Feature fusion and non-negative matrix factorization based active contours for texture segmentation

•Comprehensive feature fusion strategy via Gabor features and Local Variation Degree of intensity (LVD).•Effective energy functional via Non-negative Matrix Factorization (NMF).•Convex optimization strategy for robust results against different initializations.•Competitive results on the images with...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 159; pp. 104 - 118
Main Authors Gao, Mingqi, Chen, Hengxin, Zheng, Shenhai, Fang, Bin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Comprehensive feature fusion strategy via Gabor features and Local Variation Degree of intensity (LVD).•Effective energy functional via Non-negative Matrix Factorization (NMF).•Convex optimization strategy for robust results against different initializations.•Competitive results on the images with noise and complex textures. This paper presents a robust and convex active contour model for texture segmentation. Firstly, to achieve more comprehensive feature description, we compute a set of feature maps by combining local variation degree (LVD) of intensity and Gabor features. This feature fusion improves the separability between sub-regions and the robustness against complex textures. Upon these feature maps, we compute local histograms over fixed-size windows to describe the local structures formed by feature values. For each pixel, its feature vector is defined as the concatenation of all computed histograms. Secondly, to localize region boundaries more accurately, we formulate the proposed energy functional via Non-negative Matrix Factorization (NMF), which encourages each pixel to fall into the sub-region that has the largest coverage area in its neighborhood. Finally, the functional is explored further using convex optimization theory. Our segmentation results are therefore insensitive to different initial contours. The experiments performed on synthetic images, histology images and natural images demonstrate that our approach can obtain high-quality object boundaries in the presence of image noise and cluttered scenes.
AbstractList •Comprehensive feature fusion strategy via Gabor features and Local Variation Degree of intensity (LVD).•Effective energy functional via Non-negative Matrix Factorization (NMF).•Convex optimization strategy for robust results against different initializations.•Competitive results on the images with noise and complex textures. This paper presents a robust and convex active contour model for texture segmentation. Firstly, to achieve more comprehensive feature description, we compute a set of feature maps by combining local variation degree (LVD) of intensity and Gabor features. This feature fusion improves the separability between sub-regions and the robustness against complex textures. Upon these feature maps, we compute local histograms over fixed-size windows to describe the local structures formed by feature values. For each pixel, its feature vector is defined as the concatenation of all computed histograms. Secondly, to localize region boundaries more accurately, we formulate the proposed energy functional via Non-negative Matrix Factorization (NMF), which encourages each pixel to fall into the sub-region that has the largest coverage area in its neighborhood. Finally, the functional is explored further using convex optimization theory. Our segmentation results are therefore insensitive to different initial contours. The experiments performed on synthetic images, histology images and natural images demonstrate that our approach can obtain high-quality object boundaries in the presence of image noise and cluttered scenes.
Author Fang, Bin
Chen, Hengxin
Zheng, Shenhai
Gao, Mingqi
Author_xml – sequence: 1
  givenname: Mingqi
  surname: Gao
  fullname: Gao, Mingqi
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Hengxin
  surname: Chen
  fullname: Chen, Hengxin
  email: chenhengxin@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Shenhai
  surname: Zheng
  fullname: Zheng, Shenhai
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 4
  givenname: Bin
  surname: Fang
  fullname: Fang, Bin
  organization: College of Computer Science, Chongqing University, Chongqing, China
BookMark eNqFkMFKAzEURYNUsK3-gYv8wIx5k5lJx4UgxapQcKPrkMm8KSltUpK0VL_etOPKha4Cl3MPL3dCRtZZJOQWWA4M6rt1Hsxq511eMGhyBjkr4IKMYSaKTFSVGJFxwqoM6ll5RSYhrBljwGs2JnqBKu490n4fjLNU2Y4me2ZxpaI5IN2q6M2R9kpH581XChPVqoAdTdGJ0M5Gt_eB9s7TiMezLuBqizae8Wty2atNwJufd0o-Fk_v85ds-fb8On9cZpqzOma61oVA1jWFqKBpFQjBeasKrgQDXZWzine8qFXKOqYZomgaUUJRtiU0fd_wKbkfvNq7EDz2UpvhguiV2Uhg8jSXXMthLnmaSzKQaa5ULn-Vd95slf_8r_Yw1DB97GDQy6ANWo2d8aij7Jz5W_ANgVCLWw
CitedBy_id crossref_primary_10_1007_s11042_022_12340_1
crossref_primary_10_1016_j_neucom_2019_04_021
crossref_primary_10_3390_s20051381
crossref_primary_10_1016_j_sigpro_2021_108056
crossref_primary_10_1109_LSP_2024_3442971
crossref_primary_10_3390_jmse8080595
crossref_primary_10_1016_j_ins_2021_02_019
crossref_primary_10_1016_j_sigpro_2020_107569
crossref_primary_10_1109_ACCESS_2021_3063545
crossref_primary_10_1007_s11042_020_09911_5
crossref_primary_10_1088_2631_8695_ad3a34
crossref_primary_10_1109_ACCESS_2020_3044881
crossref_primary_10_1109_TIP_2020_2997331
crossref_primary_10_1016_j_heliyon_2024_e31395
crossref_primary_10_1016_j_ymssp_2025_112303
crossref_primary_10_4236_jcc_2021_96005
crossref_primary_10_1016_j_asoc_2021_108005
crossref_primary_10_1088_1361_6501_adbf3c
Cites_doi 10.1007/BF01236935
10.1109/TIP.2013.2295752
10.1109/TIP.2014.2353814
10.1109/TCYB.2016.2577718
10.1023/A:1007979827043
10.1109/83.902291
10.1109/83.661186
10.1016/0021-9991(88)90002-2
10.1137/040615286
10.1109/TIP.2018.2806201
10.1109/TIP.2018.2848471
10.1016/j.neucom.2014.04.085
10.1109/TIP.2014.2372615
10.1016/j.sigpro.2016.06.013
10.1109/TCYB.2015.2409119
10.1016/j.cviu.2014.04.010
10.1016/j.patcog.2017.08.011
10.1109/TIP.2013.2263147
10.1007/BF00133570
10.1016/j.patcog.2014.10.018
10.1109/TIP.2006.871133
10.1007/s11263-009-0234-0
10.1109/TIP.2018.2792904
10.1109/TIP.2010.2069690
10.1109/TCYB.2014.2326059
10.1049/iet-ipr.2017.1144
10.1109/TPAMI.2010.161
10.1109/TIP.2015.2446948
10.1109/TIP.2016.2598653
10.1002/env.3170050203
10.1109/TCYB.2016.2585355
10.1016/j.patcog.2015.01.001
10.1016/j.sigpro.2009.03.014
10.1109/TIP.2014.2307475
10.1109/TIP.2008.2002304
10.1109/42.141646
10.1016/j.patcog.2015.03.001
10.1007/s11263-006-8711-1
10.1016/j.sigpro.2018.02.025
10.1109/TPAMI.2010.83
10.1109/TIP.2013.2274385
10.1007/s11042-018-5777-z
10.1007/s10851-007-0002-0
10.1016/j.patcog.2016.01.021
10.1016/j.patrec.2008.02.013
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2019.01.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
EndPage 118
ExternalDocumentID 10_1016_j_sigpro_2019_01_021
S016516841930026X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-c6c27e0d927519ba17733ba23a701c54853d326a3bad0c0ee79974124b419ff93
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Tue Jul 01 02:07:26 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Fri Feb 23 02:33:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Active contour model
Feature fusion
Non-negative matrix factorization
Convex optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c6c27e0d927519ba17733ba23a701c54853d326a3bad0c0ee79974124b419ff93
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2019_01_021
crossref_primary_10_1016_j_sigpro_2019_01_021
elsevier_sciencedirect_doi_10_1016_j_sigpro_2019_01_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationTitle Signal processing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mabood, Ali, Badshah, Chen, Khan (bib0022) 2016; 55
Li, Xu, Gui, Fox (bib0004) 2005
You, Guo, Yu, Li, Príncipe, Tao (bib0045) 2016; 25
Li, Kao, Gore, Ding (bib0008) 2008; 17
Ni, Bresson, Chan, Esedoglu (bib0028) 2009; 84
Li, Xu, Gui, Fox (bib0005) 2010; 19
Lui, Scharfenberger, Fergani, Wong, Clausi (bib0031) 2014; 23
Bresson, Esedoglu, Vandergheynst, Thiran, Osher (bib0054) 2007; 28
Ozolek, Castro (bib0049) 2011
Xu, Prince (bib0002) 1998; 7
Wang, Chen, Shi, Chang, Chan, Pu, Yang (bib0014) 2018; 149
Cremers, Rousson, Deriche (bib0017) 2007; 72
Li, Cui, Dong (bib0040) 2017; 9
Chen, Li, Pan, Xu (bib0038) 2018; 32
Zhao, Qin, Wang (bib0025) 2018; 77
Zheng, Fang, Li, Gao, Chen, Peng (bib0013) 2018; 73
Huang, Zhu, Wang, Chen (bib0047) 2014; 23
Min, Jia, Wang, Zhao, Hu, Luo, Xue, Lu (bib0027) 2015; 48
Zhang, Zhang, Lam, Zhang (bib0011) 2016; 46
Dong, Tao, Li (bib0041) 2015; 7
Gao, Bouix, Shenton, Tannenbaum (bib0030) 2013; 22
Chen, You, Zhong, Li, Tao (bib0046) 2017; 47
Alpert, Galun, Basri, Brandt (bib0056) 2007
Wang, Chan (bib0029) 2013; 22
Liu, Liu, Xing (bib0016) 2017; 130
Paatero, Tapper (bib0043) 1994; 5
Gerig, Kübler, Kikinis, Jolesz (bib0048) 1992; 11
Moreno, Prasath, Proença, Palaniappan (bib0055) 2014; 125
Min, Jia, Zhao, Zuo, Ling, Luo (bib0012) 2018; 27
Wang, He, Mishra, Li (bib0009) 2009; 89
Rousson, Brox, Deriche (bib0021) 2003
Zhu, You, Chen, Tao, Ou, Jiang, Zou (bib0044) 2015; 48
Savelonas, Iakovidis, Maroulis (bib0023) 2008; 29
Sagiv, Sochen, Zeevi (bib0019) 2006; 15
Caselles, Kimmel, Sapiro (bib0003) 1997; 22
Chan, Esedoglu, Nikolova (bib0052) 2006; 66
Chan, Vese (bib0007) 2001; 10
Wu, Yu (bib0020) 2018; 12
Peng, Zhang, Mou, Yang (bib0051) 2016; PP
Li, Cui, Dong (bib0035) 2018; 9
Luo, Tong, Chen (bib0015) 2018; 27
Dong, Tao, Li, Ma, Pu (bib0042) 2015; 45
Yang, Gao, Tao, Li, Li (bib0010) 2015; 24
Arbelaez, Maire, Fowlkes, Malik (bib0050) 2011; 33
Yuan, Wang, Cheriyadat (bib0037) 2015; 24
Kass, Witkin, Terzopoulos (bib0001) 1988; 1
Sandberg, Chan, Vese (bib0018) 2004
Osher, Sethian (bib0034) 1988; 79
Wu, Gan, Lin, Zhang, Chang (bib0024) 2015; 151
Li, Cui, Dong (bib0039) 2017; 47
Fleming, Rishel (bib0057) 1960; 11
Dai, Ding, Yang (bib0026) 2015; 48
Mishra, Fieguth, Clausi (bib0006) 2011; 33
Kiechle, Storath, Weinmann, Kleinsteuber (bib0032) 2018; 27
Attouch, Buttazzo, Michaille (bib0053) 2014; vol. 17
SedlÃ!‘k, MorÃ!‘vek (bib0033) 1989; 42
McCann, Mixon, Fickus, Castro, Ozolek, Kovacevic (bib0036) 2014; 23
Wang (10.1016/j.sigpro.2019.01.021_bib0014) 2018; 149
Sagiv (10.1016/j.sigpro.2019.01.021_bib0019) 2006; 15
Cremers (10.1016/j.sigpro.2019.01.021_bib0017) 2007; 72
Min (10.1016/j.sigpro.2019.01.021_bib0012) 2018; 27
Bresson (10.1016/j.sigpro.2019.01.021_bib0054) 2007; 28
Wang (10.1016/j.sigpro.2019.01.021_bib0009) 2009; 89
Attouch (10.1016/j.sigpro.2019.01.021_bib0053) 2014; vol. 17
Gao (10.1016/j.sigpro.2019.01.021_bib0030) 2013; 22
Mabood (10.1016/j.sigpro.2019.01.021_bib0022) 2016; 55
Huang (10.1016/j.sigpro.2019.01.021_bib0047) 2014; 23
Caselles (10.1016/j.sigpro.2019.01.021_bib0003) 1997; 22
Savelonas (10.1016/j.sigpro.2019.01.021_bib0023) 2008; 29
Sandberg (10.1016/j.sigpro.2019.01.021_bib0018) 2004
Zhao (10.1016/j.sigpro.2019.01.021_bib0025) 2018; 77
Peng (10.1016/j.sigpro.2019.01.021_sbref0051) 2016; PP
Li (10.1016/j.sigpro.2019.01.021_bib0008) 2008; 17
Paatero (10.1016/j.sigpro.2019.01.021_bib0043) 1994; 5
Dai (10.1016/j.sigpro.2019.01.021_bib0026) 2015; 48
Chen (10.1016/j.sigpro.2019.01.021_bib0038) 2018; 32
Lui (10.1016/j.sigpro.2019.01.021_bib0031) 2014; 23
Li (10.1016/j.sigpro.2019.01.021_bib0039) 2017; 47
Gerig (10.1016/j.sigpro.2019.01.021_bib0048) 1992; 11
Ni (10.1016/j.sigpro.2019.01.021_bib0028) 2009; 84
Dong (10.1016/j.sigpro.2019.01.021_bib0041) 2015; 7
Zhang (10.1016/j.sigpro.2019.01.021_bib0011) 2016; 46
McCann (10.1016/j.sigpro.2019.01.021_bib0036) 2014; 23
Zheng (10.1016/j.sigpro.2019.01.021_bib0013) 2018; 73
Kass (10.1016/j.sigpro.2019.01.021_bib0001) 1988; 1
Chan (10.1016/j.sigpro.2019.01.021_bib0052) 2006; 66
Luo (10.1016/j.sigpro.2019.01.021_bib0015) 2018; 27
Chan (10.1016/j.sigpro.2019.01.021_bib0007) 2001; 10
Mishra (10.1016/j.sigpro.2019.01.021_bib0006) 2011; 33
Li (10.1016/j.sigpro.2019.01.021_bib0004) 2005
You (10.1016/j.sigpro.2019.01.021_bib0045) 2016; 25
Yuan (10.1016/j.sigpro.2019.01.021_bib0037) 2015; 24
Liu (10.1016/j.sigpro.2019.01.021_bib0016) 2017; 130
Chen (10.1016/j.sigpro.2019.01.021_bib0046) 2017; 47
Dong (10.1016/j.sigpro.2019.01.021_bib0042) 2015; 45
Li (10.1016/j.sigpro.2019.01.021_sbref0040) 2017; 9
Zhu (10.1016/j.sigpro.2019.01.021_bib0044) 2015; 48
Kiechle (10.1016/j.sigpro.2019.01.021_bib0032) 2018; 27
Xu (10.1016/j.sigpro.2019.01.021_bib0002) 1998; 7
Moreno (10.1016/j.sigpro.2019.01.021_bib0055) 2014; 125
Li (10.1016/j.sigpro.2019.01.021_bib0005) 2010; 19
Wu (10.1016/j.sigpro.2019.01.021_bib0020) 2018; 12
Rousson (10.1016/j.sigpro.2019.01.021_bib0021) 2003
Min (10.1016/j.sigpro.2019.01.021_bib0027) 2015; 48
Wang (10.1016/j.sigpro.2019.01.021_bib0029) 2013; 22
SedlÃ!‘k (10.1016/j.sigpro.2019.01.021_bib0033) 1989; 42
Osher (10.1016/j.sigpro.2019.01.021_bib0034) 1988; 79
Li (10.1016/j.sigpro.2019.01.021_bib0035) 2018; 9
Yang (10.1016/j.sigpro.2019.01.021_bib0010) 2015; 24
Wu (10.1016/j.sigpro.2019.01.021_bib0024) 2015; 151
Arbelaez (10.1016/j.sigpro.2019.01.021_bib0050) 2011; 33
Ozolek (10.1016/j.sigpro.2019.01.021_bib0049) 2011
Alpert (10.1016/j.sigpro.2019.01.021_bib0056) 2007
Fleming (10.1016/j.sigpro.2019.01.021_bib0057) 1960; 11
References_xml – volume: 46
  start-page: 546
  year: 2016
  end-page: 557
  ident: bib0011
  article-title: A level set approach to image segmentation with intensity inhomogeneity
  publication-title: IEEE Trans. Cybern.
– volume: 32
  start-page: 1
  year: 2018
  end-page: 32
  ident: bib0038
  article-title: Fast non-negative matrix factorizations for face recognition
  publication-title: IJPRAI
– volume: 29
  start-page: 1404
  year: 2008
  end-page: 1415
  ident: bib0023
  article-title: LBP-guided active contours
  publication-title: Pattern Recognit. Lett.
– volume: 33
  start-page: 310
  year: 2011
  end-page: 324
  ident: bib0006
  article-title: Decoupled active contour (DAC) for boundary detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 359
  year: 1998
  end-page: 369
  ident: bib0002
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Trans. Image Process.
– volume: 125
  start-page: 237
  year: 2014
  end-page: 250
  ident: bib0055
  article-title: Fast and globally convex multiphase active contours for brain MRI segmentation
  publication-title: Comput. Vision Image Understand.
– volume: 73
  start-page: 144
  year: 2018
  end-page: 157
  ident: bib0013
  article-title: B-spline based globally optimal segmentation combining low-level and high-level information
  publication-title: Pattern Recognit.
– volume: 27
  start-page: 1994
  year: 2018
  end-page: 2007
  ident: bib0032
  article-title: Model-based learning of local image features for unsupervised texture segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 149
  start-page: 27
  year: 2018
  end-page: 35
  ident: bib0014
  article-title: Active contours driven by edge entropy fitting energy for image segmentation
  publication-title: Sig. Process.
– volume: 72
  start-page: 195
  year: 2007
  end-page: 215
  ident: bib0017
  article-title: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape
  publication-title: Int. J. Comput. Vis.
– volume: 7
  start-page: 4:1
  year: 2015
  end-page: 4:21
  ident: bib0041
  article-title: Nonnegative multiresolution representation-based texture image classification
  publication-title: ACM TIST
– volume: 89
  start-page: 2435
  year: 2009
  end-page: 2447
  ident: bib0009
  article-title: Active contours driven by local Gaussian distribution fitting energy
  publication-title: Sig. Process.
– year: 2011
  ident: bib0049
  article-title: Teratomas Derived from Embryonic Stem Cells as Models for Embryonic Development, Disease, and Tumorigenesis
– volume: 84
  start-page: 97
  year: 2009
  end-page: 111
  ident: bib0028
  article-title: Local histogram based segmentation using the wasserstein distance
  publication-title: Int. J. Comput. Vis.
– volume: 48
  start-page: 2592
  year: 2015
  end-page: 2608
  ident: bib0044
  article-title: An adaptive hybrid pattern for noise-robust texture analysis
  publication-title: Pattern Recognit.
– volume: 77
  start-page: 24537
  year: 2018
  end-page: 24564
  ident: bib0025
  article-title: Interactive segmentation of texture image based on active contour model with local inverse difference moment feature
  publication-title: Multimed. Tools Appl.
– volume: vol. 17
  year: 2014
  ident: bib0053
  article-title: Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization
  publication-title: MPS-SIAM Series on Optimization
– volume: 11
  start-page: 221
  year: 1992
  end-page: 232
  ident: bib0048
  article-title: Nonlinear anisotropic filtering of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  ident: bib0050
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  year: 2017
  ident: bib0040
  article-title: Refined-graph regularization-based nonnegative matrix factorization
  publication-title: ACM TIST
– volume: 27
  start-page: 2560
  year: 2018
  end-page: 2574
  ident: bib0015
  article-title: A multi-region segmentation method for SAR images based on the multi-texture model with level sets
  publication-title: IEEE Trans. Image Process.
– volume: 28
  start-page: 151
  year: 2007
  end-page: 167
  ident: bib0054
  article-title: Fast global minimization of the active contour/snake model
  publication-title: J. Math. Imaging Vis.
– volume: 66
  start-page: 1632
  year: 2006
  end-page: 1648
  ident: bib0052
  article-title: Algorithms for finding global minimizers of image segmentation and denoising models
  publication-title: SIAM J. Appl. Math.
– volume: 23
  start-page: 4680
  year: 2014
  end-page: 4695
  ident: bib0047
  article-title: HSOG: A novel local image descriptor based on histograms of the second-order gradients
  publication-title: IEEE Trans. Image Process.
– volume: 55
  start-page: 87
  year: 2016
  end-page: 99
  ident: bib0022
  article-title: Active contours textural and inhomogeneous object extraction
  publication-title: Pattern Recognit.
– volume: 45
  start-page: 358
  year: 2015
  end-page: 369
  ident: bib0042
  article-title: Texture classification and retrieval using shearlets and linear regression
  publication-title: IEEE Trans. Cybern.
– volume: 17
  start-page: 1940
  year: 2008
  end-page: 1949
  ident: bib0008
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Trans. Image Process.
– start-page: 430
  year: 2005
  end-page: 436
  ident: bib0004
  article-title: Level set evolution without re-initialization: a new variational formulation
  publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 June 2005, San Diego, CA, USA
– volume: 48
  start-page: 2513
  year: 2015
  end-page: 2529
  ident: bib0026
  article-title: Inhomogeneity-embedded active contour for natural image segmentation
  publication-title: Pattern Recognit.
– volume: 47
  start-page: 3840
  year: 2017
  end-page: 3853
  ident: bib0039
  article-title: Graph regularized non-negative low-rank matrix factorization for image clustering
  publication-title: IEEE Trans. Cybern.
– volume: 27
  start-page: 5016
  year: 2018
  end-page: 5031
  ident: bib0012
  article-title: Late: a level-set method based on local approximation of taylor expansion for segmenting intensity inhomogeneous images
  publication-title: IEEE Trans. Image Process.
– year: 2007
  ident: bib0056
  article-title: Image segmentation by probabilistic bottom-up aggregation and cue integration
  publication-title: 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18–23 June 2007, Minneapolis, Minnesota, USA
– volume: 42
  start-page: 577?685
  year: 1989
  ident: bib0033
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
– volume: 22
  start-page: 3866
  year: 2013
  end-page: 3878
  ident: bib0030
  article-title: Sparse texture active contour
  publication-title: IEEE Trans. Image Process.
– volume: 23
  start-page: 855
  year: 2014
  end-page: 869
  ident: bib0031
  article-title: Enhanced decoupled active contour using structural and textural variation energy functionals
  publication-title: IEEE Trans. Image Process.
– volume: 5
  start-page: 111
  year: 1994
  end-page: 126
  ident: bib0043
  article-title: Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
– volume: 9
  start-page: 65:1
  year: 2018
  end-page: 65:24
  ident: bib0035
  article-title: Discriminative and orthogonal subspace constraints-based nonnegative matrix factorization
  publication-title: ACM TIST
– volume: 22
  start-page: 61
  year: 1997
  end-page: 79
  ident: bib0003
  article-title: Geodesic active contours
  publication-title: Int. J. Comput. Vis.
– volume: 19
  start-page: 3243
  year: 2010
  end-page: 3254
  ident: bib0005
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 1633
  year: 2006
  end-page: 1646
  ident: bib0019
  article-title: Integrated active contours for texture segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 48
  start-page: 1547
  year: 2015
  end-page: 1562
  ident: bib0027
  article-title: An intensity-texture model based level set method for image segmentation
  publication-title: Pattern Recognit.
– start-page: 699
  year: 2003
  end-page: 706
  ident: bib0021
  article-title: Active unsupervised texture segmentation on a diffusion based feature space
  publication-title: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), 16–22 June 2003, Madison, WI, USA
– volume: 1
  start-page: 321
  year: 1988
  end-page: 331
  ident: bib0001
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vis.
– volume: 130
  start-page: 12
  year: 2017
  end-page: 21
  ident: bib0016
  article-title: An improved edge-based level set method combining local regional fitting information for noisy image segmentation
  publication-title: Sig. Process.
– volume: 22
  start-page: 4473
  year: 2013
  end-page: 4485
  ident: bib0029
  article-title: Incorporating patch subspace model in Mumford-Shah type active contours
  publication-title: IEEE Trans. Image Process.
– volume: 151
  start-page: 1133
  year: 2015
  end-page: 1141
  ident: bib0024
  article-title: An active contour model based on fused texture features for image segmentation
  publication-title: Neurocomputing
– volume: 10
  start-page: 266
  year: 2001
  end-page: 277
  ident: bib0007
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
– volume: 12
  start-page: 1131
  year: 2018
  end-page: 1141
  ident: bib0020
  article-title: Automatic object extraction from images using deep neural networks and the level-set method
  publication-title: IET Image Process.
– volume: 47
  start-page: 3706
  year: 2017
  end-page: 3718
  ident: bib0046
  article-title: Dynamically modulated mask sparse tracking
  publication-title: IEEE Trans. Cybern.
– volume: 23
  start-page: 2033
  year: 2014
  end-page: 2046
  ident: bib0036
  article-title: Images as occlusions of textures: a framework for segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 9
  year: 2015
  end-page: 21
  ident: bib0010
  article-title: An efficient MRF embedded level set method for image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: bib0034
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
– volume: PP
  year: 2016
  ident: bib0051
  article-title: Evaluation of segmentation quality via adaptive composition of reference segmentations.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 218
  year: 1960
  end-page: 222
  ident: bib0057
  article-title: An integral formula for total gradient variation
  publication-title: Arch. Math.
– volume: 25
  start-page: 4782
  year: 2016
  end-page: 4795
  ident: bib0045
  article-title: Kernel learning for dynamic texture synthesis
  publication-title: IEEE Trans. Image Process.
– year: 2004
  ident: bib0018
  article-title: A Level-Set and Gabor-Based Active Contour Algorithm for Segmenting Textured Images
  publication-title: Ucla Department of Mathematics Cam Report
– volume: 24
  start-page: 3488
  year: 2015
  end-page: 3497
  ident: bib0037
  article-title: Factorization-based texture segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 11
  start-page: 218
  issue: 1
  year: 1960
  ident: 10.1016/j.sigpro.2019.01.021_bib0057
  article-title: An integral formula for total gradient variation
  publication-title: Arch. Math.
  doi: 10.1007/BF01236935
– volume: 23
  start-page: 855
  issue: 2
  year: 2014
  ident: 10.1016/j.sigpro.2019.01.021_bib0031
  article-title: Enhanced decoupled active contour using structural and textural variation energy functionals
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2295752
– volume: 23
  start-page: 4680
  issue: 11
  year: 2014
  ident: 10.1016/j.sigpro.2019.01.021_bib0047
  article-title: HSOG: A novel local image descriptor based on histograms of the second-order gradients
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2353814
– volume: 47
  start-page: 3706
  issue: 11
  year: 2017
  ident: 10.1016/j.sigpro.2019.01.021_bib0046
  article-title: Dynamically modulated mask sparse tracking
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2577718
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  ident: 10.1016/j.sigpro.2019.01.021_bib0003
  article-title: Geodesic active contours
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1007979827043
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  ident: 10.1016/j.sigpro.2019.01.021_bib0007
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.902291
– volume: 9
  issue: 1
  year: 2017
  ident: 10.1016/j.sigpro.2019.01.021_sbref0040
  article-title: Refined-graph regularization-based nonnegative matrix factorization
  publication-title: ACM TIST
– volume: 7
  start-page: 359
  issue: 3
  year: 1998
  ident: 10.1016/j.sigpro.2019.01.021_bib0002
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661186
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 10.1016/j.sigpro.2019.01.021_bib0034
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– volume: 66
  start-page: 1632
  issue: 5
  year: 2006
  ident: 10.1016/j.sigpro.2019.01.021_bib0052
  article-title: Algorithms for finding global minimizers of image segmentation and denoising models
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/040615286
– volume: 27
  start-page: 2560
  issue: 5
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0015
  article-title: A multi-region segmentation method for SAR images based on the multi-texture model with level sets
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2806201
– volume: 27
  start-page: 5016
  issue: 10
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0012
  article-title: Late: a level-set method based on local approximation of taylor expansion for segmenting intensity inhomogeneous images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2848471
– volume: 42
  start-page: 577?685
  issue: 5
  year: 1989
  ident: 10.1016/j.sigpro.2019.01.021_bib0033
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
– volume: 151
  start-page: 1133
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0024
  article-title: An active contour model based on fused texture features for image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.085
– volume: 24
  start-page: 9
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0010
  article-title: An efficient MRF embedded level set method for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2372615
– volume: 130
  start-page: 12
  year: 2017
  ident: 10.1016/j.sigpro.2019.01.021_bib0016
  article-title: An improved edge-based level set method combining local regional fitting information for noisy image segmentation
  publication-title: Sig. Process.
  doi: 10.1016/j.sigpro.2016.06.013
– volume: 46
  start-page: 546
  issue: 2
  year: 2016
  ident: 10.1016/j.sigpro.2019.01.021_bib0011
  article-title: A level set approach to image segmentation with intensity inhomogeneity
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2409119
– volume: 7
  start-page: 4:1
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0041
  article-title: Nonnegative multiresolution representation-based texture image classification
  publication-title: ACM TIST
– volume: 125
  start-page: 237
  year: 2014
  ident: 10.1016/j.sigpro.2019.01.021_bib0055
  article-title: Fast and globally convex multiphase active contours for brain MRI segmentation
  publication-title: Comput. Vision Image Understand.
  doi: 10.1016/j.cviu.2014.04.010
– volume: 73
  start-page: 144
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0013
  article-title: B-spline based globally optimal segmentation combining low-level and high-level information
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.011
– volume: 22
  start-page: 3866
  issue: 10
  year: 2013
  ident: 10.1016/j.sigpro.2019.01.021_bib0030
  article-title: Sparse texture active contour
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2263147
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  ident: 10.1016/j.sigpro.2019.01.021_bib0001
  article-title: Snakes: active contour models
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00133570
– volume: 48
  start-page: 1547
  issue: 4
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0027
  article-title: An intensity-texture model based level set method for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.10.018
– volume: 15
  start-page: 1633
  issue: 6
  year: 2006
  ident: 10.1016/j.sigpro.2019.01.021_bib0019
  article-title: Integrated active contours for texture segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.871133
– year: 2004
  ident: 10.1016/j.sigpro.2019.01.021_bib0018
  article-title: A Level-Set and Gabor-Based Active Contour Algorithm for Segmenting Textured Images
– volume: 84
  start-page: 97
  issue: 1
  year: 2009
  ident: 10.1016/j.sigpro.2019.01.021_bib0028
  article-title: Local histogram based segmentation using the wasserstein distance
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0234-0
– volume: 27
  start-page: 1994
  issue: 4
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0032
  article-title: Model-based learning of local image features for unsupervised texture segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2792904
– volume: vol. 17
  year: 2014
  ident: 10.1016/j.sigpro.2019.01.021_bib0053
  article-title: Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  ident: 10.1016/j.sigpro.2019.01.021_bib0005
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2069690
– volume: 45
  start-page: 358
  issue: 3
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0042
  article-title: Texture classification and retrieval using shearlets and linear regression
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2326059
– volume: 12
  start-page: 1131
  issue: 7
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0020
  article-title: Automatic object extraction from images using deep neural networks and the level-set method
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2017.1144
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  ident: 10.1016/j.sigpro.2019.01.021_bib0050
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.161
– volume: 24
  start-page: 3488
  issue: 11
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0037
  article-title: Factorization-based texture segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2446948
– volume: 25
  start-page: 4782
  issue: 10
  year: 2016
  ident: 10.1016/j.sigpro.2019.01.021_bib0045
  article-title: Kernel learning for dynamic texture synthesis
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2598653
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  ident: 10.1016/j.sigpro.2019.01.021_bib0043
  article-title: Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– volume: 32
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0038
  article-title: Fast non-negative matrix factorizations for face recognition
  publication-title: IJPRAI
– volume: 47
  start-page: 3840
  issue: 11
  year: 2017
  ident: 10.1016/j.sigpro.2019.01.021_bib0039
  article-title: Graph regularized non-negative low-rank matrix factorization for image clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2585355
– start-page: 699
  year: 2003
  ident: 10.1016/j.sigpro.2019.01.021_bib0021
  article-title: Active unsupervised texture segmentation on a diffusion based feature space
– year: 2011
  ident: 10.1016/j.sigpro.2019.01.021_bib0049
– volume: 48
  start-page: 2592
  issue: 8
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0044
  article-title: An adaptive hybrid pattern for noise-robust texture analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.01.001
– volume: 89
  start-page: 2435
  issue: 12
  year: 2009
  ident: 10.1016/j.sigpro.2019.01.021_bib0009
  article-title: Active contours driven by local Gaussian distribution fitting energy
  publication-title: Sig. Process.
  doi: 10.1016/j.sigpro.2009.03.014
– volume: 23
  start-page: 2033
  issue: 5
  year: 2014
  ident: 10.1016/j.sigpro.2019.01.021_bib0036
  article-title: Images as occlusions of textures: a framework for segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2307475
– volume: 17
  start-page: 1940
  issue: 10
  year: 2008
  ident: 10.1016/j.sigpro.2019.01.021_bib0008
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2002304
– volume: PP
  issue: 99
  year: 2016
  ident: 10.1016/j.sigpro.2019.01.021_sbref0051
  article-title: Evaluation of segmentation quality via adaptive composition of reference segmentations.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 221
  issue: 2
  year: 1992
  ident: 10.1016/j.sigpro.2019.01.021_bib0048
  article-title: Nonlinear anisotropic filtering of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.141646
– volume: 48
  start-page: 2513
  issue: 8
  year: 2015
  ident: 10.1016/j.sigpro.2019.01.021_bib0026
  article-title: Inhomogeneity-embedded active contour for natural image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.001
– volume: 72
  start-page: 195
  issue: 2
  year: 2007
  ident: 10.1016/j.sigpro.2019.01.021_bib0017
  article-title: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-8711-1
– volume: 149
  start-page: 27
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0014
  article-title: Active contours driven by edge entropy fitting energy for image segmentation
  publication-title: Sig. Process.
  doi: 10.1016/j.sigpro.2018.02.025
– volume: 33
  start-page: 310
  issue: 2
  year: 2011
  ident: 10.1016/j.sigpro.2019.01.021_bib0006
  article-title: Decoupled active contour (DAC) for boundary detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.83
– start-page: 430
  year: 2005
  ident: 10.1016/j.sigpro.2019.01.021_bib0004
  article-title: Level set evolution without re-initialization: a new variational formulation
– volume: 22
  start-page: 4473
  issue: 11
  year: 2013
  ident: 10.1016/j.sigpro.2019.01.021_bib0029
  article-title: Incorporating patch subspace model in Mumford-Shah type active contours
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2274385
– volume: 77
  start-page: 24537
  issue: 18
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0025
  article-title: Interactive segmentation of texture image based on active contour model with local inverse difference moment feature
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5777-z
– volume: 28
  start-page: 151
  issue: 2
  year: 2007
  ident: 10.1016/j.sigpro.2019.01.021_bib0054
  article-title: Fast global minimization of the active contour/snake model
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-007-0002-0
– year: 2007
  ident: 10.1016/j.sigpro.2019.01.021_bib0056
  article-title: Image segmentation by probabilistic bottom-up aggregation and cue integration
– volume: 55
  start-page: 87
  year: 2016
  ident: 10.1016/j.sigpro.2019.01.021_bib0022
  article-title: Active contours textural and inhomogeneous object extraction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.01.021
– volume: 29
  start-page: 1404
  issue: 9
  year: 2008
  ident: 10.1016/j.sigpro.2019.01.021_bib0023
  article-title: LBP-guided active contours
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.02.013
– volume: 9
  start-page: 65:1
  issue: 6
  year: 2018
  ident: 10.1016/j.sigpro.2019.01.021_bib0035
  article-title: Discriminative and orthogonal subspace constraints-based nonnegative matrix factorization
  publication-title: ACM TIST
SSID ssj0001360
Score 2.382628
Snippet •Comprehensive feature fusion strategy via Gabor features and Local Variation Degree of intensity (LVD).•Effective energy functional via Non-negative Matrix...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Active contour model
Convex optimization
Feature fusion
Non-negative matrix factorization
Title Feature fusion and non-negative matrix factorization based active contours for texture segmentation
URI https://dx.doi.org/10.1016/j.sigpro.2019.01.021
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14XZvdTbLNsRRLVexFC72F7COlYkPpAzz5251JNlpBFDxm2UmWyWbmm_B9s4RcWyGdDXTIEqEyFgol4JPSgmXCdjXXkY0lCpwfR_FwHN5PokmD9GstDNIqfeyvYnoZrf1Ix3uzs5jNOk8oxOFxNwQIgpXEBBXsocJdfvP-RfPgslQK42SGs2v5XMnxWs2mEKeQ4JVUzTv5z-lpK-UMDsi-x4q0Vy3nkDRccUT2tjoIHhODEG6zdDTf4G8vmhWWQkHPCjctO3rTObbgf6PVsTpec0kxdVmalaGOIlkdnrSiAF8p8kDwdis3nXtVUnFCxoPb5_6Q-XMTmIECYM1MbIRygQX3Az7TGVdKSp0JmamAGyhRImkBtWUwZgMTOKcSqCog0WvwZZ4n8pQ0YanujFARmMgpw60OoI6D0inMncu14Lm1sVCqRWTtrtT4puJ4tsVrWrPHXtLKySk6OQ14Ck5uEfZptaiaavwxX9VvIv22OVKI-79anv_b8oLs4lXFCrskzfVy464Af6x1u9xgbbLTu3sYjj4A27PctQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3e_C6NLubZO2xiFJfvajQ25J9pFRsEduCP9-ZZFMURMFrspMss5tv5gvfzAKce6mCT2zKO1IXPJVa4idlJS-kv7DCZj5XVOD80M97z-ntIBsswWVTC0Oyyoj9NaZXaB2vtKM322-jUfuRCnFEfpFiCkJMYrAMK9SdKmvBSvfmrtdfALJQVbEwjedk0FTQVTKv6WiIUEUar07dv1P8HKG-RJ3rTdiI6SLr1jPagqUw2Yb1L00Ed8BRFjd_D6yc058vVkw8Q07PJ2FYNfVmY-rC_8Hqk3Vi2SWj6OVZUaEdI706vmnKMINlJAWhx03DcBwLkya78Hx99XTZ4_HoBO6QA8y4y53UIfG4Apii2UJorZQtpCp0IhyylEx5TNwKvOYTl4SgO0gsMNZbdGdZdtQetHCqYR-YTFwWtBPeJkjlkD2lZQillaL0PpdaH4Bq3GVc7CtOx1u8mkZA9mJqJxtyskmEQScfAF9YvdV9Nf4Yr5uVMN_2h0Ho_9Xy8N-WZ7Dae3q4N_c3_bsjWKM7tUjsGFqz93k4wXRkZk_jdvsEcS3fZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+fusion+and+non-negative+matrix+factorization+based+active+contours+for+texture+segmentation&rft.jtitle=Signal+processing&rft.au=Gao%2C+Mingqi&rft.au=Chen%2C+Hengxin&rft.au=Zheng%2C+Shenhai&rft.au=Fang%2C+Bin&rft.date=2019-06-01&rft.issn=0165-1684&rft.volume=159&rft.spage=104&rft.epage=118&rft_id=info:doi/10.1016%2Fj.sigpro.2019.01.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2019_01_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon