Multimodal parallel attention network for medical image segmentation

Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung, liver, heart and other diseases. In this paper, we propose a novel multimodal parallel attention network, called MPA-Net, for medical image se...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 147; p. 105069
Main Authors Wang, Zhibing, Wang, Wenmin, Li, Nannan, Zhang, Shenyong, Chen, Qi, Jiang, Zhe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2024
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
DOI10.1016/j.imavis.2024.105069

Cover

Loading…
Abstract Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung, liver, heart and other diseases. In this paper, we propose a novel multimodal parallel attention network, called MPA-Net, for medical image segmentation. MPA-Net is divided into two parts. The first part extracts more high-dimensional features by improved network structure, which contains the skip connection, the output of the multimodal parallel attention and the output of the previous upsampling layer. The second part incorporates a multimodal parallel attention mechanism, encompassing feature parallel attention, spatial parallel attention and channel parallel attention. This mechanism facilitates the effective fusion of high-dimensional and low-dimensional features, leading to enhanced context information. Experimental results on Kagglelung dataset, Liver dataset, Cell dataset, Drive dataset and Kvasir-SEG dataset show that MPA-Net has achieved better segmentation performance than that of other baseline methods, on lung, liver, cell contour, retinal vessel and polyps. •Architecture integrates multimodal parallel attention for segmentation.•Network employs feature, spatial, and channel parallel attention.•Radiologists aided in precise lesion localization across organs.•Identification rate of lesions improved, aiding disease diagnosis.
AbstractList Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung, liver, heart and other diseases. In this paper, we propose a novel multimodal parallel attention network, called MPA-Net, for medical image segmentation. MPA-Net is divided into two parts. The first part extracts more high-dimensional features by improved network structure, which contains the skip connection, the output of the multimodal parallel attention and the output of the previous upsampling layer. The second part incorporates a multimodal parallel attention mechanism, encompassing feature parallel attention, spatial parallel attention and channel parallel attention. This mechanism facilitates the effective fusion of high-dimensional and low-dimensional features, leading to enhanced context information. Experimental results on Kagglelung dataset, Liver dataset, Cell dataset, Drive dataset and Kvasir-SEG dataset show that MPA-Net has achieved better segmentation performance than that of other baseline methods, on lung, liver, cell contour, retinal vessel and polyps. •Architecture integrates multimodal parallel attention for segmentation.•Network employs feature, spatial, and channel parallel attention.•Radiologists aided in precise lesion localization across organs.•Identification rate of lesions improved, aiding disease diagnosis.
ArticleNumber 105069
Author Wang, Wenmin
Chen, Qi
Jiang, Zhe
Wang, Zhibing
Li, Nannan
Zhang, Shenyong
Author_xml – sequence: 1
  givenname: Zhibing
  surname: Wang
  fullname: Wang, Zhibing
  organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China
– sequence: 2
  givenname: Wenmin
  surname: Wang
  fullname: Wang, Wenmin
  email: wmwang@must.edu.mo
  organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China
– sequence: 3
  givenname: Nannan
  surname: Li
  fullname: Li, Nannan
  organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China
– sequence: 4
  givenname: Shenyong
  surname: Zhang
  fullname: Zhang, Shenyong
  organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China
– sequence: 5
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
  organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China
– sequence: 6
  givenname: Zhe
  surname: Jiang
  fullname: Jiang, Zhe
  organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China
BookMark eNqFkEFOwzAQRS1UJNrCDVjkAi3jOHESFkioUEAqYgNry7EnlYsTV7Yp4va4CisWsBmP7P__jN-MTAY3ICGXFJYUKL_aLU0vDyYsc8iLdFUCb07IlNZVvqgpqydkCjlPfV3yMzILYQcAFVTNlNw9f9hoeqelzfbSS2vRZjJGHKJxQzZg_HT-Peucz3rURiVZmrXFLOC2TyJ5lJ2T007agBc_55y8re9fV4-LzcvD0-p2s1AMeEy1znkrsSvKRgNWbUs1UFmVtCnKgnct41yzTqUHjnVJK8CSdaA0sratm4LNSTHmKu9C8NiJvU_b-C9BQRxJiJ0YSYgjCTGSSLbrXzZlxsWjl8b-Z74ZzZg-djDoRVAGB5VgeFRRaGf-DvgGCtd_4g
CitedBy_id crossref_primary_10_1016_j_imavis_2024_105277
crossref_primary_10_1016_j_imavis_2024_105213
crossref_primary_10_1016_j_imavis_2024_105356
crossref_primary_10_1016_j_imavis_2025_105445
crossref_primary_10_1007_s11227_024_06470_6
crossref_primary_10_1088_1361_6501_ad876d
crossref_primary_10_1016_j_imavis_2024_105407
Cites_doi 10.1016/j.compmedimag.2023.102259
10.1109/TMI.2022.3228285
10.1016/j.artmed.2022.102476
10.1109/JBHI.2021.3049304
10.1109/JBHI.2020.2986926
10.1016/j.compag.2023.108186
10.1109/TMI.2023.3238114
10.1016/j.media.2016.10.004
10.9781/ijimai.2023.01.009
10.1016/j.bspc.2021.103077
10.1016/j.neunet.2019.08.025
10.1109/TMI.2022.3230750
10.1016/j.compbiomed.2023.106834
10.1109/TMI.2022.3226226
10.1016/j.media.2022.102395
10.1371/journal.pbio.1000502
10.1002/mp.12480
10.1109/TMI.2022.3161829
10.1109/TMI.2016.2546227
10.1109/TMI.2022.3226268
10.1016/j.patcog.2022.109228
10.1016/j.cmpb.2020.105395
10.1109/TMI.2023.3237183
10.1016/j.compbiomed.2024.108265
10.1109/TMI.2022.3230943
10.1109/TMI.2004.825627
10.1016/j.compmedimag.2018.03.001
10.1109/TMI.2019.2903562
10.1016/j.media.2022.102680
10.1016/j.compmedimag.2022.102159
10.1007/s00521-022-07859-1
10.1109/TMI.2019.2959609
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2024.105069
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
ExternalDocumentID 10_1016_j_imavis_2024_105069
S0262885624001732
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-c3826baef459d0e7bb1d01a75194546fb366d3fc7bb6e85170e53f0cde3bb8943
IEDL.DBID AIKHN
ISSN 0262-8856
IngestDate Tue Jul 01 00:48:18 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Tue Jun 18 08:50:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatial parallel
Multimodal parallel attention
Feature parallel
Channel parallel
Medical image segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c3826baef459d0e7bb1d01a75194546fb366d3fc7bb6e85170e53f0cde3bb8943
ParticipantIDs crossref_primary_10_1016_j_imavis_2024_105069
crossref_citationtrail_10_1016_j_imavis_2024_105069
elsevier_sciencedirect_doi_10_1016_j_imavis_2024_105069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gu, Cheng, Fu, Zhou, Hao, Zhao, Zhang, Gao, Liu (bb0110) 2019; 38
Zhang, Jiao, Liao, Li, Zhang (bb0190) 2023; 138
Rasti, Biglari, Rezapourian, Yang, Farsiu (bb0070) 2023; 42
Ni, Bian, Zhou, Hou, Xie, Wang, Zhou, Li, Li (bb0220) 2019
Fang, Wang, Cheng, Gao, Pan, Cao, Zheng, Zhang (bb0240) 2023; 42
Zhang, Wu, Coleman, Kerr (bb0210) 2020; 192
Luo, Jiang, Wang (bb0010) 2023; 103
Jha, Smedsrud, Riegler, Johansen, De Lange, Halvorsen, Johansen (bb0215) 2019
Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (bb0115) 2021
Bilic, Christ, Li, Vorontsov, Ben-Cohen, Kaissis, Szeskin, Jacobs, Mamani, Chartrand (bb0255) 2023; 84
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0235) 2017; vol. 30
Huang, Deng, Li, Yuan, Fu (bb0020) 2023; 42
Zhou, Siddiquee, Tajbakhsh, Liang (bb0105) 2019; 39
Shin, Shen, Summers (bb0005) 2023; 108
Mader (bb0250)
Maji, Sigedar, Singh (bb0230) 2022; 71
Zhou, Takayama, Wang, Hara, Fujita (bb0090) 2017; 44
Wang, Chen, Ji, Fan, Li (bb0120) 2022; 78
Zhao, Balakrishnan, Durand, Guttag, Dalca (bb0025) 2019
Tang, Yang, Li, Roth, Landman, Xu, Nath, Hatamizadeh (bb0050) 2022
Liu, Feng, Sun, Li, Ru, Xu (bb0165) 2023; 213
Tang, Liu, Sun, Yan, Xie (bb0170) 2021
Sinha, Dolz (bb0225) 2020; 25
Roth, Oda, Zhou, Shimizu, Yang, Hayashi, Oda, Fujiwara, Misawa, Mori (bb0095) 2018; 66
Fitzgerald, Matuszewski (bb0045) 2023
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bb0135) 2017; 36
Zhu, Yin, Meijering (bb0075) 2023; 42
Ronneberger, Fischer, Brox (bb0100) 2015
Jha, Smedsrud, Riegler, Halvorsen, de Lange, Johansen, Johansen (bb0270) 2020
Li, Zhang, Gong, Qiu, Zhang (bb0180) 2023; 158
Myronenko (bb0200) 2019
Xian, Li, Tu, Zhu, Zhang, Liu, Li, Yang (bb0065) 2023; 42
Ibtehaz, Rahman (bb0035) 2020; 121
Jiang, Sun, Guo, Yan, Lu, Xu (bb0185) 2023
Jha, Smedsrud, Johansen, de Lange, Johansen, Halvorsen, Riegler (bb0040) 2021; 25
Peng, Myronenko, Hatamizadeh, Nath, Siddiquee, He, Xu, Chellappa, Yang (bb0175) 2022
Cardona, Saalfeld, Preibisch, Schmid, Cheng, Pulokas, Tomancak, Hartenstein (bb0260) 2010; 8
Xie, Zhang, Shen, Xia (bb0245) 2021
Chen, Li, Dai, Zhang, Yap (bb0280) 2023; 42
Hatamizadeh, Tang, Nath, Yang, Myronenko, Landman, Roth, Xu (bb0145) 2022
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bb0125) 2016
Milletari, Navab, Ahmadi (bb0130) 2016
Yuan, Zhang, Fang (bb0055) 2023; 136
Zhang, Vinodhini, Muthu (bb0160) 2023; 8
Fan, Zhou, Jiang, Xin, Hou (bb0290) 2024; 172
Jha, Riegler, Johansen, Halvorsen, Johansen (bb0205) 2020
Staal, Abràmoff, Niemeijer, Viergever, Van Ginneken (bb0265) 2004; 23
Wang, Chen, Ding, Yu, Zha, Li (bb0140) 2021
Zhu, Xu, Huang, Wang, Xu, Shao, Zhang (bb0030) 2023; 42
Taleb, Loetzsch, Danz, Severin, Gaertner, Bergner, Lippert (bb0195) 2020; 33
Liskowski, Krawiec (bb0275) 2016; 35
Wu, Liao, Chen, Wang, Chen, Gao, Wu (bb0060) 2023; 35
Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (bb0150) 2022
Long, Shelhamer, Darrell (bb0080) 2015
Zhao, Jia, Pang, Lv, Tian, Zhang, Sun, Lu (bb0285) 2023
You, Zhou, Zhao, Staib, Duncan (bb0015) 2022; 41
Hassan, Saleh, Abdel-Nasser, Omer, Puig (bb0155) 2021; 6
Drozdzal, Vorontsov, Chartrand, Kadoury, Pal (bb0085) 2016
Zhao (10.1016/j.imavis.2024.105069_bb0025) 2019
Hassan (10.1016/j.imavis.2024.105069_bb0155) 2021; 6
Çiçek (10.1016/j.imavis.2024.105069_bb0125) 2016
Zhu (10.1016/j.imavis.2024.105069_bb0030) 2023; 42
Zhu (10.1016/j.imavis.2024.105069_bb0075) 2023; 42
Wang (10.1016/j.imavis.2024.105069_bb0140) 2021
Jiang (10.1016/j.imavis.2024.105069_bb0185) 2023
Zhou (10.1016/j.imavis.2024.105069_bb0090) 2017; 44
Zhou (10.1016/j.imavis.2024.105069_bb0105) 2019; 39
Tang (10.1016/j.imavis.2024.105069_bb0170) 2021
Luo (10.1016/j.imavis.2024.105069_bb0010) 2023; 103
Mader (10.1016/j.imavis.2024.105069_bb0250)
Zhao (10.1016/j.imavis.2024.105069_bb0285) 2023
Fitzgerald (10.1016/j.imavis.2024.105069_bb0045) 2023
Liskowski (10.1016/j.imavis.2024.105069_bb0275) 2016; 35
Myronenko (10.1016/j.imavis.2024.105069_bb0200) 2019
Staal (10.1016/j.imavis.2024.105069_bb0265) 2004; 23
Huang (10.1016/j.imavis.2024.105069_bb0020) 2023; 42
Shin (10.1016/j.imavis.2024.105069_bb0005) 2023; 108
Ibtehaz (10.1016/j.imavis.2024.105069_bb0035) 2020; 121
Vaswani (10.1016/j.imavis.2024.105069_bb0235) 2017; vol. 30
Chen (10.1016/j.imavis.2024.105069_bb0280) 2023; 42
Hatamizadeh (10.1016/j.imavis.2024.105069_bb0145) 2022
Yuan (10.1016/j.imavis.2024.105069_bb0055) 2023; 136
Ronneberger (10.1016/j.imavis.2024.105069_bb0100) 2015
Zhang (10.1016/j.imavis.2024.105069_bb0210) 2020; 192
Jha (10.1016/j.imavis.2024.105069_bb0040) 2021; 25
Gu (10.1016/j.imavis.2024.105069_bb0110) 2019; 38
Cao (10.1016/j.imavis.2024.105069_bb0150) 2022
Xian (10.1016/j.imavis.2024.105069_bb0065) 2023; 42
Rasti (10.1016/j.imavis.2024.105069_bb0070) 2023; 42
Fang (10.1016/j.imavis.2024.105069_bb0240) 2023; 42
Sinha (10.1016/j.imavis.2024.105069_bb0225) 2020; 25
Maji (10.1016/j.imavis.2024.105069_bb0230) 2022; 71
Liu (10.1016/j.imavis.2024.105069_bb0165) 2023; 213
Taleb (10.1016/j.imavis.2024.105069_bb0195) 2020; 33
Wu (10.1016/j.imavis.2024.105069_bb0060) 2023; 35
Milletari (10.1016/j.imavis.2024.105069_bb0130) 2016
Jha (10.1016/j.imavis.2024.105069_bb0215) 2019
Li (10.1016/j.imavis.2024.105069_bb0180) 2023; 158
Zhang (10.1016/j.imavis.2024.105069_bb0160) 2023; 8
Zhang (10.1016/j.imavis.2024.105069_bb0190) 2023; 138
Peng (10.1016/j.imavis.2024.105069_bb0175) 2022
You (10.1016/j.imavis.2024.105069_bb0015) 2022; 41
Cardona (10.1016/j.imavis.2024.105069_bb0260) 2010; 8
Fan (10.1016/j.imavis.2024.105069_bb0290) 2024; 172
Tang (10.1016/j.imavis.2024.105069_bb0050) 2022
Roth (10.1016/j.imavis.2024.105069_bb0095) 2018; 66
Kamnitsas (10.1016/j.imavis.2024.105069_bb0135) 2017; 36
Jha (10.1016/j.imavis.2024.105069_bb0205) 2020
Long (10.1016/j.imavis.2024.105069_bb0080) 2015
Jha (10.1016/j.imavis.2024.105069_bb0270) 2020
Wang (10.1016/j.imavis.2024.105069_bb0120) 2022; 78
Ni (10.1016/j.imavis.2024.105069_bb0220) 2019
Drozdzal (10.1016/j.imavis.2024.105069_bb0085) 2016
Chen (10.1016/j.imavis.2024.105069_bb0115) 2021
Xie (10.1016/j.imavis.2024.105069_bb0245) 2021
Bilic (10.1016/j.imavis.2024.105069_bb0255) 2023; 84
References_xml – start-page: 558
  year: 2020
  end-page: 564
  ident: bb0205
  article-title: Doubleu-net: A deep convolutional neural network for medical image segmentation
  publication-title: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)
– volume: 35
  start-page: 2369
  year: 2016
  end-page: 2380
  ident: bb0275
  article-title: Segmenting retinal blood vessels with deep neural networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 69
  year: 2023
  end-page: 80
  ident: bb0160
  article-title: Deep learning assisted medical insurance data analytics with multimedia system
  publication-title: IJIMAI
– start-page: 3918
  year: 2021
  end-page: 3928
  ident: bb0170
  article-title: Recurrent mask refinement for few-shot medical image segmentation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 179
  year: 2016
  end-page: 187
  ident: bb0085
  article-title: The importance of skip connections in biomedical image segmentation
  publication-title: International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
– volume: 44
  start-page: 5221
  year: 2017
  end-page: 5233
  ident: bb0090
  article-title: Deep learning of the sectional appearances of 3d ct images for anatomical structure segmentation based on an fcn voting method
  publication-title: Med. Phys.
– volume: 6
  start-page: 35
  year: 2021
  end-page: 46
  ident: bb0155
  article-title: Promising deep semantic nuclei segmentation models for multi-institutional histopathology images of different organs
  publication-title: Int. J. Interact. Multim. Artif. Intell.
– volume: 192
  year: 2020
  ident: bb0210
  article-title: Dense-inception u-net for medical image segmentation
  publication-title: Comput. Methods Prog. Biomed.
– volume: 103
  year: 2023
  ident: bb0010
  article-title: C2ba-unet: a context-coordination multi-atlas boundary-aware unet-like method for pet/ct images based tumor segmentation
  publication-title: Comput. Med. Imaging Graph.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bb0080
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 42
  start-page: 1472
  year: 2023
  end-page: 1483
  ident: bb0030
  article-title: Deep multi-modal discriminative and interpretability network for alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  year: 2010
  ident: bb0260
  article-title: An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy
  publication-title: PLoS Biol.
– start-page: 565
  year: 2016
  end-page: 571
  ident: bb0130
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– start-page: 20741
  year: 2022
  end-page: 20751
  ident: bb0175
  article-title: Hypersegnas: Bridging one-shot neural architecture search with 3d medical image segmentation using hypernet
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 18158
  year: 2020
  end-page: 18172
  ident: bb0195
  article-title: 3d self-supervised methods for medical imaging
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 311
  year: 2019
  end-page: 320
  ident: bb0200
  article-title: 3d mri brain tumor segmentation using autoencoder regularization
  publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4
– start-page: 8543
  year: 2019
  end-page: 8553
  ident: bb0025
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 213
  year: 2023
  ident: bb0165
  article-title: Yolactfusion: an instance segmentation method for rgb-nir multimodal image fusion based on an attention mechanism
  publication-title: Comput. Electron. Agric.
– year: 2023
  ident: bb0285
  article-title: m
– volume: 42
  start-page: 1278
  year: 2023
  end-page: 1288
  ident: bb0075
  article-title: A compound loss function with shape aware weight map for microscopy cell segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 108
  year: 2023
  ident: bb0005
  article-title: Improving segmentation and detection of lesions in ct scans using intensity distribution supervision
  publication-title: Comput. Med. Imaging Graph.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bb0100
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18
– start-page: 225
  year: 2019
  end-page: 2255
  ident: bb0215
  article-title: Resunet
  publication-title: 2019 IEEE International Symposium on Multimedia (ISM)
– start-page: 171
  year: 2021
  end-page: 180
  ident: bb0245
  article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24
– volume: 78
  year: 2022
  ident: bb0120
  article-title: Boundary-aware context neural network for medical image segmentation
  publication-title: Med. Image Anal.
– volume: 39
  start-page: 1856
  year: 2019
  end-page: 1867
  ident: bb0105
  article-title: Unet
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: bb0115
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
– start-page: 574
  year: 2022
  end-page: 584
  ident: bb0145
  article-title: Unetr: Transformers for 3d medical image segmentation
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– volume: 42
  start-page: 1289
  year: 2023
  end-page: 1300
  ident: bb0280
  article-title: Aau-net: an adaptive attention u-net for breast lesions segmentation in ultrasound images
  publication-title: IEEE Trans. Med. Imaging
– volume: 25
  start-page: 2029
  year: 2021
  end-page: 2040
  ident: bb0040
  article-title: A comprehensive study on colorectal polyp segmentation with resunet
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 71
  year: 2022
  ident: bb0230
  article-title: Attention res-unet with guided decoder for semantic segmentation of brain tumors
  publication-title: Biomed. Signal. Process. Contr.
– start-page: 139
  year: 2019
  end-page: 149
  ident: bb0220
  article-title: Raunet: Residual attention u-net for semantic segmentation of cataract surgical instruments
  publication-title: International Conference on Neural Information Processing
– volume: 35
  start-page: 1931
  year: 2023
  end-page: 1944
  ident: bb0060
  article-title: D-former: a u-shaped dilated transformer for 3d medical image segmentation
  publication-title: Neural Comput. & Applic.
– ident: bb0250
  article-title: Kagglelung dataset
– year: 2023
  ident: bb0045
  article-title: Fcb-swinv2 transformer for polyp segmentation
– volume: 172
  start-page: 108265
  year: 2024
  ident: bb0290
  article-title: Csap-unet: convolution and self-attention paralleling network for medical image segmentation with edge enhancement
  publication-title: Comput. Biol. Med.
– start-page: 20730
  year: 2022
  end-page: 20740
  ident: bb0050
  article-title: Self-supervised pre-training of swin transformers for 3d medical image analysis
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bb0135
  article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– start-page: 109
  year: 2021
  end-page: 119
  ident: bb0140
  article-title: Transbts: Multimodal brain tumor segmentation using transformer
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24
– volume: 84
  year: 2023
  ident: bb0255
  article-title: The liver tumor segmentation benchmark (lits)
  publication-title: Med. Image Anal.
– volume: 25
  start-page: 121
  year: 2020
  end-page: 130
  ident: bb0225
  article-title: Multi-scale self-guided attention for medical image segmentation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 42
  start-page: 1484
  year: 2023
  end-page: 1494
  ident: bb0020
  article-title: Missformer: an effective transformer for 2d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– year: 2023
  ident: bb0185
  article-title: Anatomical invariance modeling and semantic alignment for self-supervised learning in 3d medical image segmentation
– volume: 23
  start-page: 501
  year: 2004
  end-page: 509
  ident: bb0265
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  ident: bb0035
  article-title: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
– start-page: 205
  year: 2022
  end-page: 218
  ident: bb0150
  article-title: Swin-unet: Unet-like pure transformer for medical image segmentation
  publication-title: European Conference on Computer Vision
– start-page: 424
  year: 2016
  end-page: 432
  ident: bb0125
  article-title: 3d u-net: learning dense volumetric segmentation from sparse annotation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part II 19
– volume: 66
  start-page: 90
  year: 2018
  end-page: 99
  ident: bb0095
  article-title: An application of cascaded 3d fully convolutional networks for medical image segmentation
  publication-title: Comput. Med. Imaging Graph.
– volume: 42
  start-page: 1413
  year: 2023
  end-page: 1423
  ident: bb0070
  article-title: Retifluidnet: a self-adaptive and multi-attention deep convolutional network for retinal oct fluid segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 42
  start-page: 1774
  year: 2023
  end-page: 1785
  ident: bb0065
  article-title: Unsupervised cross-modality adaptation via dual structural-oriented guidance for 3d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 158
  year: 2023
  ident: bb0180
  article-title: Mfa-net: multiple feature association network for medical image segmentation
  publication-title: Comput. Biol. Med.
– volume: 42
  start-page: 1720
  year: 2023
  end-page: 1734
  ident: bb0240
  article-title: Reliable mutual distillation for medical image segmentation under imperfect annotations
  publication-title: IEEE Trans. Med. Imaging
– volume: 138
  year: 2023
  ident: bb0190
  article-title: Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation
  publication-title: Artif. Intell. Med.
– start-page: 451
  year: 2020
  end-page: 462
  ident: bb0270
  article-title: Kvasir-seg: A segmented polyp dataset
  publication-title: MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26
– volume: 41
  start-page: 2228
  year: 2022
  end-page: 2237
  ident: bb0015
  article-title: Simcvd: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 136
  year: 2023
  ident: bb0055
  article-title: An effective cnn and transformer complementary network for medical image segmentation
  publication-title: Pattern Recogn.
– volume: vol. 30
  year: 2017
  ident: bb0235
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 38
  start-page: 2281
  year: 2019
  end-page: 2292
  ident: bb0110
  article-title: Ce-net: context encoder network for 2d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 565
  year: 2016
  ident: 10.1016/j.imavis.2024.105069_bb0130
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0045
– volume: 108
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0005
  article-title: Improving segmentation and detection of lesions in ct scans using intensity distribution supervision
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2023.102259
– start-page: 225
  year: 2019
  ident: 10.1016/j.imavis.2024.105069_bb0215
  article-title: Resunet++: An advanced architecture for medical image segmentation
– volume: 42
  start-page: 1413
  issue: 5
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0070
  article-title: Retifluidnet: a self-adaptive and multi-attention deep convolutional network for retinal oct fluid segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3228285
– start-page: 424
  year: 2016
  ident: 10.1016/j.imavis.2024.105069_bb0125
  article-title: 3d u-net: learning dense volumetric segmentation from sparse annotation
– volume: 138
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0190
  article-title: Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102476
– start-page: 171
  year: 2021
  ident: 10.1016/j.imavis.2024.105069_bb0245
  article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation
– volume: 25
  start-page: 2029
  issue: 6
  year: 2021
  ident: 10.1016/j.imavis.2024.105069_bb0040
  article-title: A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3049304
– start-page: 234
  year: 2015
  ident: 10.1016/j.imavis.2024.105069_bb0100
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 25
  start-page: 121
  issue: 1
  year: 2020
  ident: 10.1016/j.imavis.2024.105069_bb0225
  article-title: Multi-scale self-guided attention for medical image segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2986926
– start-page: 20730
  year: 2022
  ident: 10.1016/j.imavis.2024.105069_bb0050
  article-title: Self-supervised pre-training of swin transformers for 3d medical image analysis
– start-page: 3918
  year: 2021
  ident: 10.1016/j.imavis.2024.105069_bb0170
  article-title: Recurrent mask refinement for few-shot medical image segmentation
– start-page: 311
  year: 2019
  ident: 10.1016/j.imavis.2024.105069_bb0200
  article-title: 3d mri brain tumor segmentation using autoencoder regularization
– start-page: 451
  year: 2020
  ident: 10.1016/j.imavis.2024.105069_bb0270
  article-title: Kvasir-seg: A segmented polyp dataset
– volume: 213
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0165
  article-title: Yolactfusion: an instance segmentation method for rgb-nir multimodal image fusion based on an attention mechanism
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108186
– start-page: 8543
  year: 2019
  ident: 10.1016/j.imavis.2024.105069_bb0025
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
– volume: 42
  start-page: 1774
  issue: 6
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0065
  article-title: Unsupervised cross-modality adaptation via dual structural-oriented guidance for 3d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3238114
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.imavis.2024.105069_bb0135
  article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 8
  start-page: 69
  issue: 2
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0160
  article-title: Deep learning assisted medical insurance data analytics with multimedia system
  publication-title: IJIMAI
  doi: 10.9781/ijimai.2023.01.009
– volume: 71
  year: 2022
  ident: 10.1016/j.imavis.2024.105069_bb0230
  article-title: Attention res-unet with guided decoder for semantic segmentation of brain tumors
  publication-title: Biomed. Signal. Process. Contr.
  doi: 10.1016/j.bspc.2021.103077
– start-page: 109
  year: 2021
  ident: 10.1016/j.imavis.2024.105069_bb0140
  article-title: Transbts: Multimodal brain tumor segmentation using transformer
– volume: 121
  start-page: 74
  year: 2020
  ident: 10.1016/j.imavis.2024.105069_bb0035
  article-title: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.08.025
– volume: 42
  start-page: 1472
  issue: 5
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0030
  article-title: Deep multi-modal discriminative and interpretability network for alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3230750
– volume: 158
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0180
  article-title: Mfa-net: multiple feature association network for medical image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106834
– volume: vol. 30
  year: 2017
  ident: 10.1016/j.imavis.2024.105069_bb0235
  article-title: Attention is all you need
– start-page: 20741
  year: 2022
  ident: 10.1016/j.imavis.2024.105069_bb0175
  article-title: Hypersegnas: Bridging one-shot neural architecture search with 3d medical image segmentation using hypernet
– volume: 42
  start-page: 1278
  issue: 5
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0075
  article-title: A compound loss function with shape aware weight map for microscopy cell segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3226226
– start-page: 574
  year: 2022
  ident: 10.1016/j.imavis.2024.105069_bb0145
  article-title: Unetr: Transformers for 3d medical image segmentation
– start-page: 558
  year: 2020
  ident: 10.1016/j.imavis.2024.105069_bb0205
  article-title: Doubleu-net: A deep convolutional neural network for medical image segmentation
– volume: 78
  year: 2022
  ident: 10.1016/j.imavis.2024.105069_bb0120
  article-title: Boundary-aware context neural network for medical image segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102395
– volume: 6
  start-page: 35
  issue: 6
  year: 2021
  ident: 10.1016/j.imavis.2024.105069_bb0155
  article-title: Promising deep semantic nuclei segmentation models for multi-institutional histopathology images of different organs
  publication-title: Int. J. Interact. Multim. Artif. Intell.
– volume: 8
  issue: 10
  year: 2010
  ident: 10.1016/j.imavis.2024.105069_bb0260
  article-title: An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000502
– start-page: 139
  year: 2019
  ident: 10.1016/j.imavis.2024.105069_bb0220
  article-title: Raunet: Residual attention u-net for semantic segmentation of cataract surgical instruments
– year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0285
– volume: 33
  start-page: 18158
  year: 2020
  ident: 10.1016/j.imavis.2024.105069_bb0195
  article-title: 3d self-supervised methods for medical imaging
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 3431
  year: 2015
  ident: 10.1016/j.imavis.2024.105069_bb0080
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 205
  year: 2022
  ident: 10.1016/j.imavis.2024.105069_bb0150
  article-title: Swin-unet: Unet-like pure transformer for medical image segmentation
– start-page: 179
  year: 2016
  ident: 10.1016/j.imavis.2024.105069_bb0085
  article-title: The importance of skip connections in biomedical image segmentation
– volume: 44
  start-page: 5221
  issue: 10
  year: 2017
  ident: 10.1016/j.imavis.2024.105069_bb0090
  article-title: Deep learning of the sectional appearances of 3d ct images for anatomical structure segmentation based on an fcn voting method
  publication-title: Med. Phys.
  doi: 10.1002/mp.12480
– volume: 41
  start-page: 2228
  issue: 9
  year: 2022
  ident: 10.1016/j.imavis.2024.105069_bb0015
  article-title: Simcvd: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3161829
– volume: 35
  start-page: 2369
  issue: 11
  year: 2016
  ident: 10.1016/j.imavis.2024.105069_bb0275
  article-title: Segmenting retinal blood vessels with deep neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2546227
– volume: 42
  start-page: 1289
  issue: 5
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0280
  article-title: Aau-net: an adaptive attention u-net for breast lesions segmentation in ultrasound images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3226268
– volume: 136
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0055
  article-title: An effective cnn and transformer complementary network for medical image segmentation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.109228
– year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0185
– volume: 192
  year: 2020
  ident: 10.1016/j.imavis.2024.105069_bb0210
  article-title: Dense-inception u-net for medical image segmentation
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2020.105395
– year: 2021
  ident: 10.1016/j.imavis.2024.105069_bb0115
– volume: 42
  start-page: 1720
  issue: 6
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0240
  article-title: Reliable mutual distillation for medical image segmentation under imperfect annotations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3237183
– volume: 172
  start-page: 108265
  year: 2024
  ident: 10.1016/j.imavis.2024.105069_bb0290
  article-title: Csap-unet: convolution and self-attention paralleling network for medical image segmentation with edge enhancement
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108265
– volume: 42
  start-page: 1484
  issue: 5
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0020
  article-title: Missformer: an effective transformer for 2d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3230943
– volume: 23
  start-page: 501
  issue: 4
  year: 2004
  ident: 10.1016/j.imavis.2024.105069_bb0265
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.825627
– volume: 66
  start-page: 90
  year: 2018
  ident: 10.1016/j.imavis.2024.105069_bb0095
  article-title: An application of cascaded 3d fully convolutional networks for medical image segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.03.001
– volume: 38
  start-page: 2281
  issue: 10
  year: 2019
  ident: 10.1016/j.imavis.2024.105069_bb0110
  article-title: Ce-net: context encoder network for 2d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2903562
– volume: 84
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0255
  article-title: The liver tumor segmentation benchmark (lits)
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102680
– volume: 103
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0010
  article-title: C2ba-unet: a context-coordination multi-atlas boundary-aware unet-like method for pet/ct images based tumor segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2022.102159
– ident: 10.1016/j.imavis.2024.105069_bb0250
– volume: 35
  start-page: 1931
  issue: 2
  year: 2023
  ident: 10.1016/j.imavis.2024.105069_bb0060
  article-title: D-former: a u-shaped dilated transformer for 3d medical image segmentation
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-022-07859-1
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  ident: 10.1016/j.imavis.2024.105069_bb0105
  article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
SSID ssj0007079
Score 2.46719
Snippet Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105069
SubjectTerms Channel parallel
Feature parallel
Medical image segmentation
Multimodal parallel attention
Spatial parallel
Title Multimodal parallel attention network for medical image segmentation
URI https://dx.doi.org/10.1016/j.imavis.2024.105069
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GDj6pYH2UPXmPz2N0kx1ItVbEXLfQWstlNqTRpsfXqb3c2u5EKouAlkMdA-Nj9Zjb55luAa4VJOo4y5nCmcofyyHViN1cO5pYwTiPKUk83Cj-N-WhCH6Zs2oBB3QujZZWW-w2nV2xtr_Qsmr3VfN57xtWDH0WYv6mm2gB5uOUHMWdNaPXvH0fjL0LWJnDmUwtOfgyoO-gqmde80N38uFD0qd7z1tXK558y1FbWGR7Cvi0XSd-80RE0VNmGA1s6Ejsx123Y2_IVPIbbqq22WEoM1d7ei4VaEG2kWUkbSWmk3wTrVVKYHzUEX3CmyFrNCtuMVJ7AZHj3Mhg5drsEJ8O6f4NHXCqIVOWUxdJVoRCedL00xBqNMspzEXAugzzDG1xhoRW6igW5m0kVCKFt2E-hWS5LdQYklnnqMxmGGZeUpjjJo5QjiopyFgtPdCCoIUoy6yWut7RYJLVo7DUxwCYa2MQA2wHnK2plvDT-eD6s0U--jYkE6f7XyPN_R17Arj4zgtxLaG7e3tUVlh0b0YWdmw-vawfXJ2h71yg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwFRnh5YQ9PGj2REhapA24VW6mbFsVMVJWlFy8pv5xw7UCQEEkuG2CdZJ9_d5-S7zwhdayjSUZhQj1GdeoSFvhf5qfagtvAoDgmNW6ZReDBkvTF5nNBJDXWqXhhDq3S53-b0Mlu7N03nzeZiNms-w-mhHYZQv4lJtQHk4U1CA254fTfvXzwPIwFnP7RA6MP0qn-uJHnNctPLD8fENjE33vqG9_xTfVqrOd19tOvAIr616zlANV3U0Z4DjtiF5bKOdtZUBQ_RXdlUm88VmBpl7yzTGTYymiWxEReW-I0BreLc_qbBsMCpxks9zV0rUnGExt37UafnucsSvARQ_wqecFCQsU4JjZSvuZQt5bdiDgiNUMJSGTCmgjSBAaYBZnFf0yD1E6UDKY0I-zHaKOaFPkE4UmncporzhClCYgjxMGbgRU0YjWRLNlBQuUgkTkncXGiRiYoy9iKsY4VxrLCObSDv02phlTT-mM8r74tvO0JAsv_V8vTflldoqzca9EX_Yfh0hrbNiKXmnqON1eubvgAAspKX5Qb7ADel1_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+parallel+attention+network+for+medical+image+segmentation&rft.jtitle=Image+and+vision+computing&rft.au=Wang%2C+Zhibing&rft.au=Wang%2C+Wenmin&rft.au=Li%2C+Nannan&rft.au=Zhang%2C+Shenyong&rft.date=2024-07-01&rft.issn=0262-8856&rft.volume=147&rft.spage=105069&rft_id=info:doi/10.1016%2Fj.imavis.2024.105069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2024_105069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon