Consequences of refuge and diffusion in a spatiotemporal predator–prey model

In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant regi...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 60; p. 103311
Main Authors Han, Renji, Guin, Lakshmi Narayan, Dai, Binxiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray–Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe–spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction–diffusion predator–prey system.
AbstractList In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray–Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe–spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction–diffusion predator–prey system.
ArticleNumber 103311
Author Guin, Lakshmi Narayan
Han, Renji
Dai, Binxiang
Author_xml – sequence: 1
  givenname: Renji
  surname: Han
  fullname: Han, Renji
  email: renjihan@csu.edu.cn
  organization: School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
– sequence: 2
  givenname: Lakshmi Narayan
  surname: Guin
  fullname: Guin, Lakshmi Narayan
  organization: Department of Mathematics, Visva-Bharati, Santiniketan 731235, India
– sequence: 3
  givenname: Binxiang
  surname: Dai
  fullname: Dai, Binxiang
  organization: School of Mathematics and Statistics, Central South University, Changsha 410083, PR China
BookMark eNqFkE1OwzAUhC1UJNrCDVj4Ail-cZM4LJBQxZ-EYANry7GfkavUDnYK6o47cENOQqKyYgGrNxppRvO-GZn44JGQU2ALYFCerReDEd_VImc5DBbnAAdkCqISWVFBPRn0shQZ5CCOyCylNWNQAYcpeVgFn_B1i15josHSiHb7glR5Q42zdptc8NR5qmjqVO9Cj5suRNXSLqJRfYhfH5-D3NFNMNgek0Or2oQnP3dOnq-vnla32f3jzd3q8j7TnJV9pmu0YBuAhglR68YqphgvsDA52rJgtQHOS6O1qhujhBJFAUuuKl1agLLK-Zyc73t1DCkNm6V2_TjP91G5VgKTIxm5lnsyciQj92SG8PJXuItuo-Luv9jFPobDY28Oo0zajdyMi6h7aYL7u-Ab49aEWQ
CitedBy_id crossref_primary_10_1016_j_matcom_2023_01_034
crossref_primary_10_1016_j_matcom_2024_01_015
crossref_primary_10_1007_s40819_023_01546_y
crossref_primary_10_1007_s40435_023_01179_5
crossref_primary_10_1186_s13662_022_03749_x
crossref_primary_10_1007_s40435_022_01048_7
crossref_primary_10_1140_epjp_s13360_022_02358_7
crossref_primary_10_1016_j_chaos_2023_113273
crossref_primary_10_1142_S0218127423500876
crossref_primary_10_1142_S0218127424500032
crossref_primary_10_1155_2022_5278036
crossref_primary_10_1016_j_jde_2022_10_018
crossref_primary_10_1002_mma_8837
crossref_primary_10_1080_17513758_2023_2222142
crossref_primary_10_3934_math_20241170
crossref_primary_10_1016_j_amc_2022_127007
crossref_primary_10_1016_j_chaos_2024_114622
crossref_primary_10_1007_s40435_022_01104_2
crossref_primary_10_1007_s40435_022_00935_3
crossref_primary_10_3934_mbe_2022558
crossref_primary_10_3934_mbe_2021448
crossref_primary_10_1016_j_nonrwa_2024_104133
crossref_primary_10_1140_epjp_s13360_023_04466_4
crossref_primary_10_3934_dcdsb_2022082
crossref_primary_10_1007_s12346_021_00517_2
crossref_primary_10_1142_S0218127422500699
crossref_primary_10_1016_j_chaos_2023_113441
crossref_primary_10_1016_j_cnsns_2023_107700
crossref_primary_10_1016_j_chaos_2023_114153
crossref_primary_10_1016_j_engappai_2023_107491
crossref_primary_10_1142_S0218127424500469
crossref_primary_10_3934_math_20231481
crossref_primary_10_1155_2023_9190167
crossref_primary_10_1088_1742_5468_ac946d
crossref_primary_10_3934_mbe_2021437
crossref_primary_10_1063_5_0126782
Cites_doi 10.1016/S0022-5193(89)80211-5
10.1016/0040-5809(86)90004-3
10.1016/j.camwa.2014.08.025
10.2307/1935232
10.1093/imamat/hxv006
10.2307/3256
10.1016/j.ecocom.2014.04.001
10.1126/science.262.5138.1429
10.1515/ijnsns-2017-0224
10.1016/0092-8240(94)00024-7
10.1016/0169-5347(91)90052-Y
10.1142/S0218127418300045
10.1007/s11071-016-3326-8
10.1016/j.nonrwa.2009.07.003
10.1016/j.nonrwa.2006.12.017
10.1016/j.jmaa.2010.08.029
10.1016/0022-0396(88)90147-7
10.1007/s11538-006-9062-3
10.1103/PhysRevLett.87.198101
10.1007/s002850100100
10.1016/j.nonrwa.2018.05.018
10.2307/3866
10.2307/1936298
10.1007/s11071-012-0374-6
10.1098/rspb.1993.0015
10.1016/j.jde.2006.08.001
10.1006/tpbi.1995.1001
10.1016/j.ecocom.2018.10.004
10.1016/j.ecolmodel.2004.06.031
10.1007/BF02458307
10.1016/j.mcm.2008.05.052
10.1016/j.jde.2011.03.004
10.1006/tpbi.1998.1351
10.1016/S0304-3800(03)00131-5
10.1006/jmaa.2000.7343
10.1016/S0304-3800(01)00255-1
10.1007/s00285-014-0779-6
10.1017/S0308210500002742
10.1006/jdeq.1996.0157
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2021.103311
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2021_103311
S1468121821000237
GrantInformation_xml – fundername: Department of Education of Zhejiang Province, PR China
  grantid: Y201942138
  funderid: http://dx.doi.org/10.13039/501100008867
– fundername: National Natural Science Foundation of China
  grantid: 11871475
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-c9ef1fb11b0889cbfa0a035e5d2ef6509d1336dcca9bda8a855143a7c6f116723
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Tue Jul 01 04:03:13 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Fri Feb 23 02:46:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Persistence
Spatiotemporal pattern formation
Diffusion-driven instability
Reaction–diffusion model
Prey refuge
Non-constant steady state
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c9ef1fb11b0889cbfa0a035e5d2ef6509d1336dcca9bda8a855143a7c6f116723
ParticipantIDs crossref_citationtrail_10_1016_j_nonrwa_2021_103311
crossref_primary_10_1016_j_nonrwa_2021_103311
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2021_103311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Malchow (b40) 1993; 251
DeAngelis, Goldstein, O’Neill (b9) 1975; 56
Garvie (b46) 2007; 69
Salt (b6) 1974; 55
Murray (b5) 2002
Pang, Wang (b45) 2003; 133A
Lou, Ni (b44) 1996; 131
Collings (b19) 1995; 57
Beddington (b8) 1975; 44
Hanski (b2) 1991; 6
Guin, Acharya (b25) 2017; 88
Srinivasu, Gayitri (b22) 2005; 181
Lin, Ni, Takagi (b43) 1988; 72
Shi, Ruan (b34) 2015; 80
Chakraborty, Bairagi (b37) 2019; 37
McNair (b13) 1986; 29
Haque, Rahman, Venturino, Li (b29) 2014; 20
Gonzalez-Olivares, Ramos-Jiliberto (b15) 2003; 166
Krivan (b14) 1998; 53
Hawkins, Thomas, Hochberg (b18) 1993; 262
Madzvamuse, Ndakwo, Barreira (b33) 2015; 70
Li, Takeuchi (b12) 2011; 374
Ji, Wu (b17) 2010; 11
Hernandez (b42) 1981
Sun, Jin, Li, Haque, Li (b32) 2012; 69
Hsu, Hwang, Kuang (b4) 2001; 43
Han, Dai (b36) 2019; 45
Gonzalez-Olivares, Gonzalez-Yanez, Becerra-Klix (b20) 2012
Haque, Sarwardi (b27) 2018; 28
Henry (b39) 1981
Ko, Ryu (b16) 2006; 231
Molla, Sabiar Rahman, Sarwardi (b26) 2019; 20
Arditi, Ginzburg (b1) 1989; 139
Wang, Shi, Wei (b31) 2011; 251
Cantrell, Cosner (b10) 2001; 257
Ruxton (b28) 1995; 47
Dubey, Das, Hussain (b30) 2001; 141
Hassell (b7) 1971; 40
von Hardenberg, Meron, Shachak, Zarmi (b47) 2001; 87
Sambath, Balachandran, Guin (b35) 2018; 28
Hassell (b21) 1978
Yafia, Eladnani, Alaoui (b23) 2008; 9
Cross, Greenside (b41) 2009
Zeng, Fan (b11) 2008; 48
Guin, Mandal (b24) 2014; 68
Cosner (b3) 1996; 58
Ye, Li, Wang, Wu (b38) 2011
Shi (10.1016/j.nonrwa.2021.103311_b34) 2015; 80
Lin (10.1016/j.nonrwa.2021.103311_b43) 1988; 72
Madzvamuse (10.1016/j.nonrwa.2021.103311_b33) 2015; 70
McNair (10.1016/j.nonrwa.2021.103311_b13) 1986; 29
Srinivasu (10.1016/j.nonrwa.2021.103311_b22) 2005; 181
Cosner (10.1016/j.nonrwa.2021.103311_b3) 1996; 58
Malchow (10.1016/j.nonrwa.2021.103311_b40) 1993; 251
Collings (10.1016/j.nonrwa.2021.103311_b19) 1995; 57
Yafia (10.1016/j.nonrwa.2021.103311_b23) 2008; 9
Guin (10.1016/j.nonrwa.2021.103311_b25) 2017; 88
Wang (10.1016/j.nonrwa.2021.103311_b31) 2011; 251
Ko (10.1016/j.nonrwa.2021.103311_b16) 2006; 231
Hernandez (10.1016/j.nonrwa.2021.103311_b42) 1981
Ji (10.1016/j.nonrwa.2021.103311_b17) 2010; 11
Salt (10.1016/j.nonrwa.2021.103311_b6) 1974; 55
DeAngelis (10.1016/j.nonrwa.2021.103311_b9) 1975; 56
Guin (10.1016/j.nonrwa.2021.103311_b24) 2014; 68
Han (10.1016/j.nonrwa.2021.103311_b36) 2019; 45
Hawkins (10.1016/j.nonrwa.2021.103311_b18) 1993; 262
Cross (10.1016/j.nonrwa.2021.103311_b41) 2009
Lou (10.1016/j.nonrwa.2021.103311_b44) 1996; 131
Li (10.1016/j.nonrwa.2021.103311_b12) 2011; 374
Molla (10.1016/j.nonrwa.2021.103311_b26) 2019; 20
Garvie (10.1016/j.nonrwa.2021.103311_b46) 2007; 69
Arditi (10.1016/j.nonrwa.2021.103311_b1) 1989; 139
Hsu (10.1016/j.nonrwa.2021.103311_b4) 2001; 43
Beddington (10.1016/j.nonrwa.2021.103311_b8) 1975; 44
Murray (10.1016/j.nonrwa.2021.103311_b5) 2002
Gonzalez-Olivares (10.1016/j.nonrwa.2021.103311_b20) 2012
Ruxton (10.1016/j.nonrwa.2021.103311_b28) 1995; 47
Cantrell (10.1016/j.nonrwa.2021.103311_b10) 2001; 257
Hanski (10.1016/j.nonrwa.2021.103311_b2) 1991; 6
von Hardenberg (10.1016/j.nonrwa.2021.103311_b47) 2001; 87
Zeng (10.1016/j.nonrwa.2021.103311_b11) 2008; 48
Sun (10.1016/j.nonrwa.2021.103311_b32) 2012; 69
Hassell (10.1016/j.nonrwa.2021.103311_b7) 1971; 40
Dubey (10.1016/j.nonrwa.2021.103311_b30) 2001; 141
Krivan (10.1016/j.nonrwa.2021.103311_b14) 1998; 53
Chakraborty (10.1016/j.nonrwa.2021.103311_b37) 2019; 37
Gonzalez-Olivares (10.1016/j.nonrwa.2021.103311_b15) 2003; 166
Henry (10.1016/j.nonrwa.2021.103311_b39) 1981
Pang (10.1016/j.nonrwa.2021.103311_b45) 2003; 133A
Haque (10.1016/j.nonrwa.2021.103311_b27) 2018; 28
Ye (10.1016/j.nonrwa.2021.103311_b38) 2011
Hassell (10.1016/j.nonrwa.2021.103311_b21) 1978
Sambath (10.1016/j.nonrwa.2021.103311_b35) 2018; 28
Haque (10.1016/j.nonrwa.2021.103311_b29) 2014; 20
References_xml – year: 2011
  ident: b38
  article-title: Introduction to Reaction–Diffusion Equations
– volume: 58
  start-page: 207
  year: 1996
  end-page: 246
  ident: b3
  article-title: Variability, vagueness and comparison methods for ecological models
  publication-title: Bull. Math. Biol.
– volume: 133A
  start-page: 919
  year: 2003
  end-page: 942
  ident: b45
  article-title: Quality analysis of a ratio-dependent predator–prey system with diffusion
  publication-title: Proc. R. Soc. Edinburgh
– year: 2012
  ident: b20
  article-title: Prey refuge use as a function of predator–prey encounters
  publication-title: Int. J. Biomath.
– year: 2009
  ident: b41
  article-title: Pattern Formation and Dynamics in Nonequilibrium Systems
– volume: 139
  start-page: 311
  year: 1989
  end-page: 326
  ident: b1
  article-title: Coupling in predator–prey dynamics: ratio-dependence
  publication-title: J. Theoret. Biol.
– volume: 88
  start-page: 1501
  year: 2017
  end-page: 1533
  ident: b25
  article-title: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting
  publication-title: Nonlinear Dynam.
– volume: 374
  start-page: 644
  year: 2011
  end-page: 654
  ident: b12
  article-title: Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response
  publication-title: J. Math. Anal. Appl.
– volume: 37
  start-page: 11
  year: 2019
  end-page: 23
  ident: b37
  article-title: Complexity in a prey-predator model with prey refuge and diffusion
  publication-title: Ecol. Complex.
– volume: 29
  start-page: 38
  year: 1986
  end-page: 63
  ident: b13
  article-title: The effects of refuges on predator–prey interactions: a reconsideration
  publication-title: Theor. Popul. Biol.
– volume: 166
  start-page: 135
  year: 2003
  end-page: 146
  ident: b15
  article-title: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability
  publication-title: Ecol. Model.
– year: 2002
  ident: b5
  article-title: Mathematical Biology I II
– volume: 20
  start-page: 89
  year: 2019
  end-page: 104
  ident: b26
  article-title: Dynamics of a predator–prey model with Holling Type II functional response incorporating a prey refuge depending on both the species
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 70
  start-page: 709
  year: 2015
  end-page: 743
  ident: b33
  article-title: Cross-diffusion-driven instability for reaction–diffusion systems: analysis and simulations
  publication-title: J. Math. Biol.
– year: 1981
  ident: b39
  article-title: Geometric Theory of Semilinear Parabolic Equations
– volume: 257
  start-page: 206
  year: 2001
  end-page: 222
  ident: b10
  article-title: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response
  publication-title: J. Math. Anal. Appl.
– volume: 231
  start-page: 534
  year: 2006
  end-page: 550
  ident: b16
  article-title: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge
  publication-title: J. Differential Equations
– volume: 141
  start-page: 67
  year: 2001
  end-page: 76
  ident: b30
  article-title: A predator–prey interaction model with self and cross-diffusion
  publication-title: Ecol. Model.
– start-page: 161
  year: 1981
  end-page: 173
  ident: b42
  article-title: Some existence and stability results for solutions of reaction-diffuision systems with nonlinear boundary conditions
  publication-title: Nonlinear Differential Equations:Invariance, Stability, and Bifurcaion
– volume: 69
  start-page: 1631
  year: 2012
  end-page: 1638
  ident: b32
  article-title: Spatial patterns of a predator–prey model with cross-diffusion
  publication-title: Nonlinear Dynam.
– volume: 45
  start-page: 822
  year: 2019
  end-page: 853
  ident: b36
  article-title: Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect
  publication-title: Nonlinear Anal. RWA
– volume: 251
  start-page: 1276
  year: 2011
  end-page: 1304
  ident: b31
  article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey
  publication-title: J. Differential Equations
– volume: 55
  start-page: 434
  year: 1974
  end-page: 439
  ident: b6
  article-title: Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum
  publication-title: Ecology
– volume: 20
  start-page: 248
  year: 2014
  end-page: 256
  ident: b29
  article-title: Effect of a functional response-dependent prey refuge in a predator–prey model
  publication-title: Ecol. Complex.
– volume: 68
  start-page: 1325
  year: 2014
  end-page: 1340
  ident: b24
  article-title: Effect of prey refuge on spatiotemporal dynamics of reaction–diffusion system
  publication-title: Comput. Math. Appl.
– volume: 69
  start-page: 931
  year: 2007
  end-page: 956
  ident: b46
  article-title: Finite-Difference schemes for reaction–diffusion equations modelling predator–prey interactions in MATLAB
  publication-title: Bull. Math. Biol.
– volume: 43
  start-page: 377
  year: 2001
  end-page: 396
  ident: b4
  article-title: Rich dynamics of a ratio-dependent one-prey two-predators model
  publication-title: J. Math. Biol.
– volume: 251
  start-page: 103
  year: 1993
  end-page: 109
  ident: b40
  article-title: Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics
  publication-title: Proc. R. Soc. B
– volume: 262
  start-page: 1429
  year: 1993
  end-page: 1432
  ident: b18
  article-title: Refuge theory and biological control
  publication-title: Science
– volume: 131
  start-page: 79
  year: 1996
  end-page: 131
  ident: b44
  article-title: Diffusion, self-diffusion and cross-diffusion
  publication-title: J. Differential Equations
– volume: 72
  start-page: 1
  year: 1988
  end-page: 27
  ident: b43
  article-title: Large amplitude stationary solutions to a chemotaxis systems
  publication-title: J. Differential Equations
– volume: 44
  start-page: 331
  year: 1975
  end-page: 340
  ident: b8
  article-title: Mutual interference between parasites or predators and its effect on searching efficiency
  publication-title: J. Anim. Ecol.
– volume: 57
  start-page: 63
  year: 1995
  end-page: 76
  ident: b19
  article-title: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge
  publication-title: Bull. Math. Biol.
– volume: 56
  start-page: 881
  year: 1975
  end-page: 892
  ident: b9
  article-title: A model for throphic interaction
  publication-title: Ecology
– year: 1978
  ident: b21
  article-title: The Dynamics of Arthropod Predator–Prey Systems
– volume: 47
  start-page: 1
  year: 1995
  end-page: 17
  ident: b28
  article-title: Short term refuge use and stability of predator–prey models
  publication-title: Theor. Popul. Biol.
– volume: 80
  start-page: 1534
  year: 2015
  end-page: 1568
  ident: b34
  article-title: Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference
  publication-title: IMA J. Appl. Math.
– volume: 9
  start-page: 2055
  year: 2008
  end-page: 2067
  ident: b23
  article-title: Limit cycle and numerical simulations for small and large delays in a predator–prey model with modeified Leslie-Gower and Holling-type II schemes
  publication-title: Nonlinear Anal. RWA
– volume: 11
  start-page: 2285
  year: 2010
  end-page: 2295
  ident: b17
  article-title: Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a constant prey refuge
  publication-title: Nonlinear Anal. RWA
– volume: 40
  start-page: 473
  year: 1971
  end-page: 486
  ident: b7
  article-title: Mutual interference between searching insect parasites
  publication-title: J. Anim. Ecol.
– volume: 53
  start-page: 131
  year: 1998
  end-page: 142
  ident: b14
  article-title: Effects of optimal antipredator behavior of prey on predator–prey dynamics: the role of refuges
  publication-title: Theor. Popul. Biol.
– volume: 6
  start-page: 141
  year: 1991
  end-page: 142
  ident: b2
  article-title: The functional response of predators: worries about scale
  publication-title: Trends Ecol. Evol.
– volume: 48
  start-page: 1755
  year: 2008
  end-page: 1764
  ident: b11
  article-title: Study on a non-autonomous predator–prey system with Beddington–DeAngelis functional response
  publication-title: Math. Comput. Modelling
– volume: 87
  year: 2001
  ident: b47
  article-title: Diversity of vegetation patterns and desertification
  publication-title: Phys. Rev. Lett.
– volume: 181
  start-page: 191
  year: 2005
  end-page: 202
  ident: b22
  article-title: Influence of prey reserve capacity on predator–prey dynamics
  publication-title: Ecol. Model.
– volume: 28
  start-page: 1
  year: 2018
  end-page: 16
  ident: b27
  article-title: Dynamics of a harvested prey-predator model with prey refuge dependent on both species
  publication-title: Int. J. Bifur. Chaos
– volume: 28
  year: 2018
  ident: b35
  article-title: Spatiotemporal patterns in a predator–prey model with cross-diffusion effect
  publication-title: Int. J. Bifurcation Chaos
– start-page: 161
  year: 1981
  ident: 10.1016/j.nonrwa.2021.103311_b42
  article-title: Some existence and stability results for solutions of reaction-diffuision systems with nonlinear boundary conditions
– volume: 139
  start-page: 311
  year: 1989
  ident: 10.1016/j.nonrwa.2021.103311_b1
  article-title: Coupling in predator–prey dynamics: ratio-dependence
  publication-title: J. Theoret. Biol.
  doi: 10.1016/S0022-5193(89)80211-5
– volume: 29
  start-page: 38
  year: 1986
  ident: 10.1016/j.nonrwa.2021.103311_b13
  article-title: The effects of refuges on predator–prey interactions: a reconsideration
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/0040-5809(86)90004-3
– volume: 68
  start-page: 1325
  year: 2014
  ident: 10.1016/j.nonrwa.2021.103311_b24
  article-title: Effect of prey refuge on spatiotemporal dynamics of reaction–diffusion system
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.08.025
– volume: 55
  start-page: 434
  year: 1974
  ident: 10.1016/j.nonrwa.2021.103311_b6
  article-title: Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum
  publication-title: Ecology
  doi: 10.2307/1935232
– volume: 28
  start-page: 1
  year: 2018
  ident: 10.1016/j.nonrwa.2021.103311_b27
  article-title: Dynamics of a harvested prey-predator model with prey refuge dependent on both species
  publication-title: Int. J. Bifur. Chaos
– volume: 80
  start-page: 1534
  year: 2015
  ident: 10.1016/j.nonrwa.2021.103311_b34
  article-title: Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxv006
– year: 1981
  ident: 10.1016/j.nonrwa.2021.103311_b39
– volume: 40
  start-page: 473
  year: 1971
  ident: 10.1016/j.nonrwa.2021.103311_b7
  article-title: Mutual interference between searching insect parasites
  publication-title: J. Anim. Ecol.
  doi: 10.2307/3256
– volume: 20
  start-page: 248
  year: 2014
  ident: 10.1016/j.nonrwa.2021.103311_b29
  article-title: Effect of a functional response-dependent prey refuge in a predator–prey model
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2014.04.001
– volume: 262
  start-page: 1429
  year: 1993
  ident: 10.1016/j.nonrwa.2021.103311_b18
  article-title: Refuge theory and biological control
  publication-title: Science
  doi: 10.1126/science.262.5138.1429
– volume: 20
  start-page: 89
  year: 2019
  ident: 10.1016/j.nonrwa.2021.103311_b26
  article-title: Dynamics of a predator–prey model with Holling Type II functional response incorporating a prey refuge depending on both the species
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2017-0224
– volume: 57
  start-page: 63
  year: 1995
  ident: 10.1016/j.nonrwa.2021.103311_b19
  article-title: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge
  publication-title: Bull. Math. Biol.
  doi: 10.1016/0092-8240(94)00024-7
– year: 1978
  ident: 10.1016/j.nonrwa.2021.103311_b21
– volume: 6
  start-page: 141
  year: 1991
  ident: 10.1016/j.nonrwa.2021.103311_b2
  article-title: The functional response of predators: worries about scale
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/0169-5347(91)90052-Y
– volume: 28
  year: 2018
  ident: 10.1016/j.nonrwa.2021.103311_b35
  article-title: Spatiotemporal patterns in a predator–prey model with cross-diffusion effect
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127418300045
– volume: 88
  start-page: 1501
  year: 2017
  ident: 10.1016/j.nonrwa.2021.103311_b25
  article-title: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-016-3326-8
– volume: 11
  start-page: 2285
  year: 2010
  ident: 10.1016/j.nonrwa.2021.103311_b17
  article-title: Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a constant prey refuge
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2009.07.003
– volume: 9
  start-page: 2055
  year: 2008
  ident: 10.1016/j.nonrwa.2021.103311_b23
  article-title: Limit cycle and numerical simulations for small and large delays in a predator–prey model with modeified Leslie-Gower and Holling-type II schemes
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2006.12.017
– volume: 374
  start-page: 644
  year: 2011
  ident: 10.1016/j.nonrwa.2021.103311_b12
  article-title: Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.08.029
– volume: 72
  start-page: 1
  year: 1988
  ident: 10.1016/j.nonrwa.2021.103311_b43
  article-title: Large amplitude stationary solutions to a chemotaxis systems
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(88)90147-7
– volume: 69
  start-page: 931
  year: 2007
  ident: 10.1016/j.nonrwa.2021.103311_b46
  article-title: Finite-Difference schemes for reaction–diffusion equations modelling predator–prey interactions in MATLAB
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-006-9062-3
– volume: 87
  year: 2001
  ident: 10.1016/j.nonrwa.2021.103311_b47
  article-title: Diversity of vegetation patterns and desertification
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.198101
– volume: 43
  start-page: 377
  year: 2001
  ident: 10.1016/j.nonrwa.2021.103311_b4
  article-title: Rich dynamics of a ratio-dependent one-prey two-predators model
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850100100
– year: 2009
  ident: 10.1016/j.nonrwa.2021.103311_b41
– year: 2011
  ident: 10.1016/j.nonrwa.2021.103311_b38
– volume: 45
  start-page: 822
  year: 2019
  ident: 10.1016/j.nonrwa.2021.103311_b36
  article-title: Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2018.05.018
– year: 2002
  ident: 10.1016/j.nonrwa.2021.103311_b5
– volume: 44
  start-page: 331
  year: 1975
  ident: 10.1016/j.nonrwa.2021.103311_b8
  article-title: Mutual interference between parasites or predators and its effect on searching efficiency
  publication-title: J. Anim. Ecol.
  doi: 10.2307/3866
– volume: 56
  start-page: 881
  year: 1975
  ident: 10.1016/j.nonrwa.2021.103311_b9
  article-title: A model for throphic interaction
  publication-title: Ecology
  doi: 10.2307/1936298
– volume: 69
  start-page: 1631
  year: 2012
  ident: 10.1016/j.nonrwa.2021.103311_b32
  article-title: Spatial patterns of a predator–prey model with cross-diffusion
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-012-0374-6
– volume: 251
  start-page: 103
  year: 1993
  ident: 10.1016/j.nonrwa.2021.103311_b40
  article-title: Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.1993.0015
– volume: 231
  start-page: 534
  year: 2006
  ident: 10.1016/j.nonrwa.2021.103311_b16
  article-title: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2006.08.001
– volume: 47
  start-page: 1
  year: 1995
  ident: 10.1016/j.nonrwa.2021.103311_b28
  article-title: Short term refuge use and stability of predator–prey models
  publication-title: Theor. Popul. Biol.
  doi: 10.1006/tpbi.1995.1001
– year: 2012
  ident: 10.1016/j.nonrwa.2021.103311_b20
  article-title: Prey refuge use as a function of predator–prey encounters
  publication-title: Int. J. Biomath.
– volume: 37
  start-page: 11
  year: 2019
  ident: 10.1016/j.nonrwa.2021.103311_b37
  article-title: Complexity in a prey-predator model with prey refuge and diffusion
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2018.10.004
– volume: 181
  start-page: 191
  year: 2005
  ident: 10.1016/j.nonrwa.2021.103311_b22
  article-title: Influence of prey reserve capacity on predator–prey dynamics
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.06.031
– volume: 58
  start-page: 207
  year: 1996
  ident: 10.1016/j.nonrwa.2021.103311_b3
  article-title: Variability, vagueness and comparison methods for ecological models
  publication-title: Bull. Math. Biol.
  doi: 10.1007/BF02458307
– volume: 48
  start-page: 1755
  year: 2008
  ident: 10.1016/j.nonrwa.2021.103311_b11
  article-title: Study on a non-autonomous predator–prey system with Beddington–DeAngelis functional response
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2008.05.052
– volume: 251
  start-page: 1276
  year: 2011
  ident: 10.1016/j.nonrwa.2021.103311_b31
  article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2011.03.004
– volume: 53
  start-page: 131
  year: 1998
  ident: 10.1016/j.nonrwa.2021.103311_b14
  article-title: Effects of optimal antipredator behavior of prey on predator–prey dynamics: the role of refuges
  publication-title: Theor. Popul. Biol.
  doi: 10.1006/tpbi.1998.1351
– volume: 166
  start-page: 135
  year: 2003
  ident: 10.1016/j.nonrwa.2021.103311_b15
  article-title: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(03)00131-5
– volume: 257
  start-page: 206
  year: 2001
  ident: 10.1016/j.nonrwa.2021.103311_b10
  article-title: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7343
– volume: 141
  start-page: 67
  year: 2001
  ident: 10.1016/j.nonrwa.2021.103311_b30
  article-title: A predator–prey interaction model with self and cross-diffusion
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(01)00255-1
– volume: 70
  start-page: 709
  year: 2015
  ident: 10.1016/j.nonrwa.2021.103311_b33
  article-title: Cross-diffusion-driven instability for reaction–diffusion systems: analysis and simulations
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-014-0779-6
– volume: 133A
  start-page: 919
  year: 2003
  ident: 10.1016/j.nonrwa.2021.103311_b45
  article-title: Quality analysis of a ratio-dependent predator–prey system with diffusion
  publication-title: Proc. R. Soc. Edinburgh
  doi: 10.1017/S0308210500002742
– volume: 131
  start-page: 79
  year: 1996
  ident: 10.1016/j.nonrwa.2021.103311_b44
  article-title: Diffusion, self-diffusion and cross-diffusion
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1996.0157
SSID ssj0017131
Score 2.4849102
Snippet In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103311
SubjectTerms Diffusion-driven instability
Non-constant steady state
Persistence
Prey refuge
Reaction–diffusion model
Spatiotemporal pattern formation
Title Consequences of refuge and diffusion in a spatiotemporal predator–prey model
URI https://dx.doi.org/10.1016/j.nonrwa.2021.103311
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG1CvOhBXHENffDaJj1Lp-cYBkNcEkQN5Db0KpEQQxbEi_gP_qFfYlfPTIggCp5moXsY3hTVVT2vXiF0JpkKOVeUWBsyEsmEE6FjRhIdGLd8cBl6tnu3xzr96GoQDyooLWthgFZZ-P7cp3tvXdypF2jWJ8Nh_R6KhigIkFOv2gIV5VHUBCs_f1vSPKhLwmhZYQSjy_I5z_FyGfb0BdSHAgrV5yGlPy9PK0tOewttFrEibuWvs40qZryDNrpLodXZLuqlK2xo_Gyxe-Li0WAx1hh6nyxgMwwPx1jgmedOF1JUIzyZGg0J9-f7hzt9xb4lzh7qty8e0g4pWiQQ5WL9OVGJsdRKSiXQlZS0oiEaYWxiB7UFcTztclCm3WdKpBZccB8giaZiFn7ABOE-qjoQzAHCXCvGjJXSqiCKTSJd4GUdJAk1WrtE5xCFJTKZKvTDoY3FKCuJYk9ZjmcGeGY5noeILGdNcv2MP8Y3S9Czb3aQORf_68yjf888RutwldP6TlB1Pl2YUxdqzGXN21INrbXSu5tbOF5ed3pfmjjXFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNAFB1KXagL8Yn1OQtdxnaSJk0WLqRaWvvY2EJ3Y-YllVJLH5RuxH_wU_wjv8R78ygVREHoLiSZMHMy3Edy7rmEXAhPOr4vmWWM41lFEfhWqFzPCpStwX34wonY7s2WV-0U77tuN0M-0loYpFUmtj-26ZG1Ts7kEzTzw14v_4BFQwwFyFmk2lJKmJV1PZ9B3ja-rt3CS7607cpdu1y1ktYCloQYeWLJQBtmBGMCaT5SmLAQFhxXuzBFg6JyCnI3T8HyAqFCP_SjwCIsSc_gjwtUOwC7v1YEc4FtE65eF7wSBlkfS0uacHppvV5EKoOUfjRDuSObYbm7w9jP_nDJx1W2yVYSnNKbeP07JKMHu2SzuVB2He-RVnmJfk1fDIUnTp80DQeKYrOVKX59o70BDek4Imsn2ld9OhxphRn-59s7HM5p1INnn3RWAtwByQII-pBQX0nP00YII-2iqwMBkZ4BSAKmlYLMKkecFBkuE8Fy7JvR5ykz7ZnHeHLEk8d45oi1GDWMBTv-uL-Ugs6_bTwOPuXXkUf_HnlO1qvtZoM3aq36MdnAKzGn8IRkJ6OpPoU4ZyLOon1FyeOqN_IX8QER9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consequences+of+refuge+and+diffusion+in+a+spatiotemporal+predator%E2%80%93prey+model&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Han%2C+Renji&rft.au=Guin%2C+Lakshmi+Narayan&rft.au=Dai%2C+Binxiang&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=60&rft_id=info:doi/10.1016%2Fj.nonrwa.2021.103311&rft.externalDocID=S1468121821000237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon