Distributed Filtering for Sensor Networks with Fading Measurements and Compensations for Transmission Delays and Losses

•A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of covariance.•Solutions of optimal parameters nonlinearly coupled with optimal gains are given.•Boundedness of the upper bound of filtering error covariance...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 190; p. 108306
Main Authors Jin, Hao, Sun, Shuli
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text
ISSN0165-1684
1872-7557
DOI10.1016/j.sigpro.2021.108306

Cover

Abstract •A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of covariance.•Solutions of optimal parameters nonlinearly coupled with optimal gains are given.•Boundedness of the upper bound of filtering error covariance matrix is analyzed.•Conservative distributed filters are presented under the steady-state parameters. This paper studies a distributed filtering problem for sensor networks, where sensor nodes may suffer from their own fading measurements and random delayed and lost state estimates of their neighbor nodes. A distributed filter is presented based on statistical characteristics of fading measurements of sensors, where an optimal Kalman filter gain for each sensor node and different optimal consensus filter gains for state estimates of neighbor nodes are solved to minimize locally an upper bound of filtering error covariance matrix under given parameters. The proposed filter has reduced computational cost since calculation of cross-covariance matrices between sensors is avoided. Predictors of delayed and lost estimates of neighbor nodes are used for compensations to improve estimation accuracy. To further minimize the upper bound of covariance matrix, optimal parameters are solved, which are nonlinearly coupled with optimal gains. Their approximate numerical solutions can be obtained by nonlinear optimization methods. The boundedness of covariance matrix of the proposed filter is analyzed. As a special case, a distributed filter with constant delays can be obtained, which has the steady-state property. To further reduce online computational cost, two conservative distributed filters are also presented under the steady-state parameters obtained by using the upper bound of delays.
AbstractList •A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of covariance.•Solutions of optimal parameters nonlinearly coupled with optimal gains are given.•Boundedness of the upper bound of filtering error covariance matrix is analyzed.•Conservative distributed filters are presented under the steady-state parameters. This paper studies a distributed filtering problem for sensor networks, where sensor nodes may suffer from their own fading measurements and random delayed and lost state estimates of their neighbor nodes. A distributed filter is presented based on statistical characteristics of fading measurements of sensors, where an optimal Kalman filter gain for each sensor node and different optimal consensus filter gains for state estimates of neighbor nodes are solved to minimize locally an upper bound of filtering error covariance matrix under given parameters. The proposed filter has reduced computational cost since calculation of cross-covariance matrices between sensors is avoided. Predictors of delayed and lost estimates of neighbor nodes are used for compensations to improve estimation accuracy. To further minimize the upper bound of covariance matrix, optimal parameters are solved, which are nonlinearly coupled with optimal gains. Their approximate numerical solutions can be obtained by nonlinear optimization methods. The boundedness of covariance matrix of the proposed filter is analyzed. As a special case, a distributed filter with constant delays can be obtained, which has the steady-state property. To further reduce online computational cost, two conservative distributed filters are also presented under the steady-state parameters obtained by using the upper bound of delays.
ArticleNumber 108306
Author Jin, Hao
Sun, Shuli
Author_xml – sequence: 1
  givenname: Hao
  surname: Jin
  fullname: Jin, Hao
– sequence: 2
  givenname: Shuli
  surname: Sun
  fullname: Sun, Shuli
  email: sunsl@hlju.edu.cn
BookMark eNqFkM1OwzAQhC0EEm3hDTjkBVLsxM4PByTUUkAqcKCcLcfZFJfUqbwuVd8et-HEAU4rzc63q5khObWdBUKuGB0zyrLr1RjNcuO6cUITFqQipdkJGbAiT-JciPyUDIJNxCwr-DkZIq4opSzN6IDspga9M9XWQx3NTOvBGbuMms5Fb2AxjBfwu859YrQz_iOaqfqwfwaFWwdrsB4jZeto0q03wa-86Swe8YVTFtcGMSjRFFq1753zDhHwgpw1qkW4_Jkj8j67X0we4_nrw9Pkbh7rkMHHuuRJngghsorXgjLBq1KxhoLgkBepVk2eJpwLJRou8pyVOq1ZBllTVioBVaUjwvu72oW_Dhq5cWat3F4yKg_lyZXsy5OH8mRfXsBufmHa-GM475Rp_4NvexhCsC8DTqI2YDXUxoH2su7M3we-AYh6kgg
CitedBy_id crossref_primary_10_1016_j_inffus_2023_102121
crossref_primary_10_1109_JSEN_2023_3247992
crossref_primary_10_1016_j_inffus_2024_102543
crossref_primary_10_1002_acs_3978
crossref_primary_10_1016_j_cnsns_2022_106618
crossref_primary_10_1016_j_inffus_2024_102368
crossref_primary_10_1109_ACCESS_2023_3280858
crossref_primary_10_1002_oca_2950
crossref_primary_10_1016_j_cnsns_2025_108663
crossref_primary_10_1109_JSEN_2023_3235996
crossref_primary_10_1109_TNSE_2024_3395707
crossref_primary_10_1016_j_sigpro_2024_109772
crossref_primary_10_1109_TCYB_2023_3288829
crossref_primary_10_1016_j_neucom_2022_04_096
crossref_primary_10_1080_00207721_2022_2062802
crossref_primary_10_1109_ACCESS_2024_3439681
crossref_primary_10_1109_JSEN_2022_3215485
crossref_primary_10_1109_TSIPN_2023_3334496
crossref_primary_10_1016_j_inffus_2022_06_007
crossref_primary_10_1016_j_cnsns_2023_107093
crossref_primary_10_1016_j_jfranklin_2022_11_019
crossref_primary_10_1016_j_jfranklin_2024_106841
crossref_primary_10_53941_ijndi0201007
Cites_doi 10.1016/j.sysconle.2014.07.005
10.1109/TCYB.2017.2771560
10.1049/iet-cta.2015.0508
10.1109/TAC.2012.2229812
10.1109/TAC.2012.2191857
10.1109/TSMCB.2012.2236647
10.1016/j.sigpro.2016.02.014
10.1049/iet-cta.2012.0732
10.1109/TII.2015.2444355
10.1016/j.inffus.2017.03.006
10.1016/j.automatica.2015.11.008
10.1109/TAC.2019.2897887
10.1016/j.automatica.2019.02.052
10.1016/j.automatica.2013.08.021
10.1016/j.sigpro.2009.02.002
10.1016/j.automatica.2020.108842
10.1016/j.inffus.2018.02.006
10.1109/TSP.2017.2770102
10.1016/j.dsp.2016.10.003
10.1016/j.automatica.2016.09.009
10.1016/j.jfranklin.2015.01.002
10.1016/j.sigpro.2006.05.007
10.1016/j.ins.2017.02.048
10.1016/j.automatica.2014.05.025
10.1007/s00034-007-4009-5
10.1016/j.sysconle.2019.104500
10.1109/TSP.2018.2831642
10.1016/j.dsp.2019.102636
10.1016/j.cam.2018.07.026
10.1109/TAC.2018.2854644
10.1109/JSEN.2018.2859378
10.3390/s19204436
10.1016/j.ins.2010.10.012
10.1016/j.jfranklin.2017.08.044
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2021.108306
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2021_108306
S0165168421003431
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-c942725556b4d50154b9a1f0e54e783caf732445a5f457719c3d16e6f9ba2eab3
IEDL.DBID AIKHN
ISSN 0165-1684
IngestDate Thu Apr 24 23:02:58 EDT 2025
Tue Jul 01 02:07:32 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed filter
sensor network
consensus filter gain
fading measurement
compensation of delay and packet loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c942725556b4d50154b9a1f0e54e783caf732445a5f457719c3d16e6f9ba2eab3
ParticipantIDs crossref_primary_10_1016_j_sigpro_2021_108306
crossref_citationtrail_10_1016_j_sigpro_2021_108306
elsevier_sciencedirect_doi_10_1016_j_sigpro_2021_108306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Chen, Wang, Shi (bib0025) 2014; 50
Sun, Ma (bib0041) 2007; 87
Zhang, Li, Chen (bib0019) 2017; 354
Li, Jia, Du (bib0030) 2015; 352
Sun (bib0012) 2013; 58
Jin, Sun (bib0034) 2020
Huang, Zeng, Ma (bib0040) 2004
Li, Jia, Du (bib0029) 2017; 60
Ding, Han, Ge, Zhang (bib0023) 2018; 48
He, Xue, Zhang, Fang (bib0002) 2020; 114
Yang, Yang, Shi, Shi, Chen (bib0026) 2017; 75
Zhu, Chen, Li, Yang, Guan (bib0027) 2013; 43
Wan, Sun (bib0035) 2020; 98
Sun, Tian, Lin (bib0006) 2017; 397–398
Lin, Sun (bib0008) 2018; 66
Sun, Peng, Lin (bib0009) 2018; 66
Olfati-Saber (bib0021) 2009
Duan, Sun (bib0036) 2021; 47
Li, Dong, Li, Wang (bib0001) 2019; 131
Caballero-Águila, Hermoso-Carazo, Linares-Pérez, Wang (bib0018) 2019; 45
Wang, Sun (bib0037) 2019; 19
Zhou, Gu, Chen (bib0024) 2019; 64
Song, Yu, Zhang (bib0044) 2011; 181
Zhang, Song, Shi (bib0042) 2012; 57
Caballero-Águila, Hermoso-Carazo, Linares-Pérez (bib0013) 2016; 127
Fang, Zhou, Li (bib0038) 2004
Wang, Sun (bib0005) 2019; 346
Sun (bib0010) 2009; 89
Deshmukh, Kwon, Hwang (bib0032) 2017
Mahmoud, Khalid (bib0004) 2013; 7
Sun, Wang (bib0011) 2014; 73
Sun, Xiao (bib0014) 2007; 26
Sun, Lin, Ma, Li (bib0003) 2017; 38
Hu, Wang, Gao (bib0007) 2013; 49
Zhang, Tian (bib0017) 2019; 104
Talebi, Werner (bib0016) 2019; 64
Li, Jia, Du (bib0022) 2016; 10
Hu, Wang, Liu, Gao (bib0039) 2016; 64
Rastgar, Rahmani (bib0033) 2018; 18
Olfati-Saber, Shamma (bib0015) 2005
Olfati-Saber (bib0020) 2007
Hu, Wang, Liu, Zhang, Navaratne (bib0031) 2020
Ma (bib0043) 2012
Liu, Wang, He, Zhou (bib0028) 2015; 11
Zhu (10.1016/j.sigpro.2021.108306_bib0027) 2013; 43
Zhang (10.1016/j.sigpro.2021.108306_bib0042) 2012; 57
Lin (10.1016/j.sigpro.2021.108306_bib0008) 2018; 66
Yang (10.1016/j.sigpro.2021.108306_bib0025) 2014; 50
Olfati-Saber (10.1016/j.sigpro.2021.108306_bib0020) 2007
Yang (10.1016/j.sigpro.2021.108306_bib0026) 2017; 75
Mahmoud (10.1016/j.sigpro.2021.108306_bib0004) 2013; 7
Li (10.1016/j.sigpro.2021.108306_bib0022) 2016; 10
Zhou (10.1016/j.sigpro.2021.108306_bib0024) 2019; 64
Sun (10.1016/j.sigpro.2021.108306_bib0041) 2007; 87
Zhang (10.1016/j.sigpro.2021.108306_bib0019) 2017; 354
Hu (10.1016/j.sigpro.2021.108306_bib0007) 2013; 49
Sun (10.1016/j.sigpro.2021.108306_bib0010) 2009; 89
Sun (10.1016/j.sigpro.2021.108306_bib0009) 2018; 66
Ma (10.1016/j.sigpro.2021.108306_bib0043) 2012
Li (10.1016/j.sigpro.2021.108306_bib0001) 2019; 131
Sun (10.1016/j.sigpro.2021.108306_bib0011) 2014; 73
Song (10.1016/j.sigpro.2021.108306_bib0044) 2011; 181
Caballero-Águila (10.1016/j.sigpro.2021.108306_bib0013) 2016; 127
Olfati-Saber (10.1016/j.sigpro.2021.108306_bib0021) 2009
Li (10.1016/j.sigpro.2021.108306_bib0029) 2017; 60
Hu (10.1016/j.sigpro.2021.108306_bib0031) 2020
Deshmukh (10.1016/j.sigpro.2021.108306_bib0032) 2017
He (10.1016/j.sigpro.2021.108306_bib0002) 2020; 114
Jin (10.1016/j.sigpro.2021.108306_bib0034) 2020
Hu (10.1016/j.sigpro.2021.108306_bib0039) 2016; 64
Sun (10.1016/j.sigpro.2021.108306_bib0012) 2013; 58
Rastgar (10.1016/j.sigpro.2021.108306_bib0033) 2018; 18
Li (10.1016/j.sigpro.2021.108306_bib0030) 2015; 352
Zhang (10.1016/j.sigpro.2021.108306_bib0017) 2019; 104
Ding (10.1016/j.sigpro.2021.108306_bib0023) 2018; 48
Liu (10.1016/j.sigpro.2021.108306_bib0028) 2015; 11
Fang (10.1016/j.sigpro.2021.108306_bib0038) 2004
Wang (10.1016/j.sigpro.2021.108306_bib0005) 2019; 346
Talebi (10.1016/j.sigpro.2021.108306_bib0016) 2019; 64
Huang (10.1016/j.sigpro.2021.108306_bib0040) 2004
Sun (10.1016/j.sigpro.2021.108306_bib0014) 2007; 26
Sun (10.1016/j.sigpro.2021.108306_bib0003) 2017; 38
Sun (10.1016/j.sigpro.2021.108306_bib0006) 2017; 397–398
Caballero-Águila (10.1016/j.sigpro.2021.108306_bib0018) 2019; 45
Wan (10.1016/j.sigpro.2021.108306_bib0035) 2020; 98
Wang (10.1016/j.sigpro.2021.108306_bib0037) 2019; 19
Olfati-Saber (10.1016/j.sigpro.2021.108306_bib0015) 2005
Duan (10.1016/j.sigpro.2021.108306_bib0036) 2021; 47
References_xml – volume: 45
  start-page: 324
  year: 2019
  end-page: 332
  ident: bib0018
  article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises
  publication-title: Inf. Fusion
– volume: 346
  start-page: 549
  year: 2019
  end-page: 565
  ident: bib0005
  article-title: Optimal recursive estimation for networked stochastic uncertain systems with fading measurements and time-correlated channel noises
  publication-title: J. Comput. Appl. Math.
– volume: 10
  start-page: 103
  year: 2016
  end-page: 110
  ident: bib0022
  article-title: Event-triggered Kalman consensus filter over sensor networks
  publication-title: IET Control Theory Appl.
– volume: 66
  start-page: 641
  year: 2018
  end-page: 653
  ident: bib0009
  article-title: Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of different fading measurement rates
  publication-title: IEEE Trans. Signal Process.
– start-page: 6505
  year: 2020
  end-page: 6510
  ident: bib0034
  article-title: Distributed optimal predictor with multi-consensus gains for sensor networks
  publication-title: Proc. 2020 Chinese Automation Congress (CAC)
– volume: 50
  start-page: 2070
  year: 2014
  end-page: 2076
  ident: bib0025
  article-title: Stochastic sensor activation for distributed state estimation over a sensor network
  publication-title: Automatica
– year: 2004
  ident: bib0038
  article-title: Matrix theory
– volume: 354
  start-page: 7504
  year: 2017
  end-page: 7520
  ident: bib0019
  article-title: Leader-following-based distributed Kalman filtering in sensor networks with communication delay
  publication-title: J. Franklin Inst.
– volume: 11
  start-page: 1643
  year: 2015
  end-page: 1652
  ident: bib0028
  article-title: Event-based distributed filtering with stochastic measurement fading
  publication-title: IEEE Trans. Ind. Informat.
– year: 2012
  ident: bib0043
  article-title: Modeling and fusion estimation for networked control systems
– start-page: 6698
  year: 2005
  end-page: 6703
  ident: bib0015
  article-title: Consensus filters for sensor networks and distributed sensor fusion
  publication-title: Proc. 44th IEEE Conf. Decis. Control
– volume: 87
  start-page: 189
  year: 2007
  end-page: 201
  ident: bib0041
  article-title: Optimal filtering and smoothing for discrete-time stochastic singular systems
  publication-title: Signal Process.
– volume: 49
  start-page: 3440
  year: 2013
  end-page: 3448
  ident: bib0007
  article-title: Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises
  publication-title: Automatica
– volume: 57
  start-page: 1248
  year: 2012
  end-page: 1253
  ident: bib0042
  article-title: Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping
  publication-title: IEEE Trans. Autom. Control
– volume: 397–398
  start-page: 118
  year: 2017
  end-page: 136
  ident: bib0006
  article-title: State estimators for systems with random parameter matrices, stochastic nonlinearities, fading measurements and correlated noises
  publication-title: Inf. Sci.
– volume: 43
  start-page: 1963
  year: 2013
  end-page: 1976
  ident: bib0027
  article-title: Distributed optimal consensus filter for target tracking in heterogeneous sensor networks
  publication-title: IEEE Trans. Cybern.
– volume: 64
  start-page: 4396
  year: 2019
  end-page: 4403
  ident: bib0016
  article-title: Distributed Kalman filtering and control through embedded average consensus information fusion
  publication-title: IEEE Trans. Autom. Control
– volume: 60
  start-page: 211
  year: 2017
  end-page: 219
  ident: bib0029
  article-title: Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise
  publication-title: Digit. Signal Process.
– volume: 127
  start-page: 12
  year: 2016
  end-page: 23
  ident: bib0013
  article-title: Fusion estimation using measured outputs with random parameter matrices subject to random delays and packet dropouts
  publication-title: Signal Process.
– volume: 64
  start-page: 1603
  year: 2019
  end-page: 1610
  ident: bib0024
  article-title: Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops
  publication-title: IEEE Trans. Autom. Control
– volume: 352
  start-page: 3764
  year: 2015
  end-page: 3781
  ident: bib0030
  article-title: Distributed Kalman consensus filter with intermittent observations
  publication-title: J. Franklin Inst.
– volume: 181
  start-page: 686
  year: 2011
  end-page: 696
  ident: bib0044
  article-title: Networked
  publication-title: Inf. Sci.
– volume: 104
  start-page: 34
  year: 2019
  end-page: 40
  ident: bib0017
  article-title: A fully distributed weight design approach to consensus Kalman filtering for sensor networks
  publication-title: Automatica
– start-page: 5801
  year: 2017
  end-page: 5806
  ident: bib0032
  article-title: Optimal discrete-time Kalman consensus filter
  publication-title: Proc. American Control Conf
– start-page: 5492
  year: 2007
  end-page: 5498
  ident: bib0020
  article-title: Distributed Kalman filtering for sensor networks
  publication-title: Proc. 46th IEEE Conf. Decis. Control
– volume: 38
  start-page: 122
  year: 2017
  end-page: 134
  ident: bib0003
  article-title: Multi-sensor distributed fusion estimation with applications in networked systems: a review paper
  publication-title: Inf. Fusion
– year: 2020
  ident: bib0031
  article-title: A prediction-based approach to distributed filtering with missing measurements and communication delays through sensor networks
  publication-title: IEEE Trans. Syst., Man, Cybern. Syst.
– volume: 114
  year: 2020
  ident: bib0002
  article-title: Distributed filtering for uncertain systems under switching sensor networks and quantized communications
  publication-title: Automatica
– year: 2004
  ident: bib0040
  article-title: The theory and methods for nonlinear numerical analysis
– volume: 73
  start-page: 6
  year: 2014
  end-page: 16
  ident: bib0011
  article-title: Modeling and estimation for networked systems with multiple random transmission delays and packet losses
  publication-title: Systems Control Lett.
– volume: 26
  start-page: 591
  year: 2007
  end-page: 605
  ident: bib0014
  article-title: Distributed weighted fusion estimators with random delays and packet dropping
  publication-title: Circuits Syst. Signal Process.
– volume: 48
  start-page: 1110
  year: 2018
  end-page: 1123
  ident: bib0023
  article-title: An overview of recent advances in event-triggered consensus of multiagent systems
  publication-title: IEEE Trans. Cybern.
– volume: 7
  start-page: 483
  year: 2013
  end-page: 501
  ident: bib0004
  article-title: Distributed Kalman filtering: a bibliographic review
  publication-title: IET Control Theory Appl.
– volume: 64
  start-page: 155
  year: 2016
  end-page: 162
  ident: bib0039
  article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements
  publication-title: Automatica
– volume: 131
  year: 2019
  ident: bib0001
  article-title: Distributed Kalman filtering for sensor network with balanced topology
  publication-title: Systems Control Lett.
– volume: 18
  start-page: 7611
  year: 2018
  end-page: 7618
  ident: bib0033
  article-title: Consensus-based distributed robust filtering for multisensor systems with stochastic uncertainties
  publication-title: IEEE Sensors J.
– volume: 98
  year: 2020
  ident: bib0035
  article-title: Fusion identification and estimation of multisensor multichannel AR signals with missing measurements and sensor biases
  publication-title: Digit. Signal Process.
– volume: 19
  year: 2019
  ident: bib0037
  article-title: Self-tuning distributed fusion filter for multi-sensor networked systems with unknown packet receiving rates, noise variances, and model parameters
  publication-title: Sensors
– volume: 66
  start-page: 3571
  year: 2018
  end-page: 3583
  ident: bib0008
  article-title: Optimal sequential fusion estimation with stochastic parameter perturbations, fading measurements, and correlated noises
  publication-title: IEEE Trans. Signal Process.
– volume: 89
  start-page: 1457
  year: 2009
  end-page: 1466
  ident: bib0010
  article-title: Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts
  publication-title: Signal Process.
– start-page: 7036
  year: 2009
  end-page: 7042
  ident: bib0021
  article-title: Kalman-consensus filter: optimality, stability, and performance
  publication-title: Proc. 48th IEEE Conf. Decis. Control
– volume: 47
  start-page: 423
  year: 2021
  end-page: 431
  ident: bib0036
  article-title: Self-tuning distributed fusion estimation for systems with unknown model parameters and fading measurement rates
  publication-title: Acta Automatica Sinca
– volume: 58
  start-page: 1551
  year: 2013
  end-page: 1556
  ident: bib0012
  article-title: Optimal linear filters for discrete-time systems with randomly delayed and lost measurements with/without time stamps
  publication-title: IEEE Trans. Autom. Control
– volume: 75
  start-page: 109
  year: 2017
  end-page: 118
  ident: bib0026
  article-title: Stochastic link activation for distributed filtering under sensor power constraint
  publication-title: Automatica
– volume: 73
  start-page: 6
  year: 2014
  ident: 10.1016/j.sigpro.2021.108306_bib0011
  article-title: Modeling and estimation for networked systems with multiple random transmission delays and packet losses
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2014.07.005
– volume: 48
  start-page: 1110
  issue: 4
  year: 2018
  ident: 10.1016/j.sigpro.2021.108306_bib0023
  article-title: An overview of recent advances in event-triggered consensus of multiagent systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2771560
– volume: 10
  start-page: 103
  issue: 1
  year: 2016
  ident: 10.1016/j.sigpro.2021.108306_bib0022
  article-title: Event-triggered Kalman consensus filter over sensor networks
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2015.0508
– volume: 58
  start-page: 1551
  issue: 6
  year: 2013
  ident: 10.1016/j.sigpro.2021.108306_bib0012
  article-title: Optimal linear filters for discrete-time systems with randomly delayed and lost measurements with/without time stamps
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2229812
– volume: 57
  start-page: 1248
  issue: 5
  year: 2012
  ident: 10.1016/j.sigpro.2021.108306_bib0042
  article-title: Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2191857
– start-page: 5492
  year: 2007
  ident: 10.1016/j.sigpro.2021.108306_bib0020
  article-title: Distributed Kalman filtering for sensor networks
– volume: 43
  start-page: 1963
  issue: 6
  year: 2013
  ident: 10.1016/j.sigpro.2021.108306_bib0027
  article-title: Distributed optimal consensus filter for target tracking in heterogeneous sensor networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2236647
– volume: 127
  start-page: 12
  year: 2016
  ident: 10.1016/j.sigpro.2021.108306_bib0013
  article-title: Fusion estimation using measured outputs with random parameter matrices subject to random delays and packet dropouts
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.02.014
– volume: 7
  start-page: 483
  issue: 4
  year: 2013
  ident: 10.1016/j.sigpro.2021.108306_bib0004
  article-title: Distributed Kalman filtering: a bibliographic review
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2012.0732
– start-page: 5801
  year: 2017
  ident: 10.1016/j.sigpro.2021.108306_bib0032
  article-title: Optimal discrete-time Kalman consensus filter
– volume: 11
  start-page: 1643
  issue: 6
  year: 2015
  ident: 10.1016/j.sigpro.2021.108306_bib0028
  article-title: Event-based distributed filtering with stochastic measurement fading
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2015.2444355
– volume: 38
  start-page: 122
  year: 2017
  ident: 10.1016/j.sigpro.2021.108306_bib0003
  article-title: Multi-sensor distributed fusion estimation with applications in networked systems: a review paper
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.03.006
– volume: 64
  start-page: 155
  year: 2016
  ident: 10.1016/j.sigpro.2021.108306_bib0039
  article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.11.008
– volume: 64
  start-page: 4396
  issue: 10
  year: 2019
  ident: 10.1016/j.sigpro.2021.108306_bib0016
  article-title: Distributed Kalman filtering and control through embedded average consensus information fusion
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2897887
– volume: 104
  start-page: 34
  year: 2019
  ident: 10.1016/j.sigpro.2021.108306_bib0017
  article-title: A fully distributed weight design approach to consensus Kalman filtering for sensor networks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.02.052
– volume: 49
  start-page: 3440
  issue: 11
  year: 2013
  ident: 10.1016/j.sigpro.2021.108306_bib0007
  article-title: Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.08.021
– year: 2012
  ident: 10.1016/j.sigpro.2021.108306_bib0043
– volume: 89
  start-page: 1457
  issue: 7
  year: 2009
  ident: 10.1016/j.sigpro.2021.108306_bib0010
  article-title: Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.02.002
– start-page: 6505
  year: 2020
  ident: 10.1016/j.sigpro.2021.108306_bib0034
  article-title: Distributed optimal predictor with multi-consensus gains for sensor networks
– volume: 114
  year: 2020
  ident: 10.1016/j.sigpro.2021.108306_bib0002
  article-title: Distributed filtering for uncertain systems under switching sensor networks and quantized communications
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.108842
– volume: 45
  start-page: 324
  year: 2019
  ident: 10.1016/j.sigpro.2021.108306_bib0018
  article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.006
– year: 2020
  ident: 10.1016/j.sigpro.2021.108306_bib0031
  article-title: A prediction-based approach to distributed filtering with missing measurements and communication delays through sensor networks
  publication-title: IEEE Trans. Syst., Man, Cybern. Syst.
– year: 2004
  ident: 10.1016/j.sigpro.2021.108306_bib0040
– volume: 66
  start-page: 641
  issue: 3
  year: 2018
  ident: 10.1016/j.sigpro.2021.108306_bib0009
  article-title: Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of different fading measurement rates
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2770102
– start-page: 6698
  year: 2005
  ident: 10.1016/j.sigpro.2021.108306_bib0015
  article-title: Consensus filters for sensor networks and distributed sensor fusion
– volume: 60
  start-page: 211
  year: 2017
  ident: 10.1016/j.sigpro.2021.108306_bib0029
  article-title: Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2016.10.003
– volume: 75
  start-page: 109
  year: 2017
  ident: 10.1016/j.sigpro.2021.108306_bib0026
  article-title: Stochastic link activation for distributed filtering under sensor power constraint
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.09.009
– volume: 352
  start-page: 3764
  issue: 9
  year: 2015
  ident: 10.1016/j.sigpro.2021.108306_bib0030
  article-title: Distributed Kalman consensus filter with intermittent observations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2015.01.002
– volume: 87
  start-page: 189
  issue: 1
  year: 2007
  ident: 10.1016/j.sigpro.2021.108306_bib0041
  article-title: Optimal filtering and smoothing for discrete-time stochastic singular systems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2006.05.007
– volume: 397–398
  start-page: 118
  year: 2017
  ident: 10.1016/j.sigpro.2021.108306_bib0006
  article-title: State estimators for systems with random parameter matrices, stochastic nonlinearities, fading measurements and correlated noises
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.048
– volume: 50
  start-page: 2070
  issue: 8
  year: 2014
  ident: 10.1016/j.sigpro.2021.108306_bib0025
  article-title: Stochastic sensor activation for distributed state estimation over a sensor network
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.05.025
– volume: 26
  start-page: 591
  issue: 4
  year: 2007
  ident: 10.1016/j.sigpro.2021.108306_bib0014
  article-title: Distributed weighted fusion estimators with random delays and packet dropping
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-007-4009-5
– volume: 131
  year: 2019
  ident: 10.1016/j.sigpro.2021.108306_bib0001
  article-title: Distributed Kalman filtering for sensor network with balanced topology
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2019.104500
– volume: 66
  start-page: 3571
  issue: 13
  year: 2018
  ident: 10.1016/j.sigpro.2021.108306_bib0008
  article-title: Optimal sequential fusion estimation with stochastic parameter perturbations, fading measurements, and correlated noises
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2831642
– volume: 98
  year: 2020
  ident: 10.1016/j.sigpro.2021.108306_bib0035
  article-title: Fusion identification and estimation of multisensor multichannel AR signals with missing measurements and sensor biases
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.102636
– volume: 346
  start-page: 549
  issue: 15
  year: 2019
  ident: 10.1016/j.sigpro.2021.108306_bib0005
  article-title: Optimal recursive estimation for networked stochastic uncertain systems with fading measurements and time-correlated channel noises
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.026
– volume: 64
  start-page: 1603
  issue: 4
  year: 2019
  ident: 10.1016/j.sigpro.2021.108306_bib0024
  article-title: Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2854644
– volume: 18
  start-page: 7611
  issue: 18
  year: 2018
  ident: 10.1016/j.sigpro.2021.108306_bib0033
  article-title: Consensus-based distributed robust filtering for multisensor systems with stochastic uncertainties
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2018.2859378
– volume: 19
  issue: 20
  year: 2019
  ident: 10.1016/j.sigpro.2021.108306_bib0037
  article-title: Self-tuning distributed fusion filter for multi-sensor networked systems with unknown packet receiving rates, noise variances, and model parameters
  publication-title: Sensors
  doi: 10.3390/s19204436
– volume: 181
  start-page: 686
  issue: 3
  year: 2011
  ident: 10.1016/j.sigpro.2021.108306_bib0044
  article-title: Networked H∞ filtering for linear discrete-time systems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.10.012
– volume: 354
  start-page: 7504
  issue: 16
  year: 2017
  ident: 10.1016/j.sigpro.2021.108306_bib0019
  article-title: Leader-following-based distributed Kalman filtering in sensor networks with communication delay
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.08.044
– start-page: 7036
  year: 2009
  ident: 10.1016/j.sigpro.2021.108306_bib0021
  article-title: Kalman-consensus filter: optimality, stability, and performance
– volume: 47
  start-page: 423
  issue: 2
  year: 2021
  ident: 10.1016/j.sigpro.2021.108306_bib0036
  article-title: Self-tuning distributed fusion estimation for systems with unknown model parameters and fading measurement rates
  publication-title: Acta Automatica Sinca
– year: 2004
  ident: 10.1016/j.sigpro.2021.108306_bib0038
SSID ssj0001360
Score 2.4697475
Snippet •A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108306
SubjectTerms compensation of delay and packet loss
consensus filter gain
Distributed filter
fading measurement
sensor network
Title Distributed Filtering for Sensor Networks with Fading Measurements and Compensations for Transmission Delays and Losses
URI https://dx.doi.org/10.1016/j.sigpro.2021.108306
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6Yg9eY7PJ7qZ7LK2lPtpLLfQWdpONREpabEW8-NudyaNWEAVPgTADyWQz72-GkKu2MEx7kYLYxI0dniQa_jnDnCBKuOdybeMY8c7DkRxM-N1UTGukW2FhsK2y1P2FTs-1dXmnVUqztUjT1hiBOAzLSAyHrCCWuuH5Soo6aXRu7wejtUJmfg4WRnoHGSoEXd7mtUyfQFVBoOgx7LfzcfXRTxZqw-r098hu6S7STvFE-6RmswOyszFE8JC89XD2La6tsjHtp1j9hvsUnFE6hhgVLqOi1XtJMelK-3nXPB1-JQeXVGcxRc0A9EUGL2fP7RicA0yo0Z6d6feC8mGOleIjMunfPHYHTrlOwYngrVZOpLgXQAQhpOGxQN_JKM0S1wpug7Yf6SQA74oLLRIugoCpyI-ZtDJRRntWG_-Y1LN5Zk8IDSCsEsDpMiO5dNtKS2Fd5WN5mXEjm8SvRBhG5axxXHkxC6umsuewEHyIgg8LwTeJs-ZaFLM2_qAPqq8TfjszIZiDXzlP_815RrY9BEDkSZhzUl-9vNoLcEtW5pJsXX-wy_LwfQL1eeMH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MT63IPX2Gx2N9scpTVUbXtpC72F3WQjlZIWWxEv_nZn8rAVRMFTIMxAMtnM85sZQq6b0jDtxQHEJm7iiDTV8M8Z5qg4FZ4rtE0S7Hfu9f3OSDyM5bhGWlUvDMIqS91f6PRcW5d3GqU0G_PJpDHARhyGZSSGQ1awl3pTSK4Q13fzscJ5MJ63CiO1g-RV_1wO8lpMnkBRQZjoMUTbcVx89JN9WrM54R7ZLZ1Fels8zz6p2eyA7KyNEDwkb22cfItLq2xCwwnWvuE-BVeUDiBChUu_AHovKKZcaZhj5mlvlRpcUJ0lFPUC0Bf5u5w9t2JwCjCdRtt2qt8Lyu4M68RHZBTeDVsdp1ym4MTwVksnDoSnIH6QvhGJRM_JBJqlrpXCqiaPdarAtxJSy1RIpVgQ84T51k8Doz2rDT8mG9kssyeEKgiqJHC6zPjCd5uB9qV1A47FZSaMXye8EmEUl5PGceHFNKogZc9RIfgIBR8Vgq8T54trXkza-INeVV8n-nZiIjAGv3Ke_pvzimx1hr1u1L3vP56RbQ9bIfJ0zDnZWL682gtwUJbmMj-An-Bx49I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Filtering+for+Sensor+Networks+with+Fading+Measurements+and+Compensations+for+Transmission+Delays+and+Losses&rft.jtitle=Signal+processing&rft.au=Jin%2C+Hao&rft.au=Sun%2C+Shuli&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=190&rft_id=info:doi/10.1016%2Fj.sigpro.2021.108306&rft.externalDocID=S0165168421003431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon