Asymptotic stability of solutions for some classes of impulsive differential equations with distributed delay
In this paper we show the asymptotic stability of the solutions of some differential equations with delay and subject to impulses. After proving the existence of mild solutions on the half-line, we give a Gronwall–Bellman-type theorem. These results are prodromes of the theorem on the asymptotic sta...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 61; p. 103324 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we show the asymptotic stability of the solutions of some differential equations with delay and subject to impulses. After proving the existence of mild solutions on the half-line, we give a Gronwall–Bellman-type theorem. These results are prodromes of the theorem on the asymptotic stability of the mild solutions to a semilinear differential equation with functional delay and impulses in Banach spaces and of its application to a parametric differential equation driving a population dynamics model. |
---|---|
AbstractList | In this paper we show the asymptotic stability of the solutions of some differential equations with delay and subject to impulses. After proving the existence of mild solutions on the half-line, we give a Gronwall–Bellman-type theorem. These results are prodromes of the theorem on the asymptotic stability of the mild solutions to a semilinear differential equation with functional delay and impulses in Banach spaces and of its application to a parametric differential equation driving a population dynamics model. |
ArticleNumber | 103324 |
Author | Rubbioni, Paola |
Author_xml | – sequence: 1 givenname: Paola orcidid: 0000-0002-9433-345X surname: Rubbioni fullname: Rubbioni, Paola email: paola.rubbioni@unipg.it organization: Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy |
BookMark | eNqFkMtOwzAQRS0EEm3hD1jkB1LsOA-HBVJV8ZIqsYG15dhjMZWTFNttlb8nJaxYwGpm7tUZzdw5Oe_6Dgi5YXTJKCtvt8tR8Ee1zGjGRonzLD8jMyYqkRYVq8_HPi9FyjImLsk8hC2lrGKczUi7CkO7i31EnYSoGnQYh6S3SejdPmLfhcT2fpxaSLRTIUA4udju9i7gARKD1oKHLqJyCXzu1QQdMX6MXogem30EkxhwargiF1a5ANc_dUHeHx_e1s_p5vXpZb3apJrTMqa6aTiwoml0VlWlLoSuIde54TXjptY5r2lhWGOEFVSIwoBSOc1omZW2rsEaviB3017t-xA8WKkxfl8WvUInGZWn4ORWTsHJU3ByCm6E81_wzmOr_PAfdj9hMD52QPAyaIROg0EPOkrT498LvgA4s4_- |
CitedBy_id | crossref_primary_10_3390_math10020224 crossref_primary_10_11948_20220189 crossref_primary_10_3390_e24060828 crossref_primary_10_3934_mbe_2023200 |
Cites_doi | 10.5802/afst.723 10.1186/1687-1847-2012-34 10.1007/s00009-021-01730-8 10.1016/j.amc.2018.10.083 10.1016/j.na.2011.09.023 10.1016/j.jmaa.2016.04.024 10.1186/s13660-019-2250-0 10.1016/j.na.2011.06.055 10.1186/s13662-019-1994-7 10.1007/BF01203774 10.1007/s10957-014-0671-y 10.1088/0951-7715/29/3/823 10.1007/s00009-020-01574-8 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2021.103324 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | 10_1016_j_nonrwa_2021_103324 S1468121821000365 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-cbb3e15bbc2776c58c9e4c4d3913d9c43905d1bd8f80885deaa4020626f99efd3 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Tue Jul 01 04:03:13 EDT 2025 Thu Apr 24 22:52:05 EDT 2025 Fri Feb 23 02:44:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Impulsive problems Asymptotic stability Semilinear differential equations Population dynamics Functional delay Gronwall–Bellmann inequality |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-cbb3e15bbc2776c58c9e4c4d3913d9c43905d1bd8f80885deaa4020626f99efd3 |
ORCID | 0000-0002-9433-345X |
ParticipantIDs | crossref_citationtrail_10_1016_j_nonrwa_2021_103324 crossref_primary_10_1016_j_nonrwa_2021_103324 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2021_103324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Colao, Muglia, Xu (b2) 2016; 441 Cardinali, Rubbioni (b19) 2019; 347 Samoǐlenko, Perestyuk (b10) 1995; vol. 14 Lakshmikantham, Baǐnov, Simeonov (b9) 1989; vol. 6 Li, Wei (b11) 2019; 2019 Denkowski, Migórski, Papageorgiou (b15) 2003 Van Minh, Räbiger, Schnaubelt (b12) 1998; 32 Hu, Nie (b4) 2019 Cardinali, Rubbioni (b1) 2012; 75 Zhang (b6) 2020; 39 Grudzka, Rykaczewski (b13) 2015; 166 Appell, Erzakova, Falcon Santana, Väth (b16) 2004 Liu, Zhang (b5) 2012; 2012 Cardinali, Rubbioni (b14) 2021; 18 (b17) 2017 Olszowy, Wȩdrychowicz (b8) 2011; 74 Liu, Wang, O’Regan, Fečkan (b3) 2020; 17 Malaguti, Rubbioni (b18) 2016; 29 Baǐnov, Covachev, Stamova (b7) 1991; 12 Lakshmikantham (10.1016/j.nonrwa.2021.103324_b9) 1989; vol. 6 Malaguti (10.1016/j.nonrwa.2021.103324_b18) 2016; 29 Baǐnov (10.1016/j.nonrwa.2021.103324_b7) 1991; 12 Appell (10.1016/j.nonrwa.2021.103324_b16) 2004 Liu (10.1016/j.nonrwa.2021.103324_b5) 2012; 2012 (10.1016/j.nonrwa.2021.103324_b17) 2017 Samoǐlenko (10.1016/j.nonrwa.2021.103324_b10) 1995; vol. 14 Grudzka (10.1016/j.nonrwa.2021.103324_b13) 2015; 166 Colao (10.1016/j.nonrwa.2021.103324_b2) 2016; 441 Cardinali (10.1016/j.nonrwa.2021.103324_b1) 2012; 75 Van Minh (10.1016/j.nonrwa.2021.103324_b12) 1998; 32 Olszowy (10.1016/j.nonrwa.2021.103324_b8) 2011; 74 Cardinali (10.1016/j.nonrwa.2021.103324_b14) 2021; 18 Liu (10.1016/j.nonrwa.2021.103324_b3) 2020; 17 Zhang (10.1016/j.nonrwa.2021.103324_b6) 2020; 39 Cardinali (10.1016/j.nonrwa.2021.103324_b19) 2019; 347 Li (10.1016/j.nonrwa.2021.103324_b11) 2019; 2019 Hu (10.1016/j.nonrwa.2021.103324_b4) 2019 Denkowski (10.1016/j.nonrwa.2021.103324_b15) 2003 |
References_xml | – volume: 39 year: 2020 ident: b6 article-title: Asymptotical stability of numerical methods for semi-linear impulsive differential equations publication-title: J. Comput. Appl. Math. – volume: 12 start-page: 149 year: 1991 end-page: 161 ident: b7 article-title: Estimates of the solutions of impulsive quasilinear functional-differential equations publication-title: Ann. Fac. Sci. Toulouse Math. (5) – volume: 2012 start-page: 34 year: 2012 ident: b5 article-title: Existence and stability of almost periodic solutions for impulsive differential equations publication-title: Adv. Difference Equ. – volume: vol. 6 year: 1989 ident: b9 article-title: Theory of impulsive differential equations publication-title: Series in Modern Applied Mathematics – volume: 441 start-page: 668 year: 2016 end-page: 683 ident: b2 article-title: An existence result for a new class of impulsive functional differential equations with delay publication-title: J. Math. Anal. Appl. – year: 2017 ident: b17 article-title: Advances in Nonlinear Analysis Via the Concept of Measures of Noncompactness – volume: 17 start-page: 155 year: 2020 ident: b3 article-title: A new class of publication-title: Mediterr. J. Math. – volume: 18 start-page: 91 year: 2021 ident: b14 article-title: Hereditary evolution processes under impulsive effects publication-title: Mediterr. J. Math. – volume: 75 start-page: 871 year: 2012 end-page: 879 ident: b1 article-title: Impulsive mild solutions for semilinear differential inclusions with nonlocal conditions in Banach spaces publication-title: Nonlinear Anal. – volume: 32 start-page: 332 year: 1998 end-page: 353 ident: b12 article-title: Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line publication-title: Integral Equations Operator Theory – volume: vol. 14 year: 1995 ident: b10 article-title: Impulsive differential equations publication-title: World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises – year: 2003 ident: b15 article-title: An Introduction to Nonlinear Analysis: Theory – volume: 347 start-page: 29 year: 2019 end-page: 39 ident: b19 article-title: The controllability of an impulsive integro-differential process with nonlocal feedback controls publication-title: Appl. Math. Comput. – volume: 74 start-page: 6758 year: 2011 end-page: 6769 ident: b8 article-title: On the existence and asymptotic behaviour of solutions of an evolution equation and an application to the Feynman–Kac theorem publication-title: Nonlinear Anal. – volume: 2019 start-page: 51 year: 2019 ident: b11 article-title: Existence and asymptotic stability of periodic solutions for impulsive delay evolution equations publication-title: Adv. Difference Equ. – volume: 29 start-page: 823 year: 2016 end-page: 850 ident: b18 article-title: Nonsmooth feedback controls of nonlocal dispersal models publication-title: Nonlinearity – year: 2019 ident: b4 article-title: Exponential stability analysis of nonlinear systems with bounded gain error publication-title: J. Inequal. Appl. – volume: 166 start-page: 414 year: 2015 end-page: 439 ident: b13 article-title: On approximate controllability of functional impulsive evolution inclusions in a Hilbert space publication-title: J. Optim. Theory Appl. – start-page: 317 year: 2004 end-page: 336 ident: b16 article-title: On some Banach space constants arising in nonlinear fixed point and eigenvalue theory publication-title: Fixed Point Theory Appl. – volume: 12 start-page: 149 issue: 2 year: 1991 ident: 10.1016/j.nonrwa.2021.103324_b7 article-title: Estimates of the solutions of impulsive quasilinear functional-differential equations publication-title: Ann. Fac. Sci. Toulouse Math. (5) doi: 10.5802/afst.723 – volume: 39 issue: 1 year: 2020 ident: 10.1016/j.nonrwa.2021.103324_b6 article-title: Asymptotical stability of numerical methods for semi-linear impulsive differential equations publication-title: J. Comput. Appl. Math. – volume: vol. 14 year: 1995 ident: 10.1016/j.nonrwa.2021.103324_b10 article-title: Impulsive differential equations – volume: 2012 start-page: 34 year: 2012 ident: 10.1016/j.nonrwa.2021.103324_b5 article-title: Existence and stability of almost periodic solutions for impulsive differential equations publication-title: Adv. Difference Equ. doi: 10.1186/1687-1847-2012-34 – volume: 18 start-page: 91 issue: 3 year: 2021 ident: 10.1016/j.nonrwa.2021.103324_b14 article-title: Hereditary evolution processes under impulsive effects publication-title: Mediterr. J. Math. doi: 10.1007/s00009-021-01730-8 – volume: 347 start-page: 29 year: 2019 ident: 10.1016/j.nonrwa.2021.103324_b19 article-title: The controllability of an impulsive integro-differential process with nonlocal feedback controls publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.10.083 – volume: 75 start-page: 871 issue: 2 year: 2012 ident: 10.1016/j.nonrwa.2021.103324_b1 article-title: Impulsive mild solutions for semilinear differential inclusions with nonlocal conditions in Banach spaces publication-title: Nonlinear Anal. doi: 10.1016/j.na.2011.09.023 – year: 2003 ident: 10.1016/j.nonrwa.2021.103324_b15 – year: 2017 ident: 10.1016/j.nonrwa.2021.103324_b17 – volume: 441 start-page: 668 issue: 2 year: 2016 ident: 10.1016/j.nonrwa.2021.103324_b2 article-title: An existence result for a new class of impulsive functional differential equations with delay publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.04.024 – year: 2019 ident: 10.1016/j.nonrwa.2021.103324_b4 article-title: Exponential stability analysis of nonlinear systems with bounded gain error publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2250-0 – start-page: 317 issue: 4 year: 2004 ident: 10.1016/j.nonrwa.2021.103324_b16 article-title: On some Banach space constants arising in nonlinear fixed point and eigenvalue theory publication-title: Fixed Point Theory Appl. – volume: vol. 6 year: 1989 ident: 10.1016/j.nonrwa.2021.103324_b9 article-title: Theory of impulsive differential equations – volume: 74 start-page: 6758 issue: 17 year: 2011 ident: 10.1016/j.nonrwa.2021.103324_b8 article-title: On the existence and asymptotic behaviour of solutions of an evolution equation and an application to the Feynman–Kac theorem publication-title: Nonlinear Anal. doi: 10.1016/j.na.2011.06.055 – volume: 2019 start-page: 51 year: 2019 ident: 10.1016/j.nonrwa.2021.103324_b11 article-title: Existence and asymptotic stability of periodic solutions for impulsive delay evolution equations publication-title: Adv. Difference Equ. doi: 10.1186/s13662-019-1994-7 – volume: 32 start-page: 332 issue: 3 year: 1998 ident: 10.1016/j.nonrwa.2021.103324_b12 article-title: Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line publication-title: Integral Equations Operator Theory doi: 10.1007/BF01203774 – volume: 166 start-page: 414 issue: 2 year: 2015 ident: 10.1016/j.nonrwa.2021.103324_b13 article-title: On approximate controllability of functional impulsive evolution inclusions in a Hilbert space publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0671-y – volume: 29 start-page: 823 issue: 3 year: 2016 ident: 10.1016/j.nonrwa.2021.103324_b18 article-title: Nonsmooth feedback controls of nonlocal dispersal models publication-title: Nonlinearity doi: 10.1088/0951-7715/29/3/823 – volume: 17 start-page: 155 issue: 5 year: 2020 ident: 10.1016/j.nonrwa.2021.103324_b3 article-title: A new class of (ω,c)-Periodic non-instantaneous Impulsive Differential Equations publication-title: Mediterr. J. Math. doi: 10.1007/s00009-020-01574-8 |
SSID | ssj0017131 |
Score | 2.3247173 |
Snippet | In this paper we show the asymptotic stability of the solutions of some differential equations with delay and subject to impulses. After proving the existence... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103324 |
SubjectTerms | Asymptotic stability Functional delay Gronwall–Bellmann inequality Impulsive problems Population dynamics Semilinear differential equations |
Title | Asymptotic stability of solutions for some classes of impulsive differential equations with distributed delay |
URI | https://dx.doi.org/10.1016/j.nonrwa.2021.103324 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jU26ee2xFEt9tIha6C1kH4FKa2OTIr34253JJkFBFDyFze5CmJ3Mzux-8w0hlzqQXCtpWzZjCR7dhFasGbM4uMuh1L5gBeR_NPaHE_d26k0bpF_lwiCssrT9xqYX1rp80yml2Ulns84TJg05SEDuFKwqmGjuugFq-dVHDfNwIAhzqgwjHF2lzxUYL4iwV-_IPtR1MPucdd2ft6cvW85gj-yWviLtmc_ZJw39ekB2RjXRanZIFr1ss0jzJbQo-HkF0nVDlwmtVYqCVwqthaYSHWWdYe9ska7nCFynVYEU-NHnVL8Z4u-M4vEs9GWmHpZWFMkkN0dkMrh-7g-tsoKCJSEUyC0pBNOOJ4TsBoEvvRAWxpWuYtxhiktwRmxPOUKFSQjWxlM6jjGehCAn4Vwnih2TJshInxDKdQyG01Z4LecGTHIFgU6c2FLawo-DuEVYJbhIlvTiWOViHlU4spfIiDtCcUdG3C1i1bNSQ6_xx_igWpPom5pEsAP8OvP03zPPyDa2DILvnDTz1VpfgCeSi3aham2y1es_3j_g8-ZuOP4E4M3iUg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw9eQ5NunsdSLNE-LrbQW0h2N1BpbWxSpP_embxQEAWPm81AmJ3Mzux-8w3Ag3KEp6TQNZ3zmI5uXC1UnGsehsuuUHbEc8j_eGL7M_N5bs0b0K9qYQhWWfr-wqfn3rp80im12UkWi84LFQ0ZREBu5Kwq1h60iJ3KakKr9zT0J_VlAuZhRlVkRAJVBV0O88Ike_NBBERdgwrQedf8eYf6susMjuGoDBdZr_iiE2iot1M4HNdcq-kZrHrpbpVkaxwxDPVysOuOrWNWWxXDwBRHK8UExcoqpdnFKtkuCbvOqh4p-K8vmXovuL9TRie0OJcWLbGUZMQnuTuH2eBx2ve1somCJjAbyDQRRVwZVhSJruPYwnJxbUxhSu4ZXHoC4xHdkkYk3dhFh2NJFYaUUmKeE3ueiiW_gCbqSF0C81SIvlOXdDNnOlx4EnOdMNaF0CM7dMI28EpxgSgZxqnRxTKooGSvQaHugNQdFOpug1ZLJQXDxh_vO9WaBN8sJcBN4FfJq39L3sO-Px2PgtHTZHgNBzRTAPpuoJlttuoWA5MsuisN7xOKTuNu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+stability+of+solutions+for+some+classes+of+impulsive+differential+equations+with+distributed+delay&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Rubbioni%2C+Paola&rft.date=2021-10-01&rft.issn=1468-1218&rft.volume=61&rft.spage=103324&rft_id=info:doi/10.1016%2Fj.nonrwa.2021.103324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2021_103324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |