Consequences of refuge and diffusion in a spatiotemporal predator–prey model
In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant regi...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 60; p. 103311 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray–Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe–spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction–diffusion predator–prey system. |
---|---|
AbstractList | In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray–Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe–spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction–diffusion predator–prey system. |
ArticleNumber | 103311 |
Author | Guin, Lakshmi Narayan Han, Renji Dai, Binxiang |
Author_xml | – sequence: 1 givenname: Renji surname: Han fullname: Han, Renji email: renjihan@csu.edu.cn organization: School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, PR China – sequence: 2 givenname: Lakshmi Narayan surname: Guin fullname: Guin, Lakshmi Narayan organization: Department of Mathematics, Visva-Bharati, Santiniketan 731235, India – sequence: 3 givenname: Binxiang surname: Dai fullname: Dai, Binxiang organization: School of Mathematics and Statistics, Central South University, Changsha 410083, PR China |
BookMark | eNqFkE1OwzAUhC1UJNrCDVj4Ail-cZM4LJBQxZ-EYANry7GfkavUDnYK6o47cENOQqKyYgGrNxppRvO-GZn44JGQU2ALYFCerReDEd_VImc5DBbnAAdkCqISWVFBPRn0shQZ5CCOyCylNWNQAYcpeVgFn_B1i15josHSiHb7glR5Q42zdptc8NR5qmjqVO9Cj5suRNXSLqJRfYhfH5-D3NFNMNgek0Or2oQnP3dOnq-vnla32f3jzd3q8j7TnJV9pmu0YBuAhglR68YqphgvsDA52rJgtQHOS6O1qhujhBJFAUuuKl1agLLK-Zyc73t1DCkNm6V2_TjP91G5VgKTIxm5lnsyciQj92SG8PJXuItuo-Luv9jFPobDY28Oo0zajdyMi6h7aYL7u-Ab49aEWQ |
CitedBy_id | crossref_primary_10_1016_j_matcom_2023_01_034 crossref_primary_10_1016_j_matcom_2024_01_015 crossref_primary_10_1007_s40819_023_01546_y crossref_primary_10_1007_s40435_023_01179_5 crossref_primary_10_1186_s13662_022_03749_x crossref_primary_10_1007_s40435_022_01048_7 crossref_primary_10_1140_epjp_s13360_022_02358_7 crossref_primary_10_1016_j_chaos_2023_113273 crossref_primary_10_1142_S0218127423500876 crossref_primary_10_1142_S0218127424500032 crossref_primary_10_1155_2022_5278036 crossref_primary_10_1016_j_jde_2022_10_018 crossref_primary_10_1002_mma_8837 crossref_primary_10_1080_17513758_2023_2222142 crossref_primary_10_3934_math_20241170 crossref_primary_10_1016_j_amc_2022_127007 crossref_primary_10_1016_j_chaos_2024_114622 crossref_primary_10_1007_s40435_022_01104_2 crossref_primary_10_1007_s40435_022_00935_3 crossref_primary_10_3934_mbe_2022558 crossref_primary_10_3934_mbe_2021448 crossref_primary_10_1016_j_nonrwa_2024_104133 crossref_primary_10_1140_epjp_s13360_023_04466_4 crossref_primary_10_3934_dcdsb_2022082 crossref_primary_10_1007_s12346_021_00517_2 crossref_primary_10_1142_S0218127422500699 crossref_primary_10_1016_j_chaos_2023_113441 crossref_primary_10_1016_j_cnsns_2023_107700 crossref_primary_10_1016_j_chaos_2023_114153 crossref_primary_10_1016_j_engappai_2023_107491 crossref_primary_10_1142_S0218127424500469 crossref_primary_10_3934_math_20231481 crossref_primary_10_1155_2023_9190167 crossref_primary_10_1088_1742_5468_ac946d crossref_primary_10_3934_mbe_2021437 crossref_primary_10_1063_5_0126782 |
Cites_doi | 10.1016/S0022-5193(89)80211-5 10.1016/0040-5809(86)90004-3 10.1016/j.camwa.2014.08.025 10.2307/1935232 10.1093/imamat/hxv006 10.2307/3256 10.1016/j.ecocom.2014.04.001 10.1126/science.262.5138.1429 10.1515/ijnsns-2017-0224 10.1016/0092-8240(94)00024-7 10.1016/0169-5347(91)90052-Y 10.1142/S0218127418300045 10.1007/s11071-016-3326-8 10.1016/j.nonrwa.2009.07.003 10.1016/j.nonrwa.2006.12.017 10.1016/j.jmaa.2010.08.029 10.1016/0022-0396(88)90147-7 10.1007/s11538-006-9062-3 10.1103/PhysRevLett.87.198101 10.1007/s002850100100 10.1016/j.nonrwa.2018.05.018 10.2307/3866 10.2307/1936298 10.1007/s11071-012-0374-6 10.1098/rspb.1993.0015 10.1016/j.jde.2006.08.001 10.1006/tpbi.1995.1001 10.1016/j.ecocom.2018.10.004 10.1016/j.ecolmodel.2004.06.031 10.1007/BF02458307 10.1016/j.mcm.2008.05.052 10.1016/j.jde.2011.03.004 10.1006/tpbi.1998.1351 10.1016/S0304-3800(03)00131-5 10.1006/jmaa.2000.7343 10.1016/S0304-3800(01)00255-1 10.1007/s00285-014-0779-6 10.1017/S0308210500002742 10.1006/jdeq.1996.0157 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2021.103311 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | 10_1016_j_nonrwa_2021_103311 S1468121821000237 |
GrantInformation_xml | – fundername: Department of Education of Zhejiang Province, PR China grantid: Y201942138 funderid: http://dx.doi.org/10.13039/501100008867 – fundername: National Natural Science Foundation of China grantid: 11871475 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-c9ef1fb11b0889cbfa0a035e5d2ef6509d1336dcca9bda8a855143a7c6f116723 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Tue Jul 01 04:03:13 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Fri Feb 23 02:46:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Persistence Spatiotemporal pattern formation Diffusion-driven instability Reaction–diffusion model Prey refuge Non-constant steady state |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c9ef1fb11b0889cbfa0a035e5d2ef6509d1336dcca9bda8a855143a7c6f116723 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nonrwa_2021_103311 crossref_primary_10_1016_j_nonrwa_2021_103311 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2021_103311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Malchow (b40) 1993; 251 DeAngelis, Goldstein, O’Neill (b9) 1975; 56 Garvie (b46) 2007; 69 Salt (b6) 1974; 55 Murray (b5) 2002 Pang, Wang (b45) 2003; 133A Lou, Ni (b44) 1996; 131 Collings (b19) 1995; 57 Beddington (b8) 1975; 44 Hanski (b2) 1991; 6 Guin, Acharya (b25) 2017; 88 Srinivasu, Gayitri (b22) 2005; 181 Lin, Ni, Takagi (b43) 1988; 72 Shi, Ruan (b34) 2015; 80 Chakraborty, Bairagi (b37) 2019; 37 McNair (b13) 1986; 29 Haque, Rahman, Venturino, Li (b29) 2014; 20 Gonzalez-Olivares, Ramos-Jiliberto (b15) 2003; 166 Krivan (b14) 1998; 53 Hawkins, Thomas, Hochberg (b18) 1993; 262 Madzvamuse, Ndakwo, Barreira (b33) 2015; 70 Li, Takeuchi (b12) 2011; 374 Ji, Wu (b17) 2010; 11 Hernandez (b42) 1981 Sun, Jin, Li, Haque, Li (b32) 2012; 69 Hsu, Hwang, Kuang (b4) 2001; 43 Han, Dai (b36) 2019; 45 Gonzalez-Olivares, Gonzalez-Yanez, Becerra-Klix (b20) 2012 Haque, Sarwardi (b27) 2018; 28 Henry (b39) 1981 Ko, Ryu (b16) 2006; 231 Molla, Sabiar Rahman, Sarwardi (b26) 2019; 20 Arditi, Ginzburg (b1) 1989; 139 Wang, Shi, Wei (b31) 2011; 251 Cantrell, Cosner (b10) 2001; 257 Ruxton (b28) 1995; 47 Dubey, Das, Hussain (b30) 2001; 141 Hassell (b7) 1971; 40 von Hardenberg, Meron, Shachak, Zarmi (b47) 2001; 87 Sambath, Balachandran, Guin (b35) 2018; 28 Hassell (b21) 1978 Yafia, Eladnani, Alaoui (b23) 2008; 9 Cross, Greenside (b41) 2009 Zeng, Fan (b11) 2008; 48 Guin, Mandal (b24) 2014; 68 Cosner (b3) 1996; 58 Ye, Li, Wang, Wu (b38) 2011 Shi (10.1016/j.nonrwa.2021.103311_b34) 2015; 80 Lin (10.1016/j.nonrwa.2021.103311_b43) 1988; 72 Madzvamuse (10.1016/j.nonrwa.2021.103311_b33) 2015; 70 McNair (10.1016/j.nonrwa.2021.103311_b13) 1986; 29 Srinivasu (10.1016/j.nonrwa.2021.103311_b22) 2005; 181 Cosner (10.1016/j.nonrwa.2021.103311_b3) 1996; 58 Malchow (10.1016/j.nonrwa.2021.103311_b40) 1993; 251 Collings (10.1016/j.nonrwa.2021.103311_b19) 1995; 57 Yafia (10.1016/j.nonrwa.2021.103311_b23) 2008; 9 Guin (10.1016/j.nonrwa.2021.103311_b25) 2017; 88 Wang (10.1016/j.nonrwa.2021.103311_b31) 2011; 251 Ko (10.1016/j.nonrwa.2021.103311_b16) 2006; 231 Hernandez (10.1016/j.nonrwa.2021.103311_b42) 1981 Ji (10.1016/j.nonrwa.2021.103311_b17) 2010; 11 Salt (10.1016/j.nonrwa.2021.103311_b6) 1974; 55 DeAngelis (10.1016/j.nonrwa.2021.103311_b9) 1975; 56 Guin (10.1016/j.nonrwa.2021.103311_b24) 2014; 68 Han (10.1016/j.nonrwa.2021.103311_b36) 2019; 45 Hawkins (10.1016/j.nonrwa.2021.103311_b18) 1993; 262 Cross (10.1016/j.nonrwa.2021.103311_b41) 2009 Lou (10.1016/j.nonrwa.2021.103311_b44) 1996; 131 Li (10.1016/j.nonrwa.2021.103311_b12) 2011; 374 Molla (10.1016/j.nonrwa.2021.103311_b26) 2019; 20 Garvie (10.1016/j.nonrwa.2021.103311_b46) 2007; 69 Arditi (10.1016/j.nonrwa.2021.103311_b1) 1989; 139 Hsu (10.1016/j.nonrwa.2021.103311_b4) 2001; 43 Beddington (10.1016/j.nonrwa.2021.103311_b8) 1975; 44 Murray (10.1016/j.nonrwa.2021.103311_b5) 2002 Gonzalez-Olivares (10.1016/j.nonrwa.2021.103311_b20) 2012 Ruxton (10.1016/j.nonrwa.2021.103311_b28) 1995; 47 Cantrell (10.1016/j.nonrwa.2021.103311_b10) 2001; 257 Hanski (10.1016/j.nonrwa.2021.103311_b2) 1991; 6 von Hardenberg (10.1016/j.nonrwa.2021.103311_b47) 2001; 87 Zeng (10.1016/j.nonrwa.2021.103311_b11) 2008; 48 Sun (10.1016/j.nonrwa.2021.103311_b32) 2012; 69 Hassell (10.1016/j.nonrwa.2021.103311_b7) 1971; 40 Dubey (10.1016/j.nonrwa.2021.103311_b30) 2001; 141 Krivan (10.1016/j.nonrwa.2021.103311_b14) 1998; 53 Chakraborty (10.1016/j.nonrwa.2021.103311_b37) 2019; 37 Gonzalez-Olivares (10.1016/j.nonrwa.2021.103311_b15) 2003; 166 Henry (10.1016/j.nonrwa.2021.103311_b39) 1981 Pang (10.1016/j.nonrwa.2021.103311_b45) 2003; 133A Haque (10.1016/j.nonrwa.2021.103311_b27) 2018; 28 Ye (10.1016/j.nonrwa.2021.103311_b38) 2011 Hassell (10.1016/j.nonrwa.2021.103311_b21) 1978 Sambath (10.1016/j.nonrwa.2021.103311_b35) 2018; 28 Haque (10.1016/j.nonrwa.2021.103311_b29) 2014; 20 |
References_xml | – year: 2011 ident: b38 article-title: Introduction to Reaction–Diffusion Equations – volume: 58 start-page: 207 year: 1996 end-page: 246 ident: b3 article-title: Variability, vagueness and comparison methods for ecological models publication-title: Bull. Math. Biol. – volume: 133A start-page: 919 year: 2003 end-page: 942 ident: b45 article-title: Quality analysis of a ratio-dependent predator–prey system with diffusion publication-title: Proc. R. Soc. Edinburgh – year: 2012 ident: b20 article-title: Prey refuge use as a function of predator–prey encounters publication-title: Int. J. Biomath. – year: 2009 ident: b41 article-title: Pattern Formation and Dynamics in Nonequilibrium Systems – volume: 139 start-page: 311 year: 1989 end-page: 326 ident: b1 article-title: Coupling in predator–prey dynamics: ratio-dependence publication-title: J. Theoret. Biol. – volume: 88 start-page: 1501 year: 2017 end-page: 1533 ident: b25 article-title: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting publication-title: Nonlinear Dynam. – volume: 374 start-page: 644 year: 2011 end-page: 654 ident: b12 article-title: Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response publication-title: J. Math. Anal. Appl. – volume: 37 start-page: 11 year: 2019 end-page: 23 ident: b37 article-title: Complexity in a prey-predator model with prey refuge and diffusion publication-title: Ecol. Complex. – volume: 29 start-page: 38 year: 1986 end-page: 63 ident: b13 article-title: The effects of refuges on predator–prey interactions: a reconsideration publication-title: Theor. Popul. Biol. – volume: 166 start-page: 135 year: 2003 end-page: 146 ident: b15 article-title: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability publication-title: Ecol. Model. – year: 2002 ident: b5 article-title: Mathematical Biology I II – volume: 20 start-page: 89 year: 2019 end-page: 104 ident: b26 article-title: Dynamics of a predator–prey model with Holling Type II functional response incorporating a prey refuge depending on both the species publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 70 start-page: 709 year: 2015 end-page: 743 ident: b33 article-title: Cross-diffusion-driven instability for reaction–diffusion systems: analysis and simulations publication-title: J. Math. Biol. – year: 1981 ident: b39 article-title: Geometric Theory of Semilinear Parabolic Equations – volume: 257 start-page: 206 year: 2001 end-page: 222 ident: b10 article-title: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response publication-title: J. Math. Anal. Appl. – volume: 231 start-page: 534 year: 2006 end-page: 550 ident: b16 article-title: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge publication-title: J. Differential Equations – volume: 141 start-page: 67 year: 2001 end-page: 76 ident: b30 article-title: A predator–prey interaction model with self and cross-diffusion publication-title: Ecol. Model. – start-page: 161 year: 1981 end-page: 173 ident: b42 article-title: Some existence and stability results for solutions of reaction-diffuision systems with nonlinear boundary conditions publication-title: Nonlinear Differential Equations:Invariance, Stability, and Bifurcaion – volume: 69 start-page: 1631 year: 2012 end-page: 1638 ident: b32 article-title: Spatial patterns of a predator–prey model with cross-diffusion publication-title: Nonlinear Dynam. – volume: 45 start-page: 822 year: 2019 end-page: 853 ident: b36 article-title: Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect publication-title: Nonlinear Anal. RWA – volume: 251 start-page: 1276 year: 2011 end-page: 1304 ident: b31 article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey publication-title: J. Differential Equations – volume: 55 start-page: 434 year: 1974 end-page: 439 ident: b6 article-title: Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum publication-title: Ecology – volume: 20 start-page: 248 year: 2014 end-page: 256 ident: b29 article-title: Effect of a functional response-dependent prey refuge in a predator–prey model publication-title: Ecol. Complex. – volume: 68 start-page: 1325 year: 2014 end-page: 1340 ident: b24 article-title: Effect of prey refuge on spatiotemporal dynamics of reaction–diffusion system publication-title: Comput. Math. Appl. – volume: 69 start-page: 931 year: 2007 end-page: 956 ident: b46 article-title: Finite-Difference schemes for reaction–diffusion equations modelling predator–prey interactions in MATLAB publication-title: Bull. Math. Biol. – volume: 43 start-page: 377 year: 2001 end-page: 396 ident: b4 article-title: Rich dynamics of a ratio-dependent one-prey two-predators model publication-title: J. Math. Biol. – volume: 251 start-page: 103 year: 1993 end-page: 109 ident: b40 article-title: Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics publication-title: Proc. R. Soc. B – volume: 262 start-page: 1429 year: 1993 end-page: 1432 ident: b18 article-title: Refuge theory and biological control publication-title: Science – volume: 131 start-page: 79 year: 1996 end-page: 131 ident: b44 article-title: Diffusion, self-diffusion and cross-diffusion publication-title: J. Differential Equations – volume: 72 start-page: 1 year: 1988 end-page: 27 ident: b43 article-title: Large amplitude stationary solutions to a chemotaxis systems publication-title: J. Differential Equations – volume: 44 start-page: 331 year: 1975 end-page: 340 ident: b8 article-title: Mutual interference between parasites or predators and its effect on searching efficiency publication-title: J. Anim. Ecol. – volume: 57 start-page: 63 year: 1995 end-page: 76 ident: b19 article-title: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge publication-title: Bull. Math. Biol. – volume: 56 start-page: 881 year: 1975 end-page: 892 ident: b9 article-title: A model for throphic interaction publication-title: Ecology – year: 1978 ident: b21 article-title: The Dynamics of Arthropod Predator–Prey Systems – volume: 47 start-page: 1 year: 1995 end-page: 17 ident: b28 article-title: Short term refuge use and stability of predator–prey models publication-title: Theor. Popul. Biol. – volume: 80 start-page: 1534 year: 2015 end-page: 1568 ident: b34 article-title: Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference publication-title: IMA J. Appl. Math. – volume: 9 start-page: 2055 year: 2008 end-page: 2067 ident: b23 article-title: Limit cycle and numerical simulations for small and large delays in a predator–prey model with modeified Leslie-Gower and Holling-type II schemes publication-title: Nonlinear Anal. RWA – volume: 11 start-page: 2285 year: 2010 end-page: 2295 ident: b17 article-title: Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a constant prey refuge publication-title: Nonlinear Anal. RWA – volume: 40 start-page: 473 year: 1971 end-page: 486 ident: b7 article-title: Mutual interference between searching insect parasites publication-title: J. Anim. Ecol. – volume: 53 start-page: 131 year: 1998 end-page: 142 ident: b14 article-title: Effects of optimal antipredator behavior of prey on predator–prey dynamics: the role of refuges publication-title: Theor. Popul. Biol. – volume: 6 start-page: 141 year: 1991 end-page: 142 ident: b2 article-title: The functional response of predators: worries about scale publication-title: Trends Ecol. Evol. – volume: 48 start-page: 1755 year: 2008 end-page: 1764 ident: b11 article-title: Study on a non-autonomous predator–prey system with Beddington–DeAngelis functional response publication-title: Math. Comput. Modelling – volume: 87 year: 2001 ident: b47 article-title: Diversity of vegetation patterns and desertification publication-title: Phys. Rev. Lett. – volume: 181 start-page: 191 year: 2005 end-page: 202 ident: b22 article-title: Influence of prey reserve capacity on predator–prey dynamics publication-title: Ecol. Model. – volume: 28 start-page: 1 year: 2018 end-page: 16 ident: b27 article-title: Dynamics of a harvested prey-predator model with prey refuge dependent on both species publication-title: Int. J. Bifur. Chaos – volume: 28 year: 2018 ident: b35 article-title: Spatiotemporal patterns in a predator–prey model with cross-diffusion effect publication-title: Int. J. Bifurcation Chaos – start-page: 161 year: 1981 ident: 10.1016/j.nonrwa.2021.103311_b42 article-title: Some existence and stability results for solutions of reaction-diffuision systems with nonlinear boundary conditions – volume: 139 start-page: 311 year: 1989 ident: 10.1016/j.nonrwa.2021.103311_b1 article-title: Coupling in predator–prey dynamics: ratio-dependence publication-title: J. Theoret. Biol. doi: 10.1016/S0022-5193(89)80211-5 – volume: 29 start-page: 38 year: 1986 ident: 10.1016/j.nonrwa.2021.103311_b13 article-title: The effects of refuges on predator–prey interactions: a reconsideration publication-title: Theor. Popul. Biol. doi: 10.1016/0040-5809(86)90004-3 – volume: 68 start-page: 1325 year: 2014 ident: 10.1016/j.nonrwa.2021.103311_b24 article-title: Effect of prey refuge on spatiotemporal dynamics of reaction–diffusion system publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.08.025 – volume: 55 start-page: 434 year: 1974 ident: 10.1016/j.nonrwa.2021.103311_b6 article-title: Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum publication-title: Ecology doi: 10.2307/1935232 – volume: 28 start-page: 1 year: 2018 ident: 10.1016/j.nonrwa.2021.103311_b27 article-title: Dynamics of a harvested prey-predator model with prey refuge dependent on both species publication-title: Int. J. Bifur. Chaos – volume: 80 start-page: 1534 year: 2015 ident: 10.1016/j.nonrwa.2021.103311_b34 article-title: Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxv006 – year: 1981 ident: 10.1016/j.nonrwa.2021.103311_b39 – volume: 40 start-page: 473 year: 1971 ident: 10.1016/j.nonrwa.2021.103311_b7 article-title: Mutual interference between searching insect parasites publication-title: J. Anim. Ecol. doi: 10.2307/3256 – volume: 20 start-page: 248 year: 2014 ident: 10.1016/j.nonrwa.2021.103311_b29 article-title: Effect of a functional response-dependent prey refuge in a predator–prey model publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2014.04.001 – volume: 262 start-page: 1429 year: 1993 ident: 10.1016/j.nonrwa.2021.103311_b18 article-title: Refuge theory and biological control publication-title: Science doi: 10.1126/science.262.5138.1429 – volume: 20 start-page: 89 year: 2019 ident: 10.1016/j.nonrwa.2021.103311_b26 article-title: Dynamics of a predator–prey model with Holling Type II functional response incorporating a prey refuge depending on both the species publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2017-0224 – volume: 57 start-page: 63 year: 1995 ident: 10.1016/j.nonrwa.2021.103311_b19 article-title: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge publication-title: Bull. Math. Biol. doi: 10.1016/0092-8240(94)00024-7 – year: 1978 ident: 10.1016/j.nonrwa.2021.103311_b21 – volume: 6 start-page: 141 year: 1991 ident: 10.1016/j.nonrwa.2021.103311_b2 article-title: The functional response of predators: worries about scale publication-title: Trends Ecol. Evol. doi: 10.1016/0169-5347(91)90052-Y – volume: 28 year: 2018 ident: 10.1016/j.nonrwa.2021.103311_b35 article-title: Spatiotemporal patterns in a predator–prey model with cross-diffusion effect publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127418300045 – volume: 88 start-page: 1501 year: 2017 ident: 10.1016/j.nonrwa.2021.103311_b25 article-title: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-3326-8 – volume: 11 start-page: 2285 year: 2010 ident: 10.1016/j.nonrwa.2021.103311_b17 article-title: Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a constant prey refuge publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2009.07.003 – volume: 9 start-page: 2055 year: 2008 ident: 10.1016/j.nonrwa.2021.103311_b23 article-title: Limit cycle and numerical simulations for small and large delays in a predator–prey model with modeified Leslie-Gower and Holling-type II schemes publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2006.12.017 – volume: 374 start-page: 644 year: 2011 ident: 10.1016/j.nonrwa.2021.103311_b12 article-title: Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.08.029 – volume: 72 start-page: 1 year: 1988 ident: 10.1016/j.nonrwa.2021.103311_b43 article-title: Large amplitude stationary solutions to a chemotaxis systems publication-title: J. Differential Equations doi: 10.1016/0022-0396(88)90147-7 – volume: 69 start-page: 931 year: 2007 ident: 10.1016/j.nonrwa.2021.103311_b46 article-title: Finite-Difference schemes for reaction–diffusion equations modelling predator–prey interactions in MATLAB publication-title: Bull. Math. Biol. doi: 10.1007/s11538-006-9062-3 – volume: 87 year: 2001 ident: 10.1016/j.nonrwa.2021.103311_b47 article-title: Diversity of vegetation patterns and desertification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.198101 – volume: 43 start-page: 377 year: 2001 ident: 10.1016/j.nonrwa.2021.103311_b4 article-title: Rich dynamics of a ratio-dependent one-prey two-predators model publication-title: J. Math. Biol. doi: 10.1007/s002850100100 – year: 2009 ident: 10.1016/j.nonrwa.2021.103311_b41 – year: 2011 ident: 10.1016/j.nonrwa.2021.103311_b38 – volume: 45 start-page: 822 year: 2019 ident: 10.1016/j.nonrwa.2021.103311_b36 article-title: Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2018.05.018 – year: 2002 ident: 10.1016/j.nonrwa.2021.103311_b5 – volume: 44 start-page: 331 year: 1975 ident: 10.1016/j.nonrwa.2021.103311_b8 article-title: Mutual interference between parasites or predators and its effect on searching efficiency publication-title: J. Anim. Ecol. doi: 10.2307/3866 – volume: 56 start-page: 881 year: 1975 ident: 10.1016/j.nonrwa.2021.103311_b9 article-title: A model for throphic interaction publication-title: Ecology doi: 10.2307/1936298 – volume: 69 start-page: 1631 year: 2012 ident: 10.1016/j.nonrwa.2021.103311_b32 article-title: Spatial patterns of a predator–prey model with cross-diffusion publication-title: Nonlinear Dynam. doi: 10.1007/s11071-012-0374-6 – volume: 251 start-page: 103 year: 1993 ident: 10.1016/j.nonrwa.2021.103311_b40 article-title: Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics publication-title: Proc. R. Soc. B doi: 10.1098/rspb.1993.0015 – volume: 231 start-page: 534 year: 2006 ident: 10.1016/j.nonrwa.2021.103311_b16 article-title: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge publication-title: J. Differential Equations doi: 10.1016/j.jde.2006.08.001 – volume: 47 start-page: 1 year: 1995 ident: 10.1016/j.nonrwa.2021.103311_b28 article-title: Short term refuge use and stability of predator–prey models publication-title: Theor. Popul. Biol. doi: 10.1006/tpbi.1995.1001 – year: 2012 ident: 10.1016/j.nonrwa.2021.103311_b20 article-title: Prey refuge use as a function of predator–prey encounters publication-title: Int. J. Biomath. – volume: 37 start-page: 11 year: 2019 ident: 10.1016/j.nonrwa.2021.103311_b37 article-title: Complexity in a prey-predator model with prey refuge and diffusion publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2018.10.004 – volume: 181 start-page: 191 year: 2005 ident: 10.1016/j.nonrwa.2021.103311_b22 article-title: Influence of prey reserve capacity on predator–prey dynamics publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.06.031 – volume: 58 start-page: 207 year: 1996 ident: 10.1016/j.nonrwa.2021.103311_b3 article-title: Variability, vagueness and comparison methods for ecological models publication-title: Bull. Math. Biol. doi: 10.1007/BF02458307 – volume: 48 start-page: 1755 year: 2008 ident: 10.1016/j.nonrwa.2021.103311_b11 article-title: Study on a non-autonomous predator–prey system with Beddington–DeAngelis functional response publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2008.05.052 – volume: 251 start-page: 1276 year: 2011 ident: 10.1016/j.nonrwa.2021.103311_b31 article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey publication-title: J. Differential Equations doi: 10.1016/j.jde.2011.03.004 – volume: 53 start-page: 131 year: 1998 ident: 10.1016/j.nonrwa.2021.103311_b14 article-title: Effects of optimal antipredator behavior of prey on predator–prey dynamics: the role of refuges publication-title: Theor. Popul. Biol. doi: 10.1006/tpbi.1998.1351 – volume: 166 start-page: 135 year: 2003 ident: 10.1016/j.nonrwa.2021.103311_b15 article-title: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability publication-title: Ecol. Model. doi: 10.1016/S0304-3800(03)00131-5 – volume: 257 start-page: 206 year: 2001 ident: 10.1016/j.nonrwa.2021.103311_b10 article-title: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7343 – volume: 141 start-page: 67 year: 2001 ident: 10.1016/j.nonrwa.2021.103311_b30 article-title: A predator–prey interaction model with self and cross-diffusion publication-title: Ecol. Model. doi: 10.1016/S0304-3800(01)00255-1 – volume: 70 start-page: 709 year: 2015 ident: 10.1016/j.nonrwa.2021.103311_b33 article-title: Cross-diffusion-driven instability for reaction–diffusion systems: analysis and simulations publication-title: J. Math. Biol. doi: 10.1007/s00285-014-0779-6 – volume: 133A start-page: 919 year: 2003 ident: 10.1016/j.nonrwa.2021.103311_b45 article-title: Quality analysis of a ratio-dependent predator–prey system with diffusion publication-title: Proc. R. Soc. Edinburgh doi: 10.1017/S0308210500002742 – volume: 131 start-page: 79 year: 1996 ident: 10.1016/j.nonrwa.2021.103311_b44 article-title: Diffusion, self-diffusion and cross-diffusion publication-title: J. Differential Equations doi: 10.1006/jdeq.1996.0157 |
SSID | ssj0017131 |
Score | 2.4849102 |
Snippet | In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103311 |
SubjectTerms | Diffusion-driven instability Non-constant steady state Persistence Prey refuge Reaction–diffusion model Spatiotemporal pattern formation |
Title | Consequences of refuge and diffusion in a spatiotemporal predator–prey model |
URI | https://dx.doi.org/10.1016/j.nonrwa.2021.103311 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG1CvOhBXHENffDaJj1Lp-cYBkNcEkQN5Db0KpEQQxbEi_gP_qFfYlfPTIggCp5moXsY3hTVVT2vXiF0JpkKOVeUWBsyEsmEE6FjRhIdGLd8cBl6tnu3xzr96GoQDyooLWthgFZZ-P7cp3tvXdypF2jWJ8Nh_R6KhigIkFOv2gIV5VHUBCs_f1vSPKhLwmhZYQSjy_I5z_FyGfb0BdSHAgrV5yGlPy9PK0tOewttFrEibuWvs40qZryDNrpLodXZLuqlK2xo_Gyxe-Li0WAx1hh6nyxgMwwPx1jgmedOF1JUIzyZGg0J9-f7hzt9xb4lzh7qty8e0g4pWiQQ5WL9OVGJsdRKSiXQlZS0oiEaYWxiB7UFcTztclCm3WdKpBZccB8giaZiFn7ABOE-qjoQzAHCXCvGjJXSqiCKTSJd4GUdJAk1WrtE5xCFJTKZKvTDoY3FKCuJYk9ZjmcGeGY5noeILGdNcv2MP8Y3S9Czb3aQORf_68yjf888RutwldP6TlB1Pl2YUxdqzGXN21INrbXSu5tbOF5ed3pfmjjXFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNAFB1KXagL8Yn1OQtdxnaSJk0WLqRaWvvY2EJ3Y-YllVJLH5RuxH_wU_wjv8R78ygVREHoLiSZMHMy3Edy7rmEXAhPOr4vmWWM41lFEfhWqFzPCpStwX34wonY7s2WV-0U77tuN0M-0loYpFUmtj-26ZG1Ts7kEzTzw14v_4BFQwwFyFmk2lJKmJV1PZ9B3ja-rt3CS7607cpdu1y1ktYCloQYeWLJQBtmBGMCaT5SmLAQFhxXuzBFg6JyCnI3T8HyAqFCP_SjwCIsSc_gjwtUOwC7v1YEc4FtE65eF7wSBlkfS0uacHppvV5EKoOUfjRDuSObYbm7w9jP_nDJx1W2yVYSnNKbeP07JKMHu2SzuVB2He-RVnmJfk1fDIUnTp80DQeKYrOVKX59o70BDek4Imsn2ld9OhxphRn-59s7HM5p1INnn3RWAtwByQII-pBQX0nP00YII-2iqwMBkZ4BSAKmlYLMKkecFBkuE8Fy7JvR5ykz7ZnHeHLEk8d45oi1GDWMBTv-uL-Ugs6_bTwOPuXXkUf_HnlO1qvtZoM3aq36MdnAKzGn8IRkJ6OpPoU4ZyLOon1FyeOqN_IX8QER9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consequences+of+refuge+and+diffusion+in+a+spatiotemporal+predator%E2%80%93prey+model&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Han%2C+Renji&rft.au=Guin%2C+Lakshmi+Narayan&rft.au=Dai%2C+Binxiang&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=60&rft_id=info:doi/10.1016%2Fj.nonrwa.2021.103311&rft.externalDocID=S1468121821000237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |