An extensive investigation of structural, electronic, thermoelectric and optical properties of bi-based half-Huesler alloys by first principles calculations

•The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been employed to accurately predict the properties.•They behave as narrow to moderate gap semiconductor.•They have excellent thermoelectric materials...

Full description

Saved in:
Bibliographic Details
Published inMaterials today communications Vol. 25; p. 101647
Main Authors Dey, Aditya, Sharma, Ramesh, Dar, Sajad Ahmad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been employed to accurately predict the properties.•They behave as narrow to moderate gap semiconductor.•They have excellent thermoelectric materials having high power factor and figure of merit.•Their optical response in various ranges of electromagnetic spectrum opens prospect of using them in certain optical devices. Half Huesler (HH) alloys have been a hot topic of research due to their fascinating properties and applications in several fields. There are several HH alloys been studied and this work is based on three Bismuth based HH alloys, ZrRhBi, ZrIrBi and HfRhBi, of which we have presented an extensive study on the structural, electronic, thermoelectric (TE) and optical properties using ab-initio density functional theory (DFT) calculations. The previous work on these alloys reported their stability and electronic properties stating that they possess good TE response which was done using DFT with PBE-GGA functional (J. Mater. Chem. A,5(13), 2017). In our study, we have used different exchange functionals to investigate these properties and observed that using nmBJ (new modified Becke–Johnson) potential, we can obtain enhanced band gap and TE response (high figure of merit, ZT and power factor, PF) of these alloys as compared to previous report and fascinating optical properties as well. Our results show that ZrIrBi and HfRhBi are narrow-gap and ZrRhBi is a moderate gap semiconductor. All of these alloys have excellent ZT values of around 0.7 at room temperature. The optical properties show that these compounds have low absorbance, moderate reflectivity and low optical conductivity in visible region. The contrasting behaviour of their optical properties with respect to the regions of electromagnetic spectrum and their electronic properties suggests that they can be effectively used in optoelectronics and various optical devices. Also, their high ZT values both in low and high temperatures open up a possibility to use them for various TE applications.
AbstractList •The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been employed to accurately predict the properties.•They behave as narrow to moderate gap semiconductor.•They have excellent thermoelectric materials having high power factor and figure of merit.•Their optical response in various ranges of electromagnetic spectrum opens prospect of using them in certain optical devices. Half Huesler (HH) alloys have been a hot topic of research due to their fascinating properties and applications in several fields. There are several HH alloys been studied and this work is based on three Bismuth based HH alloys, ZrRhBi, ZrIrBi and HfRhBi, of which we have presented an extensive study on the structural, electronic, thermoelectric (TE) and optical properties using ab-initio density functional theory (DFT) calculations. The previous work on these alloys reported their stability and electronic properties stating that they possess good TE response which was done using DFT with PBE-GGA functional (J. Mater. Chem. A,5(13), 2017). In our study, we have used different exchange functionals to investigate these properties and observed that using nmBJ (new modified Becke–Johnson) potential, we can obtain enhanced band gap and TE response (high figure of merit, ZT and power factor, PF) of these alloys as compared to previous report and fascinating optical properties as well. Our results show that ZrIrBi and HfRhBi are narrow-gap and ZrRhBi is a moderate gap semiconductor. All of these alloys have excellent ZT values of around 0.7 at room temperature. The optical properties show that these compounds have low absorbance, moderate reflectivity and low optical conductivity in visible region. The contrasting behaviour of their optical properties with respect to the regions of electromagnetic spectrum and their electronic properties suggests that they can be effectively used in optoelectronics and various optical devices. Also, their high ZT values both in low and high temperatures open up a possibility to use them for various TE applications.
ArticleNumber 101647
Author Dey, Aditya
Sharma, Ramesh
Dar, Sajad Ahmad
Author_xml – sequence: 1
  givenname: Aditya
  surname: Dey
  fullname: Dey, Aditya
  email: adityadey51196@gmail.com
  organization: Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, India
– sequence: 2
  givenname: Ramesh
  surname: Sharma
  fullname: Sharma, Ramesh
  email: sharmadft@gmail.com
  organization: Dept. of Applied Science, Feroze Gandhi Institute of Engineering and Technology, Raebareli, Uttar Pradesh, India
– sequence: 3
  givenname: Sajad Ahmad
  surname: Dar
  fullname: Dar, Sajad Ahmad
  email: sajad54453@gmail.com
  organization: Dept. of Physics, Govt. Degree College Nowshera, Rajouri, Jammu and Kashmir, India
BookMark eNqFkM1KxDAUhYMo-PsGLvIAdkzbdNq6EET8A8GNrkN6e6N3SJMhyQzOu_iwdqwLcaGrXA58h5PvkO0675Cx01zMcpHPzxezIYEfhlkhiimS9Q47KMqqyGRbNLs_7n12EuNCCJE3lZCtPGAfV47je0IXaY2c3BpjoledyDvuDY8prCCtgrZnHC1CCt4RnPH0hmHwU0LAteu5XyYCbfky-CWGRBi3BR1lnY7Y8zdtTXa_wmgxcG2t30TebbihENPIkANa2pEZK2BlvwbEY7ZntI148v0esZfbm-fr--zx6e7h-uoxg1LMUwatLHNsUDYVmA5ErRthyqps52UhodKmrlpTNXXZ9QJqgW0ucYykwA4MdEV5xOTUC8HHGNCocdCgw0blQm2NqoWaJKutZDVJHrGLXxhQ-lqegib7H3w5wTh-bE0YVARCB9hTGK2q3tPfBZ9nGqGM
CitedBy_id crossref_primary_10_1007_s12633_024_03084_8
crossref_primary_10_1016_j_ssc_2022_114796
crossref_primary_10_1021_acsami_4c22462
crossref_primary_10_1002_qua_27484
crossref_primary_10_1002_qua_27482
crossref_primary_10_1007_s10948_020_05791_w
crossref_primary_10_1140_epjp_s13360_021_02021_7
crossref_primary_10_1016_j_cocom_2020_e00532
crossref_primary_10_1021_acsaenm_2c00259
crossref_primary_10_3390_molecules29143355
crossref_primary_10_1016_j_mtcomm_2023_106461
crossref_primary_10_1142_S0217979225500523
crossref_primary_10_1140_epjp_s13360_022_02580_3
crossref_primary_10_1142_S0217979221500466
crossref_primary_10_1016_j_ssc_2024_115803
crossref_primary_10_1088_1402_4896_ad8191
Cites_doi 10.1209/0295-5075/117/47002
10.1038/nature09996
10.1016/j.actamat.2016.01.031
10.1016/0010-4655(90)90187-6
10.1007/s10948-017-4051-3
10.1134/S1063783420100042
10.1063/1.1305829
10.1021/nl201206d
10.1016/j.intermet.2014.04.012
10.1038/nmat2090
10.1103/PhysRev.140.A1133
10.1103/PhysRevLett.100.136406
10.1103/PhysRevB.93.134102
10.1063/1.1425459
10.1016/j.progsolidstchem.2011.02.001
10.1038/nmat2770
10.1016/j.jallcom.2017.11.022
10.1103/PhysRevB.23.5048
10.1103/PhysRevB.82.125208
10.1103/PhysRevB.81.075208
10.1063/1.2085170
10.1021/acsomega.0c00197
10.1016/j.mattod.2013.09.015
10.1021/acs.chemmater.6b04898
10.1016/j.commatsci.2018.08.050
10.1016/j.spmi.2012.03.020
10.1103/PhysRevLett.77.3865
10.1016/j.jallcom.2019.01.050
10.1063/1.464304
10.1021/acs.jpcc.8b01177
10.1088/0268-1242/27/6/063001
10.1016/j.jssc.2013.12.012
10.1039/C7TA00920H
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtcomm.2020.101647
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4928
ExternalDocumentID 10_1016_j_mtcomm_2020_101647
S2352492820326581
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-c9431e8e485cfbc07a80f35396324c5af759f5873bd0c70e914e75940ebcfcb23
IEDL.DBID AIKHN
ISSN 2352-4928
IngestDate Tue Jul 01 02:45:49 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Fri Feb 23 02:49:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Density functional theory
Half Heusler alloys
Electronic and optical properties
Thermoelectric properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c9431e8e485cfbc07a80f35396324c5af759f5873bd0c70e914e75940ebcfcb23
ParticipantIDs crossref_primary_10_1016_j_mtcomm_2020_101647
crossref_citationtrail_10_1016_j_mtcomm_2020_101647
elsevier_sciencedirect_doi_10_1016_j_mtcomm_2020_101647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Materials today communications
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shen, Chen, Goto, Hirai, Yang, Meisner, Uher (bib0020) 2001; 79
Haleoot, Hamad (bib0255) 2020; 32
Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib0175) 2008; 100
Chadov, Qi, Kübler, Fecher, Felser, Zhang (bib0045) 2010; 9
Wu, Wu, Wei, Zhou, Zhao, Xiong, Tou, Yang, Zhou, Shao (bib0070) 2014; 53
Dey (bib0260) 2020; 62
Kohn, Sham (bib0160) 1965; 140
Muranghan (bib0195) 1994; 30
Tran, Blaha (bib0180) 2009; 102
Kahaly, Schwingenschlogl (bib0015) 2014; 2
Chen, Park (bib0270) 2018; 122
Thomas, Visakh (bib0280) 2011
Chadov, Qi, Kübler, Fecher, Felser, Zhang (bib0085) 2010; 9
Gautier, Zhang, Hu, Yu, Lin, Sunde, Chon, Poeppelmeier, Zunger (bib0140) 2015; 7
Becke (bib0220) 1999; 98
Casper, Graf1, Chadov, Balke, Felser (bib0040) 2012; 27
Chen, Ren (bib0025) 2013; 16
Xu, Yi (bib0120) 2008; 41
Ghaithan, Alahmed, Qaid, Hezam, Aldwayyan (bib0225) 2020; 5
Kara, Upadhyay, Özdoğan (bib0230) 2018; 735
Al-Sawai, Lin, Markiewicz, Wray, Xia, Xu, Hasan, Bansil (bib0090) 2010; 82
Zebarjadi, Joshi, Zhu, Yu, Minnich, Lan, Wang, Dresselhaus, Ren, Chen (bib0105) 2011; 11
Dey (bib0210) 2020; 54
Xia, Bhattacharya, Ponnambalam, Pope, Poon, Tritt (bib0095) 2000; 88
Chen, Lukas, Liu, Opeil, Chen, Ren (bib0110) 2013; 3
Perdew, Zunger (bib0215) 1981; 23
Wang, Fu, Zhang, Wang, Li, Jiang (bib0075) 2016; 25
Chen, Gao, Zeng, Dehkordi, Tritt, Poon (bib0065) 2015; 107
Patel, Gupta, Gajjar (bib0275) 2020
Pei, Shi, LaLonde, Wang, Chen, Snyder (bib0005) 2011; 473
Benchehima, Abid, Sadoun, Chabane Chaouche (bib0265) 2018; 155
Blaha, Schwarz, Sorantin, Trickey (bib0150) 1990; 59
Madsen, Singh (bib0190) 2006; 175
Lee (bib0235) 2014; 211
Perdew, Burke, Ernzerhof (bib0165) 1996; 77
Zhang, Cao, Liu, Lukas, Yu, Chen, Opeil, Broido, Chen, Ren (bib0100) 2012; 134
Snyder, Toberer (bib0240) 2008; 7
Blaha, Schwarz, Madsen, Kvasnicka, Luitz (bib0155) 2001
Shrivastava, Sanyal (bib0250) 2019; 784
Kaur (bib0245) 2017; 117
Mehnane, Bekkouche, Kacimi, Hallouche, Djermouni, Zaoui (bib0125) 2012; 51
Wu, Cohen (bib0170) 2006; 73
He, Kanatzidis, Dravid (bib0010) 2013; 16
Graf, Felser, Parkin (bib0060) 2011; 39
Tobola, Pierre, Kaprzyk, Skolozdra, Kouacou (bib0080) 1998; 10
Singh, D’Souza, Nayak, Caron, Suard, Chadov, Felser (bib0055) 2016; 93
Mao, Zhou, Zhu, Liu, Zhang, He, Chen, Ren (bib0115) 2017; 29
Kanchana, Vaitheeswaran, Svane, Delin (bib0200) 2006; 18
Mehmood, Ahmad, Murtaza (bib0130) 2017; 30
Koller, Tran, Blaha (bib0185) 2012; 85
Rogl, Grytsiv, Gürth, Tavassoli, Ebner, Wünschek, Puchegger, Soprunyuk, Schranz, Bauer, Müller, Zehetbauer, Rogl (bib0050) 2016; 107
Vikram, Kangsabanik, Alam (bib0145) 2017; 5
Heyd, Peralta, Scuseria, Martin (bib0205) 2005; 123
Shiomi, Esfarjani, Chen (bib0030) 2011; 84
Kieven, Klenk, Naghavi, Felser, Gruhn (bib0035) 2010; 81
Kieven, Klenk, Naghavi, Felser, Gruhn (bib0135) 2010; 81
Maida (bib0285) 2019; 126
Haleoot (10.1016/j.mtcomm.2020.101647_bib0255) 2020; 32
Chadov (10.1016/j.mtcomm.2020.101647_bib0045) 2010; 9
Zebarjadi (10.1016/j.mtcomm.2020.101647_bib0105) 2011; 11
Casper (10.1016/j.mtcomm.2020.101647_bib0040) 2012; 27
Chadov (10.1016/j.mtcomm.2020.101647_bib0085) 2010; 9
Xu (10.1016/j.mtcomm.2020.101647_bib0120) 2008; 41
Xia (10.1016/j.mtcomm.2020.101647_bib0095) 2000; 88
Kara (10.1016/j.mtcomm.2020.101647_bib0230) 2018; 735
Chen (10.1016/j.mtcomm.2020.101647_bib0065) 2015; 107
Mao (10.1016/j.mtcomm.2020.101647_bib0115) 2017; 29
Mehmood (10.1016/j.mtcomm.2020.101647_bib0130) 2017; 30
Benchehima (10.1016/j.mtcomm.2020.101647_bib0265) 2018; 155
Perdew (10.1016/j.mtcomm.2020.101647_bib0165) 1996; 77
Kahaly (10.1016/j.mtcomm.2020.101647_bib0015) 2014; 2
Blaha (10.1016/j.mtcomm.2020.101647_bib0155) 2001
Heyd (10.1016/j.mtcomm.2020.101647_bib0205) 2005; 123
Shrivastava (10.1016/j.mtcomm.2020.101647_bib0250) 2019; 784
Perdew (10.1016/j.mtcomm.2020.101647_bib0175) 2008; 100
Gautier (10.1016/j.mtcomm.2020.101647_bib0140) 2015; 7
Kieven (10.1016/j.mtcomm.2020.101647_bib0135) 2010; 81
Chen (10.1016/j.mtcomm.2020.101647_bib0110) 2013; 3
Kohn (10.1016/j.mtcomm.2020.101647_bib0160) 1965; 140
Kieven (10.1016/j.mtcomm.2020.101647_bib0035) 2010; 81
Muranghan (10.1016/j.mtcomm.2020.101647_bib0195) 1994; 30
Becke (10.1016/j.mtcomm.2020.101647_bib0220) 1999; 98
Wu (10.1016/j.mtcomm.2020.101647_bib0070) 2014; 53
Lee (10.1016/j.mtcomm.2020.101647_bib0235) 2014; 211
Tran (10.1016/j.mtcomm.2020.101647_bib0180) 2009; 102
Rogl (10.1016/j.mtcomm.2020.101647_bib0050) 2016; 107
Wang (10.1016/j.mtcomm.2020.101647_bib0075) 2016; 25
Shiomi (10.1016/j.mtcomm.2020.101647_bib0030) 2011; 84
Dey (10.1016/j.mtcomm.2020.101647_bib0210) 2020; 54
Dey (10.1016/j.mtcomm.2020.101647_bib0260) 2020; 62
He (10.1016/j.mtcomm.2020.101647_bib0010) 2013; 16
Zhang (10.1016/j.mtcomm.2020.101647_bib0100) 2012; 134
Pei (10.1016/j.mtcomm.2020.101647_bib0005) 2011; 473
Mehnane (10.1016/j.mtcomm.2020.101647_bib0125) 2012; 51
Kaur (10.1016/j.mtcomm.2020.101647_bib0245) 2017; 117
Snyder (10.1016/j.mtcomm.2020.101647_bib0240) 2008; 7
Perdew (10.1016/j.mtcomm.2020.101647_bib0215) 1981; 23
Koller (10.1016/j.mtcomm.2020.101647_bib0185) 2012; 85
Patel (10.1016/j.mtcomm.2020.101647_bib0275) 2020
Al-Sawai (10.1016/j.mtcomm.2020.101647_bib0090) 2010; 82
Chen (10.1016/j.mtcomm.2020.101647_bib0270) 2018; 122
Vikram (10.1016/j.mtcomm.2020.101647_bib0145) 2017; 5
Wu (10.1016/j.mtcomm.2020.101647_bib0170) 2006; 73
Chen (10.1016/j.mtcomm.2020.101647_bib0025) 2013; 16
Blaha (10.1016/j.mtcomm.2020.101647_bib0150) 1990; 59
Graf (10.1016/j.mtcomm.2020.101647_bib0060) 2011; 39
Tobola (10.1016/j.mtcomm.2020.101647_bib0080) 1998; 10
Singh (10.1016/j.mtcomm.2020.101647_bib0055) 2016; 93
Ghaithan (10.1016/j.mtcomm.2020.101647_bib0225) 2020; 5
Kanchana (10.1016/j.mtcomm.2020.101647_bib0200) 2006; 18
Thomas (10.1016/j.mtcomm.2020.101647_bib0280) 2011
Maida (10.1016/j.mtcomm.2020.101647_bib0285) 2019; 126
Madsen (10.1016/j.mtcomm.2020.101647_bib0190) 2006; 175
Shen (10.1016/j.mtcomm.2020.101647_bib0020) 2001; 79
References_xml – volume: 102
  year: 2009
  ident: bib0180
  publication-title: Phys. Rev. Lett.
– volume: 784
  start-page: 319
  year: 2019
  ident: bib0250
  publication-title: J. Alloys Compd.
– volume: 84
  year: 2011
  ident: bib0030
  publication-title: Phys. Rev. B
– volume: 107
  year: 2016
  ident: bib0050
  publication-title: Acta Mater.
– volume: 59
  start-page: 399
  year: 1990
  ident: bib0150
  publication-title: Comp. Phys. Commun.
– volume: 98
  start-page: 1372
  year: 1999
  ident: bib0220
  publication-title: J. Chem. Phys.
– volume: 473
  year: 2011
  ident: bib0005
  publication-title: Nature
– volume: 5
  start-page: 7468
  year: 2020
  ident: bib0225
  publication-title: ACS Omega
– volume: 735
  start-page: 950
  year: 2018
  ident: bib0230
  publication-title: J. Alloys Compd.
– volume: 62
  start-page: 1697
  year: 2020
  ident: bib0260
  publication-title: Phys. Solid State
– year: 2020
  ident: bib0275
  publication-title: Mater. Today Proc.
– volume: 5
  year: 2017
  ident: bib0145
  publication-title: J. Mater. Chem. A
– volume: 77
  start-page: 3865
  year: 1996
  ident: bib0165
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 5390
  year: 1994
  ident: bib0195
  publication-title: Proc-Natl. Acad. Sci. U. S. A.
– volume: 122
  start-page: 14039
  year: 2018
  ident: bib0270
  publication-title: J. Phys. Chem. C
– volume: 2
  year: 2014
  ident: bib0015
  publication-title: J. Mater. Chem. A
– volume: 117
  start-page: 47002
  year: 2017
  ident: bib0245
  publication-title: EPL
– volume: 11
  year: 2011
  ident: bib0105
  publication-title: Nano Lett.
– volume: 29
  year: 2017
  ident: bib0115
  publication-title: Chem. Mater.
– volume: 175
  year: 2006
  ident: bib0190
  publication-title: Comput. Phys. Commun.
– year: 2011
  ident: bib0280
  article-title: Handbook of Engineering and Specialty Thermoplastics, Volume 3: Polyethers and Polyesters
– volume: 7
  start-page: 105
  year: 2008
  ident: bib0240
  publication-title: Nat. Mater.
– volume: 100
  year: 2008
  ident: bib0175
  publication-title: Phys. Rev. Lett.
– volume: 81
  year: 2010
  ident: bib0135
  publication-title: Phys. Rev. B
– volume: 107
  year: 2015
  ident: bib0065
  publication-title: Appl. Phys. Lett.
– volume: 10
  year: 1998
  ident: bib0080
  publication-title: J. Phys.: Condens. Matter
– volume: 81
  year: 2010
  ident: bib0035
  publication-title: Phys. Rev. B
– volume: 123
  year: 2005
  ident: bib0205
  publication-title: J. Chem. Phys.
– volume: 126
  year: 2019
  ident: bib0285
  publication-title: J. Appl. Phys.
– volume: 41
  year: 2008
  ident: bib0120
  publication-title: J. Phys. D: Appl. Phys.
– volume: 134
  year: 2012
  ident: bib0100
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2013
  ident: bib0010
  publication-title: Mater. Today
– volume: 140
  start-page: A1133
  year: 1965
  ident: bib0160
  publication-title: Phys. Rev.
– volume: 51
  year: 2012
  ident: bib0125
  publication-title: Superlattices Microstruct.
– volume: 54
  year: 2020
  ident: bib0210
  publication-title: Semiconductors
– volume: 82
  year: 2010
  ident: bib0090
  publication-title: Phys. Rev. B
– volume: 7
  year: 2015
  ident: bib0140
  publication-title: Nat. Chem. Biol.
– volume: 211
  start-page: 113
  year: 2014
  ident: bib0235
  publication-title: J. Solid State Chem.
– year: 2001
  ident: bib0155
  article-title: wien2k, An Augment. Pl. Wave+ Local Orbitals
  publication-title: Progr. Calc. Cryst. Prop.
– volume: 30
  year: 2017
  ident: bib0130
  publication-title: J. Supercond. Nov. Magn.
– volume: 53
  year: 2014
  ident: bib0070
  publication-title: Intermetallics
– volume: 93
  year: 2016
  ident: bib0055
  publication-title: Phys. Rev. B
– volume: 39
  year: 2011
  ident: bib0060
  publication-title: Prog. Solid State Chem.
– volume: 9
  start-page: 541
  year: 2010
  ident: bib0085
  publication-title: Nature Mater.
– volume: 88
  year: 2000
  ident: bib0095
  publication-title: J. Appl. Phys.
– volume: 25
  year: 2016
  ident: bib0075
  publication-title: Chin. Phys. B
– volume: 23
  start-page: 5048
  year: 1981
  ident: bib0215
  publication-title: Phys. Rev. B
– volume: 32
  year: 2020
  ident: bib0255
  publication-title: J. Phys.: Condens. Matter
– volume: 16
  year: 2013
  ident: bib0025
  publication-title: Mater. Today
– volume: 27
  year: 2012
  ident: bib0040
  publication-title: Semicond. Sci. Technol.
– volume: 73
  year: 2006
  ident: bib0170
  publication-title: Phys. Rev. B
– volume: 85
  year: 2012
  ident: bib0185
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 18
  year: 2006
  ident: bib0200
  publication-title: J. Phys. Condens. Matter
– volume: 79
  year: 2001
  ident: bib0020
  publication-title: Appl. Phys. Lett.
– volume: 155
  start-page: 224
  year: 2018
  ident: bib0265
  publication-title: Comput. Mater. Sci.
– volume: 9
  year: 2010
  ident: bib0045
  publication-title: Nat. Mater.
– volume: 3
  year: 2013
  ident: bib0110
  publication-title: Adv. Energy Mater.
– volume: 117
  start-page: 47002
  year: 2017
  ident: 10.1016/j.mtcomm.2020.101647_bib0245
  publication-title: EPL
  doi: 10.1209/0295-5075/117/47002
– volume: 473
  issue: 7345
  year: 2011
  ident: 10.1016/j.mtcomm.2020.101647_bib0005
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 107
  year: 2016
  ident: 10.1016/j.mtcomm.2020.101647_bib0050
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.01.031
– volume: 59
  start-page: 399
  year: 1990
  ident: 10.1016/j.mtcomm.2020.101647_bib0150
  publication-title: Comp. Phys. Commun.
  doi: 10.1016/0010-4655(90)90187-6
– volume: 102
  year: 2009
  ident: 10.1016/j.mtcomm.2020.101647_bib0180
  publication-title: Phys. Rev. Lett.
– volume: 175
  issue: 67
  year: 2006
  ident: 10.1016/j.mtcomm.2020.101647_bib0190
  publication-title: Comput. Phys. Commun.
– volume: 30
  issue: 9
  year: 2017
  ident: 10.1016/j.mtcomm.2020.101647_bib0130
  publication-title: J. Supercond. Nov. Magn.
  doi: 10.1007/s10948-017-4051-3
– volume: 62
  start-page: 1697
  issue: 10
  year: 2020
  ident: 10.1016/j.mtcomm.2020.101647_bib0260
  publication-title: Phys. Solid State
  doi: 10.1134/S1063783420100042
– volume: 54
  year: 2020
  ident: 10.1016/j.mtcomm.2020.101647_bib0210
  publication-title: Semiconductors
– volume: 88
  issue: 4
  year: 2000
  ident: 10.1016/j.mtcomm.2020.101647_bib0095
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1305829
– volume: 3
  issue: 9
  year: 2013
  ident: 10.1016/j.mtcomm.2020.101647_bib0110
  publication-title: Adv. Energy Mater.
– volume: 2
  issue: 10379
  year: 2014
  ident: 10.1016/j.mtcomm.2020.101647_bib0015
  publication-title: J. Mater. Chem. A
– volume: 11
  issue: 6
  year: 2011
  ident: 10.1016/j.mtcomm.2020.101647_bib0105
  publication-title: Nano Lett.
  doi: 10.1021/nl201206d
– volume: 53
  year: 2014
  ident: 10.1016/j.mtcomm.2020.101647_bib0070
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2014.04.012
– volume: 7
  start-page: 105
  year: 2008
  ident: 10.1016/j.mtcomm.2020.101647_bib0240
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 32
  year: 2020
  ident: 10.1016/j.mtcomm.2020.101647_bib0255
  publication-title: J. Phys.: Condens. Matter
– volume: 140
  start-page: A1133
  year: 1965
  ident: 10.1016/j.mtcomm.2020.101647_bib0160
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 85
  year: 2012
  ident: 10.1016/j.mtcomm.2020.101647_bib0185
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– year: 2020
  ident: 10.1016/j.mtcomm.2020.101647_bib0275
  publication-title: Mater. Today Proc.
– volume: 100
  year: 2008
  ident: 10.1016/j.mtcomm.2020.101647_bib0175
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 10
  issue: 5
  year: 1998
  ident: 10.1016/j.mtcomm.2020.101647_bib0080
  publication-title: J. Phys.: Condens. Matter
– volume: 93
  issue: 13
  year: 2016
  ident: 10.1016/j.mtcomm.2020.101647_bib0055
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.134102
– volume: 79
  issue: 25
  year: 2001
  ident: 10.1016/j.mtcomm.2020.101647_bib0020
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1425459
– volume: 39
  issue: 1
  year: 2011
  ident: 10.1016/j.mtcomm.2020.101647_bib0060
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2011.02.001
– volume: 25
  issue: 8
  year: 2016
  ident: 10.1016/j.mtcomm.2020.101647_bib0075
  publication-title: Chin. Phys. B
– volume: 84
  issue: 104302
  year: 2011
  ident: 10.1016/j.mtcomm.2020.101647_bib0030
  publication-title: Phys. Rev. B
– volume: 9
  year: 2010
  ident: 10.1016/j.mtcomm.2020.101647_bib0045
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2770
– volume: 73
  year: 2006
  ident: 10.1016/j.mtcomm.2020.101647_bib0170
  publication-title: Phys. Rev. B
– volume: 735
  start-page: 950
  year: 2018
  ident: 10.1016/j.mtcomm.2020.101647_bib0230
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.11.022
– volume: 23
  start-page: 5048
  year: 1981
  ident: 10.1016/j.mtcomm.2020.101647_bib0215
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– volume: 16
  issue: 166
  year: 2013
  ident: 10.1016/j.mtcomm.2020.101647_bib0010
  publication-title: Mater. Today
– volume: 9
  start-page: 541
  year: 2010
  ident: 10.1016/j.mtcomm.2020.101647_bib0085
  publication-title: Nature Mater.
  doi: 10.1038/nmat2770
– volume: 30
  start-page: 5390
  year: 1994
  ident: 10.1016/j.mtcomm.2020.101647_bib0195
  publication-title: Proc-Natl. Acad. Sci. U. S. A.
– volume: 41
  issue: 9
  year: 2008
  ident: 10.1016/j.mtcomm.2020.101647_bib0120
  publication-title: J. Phys. D: Appl. Phys.
– volume: 82
  issue: 12
  year: 2010
  ident: 10.1016/j.mtcomm.2020.101647_bib0090
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.125208
– year: 2001
  ident: 10.1016/j.mtcomm.2020.101647_bib0155
  article-title: wien2k, An Augment. Pl. Wave+ Local Orbitals
  publication-title: Progr. Calc. Cryst. Prop.
– volume: 81
  issue: 7
  year: 2010
  ident: 10.1016/j.mtcomm.2020.101647_bib0135
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.075208
– volume: 123
  year: 2005
  ident: 10.1016/j.mtcomm.2020.101647_bib0205
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2085170
– volume: 5
  start-page: 7468
  year: 2020
  ident: 10.1016/j.mtcomm.2020.101647_bib0225
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00197
– volume: 16
  issue: 10
  year: 2013
  ident: 10.1016/j.mtcomm.2020.101647_bib0025
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.09.015
– volume: 29
  issue: 2
  year: 2017
  ident: 10.1016/j.mtcomm.2020.101647_bib0115
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04898
– volume: 155
  start-page: 224
  year: 2018
  ident: 10.1016/j.mtcomm.2020.101647_bib0265
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.08.050
– volume: 51
  issue: 6
  year: 2012
  ident: 10.1016/j.mtcomm.2020.101647_bib0125
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2012.03.020
– volume: 134
  issue: 24
  year: 2012
  ident: 10.1016/j.mtcomm.2020.101647_bib0100
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.mtcomm.2020.101647_bib0165
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 126
  year: 2019
  ident: 10.1016/j.mtcomm.2020.101647_bib0285
  publication-title: J. Appl. Phys.
– year: 2011
  ident: 10.1016/j.mtcomm.2020.101647_bib0280
– volume: 784
  start-page: 319
  year: 2019
  ident: 10.1016/j.mtcomm.2020.101647_bib0250
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.01.050
– volume: 81
  issue: 7
  year: 2010
  ident: 10.1016/j.mtcomm.2020.101647_bib0035
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.075208
– volume: 7
  issue: 4
  year: 2015
  ident: 10.1016/j.mtcomm.2020.101647_bib0140
  publication-title: Nat. Chem. Biol.
– volume: 98
  start-page: 1372
  year: 1999
  ident: 10.1016/j.mtcomm.2020.101647_bib0220
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464304
– volume: 122
  start-page: 14039
  year: 2018
  ident: 10.1016/j.mtcomm.2020.101647_bib0270
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01177
– volume: 27
  issue: 6
  year: 2012
  ident: 10.1016/j.mtcomm.2020.101647_bib0040
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/27/6/063001
– volume: 211
  start-page: 113
  year: 2014
  ident: 10.1016/j.mtcomm.2020.101647_bib0235
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2013.12.012
– volume: 107
  issue: 4
  year: 2015
  ident: 10.1016/j.mtcomm.2020.101647_bib0065
  publication-title: Appl. Phys. Lett.
– volume: 5
  issue: 13
  year: 2017
  ident: 10.1016/j.mtcomm.2020.101647_bib0145
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00920H
– volume: 18
  year: 2006
  ident: 10.1016/j.mtcomm.2020.101647_bib0200
  publication-title: J. Phys. Condens. Matter
SSID ssj0001850494
Score 2.2807846
Snippet •The structural, electronic, optical and thermoelectric properties of ZrRhBi, ZrIrBi and HfRhBi alloys are studied.•Different exchange potentials have been...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101647
SubjectTerms Density functional theory
Electronic and optical properties
Half Heusler alloys
Thermoelectric properties
Title An extensive investigation of structural, electronic, thermoelectric and optical properties of bi-based half-Huesler alloys by first principles calculations
URI https://dx.doi.org/10.1016/j.mtcomm.2020.101647
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXryIouKbOXg0bG0b2xwXUVYXPfhAb2UzTbCytmV3L_4Xf6wzTesqiIKn0tCZlkzIfJnOfCPEUUg-Dm2opc1Ry9gmTurYaJljYtLAmejUcjXy9c3p8CG-elJPS-Ksq4XhtMp27_d7erNbtyP9djb7dVH070LCDrGmI0NAEERx-fUyvznoieXB5Wh4swi1pIpZUJo2cyqULNMV0TWZXq9zegdXpYd-iFut_OSkvjieizWx2iJGGPiPWhdLttwQ74MSmvg1Z59DsSDLqEqoHHhWWGbUOIZFo5tjYLT3WvmRAmFc5lDVTTQbao7KT5lelRUYOjKTf8vheTxxcki-Y2KnwD_p32Zg3sAVhBqh7iL1MyAV2HYCm22Kh4vz-7OhbBstSKQTw1yiJhhhUxunCp3BIBmTmSIVaeZyRzV2idJOpUlk8gCTwOoTMqrScWANOjRhtCV6ZVXabQHKWlJhcq3QxMY5rUkRQTS0hA0VBjsi6mY2w5aFnJthTLIu3ewl8_bI2B6Zt8eOkJ9StWfh-OP5pDNa9m01ZeQofpXc_bfknljhO5_qsi96ZGh7QIBlbg7bBcnX0e3j6AOx1PC-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuwwDI0QLGCDQIAuby9YEk1pm2mzHCFQec0GkNhVEzcRvRraipkN_8LHYjctA9IVV2Kb1m4VR_GJYx8LcRKSj0MbamkL1DK2iZM6NloWmJg0cCYaWq5GvhsPs8f4-kk9LYnzvhaG0yq7vd_v6e1u3Y0MutkcNGU5uA8JO8SajgwBQRDF5dcrzE5Fy3xldHWTjRehllQxC0rbZk6FkmX6Iro20-tlTt_gqvTQD3GrlX85qS-O53JDrHeIEUb-pzbFkq22xPuogjZ-zdnnUC7IMuoKageeFZYZNU5h0ejmFBjtvdR-pESYVAXUTRvNhoaj8q9Mr8oKDB2Zyb8V8DyZOpmR75jaV-BL-rcZmDdwJaFGaPpI_QxIBXadwGbb4vHy4uE8k12jBYl0YphL1AQjbGrjVKEzGCQTMlOkIs1c7qgmLlHaqTSJTBFgElh9RkZVOg6sQYcmjHbEclVX9o8AZS2pMIVWaGLjnNakiCAaWsKGCoNdEfUzm2PHQs7NMKZ5n272N_f2yNkeubfHrpCfUo1n4fjP-0lvtPzbasrJUfwoufdryWOxmj3c3ea3V-ObfbHGT3zay4FYJqPbQwIvc3PULc4PloryCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extensive+investigation+of+structural%2C+electronic%2C+thermoelectric+and+optical+properties+of+bi-based+half-Huesler+alloys+by+first+principles+calculations&rft.jtitle=Materials+today+communications&rft.au=Dey%2C+Aditya&rft.au=Sharma%2C+Ramesh&rft.au=Dar%2C+Sajad+Ahmad&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=25&rft_id=info:doi/10.1016%2Fj.mtcomm.2020.101647&rft.externalDocID=S2352492820326581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon