Distributed Filtering for Sensor Networks with Fading Measurements and Compensations for Transmission Delays and Losses
•A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of covariance.•Solutions of optimal parameters nonlinearly coupled with optimal gains are given.•Boundedness of the upper bound of filtering error covariance...
Saved in:
Published in | Signal processing Vol. 190; p. 108306 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-1684 1872-7557 |
DOI | 10.1016/j.sigpro.2021.108306 |
Cover
Abstract | •A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of covariance.•Solutions of optimal parameters nonlinearly coupled with optimal gains are given.•Boundedness of the upper bound of filtering error covariance matrix is analyzed.•Conservative distributed filters are presented under the steady-state parameters.
This paper studies a distributed filtering problem for sensor networks, where sensor nodes may suffer from their own fading measurements and random delayed and lost state estimates of their neighbor nodes. A distributed filter is presented based on statistical characteristics of fading measurements of sensors, where an optimal Kalman filter gain for each sensor node and different optimal consensus filter gains for state estimates of neighbor nodes are solved to minimize locally an upper bound of filtering error covariance matrix under given parameters. The proposed filter has reduced computational cost since calculation of cross-covariance matrices between sensors is avoided. Predictors of delayed and lost estimates of neighbor nodes are used for compensations to improve estimation accuracy. To further minimize the upper bound of covariance matrix, optimal parameters are solved, which are nonlinearly coupled with optimal gains. Their approximate numerical solutions can be obtained by nonlinear optimization methods. The boundedness of covariance matrix of the proposed filter is analyzed. As a special case, a distributed filter with constant delays can be obtained, which has the steady-state property. To further reduce online computational cost, two conservative distributed filters are also presented under the steady-state parameters obtained by using the upper bound of delays. |
---|---|
AbstractList | •A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of covariance.•Solutions of optimal parameters nonlinearly coupled with optimal gains are given.•Boundedness of the upper bound of filtering error covariance matrix is analyzed.•Conservative distributed filters are presented under the steady-state parameters.
This paper studies a distributed filtering problem for sensor networks, where sensor nodes may suffer from their own fading measurements and random delayed and lost state estimates of their neighbor nodes. A distributed filter is presented based on statistical characteristics of fading measurements of sensors, where an optimal Kalman filter gain for each sensor node and different optimal consensus filter gains for state estimates of neighbor nodes are solved to minimize locally an upper bound of filtering error covariance matrix under given parameters. The proposed filter has reduced computational cost since calculation of cross-covariance matrices between sensors is avoided. Predictors of delayed and lost estimates of neighbor nodes are used for compensations to improve estimation accuracy. To further minimize the upper bound of covariance matrix, optimal parameters are solved, which are nonlinearly coupled with optimal gains. Their approximate numerical solutions can be obtained by nonlinear optimization methods. The boundedness of covariance matrix of the proposed filter is analyzed. As a special case, a distributed filter with constant delays can be obtained, which has the steady-state property. To further reduce online computational cost, two conservative distributed filters are also presented under the steady-state parameters obtained by using the upper bound of delays. |
ArticleNumber | 108306 |
Author | Jin, Hao Sun, Shuli |
Author_xml | – sequence: 1 givenname: Hao surname: Jin fullname: Jin, Hao – sequence: 2 givenname: Shuli surname: Sun fullname: Sun, Shuli email: sunsl@hlju.edu.cn |
BookMark | eNqFkM1OwzAQhC0EEm3hDTjkBVLsxM4PByTUUkAqcKCcLcfZFJfUqbwuVd8et-HEAU4rzc63q5khObWdBUKuGB0zyrLr1RjNcuO6cUITFqQipdkJGbAiT-JciPyUDIJNxCwr-DkZIq4opSzN6IDspga9M9XWQx3NTOvBGbuMms5Fb2AxjBfwu859YrQz_iOaqfqwfwaFWwdrsB4jZeto0q03wa-86Swe8YVTFtcGMSjRFFq1753zDhHwgpw1qkW4_Jkj8j67X0we4_nrw9Pkbh7rkMHHuuRJngghsorXgjLBq1KxhoLgkBepVk2eJpwLJRou8pyVOq1ZBllTVioBVaUjwvu72oW_Dhq5cWat3F4yKg_lyZXsy5OH8mRfXsBufmHa-GM475Rp_4NvexhCsC8DTqI2YDXUxoH2su7M3we-AYh6kgg |
CitedBy_id | crossref_primary_10_1016_j_inffus_2023_102121 crossref_primary_10_1109_JSEN_2023_3247992 crossref_primary_10_1016_j_inffus_2024_102543 crossref_primary_10_1002_acs_3978 crossref_primary_10_1016_j_cnsns_2022_106618 crossref_primary_10_1016_j_inffus_2024_102368 crossref_primary_10_1109_ACCESS_2023_3280858 crossref_primary_10_1002_oca_2950 crossref_primary_10_1016_j_cnsns_2025_108663 crossref_primary_10_1109_JSEN_2023_3235996 crossref_primary_10_1109_TNSE_2024_3395707 crossref_primary_10_1016_j_sigpro_2024_109772 crossref_primary_10_1109_TCYB_2023_3288829 crossref_primary_10_1016_j_neucom_2022_04_096 crossref_primary_10_1080_00207721_2022_2062802 crossref_primary_10_1109_ACCESS_2024_3439681 crossref_primary_10_1109_JSEN_2022_3215485 crossref_primary_10_1109_TSIPN_2023_3334496 crossref_primary_10_1016_j_inffus_2022_06_007 crossref_primary_10_1016_j_cnsns_2023_107093 crossref_primary_10_1016_j_jfranklin_2022_11_019 crossref_primary_10_1016_j_jfranklin_2024_106841 crossref_primary_10_53941_ijndi0201007 |
Cites_doi | 10.1016/j.sysconle.2014.07.005 10.1109/TCYB.2017.2771560 10.1049/iet-cta.2015.0508 10.1109/TAC.2012.2229812 10.1109/TAC.2012.2191857 10.1109/TSMCB.2012.2236647 10.1016/j.sigpro.2016.02.014 10.1049/iet-cta.2012.0732 10.1109/TII.2015.2444355 10.1016/j.inffus.2017.03.006 10.1016/j.automatica.2015.11.008 10.1109/TAC.2019.2897887 10.1016/j.automatica.2019.02.052 10.1016/j.automatica.2013.08.021 10.1016/j.sigpro.2009.02.002 10.1016/j.automatica.2020.108842 10.1016/j.inffus.2018.02.006 10.1109/TSP.2017.2770102 10.1016/j.dsp.2016.10.003 10.1016/j.automatica.2016.09.009 10.1016/j.jfranklin.2015.01.002 10.1016/j.sigpro.2006.05.007 10.1016/j.ins.2017.02.048 10.1016/j.automatica.2014.05.025 10.1007/s00034-007-4009-5 10.1016/j.sysconle.2019.104500 10.1109/TSP.2018.2831642 10.1016/j.dsp.2019.102636 10.1016/j.cam.2018.07.026 10.1109/TAC.2018.2854644 10.1109/JSEN.2018.2859378 10.3390/s19204436 10.1016/j.ins.2010.10.012 10.1016/j.jfranklin.2017.08.044 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2021.108306 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
ExternalDocumentID | 10_1016_j_sigpro_2021_108306 S0165168421003431 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-c942725556b4d50154b9a1f0e54e783caf732445a5f457719c3d16e6f9ba2eab3 |
IEDL.DBID | AIKHN |
ISSN | 0165-1684 |
IngestDate | Thu Apr 24 23:02:58 EDT 2025 Tue Jul 01 02:07:32 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Distributed filter sensor network consensus filter gain fading measurement compensation of delay and packet loss |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c942725556b4d50154b9a1f0e54e783caf732445a5f457719c3d16e6f9ba2eab3 |
ParticipantIDs | crossref_primary_10_1016_j_sigpro_2021_108306 crossref_citationtrail_10_1016_j_sigpro_2021_108306 elsevier_sciencedirect_doi_10_1016_j_sigpro_2021_108306 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Chen, Wang, Shi (bib0025) 2014; 50 Sun, Ma (bib0041) 2007; 87 Zhang, Li, Chen (bib0019) 2017; 354 Li, Jia, Du (bib0030) 2015; 352 Sun (bib0012) 2013; 58 Jin, Sun (bib0034) 2020 Huang, Zeng, Ma (bib0040) 2004 Li, Jia, Du (bib0029) 2017; 60 Ding, Han, Ge, Zhang (bib0023) 2018; 48 He, Xue, Zhang, Fang (bib0002) 2020; 114 Yang, Yang, Shi, Shi, Chen (bib0026) 2017; 75 Zhu, Chen, Li, Yang, Guan (bib0027) 2013; 43 Wan, Sun (bib0035) 2020; 98 Sun, Tian, Lin (bib0006) 2017; 397–398 Lin, Sun (bib0008) 2018; 66 Sun, Peng, Lin (bib0009) 2018; 66 Olfati-Saber (bib0021) 2009 Duan, Sun (bib0036) 2021; 47 Li, Dong, Li, Wang (bib0001) 2019; 131 Caballero-Águila, Hermoso-Carazo, Linares-Pérez, Wang (bib0018) 2019; 45 Wang, Sun (bib0037) 2019; 19 Zhou, Gu, Chen (bib0024) 2019; 64 Song, Yu, Zhang (bib0044) 2011; 181 Zhang, Song, Shi (bib0042) 2012; 57 Caballero-Águila, Hermoso-Carazo, Linares-Pérez (bib0013) 2016; 127 Fang, Zhou, Li (bib0038) 2004 Wang, Sun (bib0005) 2019; 346 Sun (bib0010) 2009; 89 Deshmukh, Kwon, Hwang (bib0032) 2017 Mahmoud, Khalid (bib0004) 2013; 7 Sun, Wang (bib0011) 2014; 73 Sun, Xiao (bib0014) 2007; 26 Sun, Lin, Ma, Li (bib0003) 2017; 38 Hu, Wang, Gao (bib0007) 2013; 49 Zhang, Tian (bib0017) 2019; 104 Talebi, Werner (bib0016) 2019; 64 Li, Jia, Du (bib0022) 2016; 10 Hu, Wang, Liu, Gao (bib0039) 2016; 64 Rastgar, Rahmani (bib0033) 2018; 18 Olfati-Saber, Shamma (bib0015) 2005 Olfati-Saber (bib0020) 2007 Hu, Wang, Liu, Zhang, Navaratne (bib0031) 2020 Ma (bib0043) 2012 Liu, Wang, He, Zhou (bib0028) 2015; 11 Zhu (10.1016/j.sigpro.2021.108306_bib0027) 2013; 43 Zhang (10.1016/j.sigpro.2021.108306_bib0042) 2012; 57 Lin (10.1016/j.sigpro.2021.108306_bib0008) 2018; 66 Yang (10.1016/j.sigpro.2021.108306_bib0025) 2014; 50 Olfati-Saber (10.1016/j.sigpro.2021.108306_bib0020) 2007 Yang (10.1016/j.sigpro.2021.108306_bib0026) 2017; 75 Mahmoud (10.1016/j.sigpro.2021.108306_bib0004) 2013; 7 Li (10.1016/j.sigpro.2021.108306_bib0022) 2016; 10 Zhou (10.1016/j.sigpro.2021.108306_bib0024) 2019; 64 Sun (10.1016/j.sigpro.2021.108306_bib0041) 2007; 87 Zhang (10.1016/j.sigpro.2021.108306_bib0019) 2017; 354 Hu (10.1016/j.sigpro.2021.108306_bib0007) 2013; 49 Sun (10.1016/j.sigpro.2021.108306_bib0010) 2009; 89 Sun (10.1016/j.sigpro.2021.108306_bib0009) 2018; 66 Ma (10.1016/j.sigpro.2021.108306_bib0043) 2012 Li (10.1016/j.sigpro.2021.108306_bib0001) 2019; 131 Sun (10.1016/j.sigpro.2021.108306_bib0011) 2014; 73 Song (10.1016/j.sigpro.2021.108306_bib0044) 2011; 181 Caballero-Águila (10.1016/j.sigpro.2021.108306_bib0013) 2016; 127 Olfati-Saber (10.1016/j.sigpro.2021.108306_bib0021) 2009 Li (10.1016/j.sigpro.2021.108306_bib0029) 2017; 60 Hu (10.1016/j.sigpro.2021.108306_bib0031) 2020 Deshmukh (10.1016/j.sigpro.2021.108306_bib0032) 2017 He (10.1016/j.sigpro.2021.108306_bib0002) 2020; 114 Jin (10.1016/j.sigpro.2021.108306_bib0034) 2020 Hu (10.1016/j.sigpro.2021.108306_bib0039) 2016; 64 Sun (10.1016/j.sigpro.2021.108306_bib0012) 2013; 58 Rastgar (10.1016/j.sigpro.2021.108306_bib0033) 2018; 18 Li (10.1016/j.sigpro.2021.108306_bib0030) 2015; 352 Zhang (10.1016/j.sigpro.2021.108306_bib0017) 2019; 104 Ding (10.1016/j.sigpro.2021.108306_bib0023) 2018; 48 Liu (10.1016/j.sigpro.2021.108306_bib0028) 2015; 11 Fang (10.1016/j.sigpro.2021.108306_bib0038) 2004 Wang (10.1016/j.sigpro.2021.108306_bib0005) 2019; 346 Talebi (10.1016/j.sigpro.2021.108306_bib0016) 2019; 64 Huang (10.1016/j.sigpro.2021.108306_bib0040) 2004 Sun (10.1016/j.sigpro.2021.108306_bib0014) 2007; 26 Sun (10.1016/j.sigpro.2021.108306_bib0003) 2017; 38 Sun (10.1016/j.sigpro.2021.108306_bib0006) 2017; 397–398 Caballero-Águila (10.1016/j.sigpro.2021.108306_bib0018) 2019; 45 Wan (10.1016/j.sigpro.2021.108306_bib0035) 2020; 98 Wang (10.1016/j.sigpro.2021.108306_bib0037) 2019; 19 Olfati-Saber (10.1016/j.sigpro.2021.108306_bib0015) 2005 Duan (10.1016/j.sigpro.2021.108306_bib0036) 2021; 47 |
References_xml | – volume: 45 start-page: 324 year: 2019 end-page: 332 ident: bib0018 article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises publication-title: Inf. Fusion – volume: 346 start-page: 549 year: 2019 end-page: 565 ident: bib0005 article-title: Optimal recursive estimation for networked stochastic uncertain systems with fading measurements and time-correlated channel noises publication-title: J. Comput. Appl. Math. – volume: 10 start-page: 103 year: 2016 end-page: 110 ident: bib0022 article-title: Event-triggered Kalman consensus filter over sensor networks publication-title: IET Control Theory Appl. – volume: 66 start-page: 641 year: 2018 end-page: 653 ident: bib0009 article-title: Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of different fading measurement rates publication-title: IEEE Trans. Signal Process. – start-page: 6505 year: 2020 end-page: 6510 ident: bib0034 article-title: Distributed optimal predictor with multi-consensus gains for sensor networks publication-title: Proc. 2020 Chinese Automation Congress (CAC) – volume: 50 start-page: 2070 year: 2014 end-page: 2076 ident: bib0025 article-title: Stochastic sensor activation for distributed state estimation over a sensor network publication-title: Automatica – year: 2004 ident: bib0038 article-title: Matrix theory – volume: 354 start-page: 7504 year: 2017 end-page: 7520 ident: bib0019 article-title: Leader-following-based distributed Kalman filtering in sensor networks with communication delay publication-title: J. Franklin Inst. – volume: 11 start-page: 1643 year: 2015 end-page: 1652 ident: bib0028 article-title: Event-based distributed filtering with stochastic measurement fading publication-title: IEEE Trans. Ind. Informat. – year: 2012 ident: bib0043 article-title: Modeling and fusion estimation for networked control systems – start-page: 6698 year: 2005 end-page: 6703 ident: bib0015 article-title: Consensus filters for sensor networks and distributed sensor fusion publication-title: Proc. 44th IEEE Conf. Decis. Control – volume: 87 start-page: 189 year: 2007 end-page: 201 ident: bib0041 article-title: Optimal filtering and smoothing for discrete-time stochastic singular systems publication-title: Signal Process. – volume: 49 start-page: 3440 year: 2013 end-page: 3448 ident: bib0007 article-title: Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises publication-title: Automatica – volume: 57 start-page: 1248 year: 2012 end-page: 1253 ident: bib0042 article-title: Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping publication-title: IEEE Trans. Autom. Control – volume: 397–398 start-page: 118 year: 2017 end-page: 136 ident: bib0006 article-title: State estimators for systems with random parameter matrices, stochastic nonlinearities, fading measurements and correlated noises publication-title: Inf. Sci. – volume: 43 start-page: 1963 year: 2013 end-page: 1976 ident: bib0027 article-title: Distributed optimal consensus filter for target tracking in heterogeneous sensor networks publication-title: IEEE Trans. Cybern. – volume: 64 start-page: 4396 year: 2019 end-page: 4403 ident: bib0016 article-title: Distributed Kalman filtering and control through embedded average consensus information fusion publication-title: IEEE Trans. Autom. Control – volume: 60 start-page: 211 year: 2017 end-page: 219 ident: bib0029 article-title: Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise publication-title: Digit. Signal Process. – volume: 127 start-page: 12 year: 2016 end-page: 23 ident: bib0013 article-title: Fusion estimation using measured outputs with random parameter matrices subject to random delays and packet dropouts publication-title: Signal Process. – volume: 64 start-page: 1603 year: 2019 end-page: 1610 ident: bib0024 article-title: Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops publication-title: IEEE Trans. Autom. Control – volume: 352 start-page: 3764 year: 2015 end-page: 3781 ident: bib0030 article-title: Distributed Kalman consensus filter with intermittent observations publication-title: J. Franklin Inst. – volume: 181 start-page: 686 year: 2011 end-page: 696 ident: bib0044 article-title: Networked publication-title: Inf. Sci. – volume: 104 start-page: 34 year: 2019 end-page: 40 ident: bib0017 article-title: A fully distributed weight design approach to consensus Kalman filtering for sensor networks publication-title: Automatica – start-page: 5801 year: 2017 end-page: 5806 ident: bib0032 article-title: Optimal discrete-time Kalman consensus filter publication-title: Proc. American Control Conf – start-page: 5492 year: 2007 end-page: 5498 ident: bib0020 article-title: Distributed Kalman filtering for sensor networks publication-title: Proc. 46th IEEE Conf. Decis. Control – volume: 38 start-page: 122 year: 2017 end-page: 134 ident: bib0003 article-title: Multi-sensor distributed fusion estimation with applications in networked systems: a review paper publication-title: Inf. Fusion – year: 2020 ident: bib0031 article-title: A prediction-based approach to distributed filtering with missing measurements and communication delays through sensor networks publication-title: IEEE Trans. Syst., Man, Cybern. Syst. – volume: 114 year: 2020 ident: bib0002 article-title: Distributed filtering for uncertain systems under switching sensor networks and quantized communications publication-title: Automatica – year: 2004 ident: bib0040 article-title: The theory and methods for nonlinear numerical analysis – volume: 73 start-page: 6 year: 2014 end-page: 16 ident: bib0011 article-title: Modeling and estimation for networked systems with multiple random transmission delays and packet losses publication-title: Systems Control Lett. – volume: 26 start-page: 591 year: 2007 end-page: 605 ident: bib0014 article-title: Distributed weighted fusion estimators with random delays and packet dropping publication-title: Circuits Syst. Signal Process. – volume: 48 start-page: 1110 year: 2018 end-page: 1123 ident: bib0023 article-title: An overview of recent advances in event-triggered consensus of multiagent systems publication-title: IEEE Trans. Cybern. – volume: 7 start-page: 483 year: 2013 end-page: 501 ident: bib0004 article-title: Distributed Kalman filtering: a bibliographic review publication-title: IET Control Theory Appl. – volume: 64 start-page: 155 year: 2016 end-page: 162 ident: bib0039 article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements publication-title: Automatica – volume: 131 year: 2019 ident: bib0001 article-title: Distributed Kalman filtering for sensor network with balanced topology publication-title: Systems Control Lett. – volume: 18 start-page: 7611 year: 2018 end-page: 7618 ident: bib0033 article-title: Consensus-based distributed robust filtering for multisensor systems with stochastic uncertainties publication-title: IEEE Sensors J. – volume: 98 year: 2020 ident: bib0035 article-title: Fusion identification and estimation of multisensor multichannel AR signals with missing measurements and sensor biases publication-title: Digit. Signal Process. – volume: 19 year: 2019 ident: bib0037 article-title: Self-tuning distributed fusion filter for multi-sensor networked systems with unknown packet receiving rates, noise variances, and model parameters publication-title: Sensors – volume: 66 start-page: 3571 year: 2018 end-page: 3583 ident: bib0008 article-title: Optimal sequential fusion estimation with stochastic parameter perturbations, fading measurements, and correlated noises publication-title: IEEE Trans. Signal Process. – volume: 89 start-page: 1457 year: 2009 end-page: 1466 ident: bib0010 article-title: Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts publication-title: Signal Process. – start-page: 7036 year: 2009 end-page: 7042 ident: bib0021 article-title: Kalman-consensus filter: optimality, stability, and performance publication-title: Proc. 48th IEEE Conf. Decis. Control – volume: 47 start-page: 423 year: 2021 end-page: 431 ident: bib0036 article-title: Self-tuning distributed fusion estimation for systems with unknown model parameters and fading measurement rates publication-title: Acta Automatica Sinca – volume: 58 start-page: 1551 year: 2013 end-page: 1556 ident: bib0012 article-title: Optimal linear filters for discrete-time systems with randomly delayed and lost measurements with/without time stamps publication-title: IEEE Trans. Autom. Control – volume: 75 start-page: 109 year: 2017 end-page: 118 ident: bib0026 article-title: Stochastic link activation for distributed filtering under sensor power constraint publication-title: Automatica – volume: 73 start-page: 6 year: 2014 ident: 10.1016/j.sigpro.2021.108306_bib0011 article-title: Modeling and estimation for networked systems with multiple random transmission delays and packet losses publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2014.07.005 – volume: 48 start-page: 1110 issue: 4 year: 2018 ident: 10.1016/j.sigpro.2021.108306_bib0023 article-title: An overview of recent advances in event-triggered consensus of multiagent systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2771560 – volume: 10 start-page: 103 issue: 1 year: 2016 ident: 10.1016/j.sigpro.2021.108306_bib0022 article-title: Event-triggered Kalman consensus filter over sensor networks publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2015.0508 – volume: 58 start-page: 1551 issue: 6 year: 2013 ident: 10.1016/j.sigpro.2021.108306_bib0012 article-title: Optimal linear filters for discrete-time systems with randomly delayed and lost measurements with/without time stamps publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2012.2229812 – volume: 57 start-page: 1248 issue: 5 year: 2012 ident: 10.1016/j.sigpro.2021.108306_bib0042 article-title: Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2012.2191857 – start-page: 5492 year: 2007 ident: 10.1016/j.sigpro.2021.108306_bib0020 article-title: Distributed Kalman filtering for sensor networks – volume: 43 start-page: 1963 issue: 6 year: 2013 ident: 10.1016/j.sigpro.2021.108306_bib0027 article-title: Distributed optimal consensus filter for target tracking in heterogeneous sensor networks publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2236647 – volume: 127 start-page: 12 year: 2016 ident: 10.1016/j.sigpro.2021.108306_bib0013 article-title: Fusion estimation using measured outputs with random parameter matrices subject to random delays and packet dropouts publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.02.014 – volume: 7 start-page: 483 issue: 4 year: 2013 ident: 10.1016/j.sigpro.2021.108306_bib0004 article-title: Distributed Kalman filtering: a bibliographic review publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2012.0732 – start-page: 5801 year: 2017 ident: 10.1016/j.sigpro.2021.108306_bib0032 article-title: Optimal discrete-time Kalman consensus filter – volume: 11 start-page: 1643 issue: 6 year: 2015 ident: 10.1016/j.sigpro.2021.108306_bib0028 article-title: Event-based distributed filtering with stochastic measurement fading publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2015.2444355 – volume: 38 start-page: 122 year: 2017 ident: 10.1016/j.sigpro.2021.108306_bib0003 article-title: Multi-sensor distributed fusion estimation with applications in networked systems: a review paper publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.03.006 – volume: 64 start-page: 155 year: 2016 ident: 10.1016/j.sigpro.2021.108306_bib0039 article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements publication-title: Automatica doi: 10.1016/j.automatica.2015.11.008 – volume: 64 start-page: 4396 issue: 10 year: 2019 ident: 10.1016/j.sigpro.2021.108306_bib0016 article-title: Distributed Kalman filtering and control through embedded average consensus information fusion publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2019.2897887 – volume: 104 start-page: 34 year: 2019 ident: 10.1016/j.sigpro.2021.108306_bib0017 article-title: A fully distributed weight design approach to consensus Kalman filtering for sensor networks publication-title: Automatica doi: 10.1016/j.automatica.2019.02.052 – volume: 49 start-page: 3440 issue: 11 year: 2013 ident: 10.1016/j.sigpro.2021.108306_bib0007 article-title: Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises publication-title: Automatica doi: 10.1016/j.automatica.2013.08.021 – year: 2012 ident: 10.1016/j.sigpro.2021.108306_bib0043 – volume: 89 start-page: 1457 issue: 7 year: 2009 ident: 10.1016/j.sigpro.2021.108306_bib0010 article-title: Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts publication-title: Signal Process. doi: 10.1016/j.sigpro.2009.02.002 – start-page: 6505 year: 2020 ident: 10.1016/j.sigpro.2021.108306_bib0034 article-title: Distributed optimal predictor with multi-consensus gains for sensor networks – volume: 114 year: 2020 ident: 10.1016/j.sigpro.2021.108306_bib0002 article-title: Distributed filtering for uncertain systems under switching sensor networks and quantized communications publication-title: Automatica doi: 10.1016/j.automatica.2020.108842 – volume: 45 start-page: 324 year: 2019 ident: 10.1016/j.sigpro.2021.108306_bib0018 article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.02.006 – year: 2020 ident: 10.1016/j.sigpro.2021.108306_bib0031 article-title: A prediction-based approach to distributed filtering with missing measurements and communication delays through sensor networks publication-title: IEEE Trans. Syst., Man, Cybern. Syst. – year: 2004 ident: 10.1016/j.sigpro.2021.108306_bib0040 – volume: 66 start-page: 641 issue: 3 year: 2018 ident: 10.1016/j.sigpro.2021.108306_bib0009 article-title: Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of different fading measurement rates publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2770102 – start-page: 6698 year: 2005 ident: 10.1016/j.sigpro.2021.108306_bib0015 article-title: Consensus filters for sensor networks and distributed sensor fusion – volume: 60 start-page: 211 year: 2017 ident: 10.1016/j.sigpro.2021.108306_bib0029 article-title: Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2016.10.003 – volume: 75 start-page: 109 year: 2017 ident: 10.1016/j.sigpro.2021.108306_bib0026 article-title: Stochastic link activation for distributed filtering under sensor power constraint publication-title: Automatica doi: 10.1016/j.automatica.2016.09.009 – volume: 352 start-page: 3764 issue: 9 year: 2015 ident: 10.1016/j.sigpro.2021.108306_bib0030 article-title: Distributed Kalman consensus filter with intermittent observations publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2015.01.002 – volume: 87 start-page: 189 issue: 1 year: 2007 ident: 10.1016/j.sigpro.2021.108306_bib0041 article-title: Optimal filtering and smoothing for discrete-time stochastic singular systems publication-title: Signal Process. doi: 10.1016/j.sigpro.2006.05.007 – volume: 397–398 start-page: 118 year: 2017 ident: 10.1016/j.sigpro.2021.108306_bib0006 article-title: State estimators for systems with random parameter matrices, stochastic nonlinearities, fading measurements and correlated noises publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.02.048 – volume: 50 start-page: 2070 issue: 8 year: 2014 ident: 10.1016/j.sigpro.2021.108306_bib0025 article-title: Stochastic sensor activation for distributed state estimation over a sensor network publication-title: Automatica doi: 10.1016/j.automatica.2014.05.025 – volume: 26 start-page: 591 issue: 4 year: 2007 ident: 10.1016/j.sigpro.2021.108306_bib0014 article-title: Distributed weighted fusion estimators with random delays and packet dropping publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-007-4009-5 – volume: 131 year: 2019 ident: 10.1016/j.sigpro.2021.108306_bib0001 article-title: Distributed Kalman filtering for sensor network with balanced topology publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2019.104500 – volume: 66 start-page: 3571 issue: 13 year: 2018 ident: 10.1016/j.sigpro.2021.108306_bib0008 article-title: Optimal sequential fusion estimation with stochastic parameter perturbations, fading measurements, and correlated noises publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2831642 – volume: 98 year: 2020 ident: 10.1016/j.sigpro.2021.108306_bib0035 article-title: Fusion identification and estimation of multisensor multichannel AR signals with missing measurements and sensor biases publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2019.102636 – volume: 346 start-page: 549 issue: 15 year: 2019 ident: 10.1016/j.sigpro.2021.108306_bib0005 article-title: Optimal recursive estimation for networked stochastic uncertain systems with fading measurements and time-correlated channel noises publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.07.026 – volume: 64 start-page: 1603 issue: 4 year: 2019 ident: 10.1016/j.sigpro.2021.108306_bib0024 article-title: Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2854644 – volume: 18 start-page: 7611 issue: 18 year: 2018 ident: 10.1016/j.sigpro.2021.108306_bib0033 article-title: Consensus-based distributed robust filtering for multisensor systems with stochastic uncertainties publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2018.2859378 – volume: 19 issue: 20 year: 2019 ident: 10.1016/j.sigpro.2021.108306_bib0037 article-title: Self-tuning distributed fusion filter for multi-sensor networked systems with unknown packet receiving rates, noise variances, and model parameters publication-title: Sensors doi: 10.3390/s19204436 – volume: 181 start-page: 686 issue: 3 year: 2011 ident: 10.1016/j.sigpro.2021.108306_bib0044 article-title: Networked H∞ filtering for linear discrete-time systems publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.10.012 – volume: 354 start-page: 7504 issue: 16 year: 2017 ident: 10.1016/j.sigpro.2021.108306_bib0019 article-title: Leader-following-based distributed Kalman filtering in sensor networks with communication delay publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2017.08.044 – start-page: 7036 year: 2009 ident: 10.1016/j.sigpro.2021.108306_bib0021 article-title: Kalman-consensus filter: optimality, stability, and performance – volume: 47 start-page: 423 issue: 2 year: 2021 ident: 10.1016/j.sigpro.2021.108306_bib0036 article-title: Self-tuning distributed fusion estimation for systems with unknown model parameters and fading measurement rates publication-title: Acta Automatica Sinca – year: 2004 ident: 10.1016/j.sigpro.2021.108306_bib0038 |
SSID | ssj0001360 |
Score | 2.4697475 |
Snippet | •A distributed filter with fading measurement and compensation of delay and loss.•Optimal gains are solved to minimize locally an upper bound of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108306 |
SubjectTerms | compensation of delay and packet loss consensus filter gain Distributed filter fading measurement sensor network |
Title | Distributed Filtering for Sensor Networks with Fading Measurements and Compensations for Transmission Delays and Losses |
URI | https://dx.doi.org/10.1016/j.sigpro.2021.108306 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6Yg9eY7PJ7qZ7LK2lPtpLLfQWdpONREpabEW8-NudyaNWEAVPgTADyWQz72-GkKu2MEx7kYLYxI0dniQa_jnDnCBKuOdybeMY8c7DkRxM-N1UTGukW2FhsK2y1P2FTs-1dXmnVUqztUjT1hiBOAzLSAyHrCCWuuH5Soo6aXRu7wejtUJmfg4WRnoHGSoEXd7mtUyfQFVBoOgx7LfzcfXRTxZqw-r098hu6S7STvFE-6RmswOyszFE8JC89XD2La6tsjHtp1j9hvsUnFE6hhgVLqOi1XtJMelK-3nXPB1-JQeXVGcxRc0A9EUGL2fP7RicA0yo0Z6d6feC8mGOleIjMunfPHYHTrlOwYngrVZOpLgXQAQhpOGxQN_JKM0S1wpug7Yf6SQA74oLLRIugoCpyI-ZtDJRRntWG_-Y1LN5Zk8IDSCsEsDpMiO5dNtKS2Fd5WN5mXEjm8SvRBhG5axxXHkxC6umsuewEHyIgg8LwTeJs-ZaFLM2_qAPqq8TfjszIZiDXzlP_815RrY9BEDkSZhzUl-9vNoLcEtW5pJsXX-wy_LwfQL1eeMH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MT63IPX2Gx2N9scpTVUbXtpC72F3WQjlZIWWxEv_nZn8rAVRMFTIMxAMtnM85sZQq6b0jDtxQHEJm7iiDTV8M8Z5qg4FZ4rtE0S7Hfu9f3OSDyM5bhGWlUvDMIqS91f6PRcW5d3GqU0G_PJpDHARhyGZSSGQ1awl3pTSK4Q13fzscJ5MJ63CiO1g-RV_1wO8lpMnkBRQZjoMUTbcVx89JN9WrM54R7ZLZ1Fels8zz6p2eyA7KyNEDwkb22cfItLq2xCwwnWvuE-BVeUDiBChUu_AHovKKZcaZhj5mlvlRpcUJ0lFPUC0Bf5u5w9t2JwCjCdRtt2qt8Lyu4M68RHZBTeDVsdp1ym4MTwVksnDoSnIH6QvhGJRM_JBJqlrpXCqiaPdarAtxJSy1RIpVgQ84T51k8Doz2rDT8mG9kssyeEKgiqJHC6zPjCd5uB9qV1A47FZSaMXye8EmEUl5PGceHFNKogZc9RIfgIBR8Vgq8T54trXkza-INeVV8n-nZiIjAGv3Ke_pvzimx1hr1u1L3vP56RbQ9bIfJ0zDnZWL682gtwUJbmMj-An-Bx49I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Filtering+for+Sensor+Networks+with+Fading+Measurements+and+Compensations+for+Transmission+Delays+and+Losses&rft.jtitle=Signal+processing&rft.au=Jin%2C+Hao&rft.au=Sun%2C+Shuli&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=190&rft_id=info:doi/10.1016%2Fj.sigpro.2021.108306&rft.externalDocID=S0165168421003431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |