Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy

► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without sacrificing the strength. ► DRRA improves exfoliation corrosion resistance with retention of strength. ► The HLA decreases the strength and co...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 35; pp. 93 - 98
Main Authors Chen, Songyi, Chen, Kanghua, Peng, Guosheng, Jia, Le, Dong, Pengxuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2012
Subjects
Online AccessGet full text
ISSN0261-3069
DOI10.1016/j.matdes.2011.09.033

Cover

Loading…
Abstract ► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without sacrificing the strength. ► DRRA improves exfoliation corrosion resistance with retention of strength. ► The HLA decreases the strength and corrosion resistance. The influence of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy has been investigated by tensile testing, exfoliation corrosion testing, polarization curve and electrochemical impedance spectroscopy (EIS) combined with transmission electron microscope (TEM). The results show that retrogression and reaging (RRA) improved exfoliation corrosion resistance without sacrificing the strength compared to T6 temper. Dual-retrogression and reaging (DRRA) improved exfoliation corrosion resistance equivalent to T74 temper and maintained the strength similar to retrogression and reaging. The high-temperature and the subsequent low-temperature aging (HLA) decreased the strength and corrosion resistance compared to the T6 temper. The trends of corrosion resistance are further confirmed by polarization curve experiment and EIS test. The effect of heat treatment on strength and corrosion resistance is explained by the role of matrix precipitates and grain boundary precipitates, respectively.
AbstractList ► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without sacrificing the strength. ► DRRA improves exfoliation corrosion resistance with retention of strength. ► The HLA decreases the strength and corrosion resistance. The influence of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy has been investigated by tensile testing, exfoliation corrosion testing, polarization curve and electrochemical impedance spectroscopy (EIS) combined with transmission electron microscope (TEM). The results show that retrogression and reaging (RRA) improved exfoliation corrosion resistance without sacrificing the strength compared to T6 temper. Dual-retrogression and reaging (DRRA) improved exfoliation corrosion resistance equivalent to T74 temper and maintained the strength similar to retrogression and reaging. The high-temperature and the subsequent low-temperature aging (HLA) decreased the strength and corrosion resistance compared to the T6 temper. The trends of corrosion resistance are further confirmed by polarization curve experiment and EIS test. The effect of heat treatment on strength and corrosion resistance is explained by the role of matrix precipitates and grain boundary precipitates, respectively.
Author Peng, Guosheng
Chen, Songyi
Jia, Le
Dong, Pengxuan
Chen, Kanghua
Author_xml – sequence: 1
  givenname: Songyi
  surname: Chen
  fullname: Chen, Songyi
– sequence: 2
  givenname: Kanghua
  surname: Chen
  fullname: Chen, Kanghua
  email: khchen@csu.edu.cn
– sequence: 3
  givenname: Guosheng
  surname: Peng
  fullname: Peng, Guosheng
– sequence: 4
  givenname: Le
  surname: Jia
  fullname: Jia, Le
– sequence: 5
  givenname: Pengxuan
  surname: Dong
  fullname: Dong, Pengxuan
BookMark eNqFkM1OwzAQhH0oEm3hDTj4AUiw89twQEJV-ZEqcYGz5WzWxFViI9ut6NvjUE4c4GLPrvWNxrMgM2MNEnLFWcoZr2526ShDhz7NGOcpa1KW5zMyZ1nFk5xVzTlZeL9jjNecZ3NiN0ohBGoV7VEGGlw8RzRxY6iPk3kP_TXFT2UHLYOOW7DOWT8paTqKQ8SdhR5HDXKgLfbyoK2bHGu2Kqkc9qM2-zGKwR4vyJmSg8fLn3tJ3h42r-unZPvy-Ly-3yYQQ4YESuCtWq04tGVRtV0ZBSuZKgsoVcZraBSUXY68atsiw_iYtV0NdV5JBnnO8iW5PflCzOodKgE6fOcPTupBcCamusROnOoSU12CNSLWFeHiF_zh9Cjd8T_s7oRh_NhBoxMeNBrATrtYkuis_tvgC5jijWo
CitedBy_id crossref_primary_10_1016_j_matchar_2019_05_018
crossref_primary_10_1002_maco_201709920
crossref_primary_10_1007_s11771_023_5383_8
crossref_primary_10_1002_maco_201709925
crossref_primary_10_3390_met5041799
crossref_primary_10_1007_s40962_021_00667_8
crossref_primary_10_1016_j_surfcoat_2023_130173
crossref_primary_10_1016_j_matdes_2013_12_002
crossref_primary_10_1016_j_msea_2021_141606
crossref_primary_10_1016_j_corsci_2020_108701
crossref_primary_10_1016_j_matchar_2022_111819
crossref_primary_10_1016_j_matpr_2021_05_081
crossref_primary_10_1016_j_mtcomm_2022_103684
crossref_primary_10_1016_j_jmrt_2023_02_130
crossref_primary_10_1016_j_matchar_2020_110683
crossref_primary_10_1134_S0031918X22100362
crossref_primary_10_20964_2017_06_63
crossref_primary_10_1016_j_prostr_2019_05_039
crossref_primary_10_1016_j_jallcom_2020_153792
crossref_primary_10_1007_s11837_018_3170_z
crossref_primary_10_1016_j_bioelechem_2019_04_020
crossref_primary_10_1016_j_jallcom_2023_172592
crossref_primary_10_1007_s11665_022_07592_9
crossref_primary_10_1016_j_jallcom_2015_10_082
crossref_primary_10_1016_j_matdes_2021_109662
crossref_primary_10_1016_j_jmrt_2023_03_100
crossref_primary_10_1016_j_msea_2022_143764
crossref_primary_10_1016_j_msea_2022_143800
crossref_primary_10_1590_1516_1439_312114
crossref_primary_10_1007_s12540_016_5504_0
crossref_primary_10_1134_S0031918X17110084
crossref_primary_10_1016_j_cja_2020_05_020
crossref_primary_10_1007_s11837_024_06794_x
crossref_primary_10_1016_j_jmapro_2020_11_016
crossref_primary_10_3390_ma15020477
crossref_primary_10_1016_j_jallcom_2018_05_063
crossref_primary_10_1016_j_matpr_2021_05_074
crossref_primary_10_1111_ffe_13427
crossref_primary_10_1016_S1003_6326_14_63351_3
crossref_primary_10_1007_s11771_015_2769_2
crossref_primary_10_1016_j_jallcom_2024_177759
crossref_primary_10_1016_j_matdes_2016_03_150
crossref_primary_10_1016_j_jallcom_2019_03_324
crossref_primary_10_1016_j_jmrt_2023_10_009
crossref_primary_10_1002_maco_202011839
crossref_primary_10_1016_j_jallcom_2016_03_228
crossref_primary_10_1016_j_msea_2016_03_073
crossref_primary_10_1016_j_vacuum_2020_109667
crossref_primary_10_1016_j_jallcom_2017_11_070
crossref_primary_10_1016_j_corsci_2024_112474
crossref_primary_10_1016_j_jallcom_2019_152744
crossref_primary_10_1016_j_scriptamat_2021_114178
crossref_primary_10_1016_j_msea_2020_139394
crossref_primary_10_1016_j_msea_2020_139393
crossref_primary_10_3390_met13050995
crossref_primary_10_1016_j_conbuildmat_2020_122210
crossref_primary_10_1007_s12540_018_0057_z
crossref_primary_10_1016_j_matchar_2020_110190
crossref_primary_10_1177_1464420718784629
crossref_primary_10_1007_s11665_024_10239_6
crossref_primary_10_1016_j_jallcom_2023_169596
crossref_primary_10_1016_j_jmrt_2020_04_080
crossref_primary_10_1002_maco_201810419
crossref_primary_10_1007_s11665_021_05608_4
crossref_primary_10_1016_j_matdes_2014_03_064
crossref_primary_10_1016_j_matdes_2014_03_060
crossref_primary_10_1016_j_msea_2018_06_097
crossref_primary_10_1007_s11595_016_1498_1
crossref_primary_10_3390_ma12233807
crossref_primary_10_5006_2210
crossref_primary_10_1002_app_53702
crossref_primary_10_1007_s12666_021_02369_5
crossref_primary_10_1016_j_matchar_2017_11_029
crossref_primary_10_3390_met10020263
crossref_primary_10_3390_met10101318
crossref_primary_10_1016_j_jallcom_2022_163985
crossref_primary_10_1016_j_jmst_2022_12_007
crossref_primary_10_1016_j_jmst_2019_09_030
crossref_primary_10_1016_j_matchar_2024_114424
crossref_primary_10_1134_S0031918X20140112
crossref_primary_10_20964_2021_09_07
crossref_primary_10_1016_j_ceramint_2018_07_040
crossref_primary_10_1088_2053_1591_aa8ebc
crossref_primary_10_1007_s42250_023_00606_6
crossref_primary_10_1016_S1003_6326_13_62552_2
crossref_primary_10_1016_j_jmrt_2020_03_106
crossref_primary_10_33961_jecst_2019_00507
crossref_primary_10_1177_09544054231178956
crossref_primary_10_1016_j_corsci_2024_111818
crossref_primary_10_1016_j_jre_2020_07_010
crossref_primary_10_1002_maco_201911154
crossref_primary_10_1016_j_jmst_2025_02_002
crossref_primary_10_1016_j_msea_2018_10_120
crossref_primary_10_1007_s12540_023_01403_z
crossref_primary_10_1179_1432891715Z_0000000001527
crossref_primary_10_1007_s11665_023_08426_y
crossref_primary_10_1016_j_corsci_2023_111361
crossref_primary_10_1016_j_jallcom_2022_164400
crossref_primary_10_1016_j_msea_2016_03_027
crossref_primary_10_1016_j_msea_2021_142184
crossref_primary_10_1515_mt_2022_0311
crossref_primary_10_1007_s11665_020_04684_2
crossref_primary_10_1166_sam_2024_4680
crossref_primary_10_1002_maco_202012067
crossref_primary_10_1007_s12289_019_01478_3
crossref_primary_10_1016_j_jallcom_2020_154446
crossref_primary_10_1016_j_jallcom_2023_173368
crossref_primary_10_1007_s11665_015_1571_5
crossref_primary_10_1016_j_electacta_2021_139737
crossref_primary_10_1007_s11837_022_05416_8
crossref_primary_10_1002_maco_201307192
crossref_primary_10_3390_coatings14121481
crossref_primary_10_1016_j_matdes_2021_109618
crossref_primary_10_1016_j_mtcomm_2023_106994
crossref_primary_10_1179_1743278214Y_0000000162
crossref_primary_10_1520_MPC20200035
crossref_primary_10_1016_j_jallcom_2020_156223
crossref_primary_10_1016_j_jallcom_2024_176512
crossref_primary_10_1016_j_jmrt_2022_07_152
crossref_primary_10_20964_2019_12_32
crossref_primary_10_1007_s40195_024_01708_x
crossref_primary_10_4028_www_scientific_net_AMR_925_258
crossref_primary_10_3390_coatings12020249
crossref_primary_10_3390_met12122173
crossref_primary_10_1016_S1875_5372_18_30080_8
crossref_primary_10_1016_j_msea_2024_146838
crossref_primary_10_1016_j_pnsc_2020_01_007
crossref_primary_10_1007_s12666_017_1052_7
crossref_primary_10_1016_j_jallcom_2017_03_091
crossref_primary_10_1016_j_matchemphys_2015_10_051
crossref_primary_10_1016_j_corsci_2018_08_033
crossref_primary_10_1016_j_jallcom_2020_153919
crossref_primary_10_1016_j_jmrt_2025_01_112
crossref_primary_10_1016_j_matchar_2023_113491
crossref_primary_10_1088_2053_1591_ab3c8e
crossref_primary_10_1088_2053_1591_abc191
crossref_primary_10_3390_met11091483
crossref_primary_10_5006_2183
crossref_primary_10_1016_j_corsci_2022_110821
crossref_primary_10_1016_j_jmrt_2023_09_274
crossref_primary_10_3390_met11050842
crossref_primary_10_1016_j_corsci_2021_109262
crossref_primary_10_1016_j_jallcom_2025_179478
crossref_primary_10_1016_j_matdes_2021_110297
crossref_primary_10_1016_j_apsusc_2022_153108
crossref_primary_10_1007_s11665_014_1258_3
crossref_primary_10_1016_j_jmrt_2024_02_193
crossref_primary_10_1016_j_jmst_2018_05_006
crossref_primary_10_3390_ma13030650
crossref_primary_10_3390_ma15155344
crossref_primary_10_1016_j_matdes_2013_12_024
crossref_primary_10_1007_s40195_014_0104_9
crossref_primary_10_1016_j_matdes_2018_107558
crossref_primary_10_1002_maco_201307095
crossref_primary_10_1016_j_msea_2018_05_092
crossref_primary_10_4028_www_scientific_net_AMR_795_211
crossref_primary_10_1016_j_jallcom_2018_11_286
crossref_primary_10_20964_2021_11_05
crossref_primary_10_1016_j_matchar_2018_07_008
crossref_primary_10_1007_s11665_022_07422_y
crossref_primary_10_1007_s11837_024_06671_7
crossref_primary_10_20964_2020_08_95
crossref_primary_10_1007_s11665_024_10166_6
crossref_primary_10_1016_j_jmatprotec_2018_02_039
crossref_primary_10_1016_j_jallcom_2019_152264
crossref_primary_10_1016_j_matchemphys_2025_130668
crossref_primary_10_1007_s11771_022_4953_5
crossref_primary_10_20964_2021_01_44
crossref_primary_10_1016_j_matdes_2015_06_183
crossref_primary_10_2139_ssrn_4154886
crossref_primary_10_1016_j_corsci_2022_110164
crossref_primary_10_1016_j_jmrt_2020_03_025
crossref_primary_10_1016_j_matchemphys_2024_129946
crossref_primary_10_1016_j_jallcom_2019_05_054
crossref_primary_10_1007_s11595_017_1576_z
crossref_primary_10_1016_j_msea_2017_01_086
crossref_primary_10_1080_00084433_2024_2366688
crossref_primary_10_1016_j_matdes_2013_10_018
crossref_primary_10_1016_j_matchar_2020_110133
crossref_primary_10_1007_s10853_024_09859_z
crossref_primary_10_1016_j_msea_2013_12_012
crossref_primary_10_1007_s40195_015_0275_z
crossref_primary_10_3390_ma11050720
crossref_primary_10_1007_s11771_016_3240_8
Cites_doi 10.1016/0025-5416(88)90512-5
10.1007/s11661-008-9703-2
10.1016/j.corsci.2006.06.033
10.1016/j.actamat.2009.09.003
10.1016/j.msea.2008.04.023
10.1007/BF02648553
10.1016/j.jmatprotec.2007.01.008
10.1007/BF02650294
10.1016/0010-938X(88)90123-0
10.1016/j.msea.2011.01.068
10.1149/1.1386626
10.1007/BF02643806
10.1016/j.msea.2011.01.088
10.1016/S0921-5093(99)00231-2
10.1002/maco.200905413
10.1016/S0924-0136(99)00219-8
10.1016/S0010-938X(00)00006-8
10.1007/s11661-008-9705-0
10.1016/j.msea.2004.02.052
10.1016/S1003-6326(06)60396-8
10.1016/j.corsci.2005.11.009
10.1007/BF02645554
10.1016/j.matdes.2010.11.036
10.1149/1.1695385
10.1007/BF02642428
10.1007/s11661-007-9303-6
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.matdes.2011.09.033
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 98
ExternalDocumentID 10_1016_j_matdes_2011_09_033
S0261306911006583
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
ID FETCH-LOGICAL-c306t-c5c1bf881cb546bd51cb050f54c5f217c9fc5d3e16bb42ecb02bd7c736a0c3303
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Tue Jul 01 04:23:04 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Fri Feb 23 02:21:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords E. Corrosion
A. Non-ferrous metals and alloy
E. Mechanical
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c5c1bf881cb546bd51cb050f54c5f217c9fc5d3e16bb42ecb02bd7c736a0c3303
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_matdes_2011_09_033
crossref_primary_10_1016_j_matdes_2011_09_033
elsevier_sciencedirect_doi_10_1016_j_matdes_2011_09_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2012
2012-3-00
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Liao, Jehng, Chang, Lee (b0055) 2006; 48
Viana, Pinto, Santos, Lopes (b0090) 1999; 92
Karabin, Barlat, Shuey (b0010) 2009; 40
Wloka, Hack, Virtanen (b0025) 2007; 49
Xiao, Pan, Li, Liu, He (b0050) 2010; 32
Chakrabarti, Liu, Sawtell, Venema (b0020) 2004; 28
Talianker, Cina (b0065) 1989; 20
Wang, Ni, Ma (b0040) 2008; 494
Stiller, Warren, Hansen, Angenete, Gj nnes (b0125) 1999; 270
Sarkar, Marek, Starke (b0030) 1981; 12
Maitra, English (b0080) 1982; 13
Cina BM. Reducing the susceptibility of alloys particularly aluminium alloys to stress corrosion cracking. US Patents; 1974.
Han, Zhang, Liu, Ke, Xin (b0100) 2011; 528
Marlaud, Deschamps, Bley, Lefebvre, Baroux (b0130) 2010; 58
Peng, Chen, Chen, Fang (b0045) 2011; 528
Kannan, Raja (b0135) 2007; 38
Hardwick, Thompson, Bernstein (b0075) 1988; 28
Conde, De Damborenea (b0115) 2000; 42
Danh, Rajan, Wallace (b0095) 1983; 14
ASTM G34-01(2007). Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys (EXCO test); 2007.
Oliveira, de Barros, Cardoso, Travessa (b0060) 2004; 379
Meng, Frankel (b0140) 2004; 151
Ramgopal, Schmutz, Frankel (b0145) 2001; 148
Karabin, Barlat, Schultz (b0015) 2007; 189
Li, Chen, Zhao, Ren, Zheng (b0120) 2006; 16
Peng, Chen, Fang, Chao, Chen (b0110) 2010; 61
Shuey, Barlat, Karabin, Chakrabarti (b0005) 2009; 40
Park (b0070) 1988; 103
Maitra, English (b0085) 1981; 12
Wloka (10.1016/j.matdes.2011.09.033_b0025) 2007; 49
Talianker (10.1016/j.matdes.2011.09.033_b0065) 1989; 20
Karabin (10.1016/j.matdes.2011.09.033_b0015) 2007; 189
Stiller (10.1016/j.matdes.2011.09.033_b0125) 1999; 270
Sarkar (10.1016/j.matdes.2011.09.033_b0030) 1981; 12
Oliveira (10.1016/j.matdes.2011.09.033_b0060) 2004; 379
Li (10.1016/j.matdes.2011.09.033_b0120) 2006; 16
Maitra (10.1016/j.matdes.2011.09.033_b0080) 1982; 13
Han (10.1016/j.matdes.2011.09.033_b0100) 2011; 528
Peng (10.1016/j.matdes.2011.09.033_b0045) 2011; 528
Karabin (10.1016/j.matdes.2011.09.033_b0010) 2009; 40
Park (10.1016/j.matdes.2011.09.033_b0070) 1988; 103
Danh (10.1016/j.matdes.2011.09.033_b0095) 1983; 14
10.1016/j.matdes.2011.09.033_b0105
Kannan (10.1016/j.matdes.2011.09.033_b0135) 2007; 38
Maitra (10.1016/j.matdes.2011.09.033_b0085) 1981; 12
Chakrabarti (10.1016/j.matdes.2011.09.033_b0020) 2004; 28
Lin (10.1016/j.matdes.2011.09.033_b0055) 2006; 48
Meng (10.1016/j.matdes.2011.09.033_b0140) 2004; 151
Ramgopal (10.1016/j.matdes.2011.09.033_b0145) 2001; 148
Xiao (10.1016/j.matdes.2011.09.033_b0050) 2010; 32
Marlaud (10.1016/j.matdes.2011.09.033_b0130) 2010; 58
Conde (10.1016/j.matdes.2011.09.033_b0115) 2000; 42
Hardwick (10.1016/j.matdes.2011.09.033_b0075) 1988; 28
Shuey (10.1016/j.matdes.2011.09.033_b0005) 2009; 40
10.1016/j.matdes.2011.09.033_b0035
Wang (10.1016/j.matdes.2011.09.033_b0040) 2008; 494
Viana (10.1016/j.matdes.2011.09.033_b0090) 1999; 92
Peng (10.1016/j.matdes.2011.09.033_b0110) 2010; 61
References_xml – volume: 49
  start-page: 1437
  year: 2007
  end-page: 1449
  ident: b0025
  article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys
  publication-title: Corros Sci
– volume: 58
  start-page: 248
  year: 2010
  end-page: 260
  ident: b0130
  article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys
  publication-title: Acta Mater
– volume: 42
  start-page: 1363
  year: 2000
  end-page: 1377
  ident: b0115
  article-title: Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy
  publication-title: Corros Sci
– volume: 270
  start-page: 55
  year: 1999
  end-page: 63
  ident: b0125
  article-title: Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100
  publication-title: Mater Sci Eng A
– volume: 38
  start-page: 2843
  year: 2007
  end-page: 2852
  ident: b0135
  article-title: Influence of heat treatment and scandium addition on the electrochemical polarization behavior of Al–Zn–Mg–Cu–Zr alloy
  publication-title: Metall Trans A
– volume: 12
  start-page: 1939
  year: 1981
  end-page: 1943
  ident: b0030
  article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–X Cu alloys
  publication-title: Metall Trans A
– volume: 12
  start-page: 535
  year: 1981
  end-page: 541
  ident: b0085
  article-title: Mechanism of localized corrosion of 7075 alloy plate
  publication-title: Metall Trans A
– volume: 61
  start-page: 783
  year: 2010
  end-page: 789
  ident: b0110
  article-title: EIS study on pitting corrosion of 7150 aluminum alloy in sodium chloride and hydrochloric acid solution
  publication-title: Mater Corros
– volume: 40
  start-page: 365
  year: 2009
  end-page: 376
  ident: b0005
  article-title: Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy
  publication-title: Metall Trans A
– volume: 189
  start-page: 45
  year: 2007
  end-page: 57
  ident: b0015
  article-title: Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve
  publication-title: J Mater Process Technol
– volume: 48
  start-page: 3139
  year: 2006
  end-page: 3156
  ident: b0055
  article-title: Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution
  publication-title: Corros Sci
– volume: 16
  start-page: 1171
  year: 2006
  end-page: 1177
  ident: b0120
  article-title: Corrosion behavior of 2195 and 1420 Al–Li alloys in neutral 3.5% NaCl solution under tensile stress
  publication-title: Trans Nonferr Metals Soc China
– volume: 28
  start-page: 969
  year: 2004
  end-page: 974
  ident: b0020
  article-title: New generation high strength high damage tolerance 7085 thick alloy product with low quench sensitivity
  publication-title: Mater Forum
– volume: 528
  start-page: 4014
  year: 2011
  end-page: 4018
  ident: b0045
  article-title: Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy
  publication-title: Mater Sci Eng A
– reference: ASTM G34-01(2007). Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys (EXCO test); 2007.
– volume: 32
  start-page: 2149
  year: 2010
  end-page: 2156
  ident: b0050
  article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy
  publication-title: J Mater Des
– volume: 20
  start-page: 2087
  year: 1989
  end-page: 2092
  ident: b0065
  article-title: Retrogression and reaging and the role of dislocations in the stress corrosion of 7000-type aluminum alloys
  publication-title: Metall Trans A
– volume: 92
  start-page: 54
  year: 1999
  end-page: 59
  ident: b0090
  article-title: Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization
  publication-title: J Mater Process Technol
– volume: 151
  start-page: B271
  year: 2004
  end-page: B283
  ident: b0140
  article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys
  publication-title: J Electrochem Soc
– volume: 28
  start-page: 1127
  year: 1988
  end-page: 1137
  ident: b0075
  article-title: The effect of copper content and heat treatment on the hydrogen embrittlement of 7050-type alloys
  publication-title: Corros Sci
– volume: 14
  start-page: 1843
  year: 1983
  end-page: 1850
  ident: b0095
  article-title: A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum
  publication-title: Metall Trans A
– volume: 528
  start-page: 3714
  year: 2011
  end-page: 3721
  ident: b0100
  article-title: Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050
  publication-title: Mater Sci Eng A
– volume: 40
  start-page: 354
  year: 2009
  end-page: 364
  ident: b0010
  article-title: Finite element modeling of plane strain toughness for 7085 aluminum alloy
  publication-title: Metall Trans A
– reference: Cina BM. Reducing the susceptibility of alloys particularly aluminium alloys to stress corrosion cracking. US Patents; 1974.
– volume: 494
  start-page: 360
  year: 2008
  end-page: 366
  ident: b0040
  article-title: Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy
  publication-title: Mater Sci Eng A
– volume: 103
  start-page: 223
  year: 1988
  end-page: 231
  ident: b0070
  article-title: Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6
  publication-title: Mater Sci Eng A
– volume: 379
  start-page: 321
  year: 2004
  end-page: 326
  ident: b0060
  article-title: The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys
  publication-title: Mater Sci Eng A
– volume: 148
  start-page: B348
  year: 2001
  end-page: B356
  ident: b0145
  article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al)
  publication-title: J Electrochem Soc
– volume: 13
  start-page: 161
  year: 1982
  end-page: 166
  ident: b0080
  article-title: Environmental factors affecting localized corrosion of 7075-T7351 aluminum alloy plate
  publication-title: Metall Trans A
– volume: 103
  start-page: 223
  year: 1988
  ident: 10.1016/j.matdes.2011.09.033_b0070
  article-title: Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6
  publication-title: Mater Sci Eng A
  doi: 10.1016/0025-5416(88)90512-5
– volume: 40
  start-page: 365
  year: 2009
  ident: 10.1016/j.matdes.2011.09.033_b0005
  article-title: Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy
  publication-title: Metall Trans A
  doi: 10.1007/s11661-008-9703-2
– volume: 49
  start-page: 1437
  year: 2007
  ident: 10.1016/j.matdes.2011.09.033_b0025
  article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2006.06.033
– ident: 10.1016/j.matdes.2011.09.033_b0035
– volume: 58
  start-page: 248
  year: 2010
  ident: 10.1016/j.matdes.2011.09.033_b0130
  article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.09.003
– volume: 494
  start-page: 360
  year: 2008
  ident: 10.1016/j.matdes.2011.09.033_b0040
  article-title: Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.04.023
– volume: 12
  start-page: 535
  year: 1981
  ident: 10.1016/j.matdes.2011.09.033_b0085
  article-title: Mechanism of localized corrosion of 7075 alloy plate
  publication-title: Metall Trans A
  doi: 10.1007/BF02648553
– volume: 189
  start-page: 45
  year: 2007
  ident: 10.1016/j.matdes.2011.09.033_b0015
  article-title: Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.01.008
– volume: 20
  start-page: 2087
  year: 1989
  ident: 10.1016/j.matdes.2011.09.033_b0065
  article-title: Retrogression and reaging and the role of dislocations in the stress corrosion of 7000-type aluminum alloys
  publication-title: Metall Trans A
  doi: 10.1007/BF02650294
– volume: 28
  start-page: 1127
  year: 1988
  ident: 10.1016/j.matdes.2011.09.033_b0075
  article-title: The effect of copper content and heat treatment on the hydrogen embrittlement of 7050-type alloys
  publication-title: Corros Sci
  doi: 10.1016/0010-938X(88)90123-0
– volume: 528
  start-page: 3714
  year: 2011
  ident: 10.1016/j.matdes.2011.09.033_b0100
  article-title: Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2011.01.068
– volume: 148
  start-page: B348
  year: 2001
  ident: 10.1016/j.matdes.2011.09.033_b0145
  article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al)2
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1386626
– volume: 12
  start-page: 1939
  year: 1981
  ident: 10.1016/j.matdes.2011.09.033_b0030
  article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–X Cu alloys
  publication-title: Metall Trans A
  doi: 10.1007/BF02643806
– volume: 528
  start-page: 4014
  year: 2011
  ident: 10.1016/j.matdes.2011.09.033_b0045
  article-title: Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2011.01.088
– volume: 270
  start-page: 55
  year: 1999
  ident: 10.1016/j.matdes.2011.09.033_b0125
  article-title: Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100°C and 150°C
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(99)00231-2
– volume: 61
  start-page: 783
  year: 2010
  ident: 10.1016/j.matdes.2011.09.033_b0110
  article-title: EIS study on pitting corrosion of 7150 aluminum alloy in sodium chloride and hydrochloric acid solution
  publication-title: Mater Corros
  doi: 10.1002/maco.200905413
– volume: 28
  start-page: 969
  year: 2004
  ident: 10.1016/j.matdes.2011.09.033_b0020
  article-title: New generation high strength high damage tolerance 7085 thick alloy product with low quench sensitivity
  publication-title: Mater Forum
– ident: 10.1016/j.matdes.2011.09.033_b0105
– volume: 92
  start-page: 54
  year: 1999
  ident: 10.1016/j.matdes.2011.09.033_b0090
  article-title: Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(99)00219-8
– volume: 42
  start-page: 1363
  year: 2000
  ident: 10.1016/j.matdes.2011.09.033_b0115
  article-title: Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy
  publication-title: Corros Sci
  doi: 10.1016/S0010-938X(00)00006-8
– volume: 40
  start-page: 354
  year: 2009
  ident: 10.1016/j.matdes.2011.09.033_b0010
  article-title: Finite element modeling of plane strain toughness for 7085 aluminum alloy
  publication-title: Metall Trans A
  doi: 10.1007/s11661-008-9705-0
– volume: 379
  start-page: 321
  year: 2004
  ident: 10.1016/j.matdes.2011.09.033_b0060
  article-title: The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.02.052
– volume: 16
  start-page: 1171
  year: 2006
  ident: 10.1016/j.matdes.2011.09.033_b0120
  article-title: Corrosion behavior of 2195 and 1420 Al–Li alloys in neutral 3.5% NaCl solution under tensile stress
  publication-title: Trans Nonferr Metals Soc China
  doi: 10.1016/S1003-6326(06)60396-8
– volume: 48
  start-page: 3139
  year: 2006
  ident: 10.1016/j.matdes.2011.09.033_b0055
  article-title: Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2005.11.009
– volume: 14
  start-page: 1843
  year: 1983
  ident: 10.1016/j.matdes.2011.09.033_b0095
  article-title: A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum
  publication-title: Metall Trans A
  doi: 10.1007/BF02645554
– volume: 32
  start-page: 2149
  year: 2010
  ident: 10.1016/j.matdes.2011.09.033_b0050
  article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy
  publication-title: J Mater Des
  doi: 10.1016/j.matdes.2010.11.036
– volume: 151
  start-page: B271
  year: 2004
  ident: 10.1016/j.matdes.2011.09.033_b0140
  article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1695385
– volume: 13
  start-page: 161
  year: 1982
  ident: 10.1016/j.matdes.2011.09.033_b0080
  article-title: Environmental factors affecting localized corrosion of 7075-T7351 aluminum alloy plate
  publication-title: Metall Trans A
  doi: 10.1007/BF02642428
– volume: 38
  start-page: 2843
  year: 2007
  ident: 10.1016/j.matdes.2011.09.033_b0135
  article-title: Influence of heat treatment and scandium addition on the electrochemical polarization behavior of Al–Zn–Mg–Cu–Zr alloy
  publication-title: Metall Trans A
  doi: 10.1007/s11661-007-9303-6
SSID ssj0017112
Score 2.4477854
Snippet ► The effect of heat treatment on strength and exfoliation corrosion of the AA7085 has been studied. ► RRA increases exfoliation corrosion resistance without...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms A. Non-ferrous metals and alloy
E. Corrosion
E. Mechanical
Title Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy
URI https://dx.doi.org/10.1016/j.matdes.2011.09.033
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6Yg8eDU2y2WT3WIqlKvaihd6W7EsrmhRNQf-9s82mVBAFb5vHZJPZZR6ZmW8QumCEGc6UDEyiaZBIwwPJpQpoksmMG5Zx7QqF78bpaJLcTOm0hQZNLYxLq_Syv5bpS2ntz_Q8N3vz2ax377wHMHi5Az0DPUo2UCcmPGVt1Olf347Gq2BCFi2Dnv5XS8qbCrplmhfYhdq8eyxPB3hKftZQa1pnuIO2vbmI-_Ub7aKWKfbQ1hqI4D4qawBiXFrsBCtepY7jssCuFKR4rJ4usfmw5Uu9Dhg8TpjajfJCY98JR3noANxU7rsnZmAr4RwE2KxYvGIXpP88QJPh1cNgFPg2CoGCr60CRVUkLWORkjRJpaYwCGloaaKoBY9EcauoJiZKpUxiAxdjqTOVkTQPFQEVd4jaRVmYI4S5K-SlhkgFVohkNtfMhlKrlOkwzlPeRaRhnVAeY9y1ungRTTLZs6gZLhzDRcgFMLyLghXVvMbY-OP-rFkV8W2vCFADv1Ie_5vyBG3CUVxnn52idvW2MGdgjlTy3G-3LxOr4M8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO8yYEj1dq1aZPjNDEV2HYBJG5R8ygMjXaCIsG_x1nTCSQEEreoqftwIj9i-zPAGQuZ4UxJz0SaepE03JNcKo9GiUy4YQnXtlB4NI7Tu-jqnt4vQb-phbFplU721zJ9Lq3dlY7jZmc2mXRurPeABi-3oGeoR8NlaFt0qqgF7d7ldTpeBBOSYB70dEctMW8q6OZpXmgXavPqsDwt4Gn4s4b6onUGG7DuzEXSq79oE5ZMsQVrX0AEt6GsAYhJmRMrWMkidZyUBbGlIMVD9XhOzHteTut1IOhx4qvtKCs0cZ1wlIMOIE3lvn1igrYSyVCATYq3Z2KD9B87cDe4uO2nnmuj4Cn828pTVAUyZyxQkkax1BQHPvVzGimao0eieK6oDk0QSxl1DU52pU5UEsaZr0JUcbvQKsrC7AHhtpCXmlAqtEIkyzPNcl9qFTPtd7OY70PYsE4ohzFuW11MRZNM9iRqhgvLcOFzgQzfB29BNasxNv64P2lWRXzbKwLVwK-UB_-mPIWV9HY0FMPL8fUhrOJMt85EO4JW9fJmjtE0qeSJ23qftBjjtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+heat+treatment+on+strength%2C+exfoliation+corrosion+and+electrochemical+behavior+of+7085+aluminum+alloy&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+Songyi&rft.au=Chen%2C+Kanghua&rft.au=Peng%2C+Guosheng&rft.au=Jia%2C+Le&rft.date=2012-03-01&rft.pub=Elsevier+Ltd&rft.issn=0261-3069&rft.volume=35&rft.spage=93&rft.epage=98&rft_id=info:doi/10.1016%2Fj.matdes.2011.09.033&rft.externalDocID=S0261306911006583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon