Recent advances in small object detection based on deep learning: A review
Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To facilitate in-depth understanding of small object detection, we comprehensively review the existing small object detection methods based on deep learn...
Saved in:
Published in | Image and vision computing Vol. 97; p. 103910 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0262-8856 1872-8138 |
DOI | 10.1016/j.imavis.2020.103910 |
Cover
Loading…
Abstract | Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To facilitate in-depth understanding of small object detection, we comprehensively review the existing small object detection methods based on deep learning from five aspects, including multi-scale feature learning, data augmentation, training strategy, context-based detection and GAN-based detection. Then, we thoroughly analyze the performance of some typical small object detection algorithms on popular datasets, such as MS-COCO, PASCAL-VOC. Finally, the possible research directions in the future are pointed out from five perspectives: emerging small object detection datasets and benchmarks, multi-task joint learning and optimization, information transmission, weakly supervised small object detection methods and framework for small object detection task. |
---|---|
AbstractList | Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To facilitate in-depth understanding of small object detection, we comprehensively review the existing small object detection methods based on deep learning from five aspects, including multi-scale feature learning, data augmentation, training strategy, context-based detection and GAN-based detection. Then, we thoroughly analyze the performance of some typical small object detection algorithms on popular datasets, such as MS-COCO, PASCAL-VOC. Finally, the possible research directions in the future are pointed out from five perspectives: emerging small object detection datasets and benchmarks, multi-task joint learning and optimization, information transmission, weakly supervised small object detection methods and framework for small object detection task. |
ArticleNumber | 103910 |
Author | Wu, Yiquan Zhou, Fei Tong, Kang |
Author_xml | – sequence: 1 givenname: Kang surname: Tong fullname: Tong, Kang email: tkangcv@nuaa.edu.cn – sequence: 2 givenname: Yiquan surname: Wu fullname: Wu, Yiquan email: mltd2099@163.com – sequence: 3 givenname: Fei surname: Zhou fullname: Zhou, Fei email: F.zhouip@nuaa.edu.cn |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wNT8mJlMF0IpWpWCIN2H_NyRDNNMSYaKb2-GceVCV_dwuedwz7dAs9AHQOiWkhUltLxrV_6ozz6tGGHjiteUXKA5lRUrJOVyhuaElVlLUV6hRUotIaQiVT1Hr-9gIQxYu7MOFhL2Aaej7jrcmxbsgB0Mefg-YKMTOJyFAzjhDnQMPnys8QZHOHv4vEaXje4S3PzMJTo8PR62z8X-bfey3ewLy0k5FFZQaiwYQ23dMNEIEKWwlAkjiNTCyrrSmlWlc8ISW1FnGJOk5oyzmkrOl2g9xdrYpxShUdYPevxwiNp3ihI1QlGtmqCoEYqaoGTz_S_zKeaz-PWf7WGyQe6Vu0aVrIfMy_mY6SjX-78DvgG6on9u |
CitedBy_id | crossref_primary_10_1049_ell2_13042 crossref_primary_10_1080_10106049_2022_2146761 crossref_primary_10_1002_adts_202200853 crossref_primary_10_1016_j_geomorph_2024_109472 crossref_primary_10_1016_j_isprsjprs_2022_08_005 crossref_primary_10_3389_fpls_2022_900408 crossref_primary_10_1016_j_neucom_2024_127973 crossref_primary_10_3390_rs12152501 crossref_primary_10_1007_s00371_021_02304_1 crossref_primary_10_1080_22797254_2023_2174706 crossref_primary_10_1109_JSTARS_2021_3132005 crossref_primary_10_3390_s23167242 crossref_primary_10_1016_j_jag_2024_104349 crossref_primary_10_3348_kjr_2022_0765 crossref_primary_10_3390_rs14020255 crossref_primary_10_1109_ACCESS_2021_3075293 crossref_primary_10_3390_sym13122260 crossref_primary_10_1016_j_eswa_2021_114602 crossref_primary_10_3847_1538_4365_ad97b8 crossref_primary_10_1007_s11554_022_01252_w crossref_primary_10_1016_j_image_2021_116402 crossref_primary_10_3390_math11092093 crossref_primary_10_3390_rs14122837 crossref_primary_10_34133_2022_9892464 crossref_primary_10_1016_j_patrec_2021_11_027 crossref_primary_10_3389_fnbot_2022_1042780 crossref_primary_10_1109_TNNLS_2023_3239529 crossref_primary_10_1007_s11760_024_03661_9 crossref_primary_10_1016_j_measurement_2021_110242 crossref_primary_10_1088_1361_6501_ad633d crossref_primary_10_1109_TCE_2024_3371163 crossref_primary_10_1007_s10462_025_11186_x crossref_primary_10_1016_j_compeleceng_2022_108490 crossref_primary_10_1109_ACCESS_2021_3116034 crossref_primary_10_3390_electronics12071515 crossref_primary_10_1016_j_compag_2021_106048 crossref_primary_10_1016_j_postharvbio_2024_113281 crossref_primary_10_1186_s12880_023_00993_9 crossref_primary_10_1007_s11042_023_17818_0 crossref_primary_10_1109_JSTARS_2022_3169128 crossref_primary_10_1007_s10489_021_02893_3 crossref_primary_10_1007_s11042_023_15847_3 crossref_primary_10_1109_TGRS_2023_3349168 crossref_primary_10_3390_agriculture15050511 crossref_primary_10_1016_j_autcon_2024_105443 crossref_primary_10_3390_rs12193152 crossref_primary_10_1109_ACCESS_2021_3070991 crossref_primary_10_1016_j_eswa_2023_121811 crossref_primary_10_1145_3587466 crossref_primary_10_3390_agriculture13030713 crossref_primary_10_1016_j_ejrad_2023_110887 crossref_primary_10_1016_j_neucom_2023_126384 crossref_primary_10_1016_j_compag_2024_109715 crossref_primary_10_4274_jcrpe_galenos_2020_2020_0249 crossref_primary_10_1038_s41598_022_19697_1 crossref_primary_10_3390_rs13214196 crossref_primary_10_1049_ipr2_70027 crossref_primary_10_1007_s11042_020_09201_0 crossref_primary_10_1016_j_dsp_2022_103844 crossref_primary_10_3233_IDA_227154 crossref_primary_10_1109_TIM_2021_3117629 crossref_primary_10_3390_rs13163182 crossref_primary_10_1016_j_heliyon_2024_e32931 crossref_primary_10_1016_j_neucom_2025_129725 crossref_primary_10_1007_s11554_022_01212_4 crossref_primary_10_1016_j_eij_2024_100523 crossref_primary_10_1145_3593588 crossref_primary_10_1002_ps_7964 crossref_primary_10_1016_j_imavis_2022_104396 crossref_primary_10_3390_s22124575 crossref_primary_10_1007_s00521_022_07104_9 crossref_primary_10_1109_ACCESS_2024_3368848 crossref_primary_10_1109_TGRS_2022_3201530 crossref_primary_10_3390_sym16111516 crossref_primary_10_1080_17538947_2023_2261901 crossref_primary_10_3389_fpls_2022_991929 crossref_primary_10_3390_rs14071595 crossref_primary_10_1016_j_engappai_2023_106445 crossref_primary_10_1109_JSEN_2023_3330146 crossref_primary_10_26833_ijeg_1587264 crossref_primary_10_3390_s22155817 crossref_primary_10_2139_ssrn_4173734 crossref_primary_10_1016_j_jag_2022_102910 crossref_primary_10_1155_2022_1014501 crossref_primary_10_3390_rs15061637 crossref_primary_10_1016_j_ejmp_2023_102607 crossref_primary_10_1007_s11042_022_12094_w crossref_primary_10_1371_journal_pone_0260609 crossref_primary_10_3390_rs15122959 crossref_primary_10_1109_TGRS_2023_3326613 crossref_primary_10_1016_j_imavis_2020_104026 crossref_primary_10_1002_adts_202300397 crossref_primary_10_3390_info15050285 crossref_primary_10_1007_s10489_021_02967_2 crossref_primary_10_1016_j_compind_2024_104146 crossref_primary_10_1016_j_cropro_2023_106561 crossref_primary_10_1117_1_JEI_31_3_033030 crossref_primary_10_1007_s00500_023_08186_w crossref_primary_10_3389_fpls_2022_915543 crossref_primary_10_1080_14680629_2021_1925578 crossref_primary_10_3390_rs16234374 crossref_primary_10_3934_mbe_2023282 crossref_primary_10_3390_info15020108 crossref_primary_10_1007_s13218_023_00815_8 crossref_primary_10_1109_ACCESS_2024_3420217 crossref_primary_10_3233_JIFS_230200 crossref_primary_10_56714_bjrs_50_1_5 crossref_primary_10_3390_app132111760 crossref_primary_10_1007_s10707_022_00476_z crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_3390_rs15204991 crossref_primary_10_3390_drones7070434 crossref_primary_10_1088_1361_6501_ad8179 crossref_primary_10_3390_s22155596 crossref_primary_10_1109_ACCESS_2024_3393835 crossref_primary_10_1515_epoly_2022_0071 crossref_primary_10_3390_electronics10243079 crossref_primary_10_1007_s43069_022_00163_7 crossref_primary_10_1016_j_jag_2022_102695 crossref_primary_10_3390_app11073061 crossref_primary_10_3390_rs15143525 crossref_primary_10_1016_j_patrec_2023_03_009 crossref_primary_10_1108_IJIUS_08_2024_0248 crossref_primary_10_1007_s11554_022_01234_y crossref_primary_10_3390_rs14246232 crossref_primary_10_3390_rs16214065 crossref_primary_10_1016_j_engappai_2024_109586 crossref_primary_10_1016_j_imavis_2022_104401 crossref_primary_10_1002_cav_2259 crossref_primary_10_1371_journal_pone_0260622 crossref_primary_10_1016_j_patrec_2022_12_026 crossref_primary_10_32604_cmc_2023_046068 crossref_primary_10_1007_s10115_025_02375_9 crossref_primary_10_1109_ACCESS_2021_3118541 crossref_primary_10_3390_rs15123027 crossref_primary_10_1017_wet_2024_7 crossref_primary_10_3934_mbe_2024105 crossref_primary_10_1109_TITS_2025_3530678 crossref_primary_10_3390_agriculture13081606 crossref_primary_10_1016_j_isprsjprs_2022_06_002 crossref_primary_10_1109_TGRS_2024_3391621 crossref_primary_10_3390_app12031225 crossref_primary_10_3390_rs13091854 crossref_primary_10_1109_TGRS_2024_3363057 crossref_primary_10_1016_j_patcog_2023_109558 crossref_primary_10_1016_j_imavis_2020_104036 crossref_primary_10_3390_math10214125 crossref_primary_10_1109_TIM_2024_3351241 crossref_primary_10_1061_JCCEE5_CPENG_6005 crossref_primary_10_1016_j_autcon_2024_105701 crossref_primary_10_1016_j_psj_2024_103765 crossref_primary_10_26599_TST_2021_9010068 crossref_primary_10_1007_s00500_021_06407_8 crossref_primary_10_3390_rs15051240 crossref_primary_10_3389_fpls_2024_1340584 crossref_primary_10_1016_j_apgeog_2023_102921 crossref_primary_10_3390_rs13183608 crossref_primary_10_1109_ACCESS_2022_3175818 crossref_primary_10_3390_s21217269 crossref_primary_10_3390_rs13050879 crossref_primary_10_1109_JSTARS_2024_3492533 crossref_primary_10_1016_j_compag_2022_107587 crossref_primary_10_1002_rob_22520 crossref_primary_10_1016_j_measurement_2024_116119 crossref_primary_10_1109_TGRS_2023_3345179 crossref_primary_10_1016_j_imavis_2021_104192 crossref_primary_10_3390_s20226570 crossref_primary_10_3390_math10050733 crossref_primary_10_1016_j_compag_2024_109880 crossref_primary_10_35784_iapgos_5778 crossref_primary_10_1007_s10462_025_11108_x crossref_primary_10_3390_app13137501 crossref_primary_10_1038_s41597_025_04567_y crossref_primary_10_1186_s13071_024_06587_w crossref_primary_10_1007_s11042_023_17838_w crossref_primary_10_1080_15481603_2024_2348863 crossref_primary_10_1016_j_engappai_2021_104486 crossref_primary_10_3390_s21155103 crossref_primary_10_3390_s21093214 crossref_primary_10_1016_j_jag_2022_102777 crossref_primary_10_1371_journal_pone_0291415 crossref_primary_10_3390_s23041990 crossref_primary_10_1166_jno_2022_3319 crossref_primary_10_1109_TIM_2024_3386210 crossref_primary_10_3390_ijgi10120813 crossref_primary_10_3233_JIFS_210065 crossref_primary_10_1109_TIV_2022_3213796 crossref_primary_10_1109_ACCESS_2024_3415385 crossref_primary_10_48084_etasr_6761 crossref_primary_10_1016_j_isprsjprs_2022_11_008 crossref_primary_10_1007_s00521_024_09422_6 crossref_primary_10_3390_su15129164 crossref_primary_10_1109_ACCESS_2021_3116324 crossref_primary_10_3390_app13064038 crossref_primary_10_1016_j_jvcir_2023_103830 crossref_primary_10_1364_OE_533032 crossref_primary_10_1155_2023_6266209 crossref_primary_10_3390_technologies12020015 crossref_primary_10_3390_drones6100292 crossref_primary_10_1080_00913367_2023_2258388 crossref_primary_10_1016_j_jsb_2023_108044 crossref_primary_10_1016_j_microc_2024_111780 crossref_primary_10_3390_s23135849 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_1016_j_asoc_2021_108318 crossref_primary_10_48084_etasr_8755 crossref_primary_10_1088_1361_6501_acf598 crossref_primary_10_3390_rs15041076 crossref_primary_10_1111_jon_12916 crossref_primary_10_3390_ai5040122 crossref_primary_10_1088_1402_4896_ad610b crossref_primary_10_1016_j_image_2022_116675 crossref_primary_10_20965_jaciii_2022_p0842 crossref_primary_10_1088_1361_6501_ad8673 crossref_primary_10_1016_j_asoc_2025_112775 crossref_primary_10_3390_rs13163095 crossref_primary_10_3390_app13158754 crossref_primary_10_1038_s41597_025_04594_9 crossref_primary_10_26599_BDMA_2023_9020025 crossref_primary_10_7717_peerj_cs_1474 crossref_primary_10_1038_s41467_023_38901_y crossref_primary_10_1016_j_imavis_2021_104143 crossref_primary_10_3390_drones6100308 crossref_primary_10_1016_j_dsp_2024_104511 crossref_primary_10_3389_fpls_2022_1041514 crossref_primary_10_3389_fpls_2023_1108560 crossref_primary_10_1007_s11831_024_10173_9 crossref_primary_10_1016_j_cosrev_2023_100612 crossref_primary_10_1007_s00521_023_09287_1 crossref_primary_10_1016_j_eswa_2022_118698 crossref_primary_10_1007_s00371_020_01974_7 crossref_primary_10_1007_s00521_020_05586_z crossref_primary_10_1017_wsc_2022_64 crossref_primary_10_1007_s00521_022_07475_z crossref_primary_10_3390_app14177915 crossref_primary_10_1016_j_compag_2023_108133 crossref_primary_10_1371_journal_pone_0302958 crossref_primary_10_1007_s00530_022_00995_7 crossref_primary_10_3390_rs13050965 crossref_primary_10_1007_s11554_023_01307_6 crossref_primary_10_3390_app132413169 crossref_primary_10_1007_s11042_020_10382_x crossref_primary_10_3390_agronomy13071728 crossref_primary_10_1016_j_neucom_2023_126459 crossref_primary_10_1007_s43684_022_00025_3 crossref_primary_10_1016_j_mex_2023_102285 crossref_primary_10_3390_rs16071163 crossref_primary_10_1016_j_rsase_2025_101451 crossref_primary_10_1016_j_compag_2023_108460 crossref_primary_10_1108_IJWIS_01_2023_0006 crossref_primary_10_3934_mbe_2024057 crossref_primary_10_1109_ACCESS_2021_3111983 crossref_primary_10_1617_s11527_024_02341_x crossref_primary_10_3390_ijgi10030170 crossref_primary_10_1016_j_aej_2024_11_064 crossref_primary_10_1007_s11227_022_04661_7 crossref_primary_10_1007_s10489_022_04108_9 crossref_primary_10_1016_j_compag_2022_107418 crossref_primary_10_1016_j_ymssp_2024_111592 crossref_primary_10_34133_2021_9824843 crossref_primary_10_1016_j_geomorph_2024_109212 crossref_primary_10_1016_j_patcog_2023_109397 crossref_primary_10_1002_stc_2943 crossref_primary_10_1007_s12206_023_0607_2 crossref_primary_10_1016_j_compag_2022_107522 crossref_primary_10_1016_j_cviu_2023_103787 crossref_primary_10_3390_app131911114 crossref_primary_10_3390_s22134720 crossref_primary_10_1016_j_neucom_2020_12_054 crossref_primary_10_3390_rs12182981 crossref_primary_10_1080_02522667_2022_2133217 crossref_primary_10_1016_j_imavis_2022_104471 crossref_primary_10_1016_j_engappai_2024_108882 crossref_primary_10_3390_s23094432 crossref_primary_10_1111_cmi_13280 crossref_primary_10_1007_s11042_024_19768_7 crossref_primary_10_1061_JCEMD4_COENG_14637 crossref_primary_10_3390_data7120179 crossref_primary_10_1142_S0218001423500027 |
Cites_doi | 10.1109/ACCESS.2019.2939201 10.1109/TNNLS.2018.2876865 10.1109/TITS.2013.2266661 10.1016/j.imavis.2017.01.010 10.1007/s11432-019-2723-1 10.1109/TPAMI.2014.2343217 10.1109/TMM.2016.2642789 10.1109/TPAMI.2009.122 10.1016/j.isprsjprs.2016.03.014 10.1007/s11263-009-0275-4 10.1007/s11263-018-1140-0 10.1016/j.neucom.2016.08.094 10.1023/B:VISI.0000029664.99615.94 10.2991/ijcis.11.1.72 10.1109/TIP.2016.2554321 10.1109/TPAMI.2014.2366765 10.1109/TPAMI.2018.2844175 10.1109/TCSVT.2017.2736553 10.1109/TITS.2012.2209421 10.1007/s11263-019-01247-4 10.1109/ACCESS.2019.2932731 10.1016/j.cviu.2015.03.015 10.1016/j.neucom.2018.01.092 10.1109/TPAMI.2010.182 10.1007/s11263-014-0748-y 10.1007/s11263-018-1097-z 10.1109/TPAMI.2017.2708709 10.1007/978-3-662-49373-1 10.1016/j.patcog.2015.08.004 10.1109/TPAMI.2015.2389824 10.1109/TPAMI.2011.155 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.imavis.2020.103910 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1872-8138 |
ExternalDocumentID | 10_1016_j_imavis_2020_103910 S0262885620300421 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-c511bcebb1c9f25f5e565c125b508a5c897aa276dd5c0c71db22809323291833 |
IEDL.DBID | .~1 |
ISSN | 0262-8856 |
IngestDate | Tue Jul 01 00:48:16 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Fri Feb 23 02:47:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Small object detection Computer vision Convolutional neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c511bcebb1c9f25f5e565c125b508a5c897aa276dd5c0c71db22809323291833 |
ParticipantIDs | crossref_citationtrail_10_1016_j_imavis_2020_103910 crossref_primary_10_1016_j_imavis_2020_103910 elsevier_sciencedirect_doi_10_1016_j_imavis_2020_103910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Image and vision computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bai, Zhang, Ding, Ghanem (bb0150) 2018 Fu, Liu, Ranga, Tyagi, Berg (bb0095) 2017 Zhou, Zhuo, Krähenbühl (bb0445) 2019 Yin, Zuo, Tian, Liu (bb0290) 2016; 25 Wu, Sahoo, Hoi (bb0350) 2019 Girshick, Donahue, Darrell, Malik (bb0070) 2014 Liu, Li, Yan, Wei, Wang, Tang (bb0365) 2017 Sivaraman, Trivedi (bb0295) 2013; 14 Eggert, Zecha, Brehm, Lienhart (bb0395) 2017 Kang, Li, Yan, Zeng, Yang, Xiao, Zhang, Wang, Wang, Wang, Ouyang (bb0005) 2018; 28 Bell, Zitnick, Bala, Girshick (bb0135) 2016 Kim, Kang, Kim (bb0255) 2018 Zhao, Sheng, Wang, Tang, Chen, Cai, Ling (bb0265) 2019 Chen, Li, Xiao, Jin, Yan, Feng (bb0420) 2017 Romberg, Pueyo, Lienhart, Zwol (bb0390) 2011 Yue, Qiang (bb0280) 2019; 127 Liang, Shao, Zhang, Gao (bb0115) 2018 Li, Wei, Liang, Dong, Xu, Feng, Yan (bb0220) 2017; 19 Wang, Xiong, Liu, Luo (bb0260) 2018 Chen, Song, Dong, Huang, Hua, Yan (bb0160) 2015; 37 Newell, Yang, Deng (bb0450) 2016 Zhu, Liang, Zhang, Huang, Li, Hu (bb0410) 2016 Zagoruyko, Lerer, Lin, Pinheiro, Gross, Chintala, Dollár (bb0200) 2016 Lin, Maire, Belongie, Bourdev, Girshick, Hays, Perona, Ramanan, Zitnick, Dollár (bb0035) 2014 Cao, Xie, Yang, Liao, Shi, Wu (bb0100) 2017 Ouyang, Wang, Zeng, Qiu, Luo, Tian, Li, Yang, Wang, Loy, Tang (bb0165) 2015 David, López, Sappa, Thorsten (bb0305) 2010; 32 Law, Deng (bb0440) 2018 Kisantal, Wojna, Murawski, Naruniec, Cho (bb0120) 2019 Ren, He, Girshick, Sun (bb0075) 2015 Dalal, Triggs (bb0355) 2005 Everingham, Gool, Williams, Winn, Zisserman (bb0385) 2010; 88 Kong, Sun, Yao, Liu, Lu, Chen (bb0370) 2017 Zeng, Ouyang, Yang, Yan, Wang (bb0205) 2016 Kong, Yao, Chen, Sun (bb0185) 2016 He, Gkioxari, Dollár, Girshick (bb0015) 2020; 42 Li, Zhou (bb0230) 2017 Mogelmose, Trivedi, Moeslund (bb0300) 2012; 13 Girshick (bb0170) 2015 Zou, Shi, Guo, Ye (bb0345) 2019 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bb0380) 2014 Chen, Liu, Tuzel, Xiao (bb0055) 2016 Singh, Najibi, Davis (bb0130) 2018 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bb0080) 2016 Cao, Wang, Zhang, Zeng, Yan, Feng, Liu, Wu (bb0090) 2019; 7 Wei, Qian (bb0315) 2016; 83 Zhou, Hang, Puig, Xiao, Fidler, Barriuso, Torralba (bb0030) 2016; 127 Zafeiriou, Zhang, Zhang (bb0270) 2015; 138 Le, Tran, Mita, Nguyen (bb0050) 2010 Ye, Doermann (bb0285) 2015; 37 Kay, Carreira, Simonyan, Zhang, Hillier, Vijayanarasimhan, Viola, Green, Back, Natsev (bb0430) 2017 Hu, Gu, Zhang, Dai, Wei (bb0245) 2018 Krishna, Jawahar (bb0060) 2017 Dai, Li, He, Sun (bb0190) 2016 Chen, Gupta (bb0215) 2017 Herath, Harandi, Porikli (bb0025) 2017; 60 Li, Chen, Yu, Deng (bb0240) 2018 Guan, Wu, Zhao (bb0140) 2018; 11 Wojek, Dollar, Schiele, Perona (bb0415) 2012; 34 Xiao, Ehinger, Hays, Torralba, Oliva (bb0405) 2010; 119 Xu, Cui, Lv, Jiang, Niu, Zhou, Wang (bb0105) 2020; 63 Li, Liang, Wei, Xu, Feng, Yan (bb0145) 2017 Zhu, Urtasun, Salakhutdinov, Fidler (bb0180) 2015 Shrivastava, Gupta (bb0210) 2016 Wu, Shen, Wang, Dick, Hengel (bb0020) 2018; 40 Liu, Wang, Shan, Chen (bb0250) 2018 Jiao, Zhang, Liu, Yang, Li, Feng, Qu (bb0340) 2019; 7 Lin, Dollár, Girshick, He, Hariharan, Belongie (bb0110) 2017 Liu, Ouyang, Wang, Fieguth, Chen, Liu, Pietikäinen (bb0335) 2020; 128 Brunetti, Buongiorno, Trotta, Bevilacqua (bb0310) 2018; 300 Agarwal, Terrail, Jurie (bb0325) 2018 Bodla, Singh, Chellappa, Davis (bb0375) 2017 Cai, Fan, Feris, Vasconcelos (bb0195) 2016 Cheng, Han (bb0320) 2016; 117 Geiger, Lenz, Urtasun (bb0400) 2012 Gidaris, Komodakis (bb0175) 2015 Zhang, Wang, Thachan, Chen, Qian (bb0065) 2018 Wang, Gong, Xing, Huang, Huang, Hu (bb0435) 2020 Singh, Davis (bb0125) 2018 Zhao, Zheng, Xu, Wu (bb0330) 2019; 30 He, Zhang, Ren, Sun (bb0155) 2015; 37 Morariu, Ahmed, Santhanam, Harwood, Davis (bb0045) 2014 Zhu, Zhao, Wang, Zhao, Wu, Lu (bb0225) 2017 Wang, Gao, Tao, Yang, Li (bb0275) 2017; 275 Eggert, Brehm, Winschel, Zecha, Lienhart (bb0085) 2017 Kembhavi, Harwood, Davis (bb0040) 2011; 33 Lowe (bb0360) 2004; 60 Zhang, Wen, Bian, Lei (bb0235) 2018 Dai, He, Sun (bb0010) 2016 Deng, Dong, Socher, Li, Li, Li (bb0425) 2009 Cai (10.1016/j.imavis.2020.103910_bb0195) 2016 Mogelmose (10.1016/j.imavis.2020.103910_bb0300) 2012; 13 Zhou (10.1016/j.imavis.2020.103910_bb0445) 2019 Chen (10.1016/j.imavis.2020.103910_bb0420) 2017 Le (10.1016/j.imavis.2020.103910_bb0050) 2010 Agarwal (10.1016/j.imavis.2020.103910_bb0325) 2018 Wu (10.1016/j.imavis.2020.103910_bb0350) 2019 Cheng (10.1016/j.imavis.2020.103910_bb0320) 2016; 117 Jiao (10.1016/j.imavis.2020.103910_bb0340) 2019; 7 Cao (10.1016/j.imavis.2020.103910_bb0100) 2017 Goodfellow (10.1016/j.imavis.2020.103910_bb0380) 2014 Romberg (10.1016/j.imavis.2020.103910_bb0390) 2011 Xiao (10.1016/j.imavis.2020.103910_bb0405) 2010; 119 David (10.1016/j.imavis.2020.103910_bb0305) 2010; 32 Bodla (10.1016/j.imavis.2020.103910_bb0375) 2017 Herath (10.1016/j.imavis.2020.103910_bb0025) 2017; 60 Zeng (10.1016/j.imavis.2020.103910_bb0205) 2016 Eggert (10.1016/j.imavis.2020.103910_bb0395) 2017 Dai (10.1016/j.imavis.2020.103910_bb0190) 2016 Sivaraman (10.1016/j.imavis.2020.103910_bb0295) 2013; 14 Law (10.1016/j.imavis.2020.103910_bb0440) 2018 Singh (10.1016/j.imavis.2020.103910_bb0130) 2018 Zhang (10.1016/j.imavis.2020.103910_bb0235) 2018 Wu (10.1016/j.imavis.2020.103910_bb0020) 2018; 40 Kisantal (10.1016/j.imavis.2020.103910_bb0120) 2019 Zagoruyko (10.1016/j.imavis.2020.103910_bb0200) 2016 Hu (10.1016/j.imavis.2020.103910_bb0245) 2018 Shrivastava (10.1016/j.imavis.2020.103910_bb0210) 2016 Zhao (10.1016/j.imavis.2020.103910_bb0265) 2019 Girshick (10.1016/j.imavis.2020.103910_bb0170) 2015 Li (10.1016/j.imavis.2020.103910_bb0230) 2017 Deng (10.1016/j.imavis.2020.103910_bb0425) 2009 Wang (10.1016/j.imavis.2020.103910_bb0435) 2020 Yin (10.1016/j.imavis.2020.103910_bb0290) 2016; 25 Singh (10.1016/j.imavis.2020.103910_bb0125) 2018 Fu (10.1016/j.imavis.2020.103910_bb0095) 2017 Gidaris (10.1016/j.imavis.2020.103910_bb0175) 2015 Kong (10.1016/j.imavis.2020.103910_bb0370) 2017 Krishna (10.1016/j.imavis.2020.103910_bb0060) 2017 Wang (10.1016/j.imavis.2020.103910_bb0275) 2017; 275 Liu (10.1016/j.imavis.2020.103910_bb0080) 2016 Liu (10.1016/j.imavis.2020.103910_bb0250) 2018 Yue (10.1016/j.imavis.2020.103910_bb0280) 2019; 127 Guan (10.1016/j.imavis.2020.103910_bb0140) 2018; 11 Zhu (10.1016/j.imavis.2020.103910_bb0180) 2015 Chen (10.1016/j.imavis.2020.103910_bb0055) 2016 Ouyang (10.1016/j.imavis.2020.103910_bb0165) 2015 Geiger (10.1016/j.imavis.2020.103910_bb0400) 2012 Li (10.1016/j.imavis.2020.103910_bb0220) 2017; 19 He (10.1016/j.imavis.2020.103910_bb0155) 2015; 37 Chen (10.1016/j.imavis.2020.103910_bb0215) 2017 Dalal (10.1016/j.imavis.2020.103910_bb0355) 2005 Brunetti (10.1016/j.imavis.2020.103910_bb0310) 2018; 300 Wojek (10.1016/j.imavis.2020.103910_bb0415) 2012; 34 Eggert (10.1016/j.imavis.2020.103910_bb0085) 2017 Wang (10.1016/j.imavis.2020.103910_bb0260) 2018 Zhou (10.1016/j.imavis.2020.103910_bb0030) 2016; 127 Liang (10.1016/j.imavis.2020.103910_bb0115) 2018 Ye (10.1016/j.imavis.2020.103910_bb0285) 2015; 37 Zou (10.1016/j.imavis.2020.103910_bb0345) 2019 Kim (10.1016/j.imavis.2020.103910_bb0255) 2018 Kembhavi (10.1016/j.imavis.2020.103910_bb0040) 2011; 33 Zhang (10.1016/j.imavis.2020.103910_bb0065) 2018 Liu (10.1016/j.imavis.2020.103910_bb0365) 2017 Kang (10.1016/j.imavis.2020.103910_bb0005) 2018; 28 Wei (10.1016/j.imavis.2020.103910_bb0315) 2016; 83 Cao (10.1016/j.imavis.2020.103910_bb0090) 2019; 7 Zhao (10.1016/j.imavis.2020.103910_bb0330) 2019; 30 Everingham (10.1016/j.imavis.2020.103910_bb0385) 2010; 88 Chen (10.1016/j.imavis.2020.103910_bb0160) 2015; 37 Lowe (10.1016/j.imavis.2020.103910_bb0360) 2004; 60 Bai (10.1016/j.imavis.2020.103910_bb0150) 2018 Kay (10.1016/j.imavis.2020.103910_bb0430) 2017 Zhu (10.1016/j.imavis.2020.103910_bb0225) 2017 Morariu (10.1016/j.imavis.2020.103910_bb0045) 2014 Lin (10.1016/j.imavis.2020.103910_bb0035) 2014 Girshick (10.1016/j.imavis.2020.103910_bb0070) 2014 Li (10.1016/j.imavis.2020.103910_bb0145) 2017 He (10.1016/j.imavis.2020.103910_bb0015) 2020; 42 Li (10.1016/j.imavis.2020.103910_bb0240) 2018 Zhu (10.1016/j.imavis.2020.103910_bb0410) 2016 Newell (10.1016/j.imavis.2020.103910_bb0450) 2016 Bell (10.1016/j.imavis.2020.103910_bb0135) 2016 Xu (10.1016/j.imavis.2020.103910_bb0105) 2020; 63 Kong (10.1016/j.imavis.2020.103910_bb0185) 2016 Zafeiriou (10.1016/j.imavis.2020.103910_bb0270) 2015; 138 Dai (10.1016/j.imavis.2020.103910_bb0010) 2016 Ren (10.1016/j.imavis.2020.103910_bb0075) 2015 Lin (10.1016/j.imavis.2020.103910_bb0110) 2017 Liu (10.1016/j.imavis.2020.103910_bb0335) 2020; 128 |
References_xml | – volume: 275 start-page: 50 year: 2017 end-page: 65 ident: bb0275 article-title: Facial feature point detection: a comprehensive survey publication-title: Neurocomputing – volume: 28 start-page: 2896 year: 2018 end-page: 2907 ident: bb0005 article-title: T-CNN: tubelets with convolutional neural networks for object detection from videos publication-title: IEEE Trans. Circ. Syst. Video Tech. – start-page: 1 year: 2018 end-page: 6 ident: bb0260 article-title: Cascade mask generation framework for fast small object detection publication-title: IEEE International Conference on Multimedia and Expo – start-page: 167 year: 2017 end-page: 174 ident: bb0395 article-title: Improving small object proposals for company logo detection publication-title: International Conference on Multimedia Retrieval – start-page: 1 year: 2019 end-page: 39 ident: bb0345 article-title: Object Detection in 20 years: A Survey – start-page: 21 year: 2016 end-page: 37 ident: bb0080 article-title: SSD: single shot multibox detector publication-title: European Conference on Computer Vision – volume: 32 start-page: 1239 year: 2010 end-page: 1258 ident: bb0305 article-title: Survey of pedestrian detection for advanced driver assistance systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2017 ident: bb0230 article-title: FSSD: Feature Fusion Single Shot Multibox Detector – year: 2018 ident: bb0325 article-title: Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks – start-page: 9333 year: 2018 end-page: 9343 ident: bb0130 article-title: SNIPER: efficient multi-scale training publication-title: Neural Information Processing Systems – volume: 34 start-page: 743 year: 2012 end-page: 761 ident: bb0415 article-title: Pedestrian detection: an evaluation of the state of the art publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 340 year: 2017 end-page: 345 ident: bb0060 article-title: Improving small object detection publication-title: Asian Conference on Pattern Recognition – volume: 30 start-page: 3212 year: 2019 end-page: 3232 ident: bb0330 article-title: Object detection with deep learning: a review publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 210 year: 2018 end-page: 226 ident: bb0150 article-title: SOD-MTGAN: small object detection via multi-task generative adversarial network publication-title: European Conference on Computer Vision – start-page: 554 year: 2018 end-page: 564 ident: bb0115 article-title: Small object detection using deep feature pyramid networks publication-title: Pacific-Rim Conference on Multimedia – start-page: 2483 year: 2018 end-page: 2486 ident: bb0065 article-title: Deconv R-CNN for small object detection on remote sensing images publication-title: IEEE International Geoscience and Remote Sensing Symposium – year: 2016 ident: bb0410 article-title: Traffic-sign detection and classification in the wild publication-title: Computer Vision and Pattern Recognition – year: 2017 ident: bb0100 article-title: Feature-Fused SSD: Fast Detection for Small Objects – volume: 13 start-page: 1484 year: 2012 end-page: 1497 ident: bb0300 article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 564 year: 2014 end-page: 571 ident: bb0045 article-title: Composite discriminant factor analysis publication-title: IEEE Winter Conference on Applications of Computer Vision – start-page: 483 year: 2016 end-page: 499 ident: bb0450 article-title: Stacked hourglass networks for human pose estimation publication-title: European Conference on Computer Vision – start-page: 1134 year: 2015 end-page: 1142 ident: bb0175 article-title: Object detection via a multi-region & semantic segmentation-aware CNN model publication-title: International Conference on Computer Vision – start-page: 1951 year: 2017 end-page: 1959 ident: bb0145 article-title: Perceptual generative adversarial networks for small object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 580 year: 2014 end-page: 587 ident: bb0070 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 936 year: 2018 end-page: 950 ident: bb0140 article-title: SCAN: semantic context aware network for accurate small object detection publication-title: Int. J. Comput. Int. Sys. – start-page: 845 year: 2016 end-page: 853 ident: bb0185 article-title: Hypernet: towards accurate region proposal generation and joint object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4703 year: 2015 end-page: 4711 ident: bb0180 article-title: segDeepM: exploiting segmentation and context in deep neural networks for object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 328 year: 2018 end-page: 343 ident: bb0255 article-title: SAN: learning relationship between convolutional features for multi-scale object detection publication-title: European Conference on Computer Vision – start-page: 421 year: 2017 end-page: 426 ident: bb0085 article-title: A closer look: small object detection in faster R-CNN publication-title: International Conference on Multimedia and Expo – volume: 127 start-page: 115 year: 2019 end-page: 142 ident: bb0280 article-title: Facial landmark detection: a literature survey publication-title: Int. J. Comput. Vis. – volume: 7 start-page: 106838 year: 2019 end-page: 106846 ident: bb0090 article-title: An improved faster R-CNN for small object detection publication-title: IEEE Access – volume: 128 start-page: 261 year: 2020 end-page: 318 ident: bb0335 article-title: Deep learning for generic object detection: a survey publication-title: Int. J. Comput. Vis. – start-page: 5562 year: 2017 end-page: 5570 ident: bb0375 article-title: Soft-NMS - improving object detection with one line of code publication-title: IEEE International Conference on Computer Vision – start-page: 3578 year: 2018 end-page: 3587 ident: bb0125 article-title: An analysis of scale invariance in object detection SNIP publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 571 year: 2017 end-page: 579 ident: bb0365 article-title: Recurrent scale approximation for object detection in CNN publication-title: IEEE International Conference on Computer Vision – year: 2020 ident: bb0435 article-title: RDSNet: a new deep architecture for reciprocal object detection and instance segmentation publication-title: The Association for the Advance of Artificial Intelligence – start-page: 4467 year: 2017 end-page: 4475 ident: bb0420 article-title: Dual path networks publication-title: Neural Information Processing Systems – start-page: 740 year: 2014 end-page: 755 ident: bb0035 article-title: Microsoft COCO: common objects in context publication-title: European Conference on Computer Vision – volume: 37 start-page: 13 year: 2015 end-page: 27 ident: bb0160 article-title: Contextualizing object detection and classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1440 year: 2015 end-page: 1448 ident: bb0170 article-title: Fast R-CNN publication-title: IEEE International Conference on Computer Vision – volume: 7 start-page: 128837 year: 2019 end-page: 128868 ident: bb0340 article-title: A survey of deep learning-based object detection publication-title: IEEE Access – year: 2019 ident: bb0120 article-title: Augmentation for Small Object Detection – start-page: 6985 year: 2018 end-page: 6994 ident: bb0250 article-title: Structure inference net: object detection using scene-level context and instance-level relationships publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 7073 year: 2018 end-page: 7080 ident: bb0240 article-title: R-FCN publication-title: The Association for the Advance of Artificial Intelligence – start-page: 765 year: 2018 end-page: 781 ident: bb0440 article-title: CornerNet: detecting objects as paired keypoints publication-title: European Conference on Computer Vision – start-page: 850 year: 2019 end-page: 859 ident: bb0445 article-title: Bottom-up object detection by grouping extreme and center points publication-title: Computer Vision and Pattern Recognition – volume: 63 start-page: 120113 year: 2020 ident: bb0105 article-title: MDSSD: multi-scale deconvolutional single shot detector for small objects publication-title: SCIENCE CHINA Inf. Sci. – volume: 37 start-page: 1480 year: 2015 end-page: 1500 ident: bb0285 article-title: Text detection and recognition in imagery: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 214 year: 2016 end-page: 230 ident: bb0055 article-title: R-CNN for small object detection publication-title: Asian Conference on Computer Vision – volume: 14 start-page: 1773 year: 2013 end-page: 1795 ident: bb0295 article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 127 start-page: 302 year: 2016 end-page: 321 ident: bb0030 article-title: Semantic understanding of scenes through the ADE20K dataset publication-title: Int. J. Comput. Vis. – start-page: 886 year: 2005 end-page: 893 ident: bb0355 article-title: Histograms of oriented gradients for human detection publication-title: Computer Vision and Pattern Recognition – start-page: 4203 year: 2018 end-page: 4212 ident: bb0235 article-title: Single-shot refinement neural network for object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: bb0360 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – volume: 40 start-page: 1367 year: 2018 end-page: 1381 ident: bb0020 article-title: Image captioning and visual question answering based on attributes and external knowledge publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 936 year: 2017 end-page: 944 ident: bb0110 article-title: Feature pyramid networks for object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 354 year: 2016 end-page: 370 ident: bb0195 article-title: A unified multi-scale deep convolutional neural network for fast object detection publication-title: European Conference on Computer Vision – start-page: 3150 year: 2016 end-page: 3158 ident: bb0010 article-title: Instance-aware semantic segmentation via multi-task network cascades publication-title: Computer Vision and Pattern Recognition – start-page: 2874 year: 2016 end-page: 2883 ident: bb0135 article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 19 start-page: 944 year: 2017 end-page: 954 ident: bb0220 article-title: Attentive contexts for object detection publication-title: IEEE Trans. Multimed. – volume: 138 start-page: 1 year: 2015 end-page: 24 ident: bb0270 article-title: A survey on face detection in the wild: past, present and future publication-title: Comput. Vis. Image Und. – start-page: 2672 year: 2014 end-page: 2680 ident: bb0380 article-title: Generative adversarial nets publication-title: Neural Information Processing Systems – start-page: 2403 year: 2015 end-page: 2412 ident: bb0165 article-title: DeepID-Net: deformable deep convolutional neural networks for object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 248 year: 2009 end-page: 255 ident: bb0425 article-title: ImageNet: a large-scale hierarchical image database publication-title: Computer Vision and Pattern Recognition – start-page: 4146 year: 2017 end-page: 4154 ident: bb0225 article-title: CoupleNet: coupling global structure with local parts for object detection publication-title: International Conference on Computer Vision – start-page: 3354 year: 2012 end-page: 3361 ident: bb0400 article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite publication-title: Computer Vision and Pattern Recognition – volume: 83 start-page: 115 year: 2016 end-page: 123 ident: bb0315 article-title: A survey on representation-based classification and detection in hyperspectral remote sensing imagery publication-title: Pattern Recogn. Lett. – start-page: 1 year: 2019 end-page: 40 ident: bb0350 article-title: Recent Advances in Deep Learning for Object Detection – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: bb0385 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. – start-page: 5244 year: 2017 end-page: 5252 ident: bb0370 article-title: RON: reverse connection with objectness prior networks for object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 119 start-page: 3 year: 2010 end-page: 22 ident: bb0405 article-title: SUN database: exploring a large collection of scene categories publication-title: Int. J. Comput. Vis. – volume: 25 start-page: 2752 year: 2016 end-page: 2773 ident: bb0290 article-title: Text detection, tracking and recognition in video: a comprehensive survey publication-title: IEEE Trans. Image Process. – start-page: 268 year: 2010 end-page: 278 ident: bb0050 article-title: Real time traffic sign detection using color and shape-based features publication-title: Asian Conference on Intelligent Information and Database Systems – start-page: 9259 year: 2019 end-page: 9266 ident: bb0265 article-title: M2Det: a single-shot object detector based on multi-level feature pyramid network publication-title: AAAI – year: 2017 ident: bb0095 article-title: DSSD: Deconvolutional Single Shot Detector – volume: 60 start-page: 4 year: 2017 end-page: 21 ident: bb0025 article-title: Going deeper into action recognition: a survey publication-title: Image Vis. Comput. – volume: 117 start-page: 11 year: 2016 end-page: 28 ident: bb0320 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2017 ident: bb0430 article-title: The Kinetics Human Action Video Dataset – volume: 33 start-page: 1250 year: 2011 end-page: 1265 ident: bb0040 article-title: Vehicle detection using partial least squares publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 4106 year: 2017 end-page: 4116 ident: bb0215 article-title: Spatial memory for context reasoning in object detection publication-title: International Conference on Computer Vision – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: bb0155 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3588 year: 2018 end-page: 3597 ident: bb0245 article-title: Relation networks for object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 25 year: 2011 end-page: 33 ident: bb0390 article-title: Scalable logo recognition in real-world images publication-title: International Conference on Multimedia Retrieval – start-page: 91 year: 2015 end-page: 99 ident: bb0075 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Proces. Syst. – year: 2016 ident: bb0200 article-title: A MultiPath network for object detection publication-title: British Machine Vision Conference – start-page: 330 year: 2016 end-page: 348 ident: bb0210 article-title: Contextual priming and feedback for faster R-CNN publication-title: European Conference on Computer Vision – start-page: 379 year: 2016 end-page: 387 ident: bb0190 article-title: R-FCN: object detection via region-based fully convolutional networks publication-title: Advances in Neural Information Processing Systems – start-page: 354 year: 2016 end-page: 369 ident: bb0205 article-title: Gated bi-directional CNN for object detection publication-title: European Conference on Computer Vision – volume: 300 start-page: 17 year: 2018 end-page: 33 ident: bb0310 article-title: Computer vision and deep learning techniques for pedestrian detection and tracking: a survey publication-title: Neurocomputing – volume: 42 start-page: 386 year: 2020 end-page: 397 ident: bb0015 article-title: Mask R-CNN publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 7073 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0240 article-title: R-FCN++: towards accurate region-based fully convolutional networks for object detection – start-page: 354 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0195 article-title: A unified multi-scale deep convolutional neural network for fast object detection – start-page: 3578 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0125 article-title: An analysis of scale invariance in object detection SNIP – start-page: 2403 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0165 article-title: DeepID-Net: deformable deep convolutional neural networks for object detection – start-page: 886 year: 2005 ident: 10.1016/j.imavis.2020.103910_bb0355 article-title: Histograms of oriented gradients for human detection – start-page: 4146 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0225 article-title: CoupleNet: coupling global structure with local parts for object detection – start-page: 214 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0055 article-title: R-CNN for small object detection – volume: 7 start-page: 128837 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0340 article-title: A survey of deep learning-based object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0100 – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0330 article-title: Object detection with deep learning: a review publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 – start-page: 1440 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0170 article-title: Fast R-CNN – start-page: 4203 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0235 article-title: Single-shot refinement neural network for object detection – volume: 14 start-page: 1773 issue: 4 year: 2013 ident: 10.1016/j.imavis.2020.103910_bb0295 article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2266661 – start-page: 580 year: 2014 ident: 10.1016/j.imavis.2020.103910_bb0070 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – start-page: 167 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0395 article-title: Improving small object proposals for company logo detection – year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0120 – start-page: 936 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0110 article-title: Feature pyramid networks for object detection – start-page: 328 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0255 article-title: SAN: learning relationship between convolutional features for multi-scale object detection – volume: 60 start-page: 4 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0025 article-title: Going deeper into action recognition: a survey publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.01.010 – start-page: 9259 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0265 article-title: M2Det: a single-shot object detector based on multi-level feature pyramid network – start-page: 3588 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0245 article-title: Relation networks for object detection – volume: 63 start-page: 120113 issue: 2 year: 2020 ident: 10.1016/j.imavis.2020.103910_bb0105 article-title: MDSSD: multi-scale deconvolutional single shot detector for small objects publication-title: SCIENCE CHINA Inf. Sci. doi: 10.1007/s11432-019-2723-1 – volume: 37 start-page: 13 issue: 1 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0160 article-title: Contextualizing object detection and classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2343217 – start-page: 354 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0205 article-title: Gated bi-directional CNN for object detection – start-page: 2672 year: 2014 ident: 10.1016/j.imavis.2020.103910_bb0380 article-title: Generative adversarial nets – volume: 19 start-page: 944 issue: 5 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0220 article-title: Attentive contexts for object detection publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2016.2642789 – start-page: 4467 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0420 article-title: Dual path networks – start-page: 740 year: 2014 ident: 10.1016/j.imavis.2020.103910_bb0035 article-title: Microsoft COCO: common objects in context – start-page: 2874 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0135 article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks – volume: 32 start-page: 1239 issue: 7 year: 2010 ident: 10.1016/j.imavis.2020.103910_bb0305 article-title: Survey of pedestrian detection for advanced driver assistance systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.122 – volume: 117 start-page: 11 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0320 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.014 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 10.1016/j.imavis.2020.103910_bb0385 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – volume: 127 start-page: 302 issue: 3 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0030 article-title: Semantic understanding of scenes through the ADE20K dataset publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1140-0 – start-page: 571 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0365 article-title: Recurrent scale approximation for object detection in CNN – start-page: 21 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0080 article-title: SSD: single shot multibox detector – volume: 275 start-page: 50 issue: 1 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0275 article-title: Facial feature point detection: a comprehensive survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.094 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.imavis.2020.103910_bb0360 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – start-page: 1 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0260 article-title: Cascade mask generation framework for fast small object detection – start-page: 268 year: 2010 ident: 10.1016/j.imavis.2020.103910_bb0050 article-title: Real time traffic sign detection using color and shape-based features – year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0325 – start-page: 3150 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0010 article-title: Instance-aware semantic segmentation via multi-task network cascades – start-page: 421 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0085 article-title: A closer look: small object detection in faster R-CNN – start-page: 3354 year: 2012 ident: 10.1016/j.imavis.2020.103910_bb0400 article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite – start-page: 483 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0450 article-title: Stacked hourglass networks for human pose estimation – start-page: 765 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0440 article-title: CornerNet: detecting objects as paired keypoints – start-page: 1 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0350 – start-page: 554 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0115 article-title: Small object detection using deep feature pyramid networks – start-page: 248 year: 2009 ident: 10.1016/j.imavis.2020.103910_bb0425 article-title: ImageNet: a large-scale hierarchical image database – volume: 11 start-page: 936 issue: 1 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0140 article-title: SCAN: semantic context aware network for accurate small object detection publication-title: Int. J. Comput. Int. Sys. doi: 10.2991/ijcis.11.1.72 – start-page: 850 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0445 article-title: Bottom-up object detection by grouping extreme and center points – year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0095 – volume: 25 start-page: 2752 issue: 6 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0290 article-title: Text detection, tracking and recognition in video: a comprehensive survey publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2554321 – start-page: 25 year: 2011 ident: 10.1016/j.imavis.2020.103910_bb0390 article-title: Scalable logo recognition in real-world images – volume: 37 start-page: 1480 issue: 7 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0285 article-title: Text detection and recognition in imagery: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2366765 – volume: 42 start-page: 386 issue: 2 year: 2020 ident: 10.1016/j.imavis.2020.103910_bb0015 article-title: Mask R-CNN publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2844175 – volume: 28 start-page: 2896 issue: 10 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0005 article-title: T-CNN: tubelets with convolutional neural networks for object detection from videos publication-title: IEEE Trans. Circ. Syst. Video Tech. doi: 10.1109/TCSVT.2017.2736553 – start-page: 4106 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0215 article-title: Spatial memory for context reasoning in object detection – start-page: 2483 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0065 article-title: Deconv R-CNN for small object detection on remote sensing images – start-page: 330 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0210 article-title: Contextual priming and feedback for faster R-CNN – volume: 13 start-page: 1484 issue: 4 year: 2012 ident: 10.1016/j.imavis.2020.103910_bb0300 article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2209421 – volume: 128 start-page: 261 issue: 2 year: 2020 ident: 10.1016/j.imavis.2020.103910_bb0335 article-title: Deep learning for generic object detection: a survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01247-4 – volume: 7 start-page: 106838 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0090 article-title: An improved faster R-CNN for small object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932731 – start-page: 91 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0075 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Proces. Syst. – volume: 138 start-page: 1 issue: 9 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0270 article-title: A survey on face detection in the wild: past, present and future publication-title: Comput. Vis. Image Und. doi: 10.1016/j.cviu.2015.03.015 – start-page: 6985 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0250 article-title: Structure inference net: object detection using scene-level context and instance-level relationships – start-page: 5244 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0370 article-title: RON: reverse connection with objectness prior networks for object detection – year: 2020 ident: 10.1016/j.imavis.2020.103910_bb0435 article-title: RDSNet: a new deep architecture for reciprocal object detection and instance segmentation – volume: 300 start-page: 17 issue: 1 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0310 article-title: Computer vision and deep learning techniques for pedestrian detection and tracking: a survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.092 – volume: 33 start-page: 1250 issue: 6 year: 2011 ident: 10.1016/j.imavis.2020.103910_bb0040 article-title: Vehicle detection using partial least squares publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.182 – year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0430 – volume: 119 start-page: 3 issue: 1 year: 2010 ident: 10.1016/j.imavis.2020.103910_bb0405 article-title: SUN database: exploring a large collection of scene categories publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0748-y – start-page: 845 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0185 article-title: Hypernet: towards accurate region proposal generation and joint object detection – start-page: 1134 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0175 article-title: Object detection via a multi-region & semantic segmentation-aware CNN model – year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0200 article-title: A MultiPath network for object detection – start-page: 1 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0345 – start-page: 379 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0190 article-title: R-FCN: object detection via region-based fully convolutional networks – volume: 127 start-page: 115 issue: 2 year: 2019 ident: 10.1016/j.imavis.2020.103910_bb0280 article-title: Facial landmark detection: a literature survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1097-z – year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0230 – start-page: 340 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0060 article-title: Improving small object detection – start-page: 4703 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0180 article-title: segDeepM: exploiting segmentation and context in deep neural networks for object detection – volume: 40 start-page: 1367 issue: 6 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0020 article-title: Image captioning and visual question answering based on attributes and external knowledge publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2708709 – start-page: 1951 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0145 article-title: Perceptual generative adversarial networks for small object detection – year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0410 article-title: Traffic-sign detection and classification in the wild doi: 10.1007/978-3-662-49373-1 – start-page: 564 year: 2014 ident: 10.1016/j.imavis.2020.103910_bb0045 article-title: Composite discriminant factor analysis – start-page: 9333 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0130 article-title: SNIPER: efficient multi-scale training – start-page: 5562 year: 2017 ident: 10.1016/j.imavis.2020.103910_bb0375 article-title: Soft-NMS - improving object detection with one line of code – start-page: 210 year: 2018 ident: 10.1016/j.imavis.2020.103910_bb0150 article-title: SOD-MTGAN: small object detection via multi-task generative adversarial network – volume: 83 start-page: 115 year: 2016 ident: 10.1016/j.imavis.2020.103910_bb0315 article-title: A survey on representation-based classification and detection in hyperspectral remote sensing imagery publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patcog.2015.08.004 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.imavis.2020.103910_bb0155 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 34 start-page: 743 issue: 4 year: 2012 ident: 10.1016/j.imavis.2020.103910_bb0415 article-title: Pedestrian detection: an evaluation of the state of the art publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.155 |
SSID | ssj0007079 |
Score | 2.6793082 |
SecondaryResourceType | review_article |
Snippet | Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103910 |
SubjectTerms | Computer vision Convolutional neural networks Deep learning Small object detection |
Title | Recent advances in small object detection based on deep learning: A review |
URI | https://dx.doi.org/10.1016/j.imavis.2020.103910 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL2UutGFj6pYH2UWbmOTTJ7uSrHUit1Yobswr0ikpsXGrd_uncxEK4iCu0yYgXAzc-_J5JwzAJeC51FKZeAgts6dIFHcYdh2KPOkFwuV-0zvQ95Po_FjMJmH8xYMGy2MplXa3G9yep2t7Z2-jWZ_VRT9B_x68JME67erXaNqMbl2r8M5ffX-RfPQDnBmnwVXPvZu5HM1x6t40VJ-_Er0a_V5qnW0P5WnjZIz2oddixXJwDzOAbRU2YE9ixuJXZXrDuxsmAoewgSRIFYSYv_ur0lRkvULWyzIkutNFyJVVfOvSqJLmCR4IZVaEXuAxNM1GRCjaDmC2ehmNhw79sQERyD0rxyB8IkLxbkn0hyDHyrEawIxDEccxkKRpDFjfhxJGQpXxJ7k2g0HIRz1U1zb9Bja5bJUJ0CiwPNFHFOuCZvCpcxliZK-8hKWUKW8LtAmTpmwbuL6UItF1tDGnjMT3UxHNzPR7YLzOWpl3DT-6B83ryD7NisyTPi_jjz998gz2NYtQ2o8h3b1-qYuEHhUvFfPrB5sDW7vxtMPTK_Wuw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke1APPqpife7Ba2jeD2-lWNLnxQq9hX1FIm1abPz_ziabUkEUvOU1ECa7M99O5vsW4JGz1I8c4RqIrVPDDSUzKJ4bDrWEFXCZ2lTVIaczP351Rwtv0YB-zYVRbZU69lcxvYzW-kpXe7O7ybLuC64e7DDE_G0q1ShFJm8pdSq3Ca3ecBzPdgFZicBVpRac_GhQM-jKNq9spdj8uFC0SwJ6pKi0P2WovawzOIVjDRdJr3qjM2jIvA0nGjoSPTG3bTja0xU8hxGCQUwmRP_g35IsJ9sVXS7Jmqm6CxGyKFuwcqKymCB4IKTcEL2HxNsT6ZGK1HIB88HzvB8betMEgyP6LwyOCIpxyZjFoxT970mEbBxhDEMoRj0eRgGlduAL4XGTB5ZgShAHUZxjRzi9nUto5utcXgHxXcvmQeAw1bPJTYeaNJTCllZIQ0dKqwNO7aeEa0Fxta_FMqk7x96TyruJ8m5SebcDxs5qUwlq_PF8UH-C5NvASDDm_2p5_W_LBziI59NJMhnOxjdwqO5UPY630Cw-PuUd4pCC3etx9gW6ntls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+small+object+detection+based+on+deep+learning%3A+A+review&rft.jtitle=Image+and+vision+computing&rft.au=Tong%2C+Kang&rft.au=Wu%2C+Yiquan&rft.au=Zhou%2C+Fei&rft.date=2020-05-01&rft.issn=0262-8856&rft.volume=97&rft.spage=103910&rft_id=info:doi/10.1016%2Fj.imavis.2020.103910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2020_103910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |