYThEScJE4Kk4DJV7UROUphFTPk88gDBOIE4U06mDgyuwTKyHCLFz1M-3ublA2DpkNAERxKEHXHAGzAfwTRrasAS4TgeIdfySqu0q7oZbrGUHH3uVDZel47L0qbRcHiCy21U0XTX-WB91v0J-kw5pFf-vOy__vfMK7VMXW3uM0Pga9cu3ytxYB6RMhrWEDdHeeP44W3wCYPzbpw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClQAGVV_GBHt1NbOfhAwcERbu8LoDEzZ04jrQIsivICnHhT_EHGeexKlLVSkhco8wkGU_m5c8zAHvSylRlqDiKxHEVUcKapg45Jlb7-LbQdUH__CLuX6uTm-hmBl67szAeVtna_sam19a6vdJrpdkbD4e9y4CYUXRCvxz5QBnrFll56p6fKG973B8c0SL_EOL419Vhn7ejBbilGLni1ioMrNJOYZJlUkeBTePY-j0nLUSRSBuqLECM0wzTzMq88IBpi_SYesyOJL6zMK_IXPixCT9fpriSMAlF0-BPRNy_XnderwaVlW7iQSrkdXVdhZTy7_7wDx93vAxf2uCUHTTfvwIzrvwKS93gB9bagVUwg2kjz4rVfPl9Dcp0rMDJXcXyBsA3fGRdz3LmC74sd27McFKNuO-fmRNPLHOWj-5xWDLMcdwAA9bg-lPEuQ5z5ah034BRBCgy1FEaB6i0kihDxNAVMeVBqPJiA2QnL2PbNuZ-msad6fBqt6aRsvFSNqEwJOUN4FOqcdPG4z_3J91SmHfqaMjT_JNy88OUu7DQvzo_M2eDi9MtWBQ-sQ8kF-k2zFUPE7dD0U-Vfa-1jcHvz1bvNxiyFog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+cross-machine+fault+diagnosis+approach+with+deep+auto-encoder+and+domain+adaptation&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Xiang&rft.au=Jia%2C+Xiao-Dong&rft.au=Zhang%2C+Wei&rft.au=Ma%2C+Hui&rft.date=2020-03-28&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=383&rft.spage=235&rft.epage=247&rft_id=info:doi/10.1016%2Fj.neucom.2019.12.033&rft.externalDocID=S0925231219317369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |