Recent advances in small object detection based on deep learning: A review

Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To facilitate in-depth understanding of small object detection, we comprehensively review the existing small object detection methods based on deep learn...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 97; p. 103910
Main Authors Tong, Kang, Wu, Yiquan, Zhou, Fei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
DOI10.1016/j.imavis.2020.103910

Cover

Loading…
Abstract Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To facilitate in-depth understanding of small object detection, we comprehensively review the existing small object detection methods based on deep learning from five aspects, including multi-scale feature learning, data augmentation, training strategy, context-based detection and GAN-based detection. Then, we thoroughly analyze the performance of some typical small object detection algorithms on popular datasets, such as MS-COCO, PASCAL-VOC. Finally, the possible research directions in the future are pointed out from five perspectives: emerging small object detection datasets and benchmarks, multi-task joint learning and optimization, information transmission, weakly supervised small object detection methods and framework for small object detection task.
AbstractList Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To facilitate in-depth understanding of small object detection, we comprehensively review the existing small object detection methods based on deep learning from five aspects, including multi-scale feature learning, data augmentation, training strategy, context-based detection and GAN-based detection. Then, we thoroughly analyze the performance of some typical small object detection algorithms on popular datasets, such as MS-COCO, PASCAL-VOC. Finally, the possible research directions in the future are pointed out from five perspectives: emerging small object detection datasets and benchmarks, multi-task joint learning and optimization, information transmission, weakly supervised small object detection methods and framework for small object detection task.
ArticleNumber 103910
Author Wu, Yiquan
Zhou, Fei
Tong, Kang
Author_xml – sequence: 1
  givenname: Kang
  surname: Tong
  fullname: Tong, Kang
  email: tkangcv@nuaa.edu.cn
– sequence: 2
  givenname: Yiquan
  surname: Wu
  fullname: Wu, Yiquan
  email: mltd2099@163.com
– sequence: 3
  givenname: Fei
  surname: Zhou
  fullname: Zhou, Fei
  email: F.zhouip@nuaa.edu.cn
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNT8mJlMF0IpWpWCIN2H_NyRDNNMSYaKb2-GceVCV_dwuedwz7dAs9AHQOiWkhUltLxrV_6ozz6tGGHjiteUXKA5lRUrJOVyhuaElVlLUV6hRUotIaQiVT1Hr-9gIQxYu7MOFhL2Aaej7jrcmxbsgB0Mefg-YKMTOJyFAzjhDnQMPnys8QZHOHv4vEaXje4S3PzMJTo8PR62z8X-bfey3ewLy0k5FFZQaiwYQ23dMNEIEKWwlAkjiNTCyrrSmlWlc8ISW1FnGJOk5oyzmkrOl2g9xdrYpxShUdYPevxwiNp3ihI1QlGtmqCoEYqaoGTz_S_zKeaz-PWf7WGyQe6Vu0aVrIfMy_mY6SjX-78DvgG6on9u
CitedBy_id crossref_primary_10_1049_ell2_13042
crossref_primary_10_1080_10106049_2022_2146761
crossref_primary_10_1002_adts_202200853
crossref_primary_10_1016_j_geomorph_2024_109472
crossref_primary_10_1016_j_isprsjprs_2022_08_005
crossref_primary_10_3389_fpls_2022_900408
crossref_primary_10_1016_j_neucom_2024_127973
crossref_primary_10_3390_rs12152501
crossref_primary_10_1007_s00371_021_02304_1
crossref_primary_10_1080_22797254_2023_2174706
crossref_primary_10_1109_JSTARS_2021_3132005
crossref_primary_10_3390_s23167242
crossref_primary_10_1016_j_jag_2024_104349
crossref_primary_10_3348_kjr_2022_0765
crossref_primary_10_3390_rs14020255
crossref_primary_10_1109_ACCESS_2021_3075293
crossref_primary_10_3390_sym13122260
crossref_primary_10_1016_j_eswa_2021_114602
crossref_primary_10_3847_1538_4365_ad97b8
crossref_primary_10_1007_s11554_022_01252_w
crossref_primary_10_1016_j_image_2021_116402
crossref_primary_10_3390_math11092093
crossref_primary_10_3390_rs14122837
crossref_primary_10_34133_2022_9892464
crossref_primary_10_1016_j_patrec_2021_11_027
crossref_primary_10_3389_fnbot_2022_1042780
crossref_primary_10_1109_TNNLS_2023_3239529
crossref_primary_10_1007_s11760_024_03661_9
crossref_primary_10_1016_j_measurement_2021_110242
crossref_primary_10_1088_1361_6501_ad633d
crossref_primary_10_1109_TCE_2024_3371163
crossref_primary_10_1007_s10462_025_11186_x
crossref_primary_10_1016_j_compeleceng_2022_108490
crossref_primary_10_1109_ACCESS_2021_3116034
crossref_primary_10_3390_electronics12071515
crossref_primary_10_1016_j_compag_2021_106048
crossref_primary_10_1016_j_postharvbio_2024_113281
crossref_primary_10_1186_s12880_023_00993_9
crossref_primary_10_1007_s11042_023_17818_0
crossref_primary_10_1109_JSTARS_2022_3169128
crossref_primary_10_1007_s10489_021_02893_3
crossref_primary_10_1007_s11042_023_15847_3
crossref_primary_10_1109_TGRS_2023_3349168
crossref_primary_10_3390_agriculture15050511
crossref_primary_10_1016_j_autcon_2024_105443
crossref_primary_10_3390_rs12193152
crossref_primary_10_1109_ACCESS_2021_3070991
crossref_primary_10_1016_j_eswa_2023_121811
crossref_primary_10_1145_3587466
crossref_primary_10_3390_agriculture13030713
crossref_primary_10_1016_j_ejrad_2023_110887
crossref_primary_10_1016_j_neucom_2023_126384
crossref_primary_10_1016_j_compag_2024_109715
crossref_primary_10_4274_jcrpe_galenos_2020_2020_0249
crossref_primary_10_1038_s41598_022_19697_1
crossref_primary_10_3390_rs13214196
crossref_primary_10_1049_ipr2_70027
crossref_primary_10_1007_s11042_020_09201_0
crossref_primary_10_1016_j_dsp_2022_103844
crossref_primary_10_3233_IDA_227154
crossref_primary_10_1109_TIM_2021_3117629
crossref_primary_10_3390_rs13163182
crossref_primary_10_1016_j_heliyon_2024_e32931
crossref_primary_10_1016_j_neucom_2025_129725
crossref_primary_10_1007_s11554_022_01212_4
crossref_primary_10_1016_j_eij_2024_100523
crossref_primary_10_1145_3593588
crossref_primary_10_1002_ps_7964
crossref_primary_10_1016_j_imavis_2022_104396
crossref_primary_10_3390_s22124575
crossref_primary_10_1007_s00521_022_07104_9
crossref_primary_10_1109_ACCESS_2024_3368848
crossref_primary_10_1109_TGRS_2022_3201530
crossref_primary_10_3390_sym16111516
crossref_primary_10_1080_17538947_2023_2261901
crossref_primary_10_3389_fpls_2022_991929
crossref_primary_10_3390_rs14071595
crossref_primary_10_1016_j_engappai_2023_106445
crossref_primary_10_1109_JSEN_2023_3330146
crossref_primary_10_26833_ijeg_1587264
crossref_primary_10_3390_s22155817
crossref_primary_10_2139_ssrn_4173734
crossref_primary_10_1016_j_jag_2022_102910
crossref_primary_10_1155_2022_1014501
crossref_primary_10_3390_rs15061637
crossref_primary_10_1016_j_ejmp_2023_102607
crossref_primary_10_1007_s11042_022_12094_w
crossref_primary_10_1371_journal_pone_0260609
crossref_primary_10_3390_rs15122959
crossref_primary_10_1109_TGRS_2023_3326613
crossref_primary_10_1016_j_imavis_2020_104026
crossref_primary_10_1002_adts_202300397
crossref_primary_10_3390_info15050285
crossref_primary_10_1007_s10489_021_02967_2
crossref_primary_10_1016_j_compind_2024_104146
crossref_primary_10_1016_j_cropro_2023_106561
crossref_primary_10_1117_1_JEI_31_3_033030
crossref_primary_10_1007_s00500_023_08186_w
crossref_primary_10_3389_fpls_2022_915543
crossref_primary_10_1080_14680629_2021_1925578
crossref_primary_10_3390_rs16234374
crossref_primary_10_3934_mbe_2023282
crossref_primary_10_3390_info15020108
crossref_primary_10_1007_s13218_023_00815_8
crossref_primary_10_1109_ACCESS_2024_3420217
crossref_primary_10_3233_JIFS_230200
crossref_primary_10_56714_bjrs_50_1_5
crossref_primary_10_3390_app132111760
crossref_primary_10_1007_s10707_022_00476_z
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_3390_rs15204991
crossref_primary_10_3390_drones7070434
crossref_primary_10_1088_1361_6501_ad8179
crossref_primary_10_3390_s22155596
crossref_primary_10_1109_ACCESS_2024_3393835
crossref_primary_10_1515_epoly_2022_0071
crossref_primary_10_3390_electronics10243079
crossref_primary_10_1007_s43069_022_00163_7
crossref_primary_10_1016_j_jag_2022_102695
crossref_primary_10_3390_app11073061
crossref_primary_10_3390_rs15143525
crossref_primary_10_1016_j_patrec_2023_03_009
crossref_primary_10_1108_IJIUS_08_2024_0248
crossref_primary_10_1007_s11554_022_01234_y
crossref_primary_10_3390_rs14246232
crossref_primary_10_3390_rs16214065
crossref_primary_10_1016_j_engappai_2024_109586
crossref_primary_10_1016_j_imavis_2022_104401
crossref_primary_10_1002_cav_2259
crossref_primary_10_1371_journal_pone_0260622
crossref_primary_10_1016_j_patrec_2022_12_026
crossref_primary_10_32604_cmc_2023_046068
crossref_primary_10_1007_s10115_025_02375_9
crossref_primary_10_1109_ACCESS_2021_3118541
crossref_primary_10_3390_rs15123027
crossref_primary_10_1017_wet_2024_7
crossref_primary_10_3934_mbe_2024105
crossref_primary_10_1109_TITS_2025_3530678
crossref_primary_10_3390_agriculture13081606
crossref_primary_10_1016_j_isprsjprs_2022_06_002
crossref_primary_10_1109_TGRS_2024_3391621
crossref_primary_10_3390_app12031225
crossref_primary_10_3390_rs13091854
crossref_primary_10_1109_TGRS_2024_3363057
crossref_primary_10_1016_j_patcog_2023_109558
crossref_primary_10_1016_j_imavis_2020_104036
crossref_primary_10_3390_math10214125
crossref_primary_10_1109_TIM_2024_3351241
crossref_primary_10_1061_JCCEE5_CPENG_6005
crossref_primary_10_1016_j_autcon_2024_105701
crossref_primary_10_1016_j_psj_2024_103765
crossref_primary_10_26599_TST_2021_9010068
crossref_primary_10_1007_s00500_021_06407_8
crossref_primary_10_3390_rs15051240
crossref_primary_10_3389_fpls_2024_1340584
crossref_primary_10_1016_j_apgeog_2023_102921
crossref_primary_10_3390_rs13183608
crossref_primary_10_1109_ACCESS_2022_3175818
crossref_primary_10_3390_s21217269
crossref_primary_10_3390_rs13050879
crossref_primary_10_1109_JSTARS_2024_3492533
crossref_primary_10_1016_j_compag_2022_107587
crossref_primary_10_1002_rob_22520
crossref_primary_10_1016_j_measurement_2024_116119
crossref_primary_10_1109_TGRS_2023_3345179
crossref_primary_10_1016_j_imavis_2021_104192
crossref_primary_10_3390_s20226570
crossref_primary_10_3390_math10050733
crossref_primary_10_1016_j_compag_2024_109880
crossref_primary_10_35784_iapgos_5778
crossref_primary_10_1007_s10462_025_11108_x
crossref_primary_10_3390_app13137501
crossref_primary_10_1038_s41597_025_04567_y
crossref_primary_10_1186_s13071_024_06587_w
crossref_primary_10_1007_s11042_023_17838_w
crossref_primary_10_1080_15481603_2024_2348863
crossref_primary_10_1016_j_engappai_2021_104486
crossref_primary_10_3390_s21155103
crossref_primary_10_3390_s21093214
crossref_primary_10_1016_j_jag_2022_102777
crossref_primary_10_1371_journal_pone_0291415
crossref_primary_10_3390_s23041990
crossref_primary_10_1166_jno_2022_3319
crossref_primary_10_1109_TIM_2024_3386210
crossref_primary_10_3390_ijgi10120813
crossref_primary_10_3233_JIFS_210065
crossref_primary_10_1109_TIV_2022_3213796
crossref_primary_10_1109_ACCESS_2024_3415385
crossref_primary_10_48084_etasr_6761
crossref_primary_10_1016_j_isprsjprs_2022_11_008
crossref_primary_10_1007_s00521_024_09422_6
crossref_primary_10_3390_su15129164
crossref_primary_10_1109_ACCESS_2021_3116324
crossref_primary_10_3390_app13064038
crossref_primary_10_1016_j_jvcir_2023_103830
crossref_primary_10_1364_OE_533032
crossref_primary_10_1155_2023_6266209
crossref_primary_10_3390_technologies12020015
crossref_primary_10_3390_drones6100292
crossref_primary_10_1080_00913367_2023_2258388
crossref_primary_10_1016_j_jsb_2023_108044
crossref_primary_10_1016_j_microc_2024_111780
crossref_primary_10_3390_s23135849
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_1016_j_asoc_2021_108318
crossref_primary_10_48084_etasr_8755
crossref_primary_10_1088_1361_6501_acf598
crossref_primary_10_3390_rs15041076
crossref_primary_10_1111_jon_12916
crossref_primary_10_3390_ai5040122
crossref_primary_10_1088_1402_4896_ad610b
crossref_primary_10_1016_j_image_2022_116675
crossref_primary_10_20965_jaciii_2022_p0842
crossref_primary_10_1088_1361_6501_ad8673
crossref_primary_10_1016_j_asoc_2025_112775
crossref_primary_10_3390_rs13163095
crossref_primary_10_3390_app13158754
crossref_primary_10_1038_s41597_025_04594_9
crossref_primary_10_26599_BDMA_2023_9020025
crossref_primary_10_7717_peerj_cs_1474
crossref_primary_10_1038_s41467_023_38901_y
crossref_primary_10_1016_j_imavis_2021_104143
crossref_primary_10_3390_drones6100308
crossref_primary_10_1016_j_dsp_2024_104511
crossref_primary_10_3389_fpls_2022_1041514
crossref_primary_10_3389_fpls_2023_1108560
crossref_primary_10_1007_s11831_024_10173_9
crossref_primary_10_1016_j_cosrev_2023_100612
crossref_primary_10_1007_s00521_023_09287_1
crossref_primary_10_1016_j_eswa_2022_118698
crossref_primary_10_1007_s00371_020_01974_7
crossref_primary_10_1007_s00521_020_05586_z
crossref_primary_10_1017_wsc_2022_64
crossref_primary_10_1007_s00521_022_07475_z
crossref_primary_10_3390_app14177915
crossref_primary_10_1016_j_compag_2023_108133
crossref_primary_10_1371_journal_pone_0302958
crossref_primary_10_1007_s00530_022_00995_7
crossref_primary_10_3390_rs13050965
crossref_primary_10_1007_s11554_023_01307_6
crossref_primary_10_3390_app132413169
crossref_primary_10_1007_s11042_020_10382_x
crossref_primary_10_3390_agronomy13071728
crossref_primary_10_1016_j_neucom_2023_126459
crossref_primary_10_1007_s43684_022_00025_3
crossref_primary_10_1016_j_mex_2023_102285
crossref_primary_10_3390_rs16071163
crossref_primary_10_1016_j_rsase_2025_101451
crossref_primary_10_1016_j_compag_2023_108460
crossref_primary_10_1108_IJWIS_01_2023_0006
crossref_primary_10_3934_mbe_2024057
crossref_primary_10_1109_ACCESS_2021_3111983
crossref_primary_10_1617_s11527_024_02341_x
crossref_primary_10_3390_ijgi10030170
crossref_primary_10_1016_j_aej_2024_11_064
crossref_primary_10_1007_s11227_022_04661_7
crossref_primary_10_1007_s10489_022_04108_9
crossref_primary_10_1016_j_compag_2022_107418
crossref_primary_10_1016_j_ymssp_2024_111592
crossref_primary_10_34133_2021_9824843
crossref_primary_10_1016_j_geomorph_2024_109212
crossref_primary_10_1016_j_patcog_2023_109397
crossref_primary_10_1002_stc_2943
crossref_primary_10_1007_s12206_023_0607_2
crossref_primary_10_1016_j_compag_2022_107522
crossref_primary_10_1016_j_cviu_2023_103787
crossref_primary_10_3390_app131911114
crossref_primary_10_3390_s22134720
crossref_primary_10_1016_j_neucom_2020_12_054
crossref_primary_10_3390_rs12182981
crossref_primary_10_1080_02522667_2022_2133217
crossref_primary_10_1016_j_imavis_2022_104471
crossref_primary_10_1016_j_engappai_2024_108882
crossref_primary_10_3390_s23094432
crossref_primary_10_1111_cmi_13280
crossref_primary_10_1007_s11042_024_19768_7
crossref_primary_10_1061_JCEMD4_COENG_14637
crossref_primary_10_3390_data7120179
crossref_primary_10_1142_S0218001423500027
Cites_doi 10.1109/ACCESS.2019.2939201
10.1109/TNNLS.2018.2876865
10.1109/TITS.2013.2266661
10.1016/j.imavis.2017.01.010
10.1007/s11432-019-2723-1
10.1109/TPAMI.2014.2343217
10.1109/TMM.2016.2642789
10.1109/TPAMI.2009.122
10.1016/j.isprsjprs.2016.03.014
10.1007/s11263-009-0275-4
10.1007/s11263-018-1140-0
10.1016/j.neucom.2016.08.094
10.1023/B:VISI.0000029664.99615.94
10.2991/ijcis.11.1.72
10.1109/TIP.2016.2554321
10.1109/TPAMI.2014.2366765
10.1109/TPAMI.2018.2844175
10.1109/TCSVT.2017.2736553
10.1109/TITS.2012.2209421
10.1007/s11263-019-01247-4
10.1109/ACCESS.2019.2932731
10.1016/j.cviu.2015.03.015
10.1016/j.neucom.2018.01.092
10.1109/TPAMI.2010.182
10.1007/s11263-014-0748-y
10.1007/s11263-018-1097-z
10.1109/TPAMI.2017.2708709
10.1007/978-3-662-49373-1
10.1016/j.patcog.2015.08.004
10.1109/TPAMI.2015.2389824
10.1109/TPAMI.2011.155
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2020.103910
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
ExternalDocumentID 10_1016_j_imavis_2020_103910
S0262885620300421
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-c511bcebb1c9f25f5e565c125b508a5c897aa276dd5c0c71db22809323291833
IEDL.DBID .~1
ISSN 0262-8856
IngestDate Tue Jul 01 00:48:16 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Fri Feb 23 02:47:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Small object detection
Computer vision
Convolutional neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c511bcebb1c9f25f5e565c125b508a5c897aa276dd5c0c71db22809323291833
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2020_103910
crossref_primary_10_1016_j_imavis_2020_103910
elsevier_sciencedirect_doi_10_1016_j_imavis_2020_103910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bai, Zhang, Ding, Ghanem (bb0150) 2018
Fu, Liu, Ranga, Tyagi, Berg (bb0095) 2017
Zhou, Zhuo, Krähenbühl (bb0445) 2019
Yin, Zuo, Tian, Liu (bb0290) 2016; 25
Wu, Sahoo, Hoi (bb0350) 2019
Girshick, Donahue, Darrell, Malik (bb0070) 2014
Liu, Li, Yan, Wei, Wang, Tang (bb0365) 2017
Sivaraman, Trivedi (bb0295) 2013; 14
Eggert, Zecha, Brehm, Lienhart (bb0395) 2017
Kang, Li, Yan, Zeng, Yang, Xiao, Zhang, Wang, Wang, Wang, Ouyang (bb0005) 2018; 28
Bell, Zitnick, Bala, Girshick (bb0135) 2016
Kim, Kang, Kim (bb0255) 2018
Zhao, Sheng, Wang, Tang, Chen, Cai, Ling (bb0265) 2019
Chen, Li, Xiao, Jin, Yan, Feng (bb0420) 2017
Romberg, Pueyo, Lienhart, Zwol (bb0390) 2011
Yue, Qiang (bb0280) 2019; 127
Liang, Shao, Zhang, Gao (bb0115) 2018
Li, Wei, Liang, Dong, Xu, Feng, Yan (bb0220) 2017; 19
Wang, Xiong, Liu, Luo (bb0260) 2018
Chen, Song, Dong, Huang, Hua, Yan (bb0160) 2015; 37
Newell, Yang, Deng (bb0450) 2016
Zhu, Liang, Zhang, Huang, Li, Hu (bb0410) 2016
Zagoruyko, Lerer, Lin, Pinheiro, Gross, Chintala, Dollár (bb0200) 2016
Lin, Maire, Belongie, Bourdev, Girshick, Hays, Perona, Ramanan, Zitnick, Dollár (bb0035) 2014
Cao, Xie, Yang, Liao, Shi, Wu (bb0100) 2017
Ouyang, Wang, Zeng, Qiu, Luo, Tian, Li, Yang, Wang, Loy, Tang (bb0165) 2015
David, López, Sappa, Thorsten (bb0305) 2010; 32
Law, Deng (bb0440) 2018
Kisantal, Wojna, Murawski, Naruniec, Cho (bb0120) 2019
Ren, He, Girshick, Sun (bb0075) 2015
Dalal, Triggs (bb0355) 2005
Everingham, Gool, Williams, Winn, Zisserman (bb0385) 2010; 88
Kong, Sun, Yao, Liu, Lu, Chen (bb0370) 2017
Zeng, Ouyang, Yang, Yan, Wang (bb0205) 2016
Kong, Yao, Chen, Sun (bb0185) 2016
He, Gkioxari, Dollár, Girshick (bb0015) 2020; 42
Li, Zhou (bb0230) 2017
Mogelmose, Trivedi, Moeslund (bb0300) 2012; 13
Girshick (bb0170) 2015
Zou, Shi, Guo, Ye (bb0345) 2019
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bb0380) 2014
Chen, Liu, Tuzel, Xiao (bb0055) 2016
Singh, Najibi, Davis (bb0130) 2018
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bb0080) 2016
Cao, Wang, Zhang, Zeng, Yan, Feng, Liu, Wu (bb0090) 2019; 7
Wei, Qian (bb0315) 2016; 83
Zhou, Hang, Puig, Xiao, Fidler, Barriuso, Torralba (bb0030) 2016; 127
Zafeiriou, Zhang, Zhang (bb0270) 2015; 138
Le, Tran, Mita, Nguyen (bb0050) 2010
Ye, Doermann (bb0285) 2015; 37
Kay, Carreira, Simonyan, Zhang, Hillier, Vijayanarasimhan, Viola, Green, Back, Natsev (bb0430) 2017
Hu, Gu, Zhang, Dai, Wei (bb0245) 2018
Krishna, Jawahar (bb0060) 2017
Dai, Li, He, Sun (bb0190) 2016
Chen, Gupta (bb0215) 2017
Herath, Harandi, Porikli (bb0025) 2017; 60
Li, Chen, Yu, Deng (bb0240) 2018
Guan, Wu, Zhao (bb0140) 2018; 11
Wojek, Dollar, Schiele, Perona (bb0415) 2012; 34
Xiao, Ehinger, Hays, Torralba, Oliva (bb0405) 2010; 119
Xu, Cui, Lv, Jiang, Niu, Zhou, Wang (bb0105) 2020; 63
Li, Liang, Wei, Xu, Feng, Yan (bb0145) 2017
Zhu, Urtasun, Salakhutdinov, Fidler (bb0180) 2015
Shrivastava, Gupta (bb0210) 2016
Wu, Shen, Wang, Dick, Hengel (bb0020) 2018; 40
Liu, Wang, Shan, Chen (bb0250) 2018
Jiao, Zhang, Liu, Yang, Li, Feng, Qu (bb0340) 2019; 7
Lin, Dollár, Girshick, He, Hariharan, Belongie (bb0110) 2017
Liu, Ouyang, Wang, Fieguth, Chen, Liu, Pietikäinen (bb0335) 2020; 128
Brunetti, Buongiorno, Trotta, Bevilacqua (bb0310) 2018; 300
Agarwal, Terrail, Jurie (bb0325) 2018
Bodla, Singh, Chellappa, Davis (bb0375) 2017
Cai, Fan, Feris, Vasconcelos (bb0195) 2016
Cheng, Han (bb0320) 2016; 117
Geiger, Lenz, Urtasun (bb0400) 2012
Gidaris, Komodakis (bb0175) 2015
Zhang, Wang, Thachan, Chen, Qian (bb0065) 2018
Wang, Gong, Xing, Huang, Huang, Hu (bb0435) 2020
Singh, Davis (bb0125) 2018
Zhao, Zheng, Xu, Wu (bb0330) 2019; 30
He, Zhang, Ren, Sun (bb0155) 2015; 37
Morariu, Ahmed, Santhanam, Harwood, Davis (bb0045) 2014
Zhu, Zhao, Wang, Zhao, Wu, Lu (bb0225) 2017
Wang, Gao, Tao, Yang, Li (bb0275) 2017; 275
Eggert, Brehm, Winschel, Zecha, Lienhart (bb0085) 2017
Kembhavi, Harwood, Davis (bb0040) 2011; 33
Lowe (bb0360) 2004; 60
Zhang, Wen, Bian, Lei (bb0235) 2018
Dai, He, Sun (bb0010) 2016
Deng, Dong, Socher, Li, Li, Li (bb0425) 2009
Cai (10.1016/j.imavis.2020.103910_bb0195) 2016
Mogelmose (10.1016/j.imavis.2020.103910_bb0300) 2012; 13
Zhou (10.1016/j.imavis.2020.103910_bb0445) 2019
Chen (10.1016/j.imavis.2020.103910_bb0420) 2017
Le (10.1016/j.imavis.2020.103910_bb0050) 2010
Agarwal (10.1016/j.imavis.2020.103910_bb0325) 2018
Wu (10.1016/j.imavis.2020.103910_bb0350) 2019
Cheng (10.1016/j.imavis.2020.103910_bb0320) 2016; 117
Jiao (10.1016/j.imavis.2020.103910_bb0340) 2019; 7
Cao (10.1016/j.imavis.2020.103910_bb0100) 2017
Goodfellow (10.1016/j.imavis.2020.103910_bb0380) 2014
Romberg (10.1016/j.imavis.2020.103910_bb0390) 2011
Xiao (10.1016/j.imavis.2020.103910_bb0405) 2010; 119
David (10.1016/j.imavis.2020.103910_bb0305) 2010; 32
Bodla (10.1016/j.imavis.2020.103910_bb0375) 2017
Herath (10.1016/j.imavis.2020.103910_bb0025) 2017; 60
Zeng (10.1016/j.imavis.2020.103910_bb0205) 2016
Eggert (10.1016/j.imavis.2020.103910_bb0395) 2017
Dai (10.1016/j.imavis.2020.103910_bb0190) 2016
Sivaraman (10.1016/j.imavis.2020.103910_bb0295) 2013; 14
Law (10.1016/j.imavis.2020.103910_bb0440) 2018
Singh (10.1016/j.imavis.2020.103910_bb0130) 2018
Zhang (10.1016/j.imavis.2020.103910_bb0235) 2018
Wu (10.1016/j.imavis.2020.103910_bb0020) 2018; 40
Kisantal (10.1016/j.imavis.2020.103910_bb0120) 2019
Zagoruyko (10.1016/j.imavis.2020.103910_bb0200) 2016
Hu (10.1016/j.imavis.2020.103910_bb0245) 2018
Shrivastava (10.1016/j.imavis.2020.103910_bb0210) 2016
Zhao (10.1016/j.imavis.2020.103910_bb0265) 2019
Girshick (10.1016/j.imavis.2020.103910_bb0170) 2015
Li (10.1016/j.imavis.2020.103910_bb0230) 2017
Deng (10.1016/j.imavis.2020.103910_bb0425) 2009
Wang (10.1016/j.imavis.2020.103910_bb0435) 2020
Yin (10.1016/j.imavis.2020.103910_bb0290) 2016; 25
Singh (10.1016/j.imavis.2020.103910_bb0125) 2018
Fu (10.1016/j.imavis.2020.103910_bb0095) 2017
Gidaris (10.1016/j.imavis.2020.103910_bb0175) 2015
Kong (10.1016/j.imavis.2020.103910_bb0370) 2017
Krishna (10.1016/j.imavis.2020.103910_bb0060) 2017
Wang (10.1016/j.imavis.2020.103910_bb0275) 2017; 275
Liu (10.1016/j.imavis.2020.103910_bb0080) 2016
Liu (10.1016/j.imavis.2020.103910_bb0250) 2018
Yue (10.1016/j.imavis.2020.103910_bb0280) 2019; 127
Guan (10.1016/j.imavis.2020.103910_bb0140) 2018; 11
Zhu (10.1016/j.imavis.2020.103910_bb0180) 2015
Chen (10.1016/j.imavis.2020.103910_bb0055) 2016
Ouyang (10.1016/j.imavis.2020.103910_bb0165) 2015
Geiger (10.1016/j.imavis.2020.103910_bb0400) 2012
Li (10.1016/j.imavis.2020.103910_bb0220) 2017; 19
He (10.1016/j.imavis.2020.103910_bb0155) 2015; 37
Chen (10.1016/j.imavis.2020.103910_bb0215) 2017
Dalal (10.1016/j.imavis.2020.103910_bb0355) 2005
Brunetti (10.1016/j.imavis.2020.103910_bb0310) 2018; 300
Wojek (10.1016/j.imavis.2020.103910_bb0415) 2012; 34
Eggert (10.1016/j.imavis.2020.103910_bb0085) 2017
Wang (10.1016/j.imavis.2020.103910_bb0260) 2018
Zhou (10.1016/j.imavis.2020.103910_bb0030) 2016; 127
Liang (10.1016/j.imavis.2020.103910_bb0115) 2018
Ye (10.1016/j.imavis.2020.103910_bb0285) 2015; 37
Zou (10.1016/j.imavis.2020.103910_bb0345) 2019
Kim (10.1016/j.imavis.2020.103910_bb0255) 2018
Kembhavi (10.1016/j.imavis.2020.103910_bb0040) 2011; 33
Zhang (10.1016/j.imavis.2020.103910_bb0065) 2018
Liu (10.1016/j.imavis.2020.103910_bb0365) 2017
Kang (10.1016/j.imavis.2020.103910_bb0005) 2018; 28
Wei (10.1016/j.imavis.2020.103910_bb0315) 2016; 83
Cao (10.1016/j.imavis.2020.103910_bb0090) 2019; 7
Zhao (10.1016/j.imavis.2020.103910_bb0330) 2019; 30
Everingham (10.1016/j.imavis.2020.103910_bb0385) 2010; 88
Chen (10.1016/j.imavis.2020.103910_bb0160) 2015; 37
Lowe (10.1016/j.imavis.2020.103910_bb0360) 2004; 60
Bai (10.1016/j.imavis.2020.103910_bb0150) 2018
Kay (10.1016/j.imavis.2020.103910_bb0430) 2017
Zhu (10.1016/j.imavis.2020.103910_bb0225) 2017
Morariu (10.1016/j.imavis.2020.103910_bb0045) 2014
Lin (10.1016/j.imavis.2020.103910_bb0035) 2014
Girshick (10.1016/j.imavis.2020.103910_bb0070) 2014
Li (10.1016/j.imavis.2020.103910_bb0145) 2017
He (10.1016/j.imavis.2020.103910_bb0015) 2020; 42
Li (10.1016/j.imavis.2020.103910_bb0240) 2018
Zhu (10.1016/j.imavis.2020.103910_bb0410) 2016
Newell (10.1016/j.imavis.2020.103910_bb0450) 2016
Bell (10.1016/j.imavis.2020.103910_bb0135) 2016
Xu (10.1016/j.imavis.2020.103910_bb0105) 2020; 63
Kong (10.1016/j.imavis.2020.103910_bb0185) 2016
Zafeiriou (10.1016/j.imavis.2020.103910_bb0270) 2015; 138
Dai (10.1016/j.imavis.2020.103910_bb0010) 2016
Ren (10.1016/j.imavis.2020.103910_bb0075) 2015
Lin (10.1016/j.imavis.2020.103910_bb0110) 2017
Liu (10.1016/j.imavis.2020.103910_bb0335) 2020; 128
References_xml – volume: 275
  start-page: 50
  year: 2017
  end-page: 65
  ident: bb0275
  article-title: Facial feature point detection: a comprehensive survey
  publication-title: Neurocomputing
– volume: 28
  start-page: 2896
  year: 2018
  end-page: 2907
  ident: bb0005
  article-title: T-CNN: tubelets with convolutional neural networks for object detection from videos
  publication-title: IEEE Trans. Circ. Syst. Video Tech.
– start-page: 1
  year: 2018
  end-page: 6
  ident: bb0260
  article-title: Cascade mask generation framework for fast small object detection
  publication-title: IEEE International Conference on Multimedia and Expo
– start-page: 167
  year: 2017
  end-page: 174
  ident: bb0395
  article-title: Improving small object proposals for company logo detection
  publication-title: International Conference on Multimedia Retrieval
– start-page: 1
  year: 2019
  end-page: 39
  ident: bb0345
  article-title: Object Detection in 20 years: A Survey
– start-page: 21
  year: 2016
  end-page: 37
  ident: bb0080
  article-title: SSD: single shot multibox detector
  publication-title: European Conference on Computer Vision
– volume: 32
  start-page: 1239
  year: 2010
  end-page: 1258
  ident: bb0305
  article-title: Survey of pedestrian detection for advanced driver assistance systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
  ident: bb0230
  article-title: FSSD: Feature Fusion Single Shot Multibox Detector
– year: 2018
  ident: bb0325
  article-title: Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks
– start-page: 9333
  year: 2018
  end-page: 9343
  ident: bb0130
  article-title: SNIPER: efficient multi-scale training
  publication-title: Neural Information Processing Systems
– volume: 34
  start-page: 743
  year: 2012
  end-page: 761
  ident: bb0415
  article-title: Pedestrian detection: an evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 340
  year: 2017
  end-page: 345
  ident: bb0060
  article-title: Improving small object detection
  publication-title: Asian Conference on Pattern Recognition
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: bb0330
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 210
  year: 2018
  end-page: 226
  ident: bb0150
  article-title: SOD-MTGAN: small object detection via multi-task generative adversarial network
  publication-title: European Conference on Computer Vision
– start-page: 554
  year: 2018
  end-page: 564
  ident: bb0115
  article-title: Small object detection using deep feature pyramid networks
  publication-title: Pacific-Rim Conference on Multimedia
– start-page: 2483
  year: 2018
  end-page: 2486
  ident: bb0065
  article-title: Deconv R-CNN for small object detection on remote sensing images
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
– year: 2016
  ident: bb0410
  article-title: Traffic-sign detection and classification in the wild
  publication-title: Computer Vision and Pattern Recognition
– year: 2017
  ident: bb0100
  article-title: Feature-Fused SSD: Fast Detection for Small Objects
– volume: 13
  start-page: 1484
  year: 2012
  end-page: 1497
  ident: bb0300
  article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 564
  year: 2014
  end-page: 571
  ident: bb0045
  article-title: Composite discriminant factor analysis
  publication-title: IEEE Winter Conference on Applications of Computer Vision
– start-page: 483
  year: 2016
  end-page: 499
  ident: bb0450
  article-title: Stacked hourglass networks for human pose estimation
  publication-title: European Conference on Computer Vision
– start-page: 1134
  year: 2015
  end-page: 1142
  ident: bb0175
  article-title: Object detection via a multi-region & semantic segmentation-aware CNN model
  publication-title: International Conference on Computer Vision
– start-page: 1951
  year: 2017
  end-page: 1959
  ident: bb0145
  article-title: Perceptual generative adversarial networks for small object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 580
  year: 2014
  end-page: 587
  ident: bb0070
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 936
  year: 2018
  end-page: 950
  ident: bb0140
  article-title: SCAN: semantic context aware network for accurate small object detection
  publication-title: Int. J. Comput. Int. Sys.
– start-page: 845
  year: 2016
  end-page: 853
  ident: bb0185
  article-title: Hypernet: towards accurate region proposal generation and joint object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4703
  year: 2015
  end-page: 4711
  ident: bb0180
  article-title: segDeepM: exploiting segmentation and context in deep neural networks for object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 328
  year: 2018
  end-page: 343
  ident: bb0255
  article-title: SAN: learning relationship between convolutional features for multi-scale object detection
  publication-title: European Conference on Computer Vision
– start-page: 421
  year: 2017
  end-page: 426
  ident: bb0085
  article-title: A closer look: small object detection in faster R-CNN
  publication-title: International Conference on Multimedia and Expo
– volume: 127
  start-page: 115
  year: 2019
  end-page: 142
  ident: bb0280
  article-title: Facial landmark detection: a literature survey
  publication-title: Int. J. Comput. Vis.
– volume: 7
  start-page: 106838
  year: 2019
  end-page: 106846
  ident: bb0090
  article-title: An improved faster R-CNN for small object detection
  publication-title: IEEE Access
– volume: 128
  start-page: 261
  year: 2020
  end-page: 318
  ident: bb0335
  article-title: Deep learning for generic object detection: a survey
  publication-title: Int. J. Comput. Vis.
– start-page: 5562
  year: 2017
  end-page: 5570
  ident: bb0375
  article-title: Soft-NMS - improving object detection with one line of code
  publication-title: IEEE International Conference on Computer Vision
– start-page: 3578
  year: 2018
  end-page: 3587
  ident: bb0125
  article-title: An analysis of scale invariance in object detection ­ SNIP
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 571
  year: 2017
  end-page: 579
  ident: bb0365
  article-title: Recurrent scale approximation for object detection in CNN
  publication-title: IEEE International Conference on Computer Vision
– year: 2020
  ident: bb0435
  article-title: RDSNet: a new deep architecture for reciprocal object detection and instance segmentation
  publication-title: The Association for the Advance of Artificial Intelligence
– start-page: 4467
  year: 2017
  end-page: 4475
  ident: bb0420
  article-title: Dual path networks
  publication-title: Neural Information Processing Systems
– start-page: 740
  year: 2014
  end-page: 755
  ident: bb0035
  article-title: Microsoft COCO: common objects in context
  publication-title: European Conference on Computer Vision
– volume: 37
  start-page: 13
  year: 2015
  end-page: 27
  ident: bb0160
  article-title: Contextualizing object detection and classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: bb0170
  article-title: Fast R-CNN
  publication-title: IEEE International Conference on Computer Vision
– volume: 7
  start-page: 128837
  year: 2019
  end-page: 128868
  ident: bb0340
  article-title: A survey of deep learning-based object detection
  publication-title: IEEE Access
– year: 2019
  ident: bb0120
  article-title: Augmentation for Small Object Detection
– start-page: 6985
  year: 2018
  end-page: 6994
  ident: bb0250
  article-title: Structure inference net: object detection using scene-level context and instance-level relationships
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 7073
  year: 2018
  end-page: 7080
  ident: bb0240
  article-title: R-FCN
  publication-title: The Association for the Advance of Artificial Intelligence
– start-page: 765
  year: 2018
  end-page: 781
  ident: bb0440
  article-title: CornerNet: detecting objects as paired keypoints
  publication-title: European Conference on Computer Vision
– start-page: 850
  year: 2019
  end-page: 859
  ident: bb0445
  article-title: Bottom-up object detection by grouping extreme and center points
  publication-title: Computer Vision and Pattern Recognition
– volume: 63
  start-page: 120113
  year: 2020
  ident: bb0105
  article-title: MDSSD: multi-scale deconvolutional single shot detector for small objects
  publication-title: SCIENCE CHINA Inf. Sci.
– volume: 37
  start-page: 1480
  year: 2015
  end-page: 1500
  ident: bb0285
  article-title: Text detection and recognition in imagery: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 214
  year: 2016
  end-page: 230
  ident: bb0055
  article-title: R-CNN for small object detection
  publication-title: Asian Conference on Computer Vision
– volume: 14
  start-page: 1773
  year: 2013
  end-page: 1795
  ident: bb0295
  article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 127
  start-page: 302
  year: 2016
  end-page: 321
  ident: bb0030
  article-title: Semantic understanding of scenes through the ADE20K dataset
  publication-title: Int. J. Comput. Vis.
– start-page: 886
  year: 2005
  end-page: 893
  ident: bb0355
  article-title: Histograms of oriented gradients for human detection
  publication-title: Computer Vision and Pattern Recognition
– start-page: 4203
  year: 2018
  end-page: 4212
  ident: bb0235
  article-title: Single-shot refinement neural network for object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bb0360
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 40
  start-page: 1367
  year: 2018
  end-page: 1381
  ident: bb0020
  article-title: Image captioning and visual question answering based on attributes and external knowledge
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 936
  year: 2017
  end-page: 944
  ident: bb0110
  article-title: Feature pyramid networks for object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 354
  year: 2016
  end-page: 370
  ident: bb0195
  article-title: A unified multi-scale deep convolutional neural network for fast object detection
  publication-title: European Conference on Computer Vision
– start-page: 3150
  year: 2016
  end-page: 3158
  ident: bb0010
  article-title: Instance-aware semantic segmentation via multi-task network cascades
  publication-title: Computer Vision and Pattern Recognition
– start-page: 2874
  year: 2016
  end-page: 2883
  ident: bb0135
  article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 19
  start-page: 944
  year: 2017
  end-page: 954
  ident: bb0220
  article-title: Attentive contexts for object detection
  publication-title: IEEE Trans. Multimed.
– volume: 138
  start-page: 1
  year: 2015
  end-page: 24
  ident: bb0270
  article-title: A survey on face detection in the wild: past, present and future
  publication-title: Comput. Vis. Image Und.
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bb0380
  article-title: Generative adversarial nets
  publication-title: Neural Information Processing Systems
– start-page: 2403
  year: 2015
  end-page: 2412
  ident: bb0165
  article-title: DeepID-Net: deformable deep convolutional neural networks for object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 248
  year: 2009
  end-page: 255
  ident: bb0425
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: Computer Vision and Pattern Recognition
– start-page: 4146
  year: 2017
  end-page: 4154
  ident: bb0225
  article-title: CoupleNet: coupling global structure with local parts for object detection
  publication-title: International Conference on Computer Vision
– start-page: 3354
  year: 2012
  end-page: 3361
  ident: bb0400
  article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite
  publication-title: Computer Vision and Pattern Recognition
– volume: 83
  start-page: 115
  year: 2016
  end-page: 123
  ident: bb0315
  article-title: A survey on representation-based classification and detection in hyperspectral remote sensing imagery
  publication-title: Pattern Recogn. Lett.
– start-page: 1
  year: 2019
  end-page: 40
  ident: bb0350
  article-title: Recent Advances in Deep Learning for Object Detection
– volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  ident: bb0385
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 5244
  year: 2017
  end-page: 5252
  ident: bb0370
  article-title: RON: reverse connection with objectness prior networks for object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 119
  start-page: 3
  year: 2010
  end-page: 22
  ident: bb0405
  article-title: SUN database: exploring a large collection of scene categories
  publication-title: Int. J. Comput. Vis.
– volume: 25
  start-page: 2752
  year: 2016
  end-page: 2773
  ident: bb0290
  article-title: Text detection, tracking and recognition in video: a comprehensive survey
  publication-title: IEEE Trans. Image Process.
– start-page: 268
  year: 2010
  end-page: 278
  ident: bb0050
  article-title: Real time traffic sign detection using color and shape-based features
  publication-title: Asian Conference on Intelligent Information and Database Systems
– start-page: 9259
  year: 2019
  end-page: 9266
  ident: bb0265
  article-title: M2Det: a single-shot object detector based on multi-level feature pyramid network
  publication-title: AAAI
– year: 2017
  ident: bb0095
  article-title: DSSD: Deconvolutional Single Shot Detector
– volume: 60
  start-page: 4
  year: 2017
  end-page: 21
  ident: bb0025
  article-title: Going deeper into action recognition: a survey
  publication-title: Image Vis. Comput.
– volume: 117
  start-page: 11
  year: 2016
  end-page: 28
  ident: bb0320
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2017
  ident: bb0430
  article-title: The Kinetics Human Action Video Dataset
– volume: 33
  start-page: 1250
  year: 2011
  end-page: 1265
  ident: bb0040
  article-title: Vehicle detection using partial least squares
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 4106
  year: 2017
  end-page: 4116
  ident: bb0215
  article-title: Spatial memory for context reasoning in object detection
  publication-title: International Conference on Computer Vision
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bb0155
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3588
  year: 2018
  end-page: 3597
  ident: bb0245
  article-title: Relation networks for object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 25
  year: 2011
  end-page: 33
  ident: bb0390
  article-title: Scalable logo recognition in real-world images
  publication-title: International Conference on Multimedia Retrieval
– start-page: 91
  year: 2015
  end-page: 99
  ident: bb0075
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Proces. Syst.
– year: 2016
  ident: bb0200
  article-title: A MultiPath network for object detection
  publication-title: British Machine Vision Conference
– start-page: 330
  year: 2016
  end-page: 348
  ident: bb0210
  article-title: Contextual priming and feedback for faster R-CNN
  publication-title: European Conference on Computer Vision
– start-page: 379
  year: 2016
  end-page: 387
  ident: bb0190
  article-title: R-FCN: object detection via region-based fully convolutional networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 354
  year: 2016
  end-page: 369
  ident: bb0205
  article-title: Gated bi-directional CNN for object detection
  publication-title: European Conference on Computer Vision
– volume: 300
  start-page: 17
  year: 2018
  end-page: 33
  ident: bb0310
  article-title: Computer vision and deep learning techniques for pedestrian detection and tracking: a survey
  publication-title: Neurocomputing
– volume: 42
  start-page: 386
  year: 2020
  end-page: 397
  ident: bb0015
  article-title: Mask R-CNN
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 7073
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0240
  article-title: R-FCN++: towards accurate region-based fully convolutional networks for object detection
– start-page: 354
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0195
  article-title: A unified multi-scale deep convolutional neural network for fast object detection
– start-page: 3578
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0125
  article-title: An analysis of scale invariance in object detection ­ SNIP
– start-page: 2403
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0165
  article-title: DeepID-Net: deformable deep convolutional neural networks for object detection
– start-page: 886
  year: 2005
  ident: 10.1016/j.imavis.2020.103910_bb0355
  article-title: Histograms of oriented gradients for human detection
– start-page: 4146
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0225
  article-title: CoupleNet: coupling global structure with local parts for object detection
– start-page: 214
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0055
  article-title: R-CNN for small object detection
– volume: 7
  start-page: 128837
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0340
  article-title: A survey of deep learning-based object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
– year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0100
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0330
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– start-page: 1440
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0170
  article-title: Fast R-CNN
– start-page: 4203
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0235
  article-title: Single-shot refinement neural network for object detection
– volume: 14
  start-page: 1773
  issue: 4
  year: 2013
  ident: 10.1016/j.imavis.2020.103910_bb0295
  article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2266661
– start-page: 580
  year: 2014
  ident: 10.1016/j.imavis.2020.103910_bb0070
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– start-page: 167
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0395
  article-title: Improving small object proposals for company logo detection
– year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0120
– start-page: 936
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0110
  article-title: Feature pyramid networks for object detection
– start-page: 328
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0255
  article-title: SAN: learning relationship between convolutional features for multi-scale object detection
– volume: 60
  start-page: 4
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0025
  article-title: Going deeper into action recognition: a survey
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.01.010
– start-page: 9259
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0265
  article-title: M2Det: a single-shot object detector based on multi-level feature pyramid network
– start-page: 3588
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0245
  article-title: Relation networks for object detection
– volume: 63
  start-page: 120113
  issue: 2
  year: 2020
  ident: 10.1016/j.imavis.2020.103910_bb0105
  article-title: MDSSD: multi-scale deconvolutional single shot detector for small objects
  publication-title: SCIENCE CHINA Inf. Sci.
  doi: 10.1007/s11432-019-2723-1
– volume: 37
  start-page: 13
  issue: 1
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0160
  article-title: Contextualizing object detection and classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2343217
– start-page: 354
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0205
  article-title: Gated bi-directional CNN for object detection
– start-page: 2672
  year: 2014
  ident: 10.1016/j.imavis.2020.103910_bb0380
  article-title: Generative adversarial nets
– volume: 19
  start-page: 944
  issue: 5
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0220
  article-title: Attentive contexts for object detection
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2016.2642789
– start-page: 4467
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0420
  article-title: Dual path networks
– start-page: 740
  year: 2014
  ident: 10.1016/j.imavis.2020.103910_bb0035
  article-title: Microsoft COCO: common objects in context
– start-page: 2874
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0135
  article-title: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks
– volume: 32
  start-page: 1239
  issue: 7
  year: 2010
  ident: 10.1016/j.imavis.2020.103910_bb0305
  article-title: Survey of pedestrian detection for advanced driver assistance systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.122
– volume: 117
  start-page: 11
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0320
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.014
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.imavis.2020.103910_bb0385
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: 127
  start-page: 302
  issue: 3
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0030
  article-title: Semantic understanding of scenes through the ADE20K dataset
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1140-0
– start-page: 571
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0365
  article-title: Recurrent scale approximation for object detection in CNN
– start-page: 21
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0080
  article-title: SSD: single shot multibox detector
– volume: 275
  start-page: 50
  issue: 1
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0275
  article-title: Facial feature point detection: a comprehensive survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.094
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.imavis.2020.103910_bb0360
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– start-page: 1
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0260
  article-title: Cascade mask generation framework for fast small object detection
– start-page: 268
  year: 2010
  ident: 10.1016/j.imavis.2020.103910_bb0050
  article-title: Real time traffic sign detection using color and shape-based features
– year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0325
– start-page: 3150
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0010
  article-title: Instance-aware semantic segmentation via multi-task network cascades
– start-page: 421
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0085
  article-title: A closer look: small object detection in faster R-CNN
– start-page: 3354
  year: 2012
  ident: 10.1016/j.imavis.2020.103910_bb0400
  article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite
– start-page: 483
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0450
  article-title: Stacked hourglass networks for human pose estimation
– start-page: 765
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0440
  article-title: CornerNet: detecting objects as paired keypoints
– start-page: 1
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0350
– start-page: 554
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0115
  article-title: Small object detection using deep feature pyramid networks
– start-page: 248
  year: 2009
  ident: 10.1016/j.imavis.2020.103910_bb0425
  article-title: ImageNet: a large-scale hierarchical image database
– volume: 11
  start-page: 936
  issue: 1
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0140
  article-title: SCAN: semantic context aware network for accurate small object detection
  publication-title: Int. J. Comput. Int. Sys.
  doi: 10.2991/ijcis.11.1.72
– start-page: 850
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0445
  article-title: Bottom-up object detection by grouping extreme and center points
– year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0095
– volume: 25
  start-page: 2752
  issue: 6
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0290
  article-title: Text detection, tracking and recognition in video: a comprehensive survey
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2554321
– start-page: 25
  year: 2011
  ident: 10.1016/j.imavis.2020.103910_bb0390
  article-title: Scalable logo recognition in real-world images
– volume: 37
  start-page: 1480
  issue: 7
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0285
  article-title: Text detection and recognition in imagery: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2366765
– volume: 42
  start-page: 386
  issue: 2
  year: 2020
  ident: 10.1016/j.imavis.2020.103910_bb0015
  article-title: Mask R-CNN
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2844175
– volume: 28
  start-page: 2896
  issue: 10
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0005
  article-title: T-CNN: tubelets with convolutional neural networks for object detection from videos
  publication-title: IEEE Trans. Circ. Syst. Video Tech.
  doi: 10.1109/TCSVT.2017.2736553
– start-page: 4106
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0215
  article-title: Spatial memory for context reasoning in object detection
– start-page: 2483
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0065
  article-title: Deconv R-CNN for small object detection on remote sensing images
– start-page: 330
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0210
  article-title: Contextual priming and feedback for faster R-CNN
– volume: 13
  start-page: 1484
  issue: 4
  year: 2012
  ident: 10.1016/j.imavis.2020.103910_bb0300
  article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2209421
– volume: 128
  start-page: 261
  issue: 2
  year: 2020
  ident: 10.1016/j.imavis.2020.103910_bb0335
  article-title: Deep learning for generic object detection: a survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01247-4
– volume: 7
  start-page: 106838
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0090
  article-title: An improved faster R-CNN for small object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932731
– start-page: 91
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0075
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 138
  start-page: 1
  issue: 9
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0270
  article-title: A survey on face detection in the wild: past, present and future
  publication-title: Comput. Vis. Image Und.
  doi: 10.1016/j.cviu.2015.03.015
– start-page: 6985
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0250
  article-title: Structure inference net: object detection using scene-level context and instance-level relationships
– start-page: 5244
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0370
  article-title: RON: reverse connection with objectness prior networks for object detection
– year: 2020
  ident: 10.1016/j.imavis.2020.103910_bb0435
  article-title: RDSNet: a new deep architecture for reciprocal object detection and instance segmentation
– volume: 300
  start-page: 17
  issue: 1
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0310
  article-title: Computer vision and deep learning techniques for pedestrian detection and tracking: a survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.092
– volume: 33
  start-page: 1250
  issue: 6
  year: 2011
  ident: 10.1016/j.imavis.2020.103910_bb0040
  article-title: Vehicle detection using partial least squares
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.182
– year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0430
– volume: 119
  start-page: 3
  issue: 1
  year: 2010
  ident: 10.1016/j.imavis.2020.103910_bb0405
  article-title: SUN database: exploring a large collection of scene categories
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0748-y
– start-page: 845
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0185
  article-title: Hypernet: towards accurate region proposal generation and joint object detection
– start-page: 1134
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0175
  article-title: Object detection via a multi-region & semantic segmentation-aware CNN model
– year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0200
  article-title: A MultiPath network for object detection
– start-page: 1
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0345
– start-page: 379
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0190
  article-title: R-FCN: object detection via region-based fully convolutional networks
– volume: 127
  start-page: 115
  issue: 2
  year: 2019
  ident: 10.1016/j.imavis.2020.103910_bb0280
  article-title: Facial landmark detection: a literature survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1097-z
– year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0230
– start-page: 340
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0060
  article-title: Improving small object detection
– start-page: 4703
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0180
  article-title: segDeepM: exploiting segmentation and context in deep neural networks for object detection
– volume: 40
  start-page: 1367
  issue: 6
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0020
  article-title: Image captioning and visual question answering based on attributes and external knowledge
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2708709
– start-page: 1951
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0145
  article-title: Perceptual generative adversarial networks for small object detection
– year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0410
  article-title: Traffic-sign detection and classification in the wild
  doi: 10.1007/978-3-662-49373-1
– start-page: 564
  year: 2014
  ident: 10.1016/j.imavis.2020.103910_bb0045
  article-title: Composite discriminant factor analysis
– start-page: 9333
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0130
  article-title: SNIPER: efficient multi-scale training
– start-page: 5562
  year: 2017
  ident: 10.1016/j.imavis.2020.103910_bb0375
  article-title: Soft-NMS - improving object detection with one line of code
– start-page: 210
  year: 2018
  ident: 10.1016/j.imavis.2020.103910_bb0150
  article-title: SOD-MTGAN: small object detection via multi-task generative adversarial network
– volume: 83
  start-page: 115
  year: 2016
  ident: 10.1016/j.imavis.2020.103910_bb0315
  article-title: A survey on representation-based classification and detection in hyperspectral remote sensing imagery
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patcog.2015.08.004
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.imavis.2020.103910_bb0155
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 34
  start-page: 743
  issue: 4
  year: 2012
  ident: 10.1016/j.imavis.2020.103910_bb0415
  article-title: Pedestrian detection: an evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.155
SSID ssj0007079
Score 2.6793082
SecondaryResourceType review_article
Snippet Small object detection is a challenging problem in computer vision. It has been widely applied in defense military, transportation, industry, etc. To...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103910
SubjectTerms Computer vision
Convolutional neural networks
Deep learning
Small object detection
Title Recent advances in small object detection based on deep learning: A review
URI https://dx.doi.org/10.1016/j.imavis.2020.103910
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL2UutGFj6pYH2UWbmOTTJ7uSrHUit1Yobswr0ikpsXGrd_uncxEK4iCu0yYgXAzc-_J5JwzAJeC51FKZeAgts6dIFHcYdh2KPOkFwuV-0zvQ95Po_FjMJmH8xYMGy2MplXa3G9yep2t7Z2-jWZ_VRT9B_x68JME67erXaNqMbl2r8M5ffX-RfPQDnBmnwVXPvZu5HM1x6t40VJ-_Er0a_V5qnW0P5WnjZIz2oddixXJwDzOAbRU2YE9ixuJXZXrDuxsmAoewgSRIFYSYv_ur0lRkvULWyzIkutNFyJVVfOvSqJLmCR4IZVaEXuAxNM1GRCjaDmC2ehmNhw79sQERyD0rxyB8IkLxbkn0hyDHyrEawIxDEccxkKRpDFjfhxJGQpXxJ7k2g0HIRz1U1zb9Bja5bJUJ0CiwPNFHFOuCZvCpcxliZK-8hKWUKW8LtAmTpmwbuL6UItF1tDGnjMT3UxHNzPR7YLzOWpl3DT-6B83ryD7NisyTPi_jjz998gz2NYtQ2o8h3b1-qYuEHhUvFfPrB5sDW7vxtMPTK_Wuw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke1APPqpife7Ba2jeD2-lWNLnxQq9hX1FIm1abPz_ziabUkEUvOU1ECa7M99O5vsW4JGz1I8c4RqIrVPDDSUzKJ4bDrWEFXCZ2lTVIaczP351Rwtv0YB-zYVRbZU69lcxvYzW-kpXe7O7ybLuC64e7DDE_G0q1ShFJm8pdSq3Ca3ecBzPdgFZicBVpRac_GhQM-jKNq9spdj8uFC0SwJ6pKi0P2WovawzOIVjDRdJr3qjM2jIvA0nGjoSPTG3bTja0xU8hxGCQUwmRP_g35IsJ9sVXS7Jmqm6CxGyKFuwcqKymCB4IKTcEL2HxNsT6ZGK1HIB88HzvB8betMEgyP6LwyOCIpxyZjFoxT970mEbBxhDEMoRj0eRgGlduAL4XGTB5ZgShAHUZxjRzi9nUto5utcXgHxXcvmQeAw1bPJTYeaNJTCllZIQ0dKqwNO7aeEa0Fxta_FMqk7x96TyruJ8m5SebcDxs5qUwlq_PF8UH-C5NvASDDm_2p5_W_LBziI59NJMhnOxjdwqO5UPY630Cw-PuUd4pCC3etx9gW6ntls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+small+object+detection+based+on+deep+learning%3A+A+review&rft.jtitle=Image+and+vision+computing&rft.au=Tong%2C+Kang&rft.au=Wu%2C+Yiquan&rft.au=Zhou%2C+Fei&rft.date=2020-05-01&rft.issn=0262-8856&rft.volume=97&rft.spage=103910&rft_id=info:doi/10.1016%2Fj.imavis.2020.103910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2020_103910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon