An extensive investigation of structural, electronic, thermoelectric and optical properties of bi-based half-Huesler alloys by first principles calculations
•The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been employed to accurately predict the properties.•They behave as narrow to moderate gap semiconductor.•They have excellent thermoelectric materials...
Saved in:
Published in | Materials today communications Vol. 25; p. 101647 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been employed to accurately predict the properties.•They behave as narrow to moderate gap semiconductor.•They have excellent thermoelectric materials having high power factor and figure of merit.•Their optical response in various ranges of electromagnetic spectrum opens prospect of using them in certain optical devices.
Half Huesler (HH) alloys have been a hot topic of research due to their fascinating properties and applications in several fields. There are several HH alloys been studied and this work is based on three Bismuth based HH alloys, ZrRhBi, ZrIrBi and HfRhBi, of which we have presented an extensive study on the structural, electronic, thermoelectric (TE) and optical properties using ab-initio density functional theory (DFT) calculations. The previous work on these alloys reported their stability and electronic properties stating that they possess good TE response which was done using DFT with PBE-GGA functional (J. Mater. Chem. A,5(13), 2017). In our study, we have used different exchange functionals to investigate these properties and observed that using nmBJ (new modified Becke–Johnson) potential, we can obtain enhanced band gap and TE response (high figure of merit, ZT and power factor, PF) of these alloys as compared to previous report and fascinating optical properties as well. Our results show that ZrIrBi and HfRhBi are narrow-gap and ZrRhBi is a moderate gap semiconductor. All of these alloys have excellent ZT values of around 0.7 at room temperature. The optical properties show that these compounds have low absorbance, moderate reflectivity and low optical conductivity in visible region. The contrasting behaviour of their optical properties with respect to the regions of electromagnetic spectrum and their electronic properties suggests that they can be effectively used in optoelectronics and various optical devices. Also, their high ZT values both in low and high temperatures open up a possibility to use them for various TE applications. |
---|---|
AbstractList | •The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been employed to accurately predict the properties.•They behave as narrow to moderate gap semiconductor.•They have excellent thermoelectric materials having high power factor and figure of merit.•Their optical response in various ranges of electromagnetic spectrum opens prospect of using them in certain optical devices.
Half Huesler (HH) alloys have been a hot topic of research due to their fascinating properties and applications in several fields. There are several HH alloys been studied and this work is based on three Bismuth based HH alloys, ZrRhBi, ZrIrBi and HfRhBi, of which we have presented an extensive study on the structural, electronic, thermoelectric (TE) and optical properties using ab-initio density functional theory (DFT) calculations. The previous work on these alloys reported their stability and electronic properties stating that they possess good TE response which was done using DFT with PBE-GGA functional (J. Mater. Chem. A,5(13), 2017). In our study, we have used different exchange functionals to investigate these properties and observed that using nmBJ (new modified Becke–Johnson) potential, we can obtain enhanced band gap and TE response (high figure of merit, ZT and power factor, PF) of these alloys as compared to previous report and fascinating optical properties as well. Our results show that ZrIrBi and HfRhBi are narrow-gap and ZrRhBi is a moderate gap semiconductor. All of these alloys have excellent ZT values of around 0.7 at room temperature. The optical properties show that these compounds have low absorbance, moderate reflectivity and low optical conductivity in visible region. The contrasting behaviour of their optical properties with respect to the regions of electromagnetic spectrum and their electronic properties suggests that they can be effectively used in optoelectronics and various optical devices. Also, their high ZT values both in low and high temperatures open up a possibility to use them for various TE applications. |
ArticleNumber | 101647 |
Author | Dey, Aditya Sharma, Ramesh Dar, Sajad Ahmad |
Author_xml | – sequence: 1 givenname: Aditya surname: Dey fullname: Dey, Aditya email: adityadey51196@gmail.com organization: Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, India – sequence: 2 givenname: Ramesh surname: Sharma fullname: Sharma, Ramesh email: sharmadft@gmail.com organization: Dept. of Applied Science, Feroze Gandhi Institute of Engineering and Technology, Raebareli, Uttar Pradesh, India – sequence: 3 givenname: Sajad Ahmad surname: Dar fullname: Dar, Sajad Ahmad email: sajad54453@gmail.com organization: Dept. of Physics, Govt. Degree College Nowshera, Rajouri, Jammu and Kashmir, India |
BookMark | eNqFkM1KxDAUhYMo-PsGLvIAdkzbdNq6EET8A8GNrkN6e6N3SJMhyQzOu_iwdqwLcaGrXA58h5PvkO0675Cx01zMcpHPzxezIYEfhlkhiimS9Q47KMqqyGRbNLs_7n12EuNCCJE3lZCtPGAfV47je0IXaY2c3BpjoledyDvuDY8prCCtgrZnHC1CCt4RnPH0hmHwU0LAteu5XyYCbfky-CWGRBi3BR1lnY7Y8zdtTXa_wmgxcG2t30TebbihENPIkANa2pEZK2BlvwbEY7ZntI148v0esZfbm-fr--zx6e7h-uoxg1LMUwatLHNsUDYVmA5ErRthyqps52UhodKmrlpTNXXZ9QJqgW0ucYykwA4MdEV5xOTUC8HHGNCocdCgw0blQm2NqoWaJKutZDVJHrGLXxhQ-lqegib7H3w5wTh-bE0YVARCB9hTGK2q3tPfBZ9nGqGM |
CitedBy_id | crossref_primary_10_1007_s12633_024_03084_8 crossref_primary_10_1016_j_ssc_2022_114796 crossref_primary_10_1021_acsami_4c22462 crossref_primary_10_1002_qua_27484 crossref_primary_10_1002_qua_27482 crossref_primary_10_1007_s10948_020_05791_w crossref_primary_10_1140_epjp_s13360_021_02021_7 crossref_primary_10_1016_j_cocom_2020_e00532 crossref_primary_10_1021_acsaenm_2c00259 crossref_primary_10_3390_molecules29143355 crossref_primary_10_1016_j_mtcomm_2023_106461 crossref_primary_10_1142_S0217979225500523 crossref_primary_10_1140_epjp_s13360_022_02580_3 crossref_primary_10_1142_S0217979221500466 crossref_primary_10_1016_j_ssc_2024_115803 crossref_primary_10_1088_1402_4896_ad8191 |
Cites_doi | 10.1209/0295-5075/117/47002 10.1038/nature09996 10.1016/j.actamat.2016.01.031 10.1016/0010-4655(90)90187-6 10.1007/s10948-017-4051-3 10.1134/S1063783420100042 10.1063/1.1305829 10.1021/nl201206d 10.1016/j.intermet.2014.04.012 10.1038/nmat2090 10.1103/PhysRev.140.A1133 10.1103/PhysRevLett.100.136406 10.1103/PhysRevB.93.134102 10.1063/1.1425459 10.1016/j.progsolidstchem.2011.02.001 10.1038/nmat2770 10.1016/j.jallcom.2017.11.022 10.1103/PhysRevB.23.5048 10.1103/PhysRevB.82.125208 10.1103/PhysRevB.81.075208 10.1063/1.2085170 10.1021/acsomega.0c00197 10.1016/j.mattod.2013.09.015 10.1021/acs.chemmater.6b04898 10.1016/j.commatsci.2018.08.050 10.1016/j.spmi.2012.03.020 10.1103/PhysRevLett.77.3865 10.1016/j.jallcom.2019.01.050 10.1063/1.464304 10.1021/acs.jpcc.8b01177 10.1088/0268-1242/27/6/063001 10.1016/j.jssc.2013.12.012 10.1039/C7TA00920H |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtcomm.2020.101647 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-4928 |
ExternalDocumentID | 10_1016_j_mtcomm_2020_101647 S2352492820326581 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-c9431e8e485cfbc07a80f35396324c5af759f5873bd0c70e914e75940ebcfcb23 |
IEDL.DBID | AIKHN |
ISSN | 2352-4928 |
IngestDate | Tue Jul 01 02:45:49 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Fri Feb 23 02:49:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Density functional theory Half Heusler alloys Electronic and optical properties Thermoelectric properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c9431e8e485cfbc07a80f35396324c5af759f5873bd0c70e914e75940ebcfcb23 |
ParticipantIDs | crossref_primary_10_1016_j_mtcomm_2020_101647 crossref_citationtrail_10_1016_j_mtcomm_2020_101647 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2020_101647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Materials today communications |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shen, Chen, Goto, Hirai, Yang, Meisner, Uher (bib0020) 2001; 79 Haleoot, Hamad (bib0255) 2020; 32 Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib0175) 2008; 100 Chadov, Qi, Kübler, Fecher, Felser, Zhang (bib0045) 2010; 9 Wu, Wu, Wei, Zhou, Zhao, Xiong, Tou, Yang, Zhou, Shao (bib0070) 2014; 53 Dey (bib0260) 2020; 62 Kohn, Sham (bib0160) 1965; 140 Muranghan (bib0195) 1994; 30 Tran, Blaha (bib0180) 2009; 102 Kahaly, Schwingenschlogl (bib0015) 2014; 2 Chen, Park (bib0270) 2018; 122 Thomas, Visakh (bib0280) 2011 Chadov, Qi, Kübler, Fecher, Felser, Zhang (bib0085) 2010; 9 Gautier, Zhang, Hu, Yu, Lin, Sunde, Chon, Poeppelmeier, Zunger (bib0140) 2015; 7 Becke (bib0220) 1999; 98 Casper, Graf1, Chadov, Balke, Felser (bib0040) 2012; 27 Chen, Ren (bib0025) 2013; 16 Xu, Yi (bib0120) 2008; 41 Ghaithan, Alahmed, Qaid, Hezam, Aldwayyan (bib0225) 2020; 5 Kara, Upadhyay, Özdoğan (bib0230) 2018; 735 Al-Sawai, Lin, Markiewicz, Wray, Xia, Xu, Hasan, Bansil (bib0090) 2010; 82 Zebarjadi, Joshi, Zhu, Yu, Minnich, Lan, Wang, Dresselhaus, Ren, Chen (bib0105) 2011; 11 Dey (bib0210) 2020; 54 Xia, Bhattacharya, Ponnambalam, Pope, Poon, Tritt (bib0095) 2000; 88 Chen, Lukas, Liu, Opeil, Chen, Ren (bib0110) 2013; 3 Perdew, Zunger (bib0215) 1981; 23 Wang, Fu, Zhang, Wang, Li, Jiang (bib0075) 2016; 25 Chen, Gao, Zeng, Dehkordi, Tritt, Poon (bib0065) 2015; 107 Patel, Gupta, Gajjar (bib0275) 2020 Pei, Shi, LaLonde, Wang, Chen, Snyder (bib0005) 2011; 473 Benchehima, Abid, Sadoun, Chabane Chaouche (bib0265) 2018; 155 Blaha, Schwarz, Sorantin, Trickey (bib0150) 1990; 59 Madsen, Singh (bib0190) 2006; 175 Lee (bib0235) 2014; 211 Perdew, Burke, Ernzerhof (bib0165) 1996; 77 Zhang, Cao, Liu, Lukas, Yu, Chen, Opeil, Broido, Chen, Ren (bib0100) 2012; 134 Snyder, Toberer (bib0240) 2008; 7 Blaha, Schwarz, Madsen, Kvasnicka, Luitz (bib0155) 2001 Shrivastava, Sanyal (bib0250) 2019; 784 Kaur (bib0245) 2017; 117 Mehnane, Bekkouche, Kacimi, Hallouche, Djermouni, Zaoui (bib0125) 2012; 51 Wu, Cohen (bib0170) 2006; 73 He, Kanatzidis, Dravid (bib0010) 2013; 16 Graf, Felser, Parkin (bib0060) 2011; 39 Tobola, Pierre, Kaprzyk, Skolozdra, Kouacou (bib0080) 1998; 10 Singh, D’Souza, Nayak, Caron, Suard, Chadov, Felser (bib0055) 2016; 93 Mao, Zhou, Zhu, Liu, Zhang, He, Chen, Ren (bib0115) 2017; 29 Kanchana, Vaitheeswaran, Svane, Delin (bib0200) 2006; 18 Mehmood, Ahmad, Murtaza (bib0130) 2017; 30 Koller, Tran, Blaha (bib0185) 2012; 85 Rogl, Grytsiv, Gürth, Tavassoli, Ebner, Wünschek, Puchegger, Soprunyuk, Schranz, Bauer, Müller, Zehetbauer, Rogl (bib0050) 2016; 107 Vikram, Kangsabanik, Alam (bib0145) 2017; 5 Heyd, Peralta, Scuseria, Martin (bib0205) 2005; 123 Shiomi, Esfarjani, Chen (bib0030) 2011; 84 Kieven, Klenk, Naghavi, Felser, Gruhn (bib0035) 2010; 81 Kieven, Klenk, Naghavi, Felser, Gruhn (bib0135) 2010; 81 Maida (bib0285) 2019; 126 Haleoot (10.1016/j.mtcomm.2020.101647_bib0255) 2020; 32 Chadov (10.1016/j.mtcomm.2020.101647_bib0045) 2010; 9 Zebarjadi (10.1016/j.mtcomm.2020.101647_bib0105) 2011; 11 Casper (10.1016/j.mtcomm.2020.101647_bib0040) 2012; 27 Chadov (10.1016/j.mtcomm.2020.101647_bib0085) 2010; 9 Xu (10.1016/j.mtcomm.2020.101647_bib0120) 2008; 41 Xia (10.1016/j.mtcomm.2020.101647_bib0095) 2000; 88 Kara (10.1016/j.mtcomm.2020.101647_bib0230) 2018; 735 Chen (10.1016/j.mtcomm.2020.101647_bib0065) 2015; 107 Mao (10.1016/j.mtcomm.2020.101647_bib0115) 2017; 29 Mehmood (10.1016/j.mtcomm.2020.101647_bib0130) 2017; 30 Benchehima (10.1016/j.mtcomm.2020.101647_bib0265) 2018; 155 Perdew (10.1016/j.mtcomm.2020.101647_bib0165) 1996; 77 Kahaly (10.1016/j.mtcomm.2020.101647_bib0015) 2014; 2 Blaha (10.1016/j.mtcomm.2020.101647_bib0155) 2001 Heyd (10.1016/j.mtcomm.2020.101647_bib0205) 2005; 123 Shrivastava (10.1016/j.mtcomm.2020.101647_bib0250) 2019; 784 Perdew (10.1016/j.mtcomm.2020.101647_bib0175) 2008; 100 Gautier (10.1016/j.mtcomm.2020.101647_bib0140) 2015; 7 Kieven (10.1016/j.mtcomm.2020.101647_bib0135) 2010; 81 Chen (10.1016/j.mtcomm.2020.101647_bib0110) 2013; 3 Kohn (10.1016/j.mtcomm.2020.101647_bib0160) 1965; 140 Kieven (10.1016/j.mtcomm.2020.101647_bib0035) 2010; 81 Muranghan (10.1016/j.mtcomm.2020.101647_bib0195) 1994; 30 Becke (10.1016/j.mtcomm.2020.101647_bib0220) 1999; 98 Wu (10.1016/j.mtcomm.2020.101647_bib0070) 2014; 53 Lee (10.1016/j.mtcomm.2020.101647_bib0235) 2014; 211 Tran (10.1016/j.mtcomm.2020.101647_bib0180) 2009; 102 Rogl (10.1016/j.mtcomm.2020.101647_bib0050) 2016; 107 Wang (10.1016/j.mtcomm.2020.101647_bib0075) 2016; 25 Shiomi (10.1016/j.mtcomm.2020.101647_bib0030) 2011; 84 Dey (10.1016/j.mtcomm.2020.101647_bib0210) 2020; 54 Dey (10.1016/j.mtcomm.2020.101647_bib0260) 2020; 62 He (10.1016/j.mtcomm.2020.101647_bib0010) 2013; 16 Zhang (10.1016/j.mtcomm.2020.101647_bib0100) 2012; 134 Pei (10.1016/j.mtcomm.2020.101647_bib0005) 2011; 473 Mehnane (10.1016/j.mtcomm.2020.101647_bib0125) 2012; 51 Kaur (10.1016/j.mtcomm.2020.101647_bib0245) 2017; 117 Snyder (10.1016/j.mtcomm.2020.101647_bib0240) 2008; 7 Perdew (10.1016/j.mtcomm.2020.101647_bib0215) 1981; 23 Koller (10.1016/j.mtcomm.2020.101647_bib0185) 2012; 85 Patel (10.1016/j.mtcomm.2020.101647_bib0275) 2020 Al-Sawai (10.1016/j.mtcomm.2020.101647_bib0090) 2010; 82 Chen (10.1016/j.mtcomm.2020.101647_bib0270) 2018; 122 Vikram (10.1016/j.mtcomm.2020.101647_bib0145) 2017; 5 Wu (10.1016/j.mtcomm.2020.101647_bib0170) 2006; 73 Chen (10.1016/j.mtcomm.2020.101647_bib0025) 2013; 16 Blaha (10.1016/j.mtcomm.2020.101647_bib0150) 1990; 59 Graf (10.1016/j.mtcomm.2020.101647_bib0060) 2011; 39 Tobola (10.1016/j.mtcomm.2020.101647_bib0080) 1998; 10 Singh (10.1016/j.mtcomm.2020.101647_bib0055) 2016; 93 Ghaithan (10.1016/j.mtcomm.2020.101647_bib0225) 2020; 5 Kanchana (10.1016/j.mtcomm.2020.101647_bib0200) 2006; 18 Thomas (10.1016/j.mtcomm.2020.101647_bib0280) 2011 Maida (10.1016/j.mtcomm.2020.101647_bib0285) 2019; 126 Madsen (10.1016/j.mtcomm.2020.101647_bib0190) 2006; 175 Shen (10.1016/j.mtcomm.2020.101647_bib0020) 2001; 79 |
References_xml | – volume: 102 year: 2009 ident: bib0180 publication-title: Phys. Rev. Lett. – volume: 784 start-page: 319 year: 2019 ident: bib0250 publication-title: J. Alloys Compd. – volume: 84 year: 2011 ident: bib0030 publication-title: Phys. Rev. B – volume: 107 year: 2016 ident: bib0050 publication-title: Acta Mater. – volume: 59 start-page: 399 year: 1990 ident: bib0150 publication-title: Comp. Phys. Commun. – volume: 98 start-page: 1372 year: 1999 ident: bib0220 publication-title: J. Chem. Phys. – volume: 473 year: 2011 ident: bib0005 publication-title: Nature – volume: 5 start-page: 7468 year: 2020 ident: bib0225 publication-title: ACS Omega – volume: 735 start-page: 950 year: 2018 ident: bib0230 publication-title: J. Alloys Compd. – volume: 62 start-page: 1697 year: 2020 ident: bib0260 publication-title: Phys. Solid State – year: 2020 ident: bib0275 publication-title: Mater. Today Proc. – volume: 5 year: 2017 ident: bib0145 publication-title: J. Mater. Chem. A – volume: 77 start-page: 3865 year: 1996 ident: bib0165 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 5390 year: 1994 ident: bib0195 publication-title: Proc-Natl. Acad. Sci. U. S. A. – volume: 122 start-page: 14039 year: 2018 ident: bib0270 publication-title: J. Phys. Chem. C – volume: 2 year: 2014 ident: bib0015 publication-title: J. Mater. Chem. A – volume: 117 start-page: 47002 year: 2017 ident: bib0245 publication-title: EPL – volume: 11 year: 2011 ident: bib0105 publication-title: Nano Lett. – volume: 29 year: 2017 ident: bib0115 publication-title: Chem. Mater. – volume: 175 year: 2006 ident: bib0190 publication-title: Comput. Phys. Commun. – year: 2011 ident: bib0280 article-title: Handbook of Engineering and Specialty Thermoplastics, Volume 3: Polyethers and Polyesters – volume: 7 start-page: 105 year: 2008 ident: bib0240 publication-title: Nat. Mater. – volume: 100 year: 2008 ident: bib0175 publication-title: Phys. Rev. Lett. – volume: 81 year: 2010 ident: bib0135 publication-title: Phys. Rev. B – volume: 107 year: 2015 ident: bib0065 publication-title: Appl. Phys. Lett. – volume: 10 year: 1998 ident: bib0080 publication-title: J. Phys.: Condens. Matter – volume: 81 year: 2010 ident: bib0035 publication-title: Phys. Rev. B – volume: 123 year: 2005 ident: bib0205 publication-title: J. Chem. Phys. – volume: 126 year: 2019 ident: bib0285 publication-title: J. Appl. Phys. – volume: 41 year: 2008 ident: bib0120 publication-title: J. Phys. D: Appl. Phys. – volume: 134 year: 2012 ident: bib0100 publication-title: J. Am. Chem. Soc. – volume: 16 year: 2013 ident: bib0010 publication-title: Mater. Today – volume: 140 start-page: A1133 year: 1965 ident: bib0160 publication-title: Phys. Rev. – volume: 51 year: 2012 ident: bib0125 publication-title: Superlattices Microstruct. – volume: 54 year: 2020 ident: bib0210 publication-title: Semiconductors – volume: 82 year: 2010 ident: bib0090 publication-title: Phys. Rev. B – volume: 7 year: 2015 ident: bib0140 publication-title: Nat. Chem. Biol. – volume: 211 start-page: 113 year: 2014 ident: bib0235 publication-title: J. Solid State Chem. – year: 2001 ident: bib0155 article-title: wien2k, An Augment. Pl. Wave+ Local Orbitals publication-title: Progr. Calc. Cryst. Prop. – volume: 30 year: 2017 ident: bib0130 publication-title: J. Supercond. Nov. Magn. – volume: 53 year: 2014 ident: bib0070 publication-title: Intermetallics – volume: 93 year: 2016 ident: bib0055 publication-title: Phys. Rev. B – volume: 39 year: 2011 ident: bib0060 publication-title: Prog. Solid State Chem. – volume: 9 start-page: 541 year: 2010 ident: bib0085 publication-title: Nature Mater. – volume: 88 year: 2000 ident: bib0095 publication-title: J. Appl. Phys. – volume: 25 year: 2016 ident: bib0075 publication-title: Chin. Phys. B – volume: 23 start-page: 5048 year: 1981 ident: bib0215 publication-title: Phys. Rev. B – volume: 32 year: 2020 ident: bib0255 publication-title: J. Phys.: Condens. Matter – volume: 16 year: 2013 ident: bib0025 publication-title: Mater. Today – volume: 27 year: 2012 ident: bib0040 publication-title: Semicond. Sci. Technol. – volume: 73 year: 2006 ident: bib0170 publication-title: Phys. Rev. B – volume: 85 year: 2012 ident: bib0185 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 18 year: 2006 ident: bib0200 publication-title: J. Phys. Condens. Matter – volume: 79 year: 2001 ident: bib0020 publication-title: Appl. Phys. Lett. – volume: 155 start-page: 224 year: 2018 ident: bib0265 publication-title: Comput. Mater. Sci. – volume: 9 year: 2010 ident: bib0045 publication-title: Nat. Mater. – volume: 3 year: 2013 ident: bib0110 publication-title: Adv. Energy Mater. – volume: 117 start-page: 47002 year: 2017 ident: 10.1016/j.mtcomm.2020.101647_bib0245 publication-title: EPL doi: 10.1209/0295-5075/117/47002 – volume: 473 issue: 7345 year: 2011 ident: 10.1016/j.mtcomm.2020.101647_bib0005 publication-title: Nature doi: 10.1038/nature09996 – volume: 107 year: 2016 ident: 10.1016/j.mtcomm.2020.101647_bib0050 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.01.031 – volume: 59 start-page: 399 year: 1990 ident: 10.1016/j.mtcomm.2020.101647_bib0150 publication-title: Comp. Phys. Commun. doi: 10.1016/0010-4655(90)90187-6 – volume: 102 year: 2009 ident: 10.1016/j.mtcomm.2020.101647_bib0180 publication-title: Phys. Rev. Lett. – volume: 175 issue: 67 year: 2006 ident: 10.1016/j.mtcomm.2020.101647_bib0190 publication-title: Comput. Phys. Commun. – volume: 30 issue: 9 year: 2017 ident: 10.1016/j.mtcomm.2020.101647_bib0130 publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-017-4051-3 – volume: 62 start-page: 1697 issue: 10 year: 2020 ident: 10.1016/j.mtcomm.2020.101647_bib0260 publication-title: Phys. Solid State doi: 10.1134/S1063783420100042 – volume: 54 year: 2020 ident: 10.1016/j.mtcomm.2020.101647_bib0210 publication-title: Semiconductors – volume: 88 issue: 4 year: 2000 ident: 10.1016/j.mtcomm.2020.101647_bib0095 publication-title: J. Appl. Phys. doi: 10.1063/1.1305829 – volume: 3 issue: 9 year: 2013 ident: 10.1016/j.mtcomm.2020.101647_bib0110 publication-title: Adv. Energy Mater. – volume: 2 issue: 10379 year: 2014 ident: 10.1016/j.mtcomm.2020.101647_bib0015 publication-title: J. Mater. Chem. A – volume: 11 issue: 6 year: 2011 ident: 10.1016/j.mtcomm.2020.101647_bib0105 publication-title: Nano Lett. doi: 10.1021/nl201206d – volume: 53 year: 2014 ident: 10.1016/j.mtcomm.2020.101647_bib0070 publication-title: Intermetallics doi: 10.1016/j.intermet.2014.04.012 – volume: 7 start-page: 105 year: 2008 ident: 10.1016/j.mtcomm.2020.101647_bib0240 publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 32 year: 2020 ident: 10.1016/j.mtcomm.2020.101647_bib0255 publication-title: J. Phys.: Condens. Matter – volume: 140 start-page: A1133 year: 1965 ident: 10.1016/j.mtcomm.2020.101647_bib0160 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 85 year: 2012 ident: 10.1016/j.mtcomm.2020.101647_bib0185 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – year: 2020 ident: 10.1016/j.mtcomm.2020.101647_bib0275 publication-title: Mater. Today Proc. – volume: 100 year: 2008 ident: 10.1016/j.mtcomm.2020.101647_bib0175 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 10 issue: 5 year: 1998 ident: 10.1016/j.mtcomm.2020.101647_bib0080 publication-title: J. Phys.: Condens. Matter – volume: 93 issue: 13 year: 2016 ident: 10.1016/j.mtcomm.2020.101647_bib0055 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.134102 – volume: 79 issue: 25 year: 2001 ident: 10.1016/j.mtcomm.2020.101647_bib0020 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1425459 – volume: 39 issue: 1 year: 2011 ident: 10.1016/j.mtcomm.2020.101647_bib0060 publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2011.02.001 – volume: 25 issue: 8 year: 2016 ident: 10.1016/j.mtcomm.2020.101647_bib0075 publication-title: Chin. Phys. B – volume: 84 issue: 104302 year: 2011 ident: 10.1016/j.mtcomm.2020.101647_bib0030 publication-title: Phys. Rev. B – volume: 9 year: 2010 ident: 10.1016/j.mtcomm.2020.101647_bib0045 publication-title: Nat. Mater. doi: 10.1038/nmat2770 – volume: 73 year: 2006 ident: 10.1016/j.mtcomm.2020.101647_bib0170 publication-title: Phys. Rev. B – volume: 735 start-page: 950 year: 2018 ident: 10.1016/j.mtcomm.2020.101647_bib0230 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.11.022 – volume: 23 start-page: 5048 year: 1981 ident: 10.1016/j.mtcomm.2020.101647_bib0215 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – volume: 16 issue: 166 year: 2013 ident: 10.1016/j.mtcomm.2020.101647_bib0010 publication-title: Mater. Today – volume: 9 start-page: 541 year: 2010 ident: 10.1016/j.mtcomm.2020.101647_bib0085 publication-title: Nature Mater. doi: 10.1038/nmat2770 – volume: 30 start-page: 5390 year: 1994 ident: 10.1016/j.mtcomm.2020.101647_bib0195 publication-title: Proc-Natl. Acad. Sci. U. S. A. – volume: 41 issue: 9 year: 2008 ident: 10.1016/j.mtcomm.2020.101647_bib0120 publication-title: J. Phys. D: Appl. Phys. – volume: 82 issue: 12 year: 2010 ident: 10.1016/j.mtcomm.2020.101647_bib0090 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.125208 – year: 2001 ident: 10.1016/j.mtcomm.2020.101647_bib0155 article-title: wien2k, An Augment. Pl. Wave+ Local Orbitals publication-title: Progr. Calc. Cryst. Prop. – volume: 81 issue: 7 year: 2010 ident: 10.1016/j.mtcomm.2020.101647_bib0135 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.075208 – volume: 123 year: 2005 ident: 10.1016/j.mtcomm.2020.101647_bib0205 publication-title: J. Chem. Phys. doi: 10.1063/1.2085170 – volume: 5 start-page: 7468 year: 2020 ident: 10.1016/j.mtcomm.2020.101647_bib0225 publication-title: ACS Omega doi: 10.1021/acsomega.0c00197 – volume: 16 issue: 10 year: 2013 ident: 10.1016/j.mtcomm.2020.101647_bib0025 publication-title: Mater. Today doi: 10.1016/j.mattod.2013.09.015 – volume: 29 issue: 2 year: 2017 ident: 10.1016/j.mtcomm.2020.101647_bib0115 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04898 – volume: 155 start-page: 224 year: 2018 ident: 10.1016/j.mtcomm.2020.101647_bib0265 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.08.050 – volume: 51 issue: 6 year: 2012 ident: 10.1016/j.mtcomm.2020.101647_bib0125 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2012.03.020 – volume: 134 issue: 24 year: 2012 ident: 10.1016/j.mtcomm.2020.101647_bib0100 publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.mtcomm.2020.101647_bib0165 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 126 year: 2019 ident: 10.1016/j.mtcomm.2020.101647_bib0285 publication-title: J. Appl. Phys. – year: 2011 ident: 10.1016/j.mtcomm.2020.101647_bib0280 – volume: 784 start-page: 319 year: 2019 ident: 10.1016/j.mtcomm.2020.101647_bib0250 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.050 – volume: 81 issue: 7 year: 2010 ident: 10.1016/j.mtcomm.2020.101647_bib0035 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.075208 – volume: 7 issue: 4 year: 2015 ident: 10.1016/j.mtcomm.2020.101647_bib0140 publication-title: Nat. Chem. Biol. – volume: 98 start-page: 1372 year: 1999 ident: 10.1016/j.mtcomm.2020.101647_bib0220 publication-title: J. Chem. Phys. doi: 10.1063/1.464304 – volume: 122 start-page: 14039 year: 2018 ident: 10.1016/j.mtcomm.2020.101647_bib0270 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01177 – volume: 27 issue: 6 year: 2012 ident: 10.1016/j.mtcomm.2020.101647_bib0040 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/27/6/063001 – volume: 211 start-page: 113 year: 2014 ident: 10.1016/j.mtcomm.2020.101647_bib0235 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2013.12.012 – volume: 107 issue: 4 year: 2015 ident: 10.1016/j.mtcomm.2020.101647_bib0065 publication-title: Appl. Phys. Lett. – volume: 5 issue: 13 year: 2017 ident: 10.1016/j.mtcomm.2020.101647_bib0145 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00920H – volume: 18 year: 2006 ident: 10.1016/j.mtcomm.2020.101647_bib0200 publication-title: J. Phys. Condens. Matter |
SSID | ssj0001850494 |
Score | 2.2807846 |
Snippet | •The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101647 |
SubjectTerms | Density functional theory Electronic and optical properties Half Heusler alloys Thermoelectric properties |
Title | An extensive investigation of structural, electronic, thermoelectric and optical properties of bi-based half-Huesler alloys by first principles calculations |
URI | https://dx.doi.org/10.1016/j.mtcomm.2020.101647 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXryIouKbOXg0bG0b2xwXUVYXPfhAb2UzTbCytmV3L_4Xf6wzTesqiIKn0tCZlkzIfJnOfCPEUUg-Dm2opc1Ry9gmTurYaJljYtLAmejUcjXy9c3p8CG-elJPS-Ksq4XhtMp27_d7erNbtyP9djb7dVH070LCDrGmI0NAEERx-fUyvznoieXB5Wh4swi1pIpZUJo2cyqULNMV0TWZXq9zegdXpYd-iFut_OSkvjieizWx2iJGGPiPWhdLttwQ74MSmvg1Z59DsSDLqEqoHHhWWGbUOIZFo5tjYLT3WvmRAmFc5lDVTTQbao7KT5lelRUYOjKTf8vheTxxcki-Y2KnwD_p32Zg3sAVhBqh7iL1MyAV2HYCm22Kh4vz-7OhbBstSKQTw1yiJhhhUxunCp3BIBmTmSIVaeZyRzV2idJOpUlk8gCTwOoTMqrScWANOjRhtCV6ZVXabQHKWlJhcq3QxMY5rUkRQTS0hA0VBjsi6mY2w5aFnJthTLIu3ewl8_bI2B6Zt8eOkJ9StWfh-OP5pDNa9m01ZeQofpXc_bfknljhO5_qsi96ZGh7QIBlbg7bBcnX0e3j6AOx1PC- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuwwDI0QLGCDQIAuby9YEk1pm2mzHCFQec0GkNhVEzcRvRraipkN_8LHYjctA9IVV2Kb1m4VR_GJYx8LcRKSj0MbamkL1DK2iZM6NloWmJg0cCYaWq5GvhsPs8f4-kk9LYnzvhaG0yq7vd_v6e1u3Y0MutkcNGU5uA8JO8SajgwBQRDF5dcrzE5Fy3xldHWTjRehllQxC0rbZk6FkmX6Iro20-tlTt_gqvTQD3GrlX85qS-O53JDrHeIEUb-pzbFkq22xPuogjZ-zdnnUC7IMuoKageeFZYZNU5h0ejmFBjtvdR-pESYVAXUTRvNhoaj8q9Mr8oKDB2Zyb8V8DyZOpmR75jaV-BL-rcZmDdwJaFGaPpI_QxIBXadwGbb4vHy4uE8k12jBYl0YphL1AQjbGrjVKEzGCQTMlOkIs1c7qgmLlHaqTSJTBFgElh9RkZVOg6sQYcmjHbEclVX9o8AZS2pMIVWaGLjnNakiCAaWsKGCoNdEfUzm2PHQs7NMKZ5n272N_f2yNkeubfHrpCfUo1n4fjP-0lvtPzbasrJUfwoufdryWOxmj3c3ea3V-ObfbHGT3zay4FYJqPbQwIvc3PULc4PloryCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extensive+investigation+of+structural%2C+electronic%2C+thermoelectric+and+optical+properties+of+bi-based+half-Huesler+alloys+by+first+principles+calculations&rft.jtitle=Materials+today+communications&rft.au=Dey%2C+Aditya&rft.au=Sharma%2C+Ramesh&rft.au=Dar%2C+Sajad+Ahmad&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=25&rft_id=info:doi/10.1016%2Fj.mtcomm.2020.101647&rft.externalDocID=S2352492820326581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |