Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy
► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without sacrificing the strength. ► DRRA improves exfoliation corrosion resistance with retention of strength. ► The HLA decreases the strength and co...
Saved in:
Published in | Materials in engineering Vol. 35; pp. 93 - 98 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0261-3069 |
DOI | 10.1016/j.matdes.2011.09.033 |
Cover
Loading…
Abstract | ► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without sacrificing the strength. ► DRRA improves exfoliation corrosion resistance with retention of strength. ► The HLA decreases the strength and corrosion resistance.
The influence of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy has been investigated by tensile testing, exfoliation corrosion testing, polarization curve and electrochemical impedance spectroscopy (EIS) combined with transmission electron microscope (TEM). The results show that retrogression and reaging (RRA) improved exfoliation corrosion resistance without sacrificing the strength compared to T6 temper. Dual-retrogression and reaging (DRRA) improved exfoliation corrosion resistance equivalent to T74 temper and maintained the strength similar to retrogression and reaging. The high-temperature and the subsequent low-temperature aging (HLA) decreased the strength and corrosion resistance compared to the T6 temper. The trends of corrosion resistance are further confirmed by polarization curve experiment and EIS test. The effect of heat treatment on strength and corrosion resistance is explained by the role of matrix precipitates and grain boundary precipitates, respectively. |
---|---|
AbstractList | ► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without sacrificing the strength. ► DRRA improves exfoliation corrosion resistance with retention of strength. ► The HLA decreases the strength and corrosion resistance.
The influence of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy has been investigated by tensile testing, exfoliation corrosion testing, polarization curve and electrochemical impedance spectroscopy (EIS) combined with transmission electron microscope (TEM). The results show that retrogression and reaging (RRA) improved exfoliation corrosion resistance without sacrificing the strength compared to T6 temper. Dual-retrogression and reaging (DRRA) improved exfoliation corrosion resistance equivalent to T74 temper and maintained the strength similar to retrogression and reaging. The high-temperature and the subsequent low-temperature aging (HLA) decreased the strength and corrosion resistance compared to the T6 temper. The trends of corrosion resistance are further confirmed by polarization curve experiment and EIS test. The effect of heat treatment on strength and corrosion resistance is explained by the role of matrix precipitates and grain boundary precipitates, respectively. |
Author | Peng, Guosheng Chen, Songyi Jia, Le Dong, Pengxuan Chen, Kanghua |
Author_xml | – sequence: 1 givenname: Songyi surname: Chen fullname: Chen, Songyi – sequence: 2 givenname: Kanghua surname: Chen fullname: Chen, Kanghua email: khchen@csu.edu.cn – sequence: 3 givenname: Guosheng surname: Peng fullname: Peng, Guosheng – sequence: 4 givenname: Le surname: Jia fullname: Jia, Le – sequence: 5 givenname: Pengxuan surname: Dong fullname: Dong, Pengxuan |
BookMark | eNqFkM1OwzAQhH0oEm3hDTj4AUiw89twQEJV-ZEqcYGz5WzWxFViI9ut6NvjUE4c4GLPrvWNxrMgM2MNEnLFWcoZr2526ShDhz7NGOcpa1KW5zMyZ1nFk5xVzTlZeL9jjNecZ3NiN0ohBGoV7VEGGlw8RzRxY6iPk3kP_TXFT2UHLYOOW7DOWT8paTqKQ8SdhR5HDXKgLfbyoK2bHGu2Kqkc9qM2-zGKwR4vyJmSg8fLn3tJ3h42r-unZPvy-Ly-3yYQQ4YESuCtWq04tGVRtV0ZBSuZKgsoVcZraBSUXY68atsiw_iYtV0NdV5JBnnO8iW5PflCzOodKgE6fOcPTupBcCamusROnOoSU12CNSLWFeHiF_zh9Cjd8T_s7oRh_NhBoxMeNBrATrtYkuis_tvgC5jijWo |
CitedBy_id | crossref_primary_10_1016_j_matchar_2019_05_018 crossref_primary_10_1002_maco_201709920 crossref_primary_10_1007_s11771_023_5383_8 crossref_primary_10_1002_maco_201709925 crossref_primary_10_3390_met5041799 crossref_primary_10_1007_s40962_021_00667_8 crossref_primary_10_1016_j_surfcoat_2023_130173 crossref_primary_10_1016_j_matdes_2013_12_002 crossref_primary_10_1016_j_msea_2021_141606 crossref_primary_10_1016_j_corsci_2020_108701 crossref_primary_10_1016_j_matchar_2022_111819 crossref_primary_10_1016_j_matpr_2021_05_081 crossref_primary_10_1016_j_mtcomm_2022_103684 crossref_primary_10_1016_j_jmrt_2023_02_130 crossref_primary_10_1016_j_matchar_2020_110683 crossref_primary_10_1134_S0031918X22100362 crossref_primary_10_20964_2017_06_63 crossref_primary_10_1016_j_prostr_2019_05_039 crossref_primary_10_1016_j_jallcom_2020_153792 crossref_primary_10_1007_s11837_018_3170_z crossref_primary_10_1016_j_bioelechem_2019_04_020 crossref_primary_10_1016_j_jallcom_2023_172592 crossref_primary_10_1007_s11665_022_07592_9 crossref_primary_10_1016_j_jallcom_2015_10_082 crossref_primary_10_1016_j_matdes_2021_109662 crossref_primary_10_1016_j_jmrt_2023_03_100 crossref_primary_10_1016_j_msea_2022_143764 crossref_primary_10_1016_j_msea_2022_143800 crossref_primary_10_1590_1516_1439_312114 crossref_primary_10_1007_s12540_016_5504_0 crossref_primary_10_1134_S0031918X17110084 crossref_primary_10_1016_j_cja_2020_05_020 crossref_primary_10_1007_s11837_024_06794_x crossref_primary_10_1016_j_jmapro_2020_11_016 crossref_primary_10_3390_ma15020477 crossref_primary_10_1016_j_jallcom_2018_05_063 crossref_primary_10_1016_j_matpr_2021_05_074 crossref_primary_10_1111_ffe_13427 crossref_primary_10_1016_S1003_6326_14_63351_3 crossref_primary_10_1007_s11771_015_2769_2 crossref_primary_10_1016_j_jallcom_2024_177759 crossref_primary_10_1016_j_matdes_2016_03_150 crossref_primary_10_1016_j_jallcom_2019_03_324 crossref_primary_10_1016_j_jmrt_2023_10_009 crossref_primary_10_1002_maco_202011839 crossref_primary_10_1016_j_jallcom_2016_03_228 crossref_primary_10_1016_j_msea_2016_03_073 crossref_primary_10_1016_j_vacuum_2020_109667 crossref_primary_10_1016_j_jallcom_2017_11_070 crossref_primary_10_1016_j_corsci_2024_112474 crossref_primary_10_1016_j_jallcom_2019_152744 crossref_primary_10_1016_j_scriptamat_2021_114178 crossref_primary_10_1016_j_msea_2020_139394 crossref_primary_10_1016_j_msea_2020_139393 crossref_primary_10_3390_met13050995 crossref_primary_10_1016_j_conbuildmat_2020_122210 crossref_primary_10_1007_s12540_018_0057_z crossref_primary_10_1016_j_matchar_2020_110190 crossref_primary_10_1177_1464420718784629 crossref_primary_10_1007_s11665_024_10239_6 crossref_primary_10_1016_j_jallcom_2023_169596 crossref_primary_10_1016_j_jmrt_2020_04_080 crossref_primary_10_1002_maco_201810419 crossref_primary_10_1007_s11665_021_05608_4 crossref_primary_10_1016_j_matdes_2014_03_064 crossref_primary_10_1016_j_matdes_2014_03_060 crossref_primary_10_1016_j_msea_2018_06_097 crossref_primary_10_1007_s11595_016_1498_1 crossref_primary_10_3390_ma12233807 crossref_primary_10_5006_2210 crossref_primary_10_1002_app_53702 crossref_primary_10_1007_s12666_021_02369_5 crossref_primary_10_1016_j_matchar_2017_11_029 crossref_primary_10_3390_met10020263 crossref_primary_10_3390_met10101318 crossref_primary_10_1016_j_jallcom_2022_163985 crossref_primary_10_1016_j_jmst_2022_12_007 crossref_primary_10_1016_j_jmst_2019_09_030 crossref_primary_10_1016_j_matchar_2024_114424 crossref_primary_10_1134_S0031918X20140112 crossref_primary_10_20964_2021_09_07 crossref_primary_10_1016_j_ceramint_2018_07_040 crossref_primary_10_1088_2053_1591_aa8ebc crossref_primary_10_1007_s42250_023_00606_6 crossref_primary_10_1016_S1003_6326_13_62552_2 crossref_primary_10_1016_j_jmrt_2020_03_106 crossref_primary_10_33961_jecst_2019_00507 crossref_primary_10_1177_09544054231178956 crossref_primary_10_1016_j_corsci_2024_111818 crossref_primary_10_1016_j_jre_2020_07_010 crossref_primary_10_1002_maco_201911154 crossref_primary_10_1016_j_jmst_2025_02_002 crossref_primary_10_1016_j_msea_2018_10_120 crossref_primary_10_1007_s12540_023_01403_z crossref_primary_10_1179_1432891715Z_0000000001527 crossref_primary_10_1007_s11665_023_08426_y crossref_primary_10_1016_j_corsci_2023_111361 crossref_primary_10_1016_j_jallcom_2022_164400 crossref_primary_10_1016_j_msea_2016_03_027 crossref_primary_10_1016_j_msea_2021_142184 crossref_primary_10_1515_mt_2022_0311 crossref_primary_10_1007_s11665_020_04684_2 crossref_primary_10_1166_sam_2024_4680 crossref_primary_10_1002_maco_202012067 crossref_primary_10_1007_s12289_019_01478_3 crossref_primary_10_1016_j_jallcom_2020_154446 crossref_primary_10_1016_j_jallcom_2023_173368 crossref_primary_10_1007_s11665_015_1571_5 crossref_primary_10_1016_j_electacta_2021_139737 crossref_primary_10_1007_s11837_022_05416_8 crossref_primary_10_1002_maco_201307192 crossref_primary_10_3390_coatings14121481 crossref_primary_10_1016_j_matdes_2021_109618 crossref_primary_10_1016_j_mtcomm_2023_106994 crossref_primary_10_1179_1743278214Y_0000000162 crossref_primary_10_1520_MPC20200035 crossref_primary_10_1016_j_jallcom_2020_156223 crossref_primary_10_1016_j_jallcom_2024_176512 crossref_primary_10_1016_j_jmrt_2022_07_152 crossref_primary_10_20964_2019_12_32 crossref_primary_10_1007_s40195_024_01708_x crossref_primary_10_4028_www_scientific_net_AMR_925_258 crossref_primary_10_3390_coatings12020249 crossref_primary_10_3390_met12122173 crossref_primary_10_1016_S1875_5372_18_30080_8 crossref_primary_10_1016_j_msea_2024_146838 crossref_primary_10_1016_j_pnsc_2020_01_007 crossref_primary_10_1007_s12666_017_1052_7 crossref_primary_10_1016_j_jallcom_2017_03_091 crossref_primary_10_1016_j_matchemphys_2015_10_051 crossref_primary_10_1016_j_corsci_2018_08_033 crossref_primary_10_1016_j_jallcom_2020_153919 crossref_primary_10_1016_j_jmrt_2025_01_112 crossref_primary_10_1016_j_matchar_2023_113491 crossref_primary_10_1088_2053_1591_ab3c8e crossref_primary_10_1088_2053_1591_abc191 crossref_primary_10_3390_met11091483 crossref_primary_10_5006_2183 crossref_primary_10_1016_j_corsci_2022_110821 crossref_primary_10_1016_j_jmrt_2023_09_274 crossref_primary_10_3390_met11050842 crossref_primary_10_1016_j_corsci_2021_109262 crossref_primary_10_1016_j_jallcom_2025_179478 crossref_primary_10_1016_j_matdes_2021_110297 crossref_primary_10_1016_j_apsusc_2022_153108 crossref_primary_10_1007_s11665_014_1258_3 crossref_primary_10_1016_j_jmrt_2024_02_193 crossref_primary_10_1016_j_jmst_2018_05_006 crossref_primary_10_3390_ma13030650 crossref_primary_10_3390_ma15155344 crossref_primary_10_1016_j_matdes_2013_12_024 crossref_primary_10_1007_s40195_014_0104_9 crossref_primary_10_1016_j_matdes_2018_107558 crossref_primary_10_1002_maco_201307095 crossref_primary_10_1016_j_msea_2018_05_092 crossref_primary_10_4028_www_scientific_net_AMR_795_211 crossref_primary_10_1016_j_jallcom_2018_11_286 crossref_primary_10_20964_2021_11_05 crossref_primary_10_1016_j_matchar_2018_07_008 crossref_primary_10_1007_s11665_022_07422_y crossref_primary_10_1007_s11837_024_06671_7 crossref_primary_10_20964_2020_08_95 crossref_primary_10_1007_s11665_024_10166_6 crossref_primary_10_1016_j_jmatprotec_2018_02_039 crossref_primary_10_1016_j_jallcom_2019_152264 crossref_primary_10_1016_j_matchemphys_2025_130668 crossref_primary_10_1007_s11771_022_4953_5 crossref_primary_10_20964_2021_01_44 crossref_primary_10_1016_j_matdes_2015_06_183 crossref_primary_10_2139_ssrn_4154886 crossref_primary_10_1016_j_corsci_2022_110164 crossref_primary_10_1016_j_jmrt_2020_03_025 crossref_primary_10_1016_j_matchemphys_2024_129946 crossref_primary_10_1016_j_jallcom_2019_05_054 crossref_primary_10_1007_s11595_017_1576_z crossref_primary_10_1016_j_msea_2017_01_086 crossref_primary_10_1080_00084433_2024_2366688 crossref_primary_10_1016_j_matdes_2013_10_018 crossref_primary_10_1016_j_matchar_2020_110133 crossref_primary_10_1007_s10853_024_09859_z crossref_primary_10_1016_j_msea_2013_12_012 crossref_primary_10_1007_s40195_015_0275_z crossref_primary_10_3390_ma11050720 crossref_primary_10_1007_s11771_016_3240_8 |
Cites_doi | 10.1016/0025-5416(88)90512-5 10.1007/s11661-008-9703-2 10.1016/j.corsci.2006.06.033 10.1016/j.actamat.2009.09.003 10.1016/j.msea.2008.04.023 10.1007/BF02648553 10.1016/j.jmatprotec.2007.01.008 10.1007/BF02650294 10.1016/0010-938X(88)90123-0 10.1016/j.msea.2011.01.068 10.1149/1.1386626 10.1007/BF02643806 10.1016/j.msea.2011.01.088 10.1016/S0921-5093(99)00231-2 10.1002/maco.200905413 10.1016/S0924-0136(99)00219-8 10.1016/S0010-938X(00)00006-8 10.1007/s11661-008-9705-0 10.1016/j.msea.2004.02.052 10.1016/S1003-6326(06)60396-8 10.1016/j.corsci.2005.11.009 10.1007/BF02645554 10.1016/j.matdes.2010.11.036 10.1149/1.1695385 10.1007/BF02642428 10.1007/s11661-007-9303-6 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd |
Copyright_xml | – notice: 2011 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matdes.2011.09.033 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 98 |
ExternalDocumentID | 10_1016_j_matdes_2011_09_033 S0261306911006583 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH |
ID | FETCH-LOGICAL-c306t-c5c1bf881cb546bd51cb050f54c5f217c9fc5d3e16bb42ecb02bd7c736a0c3303 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Tue Jul 01 04:23:04 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Fri Feb 23 02:21:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | E. Corrosion A. Non-ferrous metals and alloy E. Mechanical |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c5c1bf881cb546bd51cb050f54c5f217c9fc5d3e16bb42ecb02bd7c736a0c3303 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matdes_2011_09_033 crossref_primary_10_1016_j_matdes_2011_09_033 elsevier_sciencedirect_doi_10_1016_j_matdes_2011_09_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 2012-3-00 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lin, Liao, Jehng, Chang, Lee (b0055) 2006; 48 Viana, Pinto, Santos, Lopes (b0090) 1999; 92 Karabin, Barlat, Shuey (b0010) 2009; 40 Wloka, Hack, Virtanen (b0025) 2007; 49 Xiao, Pan, Li, Liu, He (b0050) 2010; 32 Chakrabarti, Liu, Sawtell, Venema (b0020) 2004; 28 Talianker, Cina (b0065) 1989; 20 Wang, Ni, Ma (b0040) 2008; 494 Stiller, Warren, Hansen, Angenete, Gj nnes (b0125) 1999; 270 Sarkar, Marek, Starke (b0030) 1981; 12 Maitra, English (b0080) 1982; 13 Cina BM. Reducing the susceptibility of alloys particularly aluminium alloys to stress corrosion cracking. US Patents; 1974. Han, Zhang, Liu, Ke, Xin (b0100) 2011; 528 Marlaud, Deschamps, Bley, Lefebvre, Baroux (b0130) 2010; 58 Peng, Chen, Chen, Fang (b0045) 2011; 528 Kannan, Raja (b0135) 2007; 38 Hardwick, Thompson, Bernstein (b0075) 1988; 28 Conde, De Damborenea (b0115) 2000; 42 Danh, Rajan, Wallace (b0095) 1983; 14 ASTM G34-01(2007). Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys (EXCO test); 2007. Oliveira, de Barros, Cardoso, Travessa (b0060) 2004; 379 Meng, Frankel (b0140) 2004; 151 Ramgopal, Schmutz, Frankel (b0145) 2001; 148 Karabin, Barlat, Schultz (b0015) 2007; 189 Li, Chen, Zhao, Ren, Zheng (b0120) 2006; 16 Peng, Chen, Fang, Chao, Chen (b0110) 2010; 61 Shuey, Barlat, Karabin, Chakrabarti (b0005) 2009; 40 Park (b0070) 1988; 103 Maitra, English (b0085) 1981; 12 Wloka (10.1016/j.matdes.2011.09.033_b0025) 2007; 49 Talianker (10.1016/j.matdes.2011.09.033_b0065) 1989; 20 Karabin (10.1016/j.matdes.2011.09.033_b0015) 2007; 189 Stiller (10.1016/j.matdes.2011.09.033_b0125) 1999; 270 Sarkar (10.1016/j.matdes.2011.09.033_b0030) 1981; 12 Oliveira (10.1016/j.matdes.2011.09.033_b0060) 2004; 379 Li (10.1016/j.matdes.2011.09.033_b0120) 2006; 16 Maitra (10.1016/j.matdes.2011.09.033_b0080) 1982; 13 Han (10.1016/j.matdes.2011.09.033_b0100) 2011; 528 Peng (10.1016/j.matdes.2011.09.033_b0045) 2011; 528 Karabin (10.1016/j.matdes.2011.09.033_b0010) 2009; 40 Park (10.1016/j.matdes.2011.09.033_b0070) 1988; 103 Danh (10.1016/j.matdes.2011.09.033_b0095) 1983; 14 10.1016/j.matdes.2011.09.033_b0105 Kannan (10.1016/j.matdes.2011.09.033_b0135) 2007; 38 Maitra (10.1016/j.matdes.2011.09.033_b0085) 1981; 12 Chakrabarti (10.1016/j.matdes.2011.09.033_b0020) 2004; 28 Lin (10.1016/j.matdes.2011.09.033_b0055) 2006; 48 Meng (10.1016/j.matdes.2011.09.033_b0140) 2004; 151 Ramgopal (10.1016/j.matdes.2011.09.033_b0145) 2001; 148 Xiao (10.1016/j.matdes.2011.09.033_b0050) 2010; 32 Marlaud (10.1016/j.matdes.2011.09.033_b0130) 2010; 58 Conde (10.1016/j.matdes.2011.09.033_b0115) 2000; 42 Hardwick (10.1016/j.matdes.2011.09.033_b0075) 1988; 28 Shuey (10.1016/j.matdes.2011.09.033_b0005) 2009; 40 10.1016/j.matdes.2011.09.033_b0035 Wang (10.1016/j.matdes.2011.09.033_b0040) 2008; 494 Viana (10.1016/j.matdes.2011.09.033_b0090) 1999; 92 Peng (10.1016/j.matdes.2011.09.033_b0110) 2010; 61 |
References_xml | – volume: 49 start-page: 1437 year: 2007 end-page: 1449 ident: b0025 article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys publication-title: Corros Sci – volume: 58 start-page: 248 year: 2010 end-page: 260 ident: b0130 article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys publication-title: Acta Mater – volume: 42 start-page: 1363 year: 2000 end-page: 1377 ident: b0115 article-title: Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy publication-title: Corros Sci – volume: 270 start-page: 55 year: 1999 end-page: 63 ident: b0125 article-title: Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 publication-title: Mater Sci Eng A – volume: 38 start-page: 2843 year: 2007 end-page: 2852 ident: b0135 article-title: Influence of heat treatment and scandium addition on the electrochemical polarization behavior of Al–Zn–Mg–Cu–Zr alloy publication-title: Metall Trans A – volume: 12 start-page: 1939 year: 1981 end-page: 1943 ident: b0030 article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–X Cu alloys publication-title: Metall Trans A – volume: 12 start-page: 535 year: 1981 end-page: 541 ident: b0085 article-title: Mechanism of localized corrosion of 7075 alloy plate publication-title: Metall Trans A – volume: 61 start-page: 783 year: 2010 end-page: 789 ident: b0110 article-title: EIS study on pitting corrosion of 7150 aluminum alloy in sodium chloride and hydrochloric acid solution publication-title: Mater Corros – volume: 40 start-page: 365 year: 2009 end-page: 376 ident: b0005 article-title: Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy publication-title: Metall Trans A – volume: 189 start-page: 45 year: 2007 end-page: 57 ident: b0015 article-title: Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve publication-title: J Mater Process Technol – volume: 48 start-page: 3139 year: 2006 end-page: 3156 ident: b0055 article-title: Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution publication-title: Corros Sci – volume: 16 start-page: 1171 year: 2006 end-page: 1177 ident: b0120 article-title: Corrosion behavior of 2195 and 1420 Al–Li alloys in neutral 3.5% NaCl solution under tensile stress publication-title: Trans Nonferr Metals Soc China – volume: 28 start-page: 969 year: 2004 end-page: 974 ident: b0020 article-title: New generation high strength high damage tolerance 7085 thick alloy product with low quench sensitivity publication-title: Mater Forum – volume: 528 start-page: 4014 year: 2011 end-page: 4018 ident: b0045 article-title: Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy publication-title: Mater Sci Eng A – reference: ASTM G34-01(2007). Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys (EXCO test); 2007. – volume: 32 start-page: 2149 year: 2010 end-page: 2156 ident: b0050 article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy publication-title: J Mater Des – volume: 20 start-page: 2087 year: 1989 end-page: 2092 ident: b0065 article-title: Retrogression and reaging and the role of dislocations in the stress corrosion of 7000-type aluminum alloys publication-title: Metall Trans A – volume: 92 start-page: 54 year: 1999 end-page: 59 ident: b0090 article-title: Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization publication-title: J Mater Process Technol – volume: 151 start-page: B271 year: 2004 end-page: B283 ident: b0140 article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys publication-title: J Electrochem Soc – volume: 28 start-page: 1127 year: 1988 end-page: 1137 ident: b0075 article-title: The effect of copper content and heat treatment on the hydrogen embrittlement of 7050-type alloys publication-title: Corros Sci – volume: 14 start-page: 1843 year: 1983 end-page: 1850 ident: b0095 article-title: A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum publication-title: Metall Trans A – volume: 528 start-page: 3714 year: 2011 end-page: 3721 ident: b0100 article-title: Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 publication-title: Mater Sci Eng A – volume: 40 start-page: 354 year: 2009 end-page: 364 ident: b0010 article-title: Finite element modeling of plane strain toughness for 7085 aluminum alloy publication-title: Metall Trans A – reference: Cina BM. Reducing the susceptibility of alloys particularly aluminium alloys to stress corrosion cracking. US Patents; 1974. – volume: 494 start-page: 360 year: 2008 end-page: 366 ident: b0040 article-title: Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy publication-title: Mater Sci Eng A – volume: 103 start-page: 223 year: 1988 end-page: 231 ident: b0070 article-title: Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6 publication-title: Mater Sci Eng A – volume: 379 start-page: 321 year: 2004 end-page: 326 ident: b0060 article-title: The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys publication-title: Mater Sci Eng A – volume: 148 start-page: B348 year: 2001 end-page: B356 ident: b0145 article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al) publication-title: J Electrochem Soc – volume: 13 start-page: 161 year: 1982 end-page: 166 ident: b0080 article-title: Environmental factors affecting localized corrosion of 7075-T7351 aluminum alloy plate publication-title: Metall Trans A – volume: 103 start-page: 223 year: 1988 ident: 10.1016/j.matdes.2011.09.033_b0070 article-title: Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6 publication-title: Mater Sci Eng A doi: 10.1016/0025-5416(88)90512-5 – volume: 40 start-page: 365 year: 2009 ident: 10.1016/j.matdes.2011.09.033_b0005 article-title: Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy publication-title: Metall Trans A doi: 10.1007/s11661-008-9703-2 – volume: 49 start-page: 1437 year: 2007 ident: 10.1016/j.matdes.2011.09.033_b0025 article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys publication-title: Corros Sci doi: 10.1016/j.corsci.2006.06.033 – ident: 10.1016/j.matdes.2011.09.033_b0035 – volume: 58 start-page: 248 year: 2010 ident: 10.1016/j.matdes.2011.09.033_b0130 article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2009.09.003 – volume: 494 start-page: 360 year: 2008 ident: 10.1016/j.matdes.2011.09.033_b0040 article-title: Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.04.023 – volume: 12 start-page: 535 year: 1981 ident: 10.1016/j.matdes.2011.09.033_b0085 article-title: Mechanism of localized corrosion of 7075 alloy plate publication-title: Metall Trans A doi: 10.1007/BF02648553 – volume: 189 start-page: 45 year: 2007 ident: 10.1016/j.matdes.2011.09.033_b0015 article-title: Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.01.008 – volume: 20 start-page: 2087 year: 1989 ident: 10.1016/j.matdes.2011.09.033_b0065 article-title: Retrogression and reaging and the role of dislocations in the stress corrosion of 7000-type aluminum alloys publication-title: Metall Trans A doi: 10.1007/BF02650294 – volume: 28 start-page: 1127 year: 1988 ident: 10.1016/j.matdes.2011.09.033_b0075 article-title: The effect of copper content and heat treatment on the hydrogen embrittlement of 7050-type alloys publication-title: Corros Sci doi: 10.1016/0010-938X(88)90123-0 – volume: 528 start-page: 3714 year: 2011 ident: 10.1016/j.matdes.2011.09.033_b0100 article-title: Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.01.068 – volume: 148 start-page: B348 year: 2001 ident: 10.1016/j.matdes.2011.09.033_b0145 article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al)2 publication-title: J Electrochem Soc doi: 10.1149/1.1386626 – volume: 12 start-page: 1939 year: 1981 ident: 10.1016/j.matdes.2011.09.033_b0030 article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–X Cu alloys publication-title: Metall Trans A doi: 10.1007/BF02643806 – volume: 528 start-page: 4014 year: 2011 ident: 10.1016/j.matdes.2011.09.033_b0045 article-title: Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.01.088 – volume: 270 start-page: 55 year: 1999 ident: 10.1016/j.matdes.2011.09.033_b0125 article-title: Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100°C and 150°C publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(99)00231-2 – volume: 61 start-page: 783 year: 2010 ident: 10.1016/j.matdes.2011.09.033_b0110 article-title: EIS study on pitting corrosion of 7150 aluminum alloy in sodium chloride and hydrochloric acid solution publication-title: Mater Corros doi: 10.1002/maco.200905413 – volume: 28 start-page: 969 year: 2004 ident: 10.1016/j.matdes.2011.09.033_b0020 article-title: New generation high strength high damage tolerance 7085 thick alloy product with low quench sensitivity publication-title: Mater Forum – ident: 10.1016/j.matdes.2011.09.033_b0105 – volume: 92 start-page: 54 year: 1999 ident: 10.1016/j.matdes.2011.09.033_b0090 article-title: Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(99)00219-8 – volume: 42 start-page: 1363 year: 2000 ident: 10.1016/j.matdes.2011.09.033_b0115 article-title: Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy publication-title: Corros Sci doi: 10.1016/S0010-938X(00)00006-8 – volume: 40 start-page: 354 year: 2009 ident: 10.1016/j.matdes.2011.09.033_b0010 article-title: Finite element modeling of plane strain toughness for 7085 aluminum alloy publication-title: Metall Trans A doi: 10.1007/s11661-008-9705-0 – volume: 379 start-page: 321 year: 2004 ident: 10.1016/j.matdes.2011.09.033_b0060 article-title: The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.02.052 – volume: 16 start-page: 1171 year: 2006 ident: 10.1016/j.matdes.2011.09.033_b0120 article-title: Corrosion behavior of 2195 and 1420 Al–Li alloys in neutral 3.5% NaCl solution under tensile stress publication-title: Trans Nonferr Metals Soc China doi: 10.1016/S1003-6326(06)60396-8 – volume: 48 start-page: 3139 year: 2006 ident: 10.1016/j.matdes.2011.09.033_b0055 article-title: Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution publication-title: Corros Sci doi: 10.1016/j.corsci.2005.11.009 – volume: 14 start-page: 1843 year: 1983 ident: 10.1016/j.matdes.2011.09.033_b0095 article-title: A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum publication-title: Metall Trans A doi: 10.1007/BF02645554 – volume: 32 start-page: 2149 year: 2010 ident: 10.1016/j.matdes.2011.09.033_b0050 article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy publication-title: J Mater Des doi: 10.1016/j.matdes.2010.11.036 – volume: 151 start-page: B271 year: 2004 ident: 10.1016/j.matdes.2011.09.033_b0140 article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys publication-title: J Electrochem Soc doi: 10.1149/1.1695385 – volume: 13 start-page: 161 year: 1982 ident: 10.1016/j.matdes.2011.09.033_b0080 article-title: Environmental factors affecting localized corrosion of 7075-T7351 aluminum alloy plate publication-title: Metall Trans A doi: 10.1007/BF02642428 – volume: 38 start-page: 2843 year: 2007 ident: 10.1016/j.matdes.2011.09.033_b0135 article-title: Influence of heat treatment and scandium addition on the electrochemical polarization behavior of Al–Zn–Mg–Cu–Zr alloy publication-title: Metall Trans A doi: 10.1007/s11661-007-9303-6 |
SSID | ssj0017112 |
Score | 2.4477854 |
Snippet | ► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | A. Non-ferrous metals and alloy E. Corrosion E. Mechanical |
Title | Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy |
URI | https://dx.doi.org/10.1016/j.matdes.2011.09.033 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6Yg8eDU2y2WT3WIqlKvaihd6W7EsrmhRNQf-9s82mVBAFb5vHZJPZZR6ZmW8QumCEGc6UDEyiaZBIwwPJpQpoksmMG5Zx7QqF78bpaJLcTOm0hQZNLYxLq_Syv5bpS2ntz_Q8N3vz2ax377wHMHi5Az0DPUo2UCcmPGVt1Olf347Gq2BCFi2Dnv5XS8qbCrplmhfYhdq8eyxPB3hKftZQa1pnuIO2vbmI-_Ub7aKWKfbQ1hqI4D4qawBiXFrsBCtepY7jssCuFKR4rJ4usfmw5Uu9Dhg8TpjajfJCY98JR3noANxU7rsnZmAr4RwE2KxYvGIXpP88QJPh1cNgFPg2CoGCr60CRVUkLWORkjRJpaYwCGloaaKoBY9EcauoJiZKpUxiAxdjqTOVkTQPFQEVd4jaRVmYI4S5K-SlhkgFVohkNtfMhlKrlOkwzlPeRaRhnVAeY9y1ungRTTLZs6gZLhzDRcgFMLyLghXVvMbY-OP-rFkV8W2vCFADv1Ie_5vyBG3CUVxnn52idvW2MGdgjlTy3G-3LxOr4M8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO8yYEj1dq1aZPjNDEV2HYBJG5R8ygMjXaCIsG_x1nTCSQEEreoqftwIj9i-zPAGQuZ4UxJz0SaepE03JNcKo9GiUy4YQnXtlB4NI7Tu-jqnt4vQb-phbFplU721zJ9Lq3dlY7jZmc2mXRurPeABi-3oGeoR8NlaFt0qqgF7d7ldTpeBBOSYB70dEctMW8q6OZpXmgXavPqsDwt4Gn4s4b6onUGG7DuzEXSq79oE5ZMsQVrX0AEt6GsAYhJmRMrWMkidZyUBbGlIMVD9XhOzHteTut1IOhx4qvtKCs0cZ1wlIMOIE3lvn1igrYSyVCATYq3Z2KD9B87cDe4uO2nnmuj4Cn828pTVAUyZyxQkkax1BQHPvVzGimao0eieK6oDk0QSxl1DU52pU5UEsaZr0JUcbvQKsrC7AHhtpCXmlAqtEIkyzPNcl9qFTPtd7OY70PYsE4ohzFuW11MRZNM9iRqhgvLcOFzgQzfB29BNasxNv64P2lWRXzbKwLVwK-UB_-mPIWV9HY0FMPL8fUhrOJMt85EO4JW9fJmjtE0qeSJ23qftBjjtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+heat+treatment+on+strength%2C+exfoliation+corrosion+and+electrochemical+behavior+of+7085+aluminum+alloy&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+Songyi&rft.au=Chen%2C+Kanghua&rft.au=Peng%2C+Guosheng&rft.au=Jia%2C+Le&rft.date=2012-03-01&rft.pub=Elsevier+Ltd&rft.issn=0261-3069&rft.volume=35&rft.spage=93&rft.epage=98&rft_id=info:doi/10.1016%2Fj.matdes.2011.09.033&rft.externalDocID=S0261306911006583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |