Quantized asynchronous dissipative state estimation of jumping neural networks subject to occurring randomly sensor saturations

In this work, we study the quantized asynchronous dissipative state estimation issue for Markov jumping neural networks subject to randomly occurring sensor saturations. The network-induced phenomena (e.g. the sensor saturations and the signal quantization) are assumed to be occurring randomly. A st...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 291; pp. 207 - 214
Main Authors Men, Yunzhe, Huang, Xia, Wang, Zhen, Shen, Hao, Chen, Bo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 24.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we study the quantized asynchronous dissipative state estimation issue for Markov jumping neural networks subject to randomly occurring sensor saturations. The network-induced phenomena (e.g. the sensor saturations and the signal quantization) are assumed to be occurring randomly. A stochastic Kronecker delta function is introduced to model such phenomena. The main work aims to design an asynchronous state estimator that assures the underlying error dynamics to be strictly (X,Y,Z)−γ−dissipative. Based on the stochastic Kronecker delta function method and stochastic analysis technique, we establish some conditions for the sake of guaranteeing the existence of the desired state estimator. We finally explain the effectiveness of the proposed design approach by means of a numerical example.
AbstractList In this work, we study the quantized asynchronous dissipative state estimation issue for Markov jumping neural networks subject to randomly occurring sensor saturations. The network-induced phenomena (e.g. the sensor saturations and the signal quantization) are assumed to be occurring randomly. A stochastic Kronecker delta function is introduced to model such phenomena. The main work aims to design an asynchronous state estimator that assures the underlying error dynamics to be strictly (X,Y,Z)−γ−dissipative. Based on the stochastic Kronecker delta function method and stochastic analysis technique, we establish some conditions for the sake of guaranteeing the existence of the desired state estimator. We finally explain the effectiveness of the proposed design approach by means of a numerical example.
Author Huang, Xia
Shen, Hao
Men, Yunzhe
Chen, Bo
Wang, Zhen
Author_xml – sequence: 1
  givenname: Yunzhe
  surname: Men
  fullname: Men, Yunzhe
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma’anshan 243002, China
– sequence: 2
  givenname: Xia
  orcidid: 0000-0002-4955-8318
  surname: Huang
  fullname: Huang, Xia
  email: huangxia_qd@126.com
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 3
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 4
  givenname: Hao
  surname: Shen
  fullname: Shen, Hao
  email: haoshen10@gmail.com
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma’anshan 243002, China
– sequence: 5
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
BookMark eNqFkE1LAzEQhoMo2Fb_gYf8gV2TbLsfHgQpfkFBBD2HbDKrWdukZLKVevGvm1pPHvQ0MMzzzswzJofOOyDkjLOcM16e97mDQftVLhivcyZyVvEDMuJ1JbJa1OUhGbFGzDJRcHFMxog9Y7ziohmRz8dBuWg_wFCFW6dfg3d-QGosol2raDdAMaoIFDDaVWp4R31H-2G1tu6FpsVBLVOJ7z68IcWh7UFHGj31Wg8h7IaCcsavlluK4NAHiiomaheFJ-SoU0uE0586Ic8310_zu2zxcHs_v1pkumBlzHTVCAOgdWFEy4CXXTGrW1NPmxkvddG0ZT3tBFezNNEUhRaVEZ0CA13FW6iqYkIu9rk6eMQAndQ2fp8Qg7JLyZncqZS93KuUO5WSCZlUJnj6C16H5CJs_8Mu9xikxzYWgkRtwWkwNiRH0nj7d8AXj1mYZQ
CitedBy_id crossref_primary_10_1016_j_amc_2019_124841
crossref_primary_10_1016_j_jfranklin_2019_06_028
crossref_primary_10_1016_j_jfranklin_2020_04_036
crossref_primary_10_1016_j_neucom_2021_01_131
crossref_primary_10_1109_TCYB_2019_2936827
crossref_primary_10_1016_j_neucom_2019_10_047
crossref_primary_10_1177_0959651818777679
crossref_primary_10_1016_j_neucom_2019_12_018
crossref_primary_10_1016_j_inffus_2023_101814
crossref_primary_10_1016_j_jfranklin_2019_09_031
crossref_primary_10_1016_j_physa_2019_123070
crossref_primary_10_1016_j_amc_2020_125225
crossref_primary_10_1016_j_neucom_2021_02_065
crossref_primary_10_1016_j_amc_2019_124838
crossref_primary_10_1016_j_amc_2019_124715
crossref_primary_10_1016_j_jfranklin_2018_06_030
crossref_primary_10_1016_j_amc_2019_02_081
crossref_primary_10_1016_j_jfranklin_2020_02_011
crossref_primary_10_1109_ACCESS_2020_2968844
crossref_primary_10_1016_j_physa_2019_122437
crossref_primary_10_1007_s12555_019_0934_3
crossref_primary_10_1109_ACCESS_2020_2981721
crossref_primary_10_1016_j_jfranklin_2020_08_037
crossref_primary_10_1016_j_jfranklin_2018_07_011
crossref_primary_10_1016_j_nahs_2020_100906
crossref_primary_10_1016_j_amc_2020_125117
crossref_primary_10_1016_j_jfranklin_2021_01_005
crossref_primary_10_1016_j_amc_2018_05_013
crossref_primary_10_1016_j_amc_2020_125156
crossref_primary_10_1109_TNNLS_2022_3201160
crossref_primary_10_1016_j_neucom_2018_11_011
crossref_primary_10_1177_01423312221143269
crossref_primary_10_1016_j_amc_2022_127538
crossref_primary_10_1016_j_jfranklin_2020_01_021
crossref_primary_10_1016_j_neucom_2020_02_016
crossref_primary_10_1007_s40314_020_01183_x
crossref_primary_10_1016_j_jfranklin_2020_04_016
crossref_primary_10_1007_s12555_018_0550_7
crossref_primary_10_1007_s11063_018_9907_4
crossref_primary_10_1016_j_cnsns_2019_04_022
crossref_primary_10_1016_j_amc_2020_125643
crossref_primary_10_1016_j_neucom_2020_09_074
crossref_primary_10_1016_j_amc_2019_124578
crossref_primary_10_1016_j_neucom_2020_03_112
crossref_primary_10_1049_iet_cta_2019_0661
crossref_primary_10_1016_j_jfranklin_2019_11_066
crossref_primary_10_1016_j_jfranklin_2020_03_031
crossref_primary_10_1007_s11071_018_4322_y
crossref_primary_10_1016_j_jfranklin_2020_01_005
crossref_primary_10_1016_j_amc_2020_125410
crossref_primary_10_1016_j_amc_2020_125379
crossref_primary_10_1016_j_jfranklin_2019_09_047
crossref_primary_10_1016_j_neucom_2020_09_081
crossref_primary_10_1007_s12555_018_0295_3
crossref_primary_10_1016_j_jfranklin_2024_106685
crossref_primary_10_1109_TSMC_2018_2879985
Cites_doi 10.1080/00207721.2016.1177130
10.1109/TNNLS.2012.2187926
10.1109/TNNLS.2015.2412676
10.1109/TAC.2017.2774006
10.1016/j.neucom.2012.09.005
10.1109/TNN.2009.2016210
10.1016/j.physleta.2006.03.078
10.1016/j.automatica.2008.03.011
10.1016/j.amc.2017.10.039
10.1109/TSMC.2017.2758381
10.1109/TNNLS.2017.2732240
10.1109/21.278990
10.1016/j.neunet.2008.09.015
10.1109/TNNLS.2016.2516030
10.1007/s00521-015-2079-5
10.1109/TNNLS.2015.2503772
10.1016/j.amc.2015.03.033
10.1016/j.jfranklin.2016.08.020
10.1109/TNNLS.2015.2511196
10.1016/j.amc.2016.10.042
10.1016/j.camwa.2011.04.057
10.1016/j.sysconle.2012.01.005
10.1016/j.jfranklin.2011.11.011
10.1016/j.neucom.2015.01.040
10.1016/j.neucom.2011.05.018
10.1007/s11071-011-0278-x
10.1109/TSMC.2017.2723038
10.1109/TNNLS.2013.2271357
10.12785/amis/072L22
10.1109/TSMC.2017.2708507
10.1109/TNNLS.2012.2236355
10.1016/j.neucom.2012.05.021
10.1109/TSP.2011.2135854
10.1016/j.automatica.2009.09.033
10.1016/j.neucom.2014.02.055
10.1016/j.amc.2012.01.028
10.1016/j.amc.2016.06.039
10.1007/s11071-012-0544-6
10.1016/j.automatica.2013.09.041
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.02.071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 214
ExternalDocumentID 10_1016_j_neucom_2018_02_071
S0925231218302388
GrantInformation_xml – fundername: National Natural Science Foundation of PR China
  grantid: 61304066; 61473178; 61573008
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-c792deecc3d2b0e16f358bd849516c39b684f21a5cc3933c27d2faedef71be773
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 22:53:09 EDT 2025
Tue Jul 01 01:46:33 EDT 2025
Fri Feb 23 02:30:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sensor saturations
Jumping neural networks
Asynchronous dissipative state estimation
Signal quantization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c792deecc3d2b0e16f358bd849516c39b684f21a5cc3933c27d2faedef71be773
ORCID 0000-0002-4955-8318
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2018_02_071
crossref_primary_10_1016_j_neucom_2018_02_071
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_02_071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-24
PublicationDateYYYYMMDD 2018-05-24
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-24
  day: 24
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Duan, Su, Wu (bib0004) 2012; 97
Shen, Huang, Zhou, Wang (bib0021) 2012; 69
Wang, Xia, Shi (bib0032) 2011; 62
Lakshmanan, Park, Ji, Jung, Nagamani (bib0008) 2012; 70
Zhang, Zhu, Zheng (bib0042) 2016; 27
Zhu, Zhong, Zheng, Zhou (bib0043) 2017
Chen, Shen, Li (bib0002) 2016; 353
Wang, Yao, Shen (bib0026) 2014; 139
Song, Men, Zhou, Shen (bib0023) 2017; 298
Xu, Su, Xu, Wu (bib0037) 2015; 157
Xu, Lu, Shi, Li, Xie (bib0036) 2017
Rakkiyappan, Dharani (bib0013) 2017; 28
Shen, Xu, Lu, Zhou (bib0018) 2012; 349
Dong, Wang, Ho, Gao (bib0003) 2011; 59
Ma, Xu, Zou (bib0012) 2011; 74
Wang, Liu, Liu (bib0028) 2009; 22
Shen, Li, Xu, Sreeram (bib0020) 2017
Tang, Wong (bib0025) 2013; 24
Yan, Zhang, Yang, Zhan, Peng (bib0038) 2017
Wu, Shi, Su, Chu (bib0033) 2014; 50
Xu, Lu, Shi, Tao, Xie (bib0034) 2017
Shen, Wang, Qiao (bib0016) 2017; 28
Wang, Xia, Zhou (bib0031) 2013; 7
Ding, Wang, Shen, Shu (bib0001) 2012; 23
Shen, Wang, Ding, Shu (bib0015) 2013; 24
Yan, Yang, Zhang, Yang, Zhan (bib0039) 2017
Liu, Wang, Liang, Liu (bib0011) 2009; 20
Xu, Lu, Peng, Xie, Xue (bib0035) 2017; 28
Zhang, Shao, Wang, Shen (bib0040) 2012; 218
Rovithakis, Christodoulou (bib0014) 1994; 24
Hu, Wang, Gao, Stergioulas (bib0007) 2012; 61
He, Liu (bib0006) 2013; 103
Fu, de Souza (bib0005) 2009; 45
Wang, Zeng, Park, Zhang, Hayat, Alsaedi (bib0027) 2017; 48
Wang, Xia, Zhou (bib0030) 2013; 2
Liu, Ho, Sun (bib0010) 2008; 44
Liang, Dai, Shen, Wang, Wang, Chen (bib0009) 2018; 321
Wang, Liu, Yu, Liu (bib0029) 2006; 356
Shen, Zhu, Zhang, Park (bib0022) 2017; 28
Shen, Men, Wu, Park (bib0019) 2017
Shen, Huang, Zhou, Wang (bib0017) 2012; 69
Su, Shen (bib0024) 2015; 259
Zhou, Dong, Feng (bib0041) 2017; 293
Yan (10.1016/j.neucom.2018.02.071_sbref0038) 2017
Shen (10.1016/j.neucom.2018.02.071_bib0018) 2012; 349
Xu (10.1016/j.neucom.2018.02.071_sbref0036) 2017
Ding (10.1016/j.neucom.2018.02.071_bib0001) 2012; 23
Shen (10.1016/j.neucom.2018.02.071_sbref0019) 2017
Lakshmanan (10.1016/j.neucom.2018.02.071_bib0008) 2012; 70
Wang (10.1016/j.neucom.2018.02.071_bib0030) 2013; 2
Duan (10.1016/j.neucom.2018.02.071_bib0004) 2012; 97
Liu (10.1016/j.neucom.2018.02.071_bib0010) 2008; 44
Xu (10.1016/j.neucom.2018.02.071_bib0037) 2015; 157
Zhu (10.1016/j.neucom.2018.02.071_sbref0043) 2017
Fu (10.1016/j.neucom.2018.02.071_bib0005) 2009; 45
Hu (10.1016/j.neucom.2018.02.071_bib0007) 2012; 61
Rovithakis (10.1016/j.neucom.2018.02.071_bib0014) 1994; 24
Tang (10.1016/j.neucom.2018.02.071_bib0025) 2013; 24
Wang (10.1016/j.neucom.2018.02.071_bib0029) 2006; 356
Ma (10.1016/j.neucom.2018.02.071_bib0012) 2011; 74
Wang (10.1016/j.neucom.2018.02.071_bib0031) 2013; 7
Liang (10.1016/j.neucom.2018.02.071_bib0009) 2018; 321
Dong (10.1016/j.neucom.2018.02.071_bib0003) 2011; 59
Liu (10.1016/j.neucom.2018.02.071_bib0011) 2009; 20
Shen (10.1016/j.neucom.2018.02.071_bib0017) 2012; 69
Xu (10.1016/j.neucom.2018.02.071_bib0035) 2017; 28
Shen (10.1016/j.neucom.2018.02.071_bib0015) 2013; 24
Song (10.1016/j.neucom.2018.02.071_bib0023) 2017; 298
Yan (10.1016/j.neucom.2018.02.071_sbref0039) 2017
Wang (10.1016/j.neucom.2018.02.071_bib0028) 2009; 22
Zhou (10.1016/j.neucom.2018.02.071_bib0041) 2017; 293
Shen (10.1016/j.neucom.2018.02.071_bib0021) 2012; 69
Wang (10.1016/j.neucom.2018.02.071_bib0026) 2014; 139
Zhang (10.1016/j.neucom.2018.02.071_bib0040) 2012; 218
Wang (10.1016/j.neucom.2018.02.071_bib0027) 2017; 48
Wu (10.1016/j.neucom.2018.02.071_bib0033) 2014; 50
Zhang (10.1016/j.neucom.2018.02.071_bib0042) 2016; 27
Rakkiyappan (10.1016/j.neucom.2018.02.071_bib0013) 2017; 28
Chen (10.1016/j.neucom.2018.02.071_bib0002) 2016; 353
Shen (10.1016/j.neucom.2018.02.071_sbref0020) 2017
Shen (10.1016/j.neucom.2018.02.071_bib0016) 2017; 28
Xu (10.1016/j.neucom.2018.02.071_sbref0034) 2017
Shen (10.1016/j.neucom.2018.02.071_bib0022) 2017; 28
Wang (10.1016/j.neucom.2018.02.071_bib0032) 2011; 62
He (10.1016/j.neucom.2018.02.071_bib0006) 2013; 103
Su (10.1016/j.neucom.2018.02.071_bib0024) 2015; 259
References_xml – volume: 28
  start-page: 1152
  year: 2017
  end-page: 1163
  ident: bib0016
  article-title: Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2017
  ident: bib0019
  article-title: Non-fragile
  publication-title: IEEE Trans. Syst. Man, Cybern., Syst.
– volume: 2
  start-page: 707
  year: 2013
  end-page: 724
  ident: bib0030
  article-title: A numerical method for delayed fractional-order differential equations
  publication-title: J. Appl. Math.
– volume: 27
  start-page: 459
  year: 2016
  end-page: 470
  ident: bib0042
  article-title: Synchronization and state estimation of a class of hierarchical hybrid neural networks with time-varying delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 293
  start-page: 617
  year: 2017
  end-page: 629
  ident: bib0041
  article-title: Event-triggered communication for synchronization of markovian jump delayed complex networks with partially unknown transition rates
  publication-title: Appl. Math. Comput.
– year: 2017
  ident: bib0038
  article-title: Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2017
  ident: bib0039
  article-title: Distributed
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 24
  start-page: 400
  year: 1994
  end-page: 412
  ident: bib0014
  article-title: Adaptive control of unknown plants using dynamical neural networks
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 70
  start-page: 1421
  year: 2012
  end-page: 1434
  ident: bib0008
  article-title: State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory
  publication-title: Nonlinear Dyn.
– volume: 20
  start-page: 1102
  year: 2009
  end-page: 1116
  ident: bib0011
  article-title: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays
  publication-title: IEEE Trans. Neural Netw.
– volume: 44
  start-page: 2655
  year: 2008
  end-page: 2660
  ident: bib0010
  article-title: Design of
  publication-title: Automatica
– volume: 45
  start-page: 2937
  year: 2009
  end-page: 2945
  ident: bib0005
  article-title: State estimation for linear discrete-time systems using quantized measurements
  publication-title: Automatica
– volume: 298
  start-page: 123
  year: 2017
  end-page: 132
  ident: bib0023
  article-title: Event-triggered
  publication-title: Appl. Math. Comput.
– volume: 103
  start-page: 87
  year: 2013
  end-page: 92
  ident: bib0006
  article-title: Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters
  publication-title: Neurocomputing
– volume: 74
  start-page: 3404
  year: 2011
  end-page: 3411
  ident: bib0012
  article-title: Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities
  publication-title: Neurocomputing
– volume: 356
  start-page: 346
  year: 2006
  end-page: 352
  ident: bib0029
  article-title: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters
  publication-title: Phys. Lett. A
– volume: 23
  start-page: 725
  year: 2012
  end-page: 736
  ident: bib0001
  article-title: state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 259
  start-page: 931
  year: 2015
  end-page: 942
  ident: bib0024
  article-title: Mixed
  publication-title: Appl. Math. Comput.
– volume: 218
  start-page: 7614
  year: 2012
  end-page: 7621
  ident: bib0040
  article-title: Reduced-order observer design for the synchronization of the generalized lorenz chaotic systems
  publication-title: Appl. Math. Comput.
– volume: 69
  start-page: 473
  year: 2012
  end-page: 486
  ident: bib0021
  article-title: Global exponential estimates for uncertain Markovian jump neural networks with reaction-diffusion terms
  publication-title: Nonlinear Dyn.
– volume: 97
  start-page: 16
  year: 2012
  end-page: 21
  ident: bib0004
  article-title: state estimation of static neural networks with time-varying delay
  publication-title: Neurocomputing
– volume: 28
  start-page: 268
  year: 2017
  end-page: 277
  ident: bib0035
  article-title: Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 48
  start-page: 236
  year: 2017
  end-page: 246
  ident: bib0027
  article-title: Finite-time control for networked switched linear systems with an event-driven communication approach
  publication-title: Int. J. Syst. Sci.
– volume: 22
  start-page: 41
  year: 2009
  end-page: 48
  ident: bib0028
  article-title: State estimation for jumping recurrent neural networks with discrete and distributed delays
  publication-title: Neural Netw.
– volume: 69
  start-page: 473
  year: 2012
  end-page: 486
  ident: bib0017
  article-title: Global exponential estimates for uncertain markovian jump neural networks with reaction-diffusion terms
  publication-title: Nonlinear Dyn.
– volume: 353
  start-page: 4583
  year: 2016
  end-page: 4601
  ident: bib0002
  article-title: On dissipative filtering over unreliable communication links for stochastic jumping neural networks based on a unified design method
  publication-title: J. Frankl. Inst.
– volume: 28
  start-page: 346
  year: 2017
  end-page: 358
  ident: bib0022
  article-title: Extended dissipative state estimation for Markov jump neural networks with unreliable links
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 24
  start-page: 435
  year: 2013
  end-page: 447
  ident: bib0025
  article-title: Distributed synchronization of coupled neural networks via randomly occurring control
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 7
  start-page: 525
  year: 2013
  end-page: 529
  ident: bib0031
  article-title: A numerical method for delayed fractional-order differential equations: based on g-l definition
  publication-title: Appl. Math. Inf. Sci.
– year: 2017
  ident: bib0036
  article-title: Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels
  publication-title: IEEE Trans. Cybern.
– volume: 24
  start-page: 2027
  year: 2013
  end-page: 2037
  ident: bib0015
  article-title: state estimation for complex networks with uncertain inner coupling and incomplete measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 62
  start-page: 1531
  year: 2011
  end-page: 1539
  ident: bib0032
  article-title: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay
  publication-title: Comput. Math. Appl.
– year: 2017
  ident: bib0020
  article-title: Slow state variables feedback stabilization for semi-markov jump systems with singular perturbations
  publication-title: IEEE Trans. Autom. Control
– volume: 321
  start-page: 450
  year: 2018
  end-page: 462
  ident: bib0009
  article-title: synchronization for singularly perturbed complex networks with semi-markov jump topology
  publication-title: Appl. Math. Comput.
– volume: 349
  start-page: 1665
  year: 2012
  end-page: 1680
  ident: bib0018
  article-title: Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays
  publication-title: J. Frankl. Inst.
– volume: 139
  start-page: 107
  year: 2014
  end-page: 113
  ident: bib0026
  article-title: Dissipativity-based state estimation for Markov jump discrete-time neural networks with unreliable communication links
  publication-title: Neurocomputing
– volume: 50
  start-page: 180
  year: 2014
  end-page: 186
  ident: bib0033
  article-title: Asynchronous
  publication-title: Automatica
– volume: 157
  start-page: 33
  year: 2015
  end-page: 40
  ident: bib0037
  article-title: Asynchronous
  publication-title: Neurocomputing
– volume: 61
  start-page: 477
  year: 2012
  end-page: 484
  ident: bib0007
  article-title: Probability-guaranteed
  publication-title: Syst. Control Lett.
– volume: 59
  start-page: 3048
  year: 2011
  end-page: 3057
  ident: bib0003
  article-title: Robust filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case
  publication-title: IEEE Trans. Signal Proc.
– year: 2017
  ident: bib0043
  article-title: HMM-based
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 28
  start-page: 449
  year: 2017
  end-page: 462
  ident: bib0013
  article-title: Sampled-data synchronization of randomly coupled reaction–diffusion neural networks with Markovian jumping and mixed delays using multiple integral approach
  publication-title: Neural Comput. Appl.
– year: 2017
  ident: bib0034
  article-title: Robust estimation for neural networks with randomly occurring distributed delays and Markovian jump coupling
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 48
  start-page: 236
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2018.02.071_bib0027
  article-title: Finite-time control for networked switched linear systems with an event-driven communication approach
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2016.1177130
– volume: 23
  start-page: 725
  issue: 5
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0001
  article-title: H∞ state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2187926
– volume: 27
  start-page: 459
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2018.02.071_bib0042
  article-title: Synchronization and state estimation of a class of hierarchical hybrid neural networks with time-varying delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2412676
– year: 2017
  ident: 10.1016/j.neucom.2018.02.071_sbref0020
  article-title: Slow state variables feedback stabilization for semi-markov jump systems with singular perturbations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2774006
– volume: 103
  start-page: 87
  year: 2013
  ident: 10.1016/j.neucom.2018.02.071_bib0006
  article-title: Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.005
– volume: 20
  start-page: 1102
  issue: 7
  year: 2009
  ident: 10.1016/j.neucom.2018.02.071_bib0011
  article-title: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2016210
– volume: 356
  start-page: 346
  year: 2006
  ident: 10.1016/j.neucom.2018.02.071_bib0029
  article-title: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.03.078
– year: 2017
  ident: 10.1016/j.neucom.2018.02.071_sbref0036
  article-title: Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels
  publication-title: IEEE Trans. Cybern.
– volume: 44
  start-page: 2655
  issue: 10
  year: 2008
  ident: 10.1016/j.neucom.2018.02.071_bib0010
  article-title: Design of H∞ filter for Markov jumping linear systems with non-accessible mode information
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.03.011
– volume: 321
  start-page: 450
  year: 2018
  ident: 10.1016/j.neucom.2018.02.071_bib0009
  article-title: L2−L∞ synchronization for singularly perturbed complex networks with semi-markov jump topology
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.10.039
– year: 2017
  ident: 10.1016/j.neucom.2018.02.071_sbref0019
  article-title: Non-fragile H∞ control for fuzzy Markovian jump systems under fast sampling singular perturbation
  publication-title: IEEE Trans. Syst. Man, Cybern., Syst.
  doi: 10.1109/TSMC.2017.2758381
– year: 2017
  ident: 10.1016/j.neucom.2018.02.071_sbref0038
  article-title: Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2732240
– volume: 24
  start-page: 400
  issue: 3
  year: 1994
  ident: 10.1016/j.neucom.2018.02.071_bib0014
  article-title: Adaptive control of unknown plants using dynamical neural networks
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.278990
– volume: 22
  start-page: 41
  year: 2009
  ident: 10.1016/j.neucom.2018.02.071_bib0028
  article-title: State estimation for jumping recurrent neural networks with discrete and distributed delays
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2008.09.015
– volume: 28
  start-page: 1152
  issue: 5
  year: 2017
  ident: 10.1016/j.neucom.2018.02.071_bib0016
  article-title: Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2516030
– volume: 28
  start-page: 449
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2018.02.071_bib0013
  article-title: Sampled-data synchronization of randomly coupled reaction–diffusion neural networks with Markovian jumping and mixed delays using multiple integral approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2079-5
– volume: 28
  start-page: 268
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2018.02.071_bib0035
  article-title: Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2503772
– volume: 259
  start-page: 931
  year: 2015
  ident: 10.1016/j.neucom.2018.02.071_bib0024
  article-title: Mixed H∞/passive synchronization for complex dynamical networks with sampled-data control
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.03.033
– volume: 353
  start-page: 4583
  issue: 17
  year: 2016
  ident: 10.1016/j.neucom.2018.02.071_bib0002
  article-title: On dissipative filtering over unreliable communication links for stochastic jumping neural networks based on a unified design method
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2016.08.020
– volume: 28
  start-page: 346
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2018.02.071_bib0022
  article-title: Extended dissipative state estimation for Markov jump neural networks with unreliable links
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2511196
– year: 2017
  ident: 10.1016/j.neucom.2018.02.071_sbref0034
  article-title: Robust estimation for neural networks with randomly occurring distributed delays and Markovian jump coupling
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 298
  start-page: 123
  year: 2017
  ident: 10.1016/j.neucom.2018.02.071_bib0023
  article-title: Event-triggered H∞ control for networked discrete-time Markov jump systems with repeated scalar nonlinearities
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2016.10.042
– volume: 62
  start-page: 1531
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2018.02.071_bib0032
  article-title: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.04.057
– volume: 61
  start-page: 477
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0007
  article-title: Probability-guaranteed H∞ finite-horizon filtering for a class of nonlinear time-varying systems with sensor saturations
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2012.01.005
– volume: 349
  start-page: 1665
  issue: 5
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0018
  article-title: Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2011.11.011
– volume: 157
  start-page: 33
  year: 2015
  ident: 10.1016/j.neucom.2018.02.071_bib0037
  article-title: Asynchronous H∞ filtering for discrete-time Markov jump neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.040
– volume: 74
  start-page: 3404
  issue: 17
  year: 2011
  ident: 10.1016/j.neucom.2018.02.071_bib0012
  article-title: Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.018
– volume: 69
  start-page: 473
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0021
  article-title: Global exponential estimates for uncertain Markovian jump neural networks with reaction-diffusion terms
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0278-x
– year: 2017
  ident: 10.1016/j.neucom.2018.02.071_sbref0043
  article-title: HMM-based H∞ filtering for discrete-time markov jump LPV systems over unreliable communication channels
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2723038
– volume: 24
  start-page: 2027
  issue: 12
  year: 2013
  ident: 10.1016/j.neucom.2018.02.071_bib0015
  article-title: H∞ state estimation for complex networks with uncertain inner coupling and incomplete measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2271357
– volume: 7
  start-page: 525
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2018.02.071_bib0031
  article-title: A numerical method for delayed fractional-order differential equations: based on g-l definition
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/072L22
– year: 2017
  ident: 10.1016/j.neucom.2018.02.071_sbref0039
  article-title: Distributed H∞ state estimation for a class of filtering networks with time-varying switching topologies and packet losses
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2708507
– volume: 24
  start-page: 435
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2018.02.071_bib0025
  article-title: Distributed synchronization of coupled neural networks via randomly occurring control
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2236355
– volume: 97
  start-page: 16
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0004
  article-title: H∞ state estimation of static neural networks with time-varying delay
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.05.021
– volume: 59
  start-page: 3048
  issue: 7
  year: 2011
  ident: 10.1016/j.neucom.2018.02.071_bib0003
  article-title: Robust filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case
  publication-title: IEEE Trans. Signal Proc.
  doi: 10.1109/TSP.2011.2135854
– volume: 45
  start-page: 2937
  issue: 12
  year: 2009
  ident: 10.1016/j.neucom.2018.02.071_bib0005
  article-title: State estimation for linear discrete-time systems using quantized measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.09.033
– volume: 139
  start-page: 107
  year: 2014
  ident: 10.1016/j.neucom.2018.02.071_bib0026
  article-title: Dissipativity-based state estimation for Markov jump discrete-time neural networks with unreliable communication links
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.055
– volume: 218
  start-page: 7614
  issue: 14
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0040
  article-title: Reduced-order observer design for the synchronization of the generalized lorenz chaotic systems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.01.028
– volume: 2
  start-page: 707
  year: 2013
  ident: 10.1016/j.neucom.2018.02.071_bib0030
  article-title: A numerical method for delayed fractional-order differential equations
  publication-title: J. Appl. Math.
– volume: 293
  start-page: 617
  year: 2017
  ident: 10.1016/j.neucom.2018.02.071_bib0041
  article-title: Event-triggered communication for synchronization of markovian jump delayed complex networks with partially unknown transition rates
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2016.06.039
– volume: 70
  start-page: 1421
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0008
  article-title: State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0544-6
– volume: 69
  start-page: 473
  year: 2012
  ident: 10.1016/j.neucom.2018.02.071_bib0017
  article-title: Global exponential estimates for uncertain markovian jump neural networks with reaction-diffusion terms
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0278-x
– volume: 50
  start-page: 180
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2018.02.071_bib0033
  article-title: Asynchronous l2-l∞ filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.09.041
SSID ssj0017129
Score 2.4487486
Snippet In this work, we study the quantized asynchronous dissipative state estimation issue for Markov jumping neural networks subject to randomly occurring sensor...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 207
SubjectTerms Asynchronous dissipative state estimation
Jumping neural networks
Sensor saturations
Signal quantization
Title Quantized asynchronous dissipative state estimation of jumping neural networks subject to occurring randomly sensor saturations
URI https://dx.doi.org/10.1016/j.neucom.2018.02.071
Volume 291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL158i_XFHryuzT6STY6lWKqiICp4W5LNBio1KU0r1IP-dWfyKAqi4LFhNik7m_lmNt98S8iZl0GOYH3OoJzwmYKclUFWnTAHsTALUGOqkti4uQ2Gj-rqyX9aIf22FwZplU3sr2N6Fa2bK91mNruT0ah770UCqiiOGI_Agw2_Smlc5efvS5oH11zUenvCZ2jdts9VHK_czZEzAiAYVsqdmv8MT18gZ7BFNppckfbqv7NNVly-Qzbbcxho81ruko-7OczP6M2lNC4XuUW9WyjoKX5rrxjTr45WjUMUJTXqXkVaZPQZXAnIRVHTEp6T14zwkpbzBHdn6KyghbW4RwhGgGlp8TJe0BIK32JKS1QErbf79sjj4OKhP2TNwQrMQoUwY1ZHInXgPJmKxHM8yKQfJmkIxRIPrIySIFSZ4LEPFpGUVuhUZLFLXaZ54rSW-2Q1L3J3QKhWynoZyghajjqHkVOxdLGM4U6pH7oOke18GtuojuPhF2PT0sueTe0Fg14wnjDghQ5hy1GTWnXjD3vdusp8Wz0GgOHXkYf_HnlE1vEXMgmEOiars-ncnUCCMktOqxV4StZ6l9fD209BlemN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHODCG_EmB65hTdI27REhpgEbEgKk3aI2TaVNo53WDQkO8Nex-0AgIZC4tk5bxYk_O7U_E3LqpOAjGI8zCCc85oLPysCrjpkFW5j6yDFVUmz0b_3uo3s98AYtctHUwmBaZW37K5teWuv6SruezfZkOGzfO6GAKIojxiPwBAtkyYXti20Mzt4-8zy44qIi3BMeQ_Gmfq5M8srsHJNGAAWDkrpT8Z_x6QvmdNbJau0s0vPqezZIy2abZK1pxEDrfblF3u_mMEHDV5vQqHjJDBLeQkRP8Wd7mTL9bGlZOUSRU6MqVqR5SkegS4AuiqSW8J6sSgkvaDGP8XiGznKaG4OHhCAEoJbkT-MXWkDkm09pgZSg1XnfNnnsXD5cdFndWYEZCBFmzKhQJBa0JxMRO5b7qfSCOAkgWuK-kWHsB24qeOSBRCilESoRaWQTmyoeW6XkDlnM8szuEqpc1zgp8ggajkSHoXUjaSMZwZMSL7B7RDbzqU1NO47dL8a6yS8b6UoLGrWgHaFBC3uEfY6aVLQbf8irRlX62_LRgAy_jtz_98gTstx96Pd07-r25oCs4B1MKxDuIVmcTef2CLyVWXxcrsYPoOjrGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+asynchronous+dissipative+state+estimation+of+jumping+neural+networks+subject+to+occurring+randomly+sensor+saturations&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Men%2C+Yunzhe&rft.au=Huang%2C+Xia&rft.au=Wang%2C+Zhen&rft.au=Shen%2C+Hao&rft.date=2018-05-24&rft.issn=0925-2312&rft.volume=291&rft.spage=207&rft.epage=214&rft_id=info:doi/10.1016%2Fj.neucom.2018.02.071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2018_02_071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon