Multimodal parallel attention network for medical image segmentation
Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung, liver, heart and other diseases. In this paper, we propose a novel multimodal parallel attention network, called MPA-Net, for medical image se...
Saved in:
Published in | Image and vision computing Vol. 147; p. 105069 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0262-8856 1872-8138 |
DOI | 10.1016/j.imavis.2024.105069 |
Cover
Loading…
Abstract | Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung, liver, heart and other diseases. In this paper, we propose a novel multimodal parallel attention network, called MPA-Net, for medical image segmentation. MPA-Net is divided into two parts. The first part extracts more high-dimensional features by improved network structure, which contains the skip connection, the output of the multimodal parallel attention and the output of the previous upsampling layer. The second part incorporates a multimodal parallel attention mechanism, encompassing feature parallel attention, spatial parallel attention and channel parallel attention. This mechanism facilitates the effective fusion of high-dimensional and low-dimensional features, leading to enhanced context information. Experimental results on Kagglelung dataset, Liver dataset, Cell dataset, Drive dataset and Kvasir-SEG dataset show that MPA-Net has achieved better segmentation performance than that of other baseline methods, on lung, liver, cell contour, retinal vessel and polyps.
•Architecture integrates multimodal parallel attention for segmentation.•Network employs feature, spatial, and channel parallel attention.•Radiologists aided in precise lesion localization across organs.•Identification rate of lesions improved, aiding disease diagnosis. |
---|---|
AbstractList | Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung, liver, heart and other diseases. In this paper, we propose a novel multimodal parallel attention network, called MPA-Net, for medical image segmentation. MPA-Net is divided into two parts. The first part extracts more high-dimensional features by improved network structure, which contains the skip connection, the output of the multimodal parallel attention and the output of the previous upsampling layer. The second part incorporates a multimodal parallel attention mechanism, encompassing feature parallel attention, spatial parallel attention and channel parallel attention. This mechanism facilitates the effective fusion of high-dimensional and low-dimensional features, leading to enhanced context information. Experimental results on Kagglelung dataset, Liver dataset, Cell dataset, Drive dataset and Kvasir-SEG dataset show that MPA-Net has achieved better segmentation performance than that of other baseline methods, on lung, liver, cell contour, retinal vessel and polyps.
•Architecture integrates multimodal parallel attention for segmentation.•Network employs feature, spatial, and channel parallel attention.•Radiologists aided in precise lesion localization across organs.•Identification rate of lesions improved, aiding disease diagnosis. |
ArticleNumber | 105069 |
Author | Wang, Wenmin Chen, Qi Jiang, Zhe Wang, Zhibing Li, Nannan Zhang, Shenyong |
Author_xml | – sequence: 1 givenname: Zhibing surname: Wang fullname: Wang, Zhibing organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China – sequence: 2 givenname: Wenmin surname: Wang fullname: Wang, Wenmin email: wmwang@must.edu.mo organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China – sequence: 3 givenname: Nannan surname: Li fullname: Li, Nannan organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China – sequence: 4 givenname: Shenyong surname: Zhang fullname: Zhang, Shenyong organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China – sequence: 5 givenname: Qi surname: Chen fullname: Chen, Qi organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China – sequence: 6 givenname: Zhe surname: Jiang fullname: Jiang, Zhe organization: School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China |
BookMark | eNqFkEFOwzAQRS1UJNrCDVjkAi3jOHESFkioUEAqYgNry7EnlYsTV7Yp4va4CisWsBmP7P__jN-MTAY3ICGXFJYUKL_aLU0vDyYsc8iLdFUCb07IlNZVvqgpqydkCjlPfV3yMzILYQcAFVTNlNw9f9hoeqelzfbSS2vRZjJGHKJxQzZg_HT-Peucz3rURiVZmrXFLOC2TyJ5lJ2T007agBc_55y8re9fV4-LzcvD0-p2s1AMeEy1znkrsSvKRgNWbUs1UFmVtCnKgnct41yzTqUHjnVJK8CSdaA0sratm4LNSTHmKu9C8NiJvU_b-C9BQRxJiJ0YSYgjCTGSSLbrXzZlxsWjl8b-Z74ZzZg-djDoRVAGB5VgeFRRaGf-DvgGCtd_4g |
CitedBy_id | crossref_primary_10_1016_j_imavis_2024_105277 crossref_primary_10_1016_j_imavis_2024_105213 crossref_primary_10_1016_j_imavis_2024_105356 crossref_primary_10_1016_j_imavis_2025_105445 crossref_primary_10_1007_s11227_024_06470_6 crossref_primary_10_1088_1361_6501_ad876d crossref_primary_10_1016_j_imavis_2024_105407 |
Cites_doi | 10.1016/j.compmedimag.2023.102259 10.1109/TMI.2022.3228285 10.1016/j.artmed.2022.102476 10.1109/JBHI.2021.3049304 10.1109/JBHI.2020.2986926 10.1016/j.compag.2023.108186 10.1109/TMI.2023.3238114 10.1016/j.media.2016.10.004 10.9781/ijimai.2023.01.009 10.1016/j.bspc.2021.103077 10.1016/j.neunet.2019.08.025 10.1109/TMI.2022.3230750 10.1016/j.compbiomed.2023.106834 10.1109/TMI.2022.3226226 10.1016/j.media.2022.102395 10.1371/journal.pbio.1000502 10.1002/mp.12480 10.1109/TMI.2022.3161829 10.1109/TMI.2016.2546227 10.1109/TMI.2022.3226268 10.1016/j.patcog.2022.109228 10.1016/j.cmpb.2020.105395 10.1109/TMI.2023.3237183 10.1016/j.compbiomed.2024.108265 10.1109/TMI.2022.3230943 10.1109/TMI.2004.825627 10.1016/j.compmedimag.2018.03.001 10.1109/TMI.2019.2903562 10.1016/j.media.2022.102680 10.1016/j.compmedimag.2022.102159 10.1007/s00521-022-07859-1 10.1109/TMI.2019.2959609 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.imavis.2024.105069 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1872-8138 |
ExternalDocumentID | 10_1016_j_imavis_2024_105069 S0262885624001732 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-c3826baef459d0e7bb1d01a75194546fb366d3fc7bb6e85170e53f0cde3bb8943 |
IEDL.DBID | AIKHN |
ISSN | 0262-8856 |
IngestDate | Tue Jul 01 00:48:18 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Tue Jun 18 08:50:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatial parallel Multimodal parallel attention Feature parallel Channel parallel Medical image segmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c3826baef459d0e7bb1d01a75194546fb366d3fc7bb6e85170e53f0cde3bb8943 |
ParticipantIDs | crossref_primary_10_1016_j_imavis_2024_105069 crossref_citationtrail_10_1016_j_imavis_2024_105069 elsevier_sciencedirect_doi_10_1016_j_imavis_2024_105069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Image and vision computing |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gu, Cheng, Fu, Zhou, Hao, Zhao, Zhang, Gao, Liu (bb0110) 2019; 38 Zhang, Jiao, Liao, Li, Zhang (bb0190) 2023; 138 Rasti, Biglari, Rezapourian, Yang, Farsiu (bb0070) 2023; 42 Ni, Bian, Zhou, Hou, Xie, Wang, Zhou, Li, Li (bb0220) 2019 Fang, Wang, Cheng, Gao, Pan, Cao, Zheng, Zhang (bb0240) 2023; 42 Zhang, Wu, Coleman, Kerr (bb0210) 2020; 192 Luo, Jiang, Wang (bb0010) 2023; 103 Jha, Smedsrud, Riegler, Johansen, De Lange, Halvorsen, Johansen (bb0215) 2019 Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (bb0115) 2021 Bilic, Christ, Li, Vorontsov, Ben-Cohen, Kaissis, Szeskin, Jacobs, Mamani, Chartrand (bb0255) 2023; 84 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0235) 2017; vol. 30 Huang, Deng, Li, Yuan, Fu (bb0020) 2023; 42 Zhou, Siddiquee, Tajbakhsh, Liang (bb0105) 2019; 39 Shin, Shen, Summers (bb0005) 2023; 108 Mader (bb0250) Maji, Sigedar, Singh (bb0230) 2022; 71 Zhou, Takayama, Wang, Hara, Fujita (bb0090) 2017; 44 Wang, Chen, Ji, Fan, Li (bb0120) 2022; 78 Zhao, Balakrishnan, Durand, Guttag, Dalca (bb0025) 2019 Tang, Yang, Li, Roth, Landman, Xu, Nath, Hatamizadeh (bb0050) 2022 Liu, Feng, Sun, Li, Ru, Xu (bb0165) 2023; 213 Tang, Liu, Sun, Yan, Xie (bb0170) 2021 Sinha, Dolz (bb0225) 2020; 25 Roth, Oda, Zhou, Shimizu, Yang, Hayashi, Oda, Fujiwara, Misawa, Mori (bb0095) 2018; 66 Fitzgerald, Matuszewski (bb0045) 2023 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bb0135) 2017; 36 Zhu, Yin, Meijering (bb0075) 2023; 42 Ronneberger, Fischer, Brox (bb0100) 2015 Jha, Smedsrud, Riegler, Halvorsen, de Lange, Johansen, Johansen (bb0270) 2020 Li, Zhang, Gong, Qiu, Zhang (bb0180) 2023; 158 Myronenko (bb0200) 2019 Xian, Li, Tu, Zhu, Zhang, Liu, Li, Yang (bb0065) 2023; 42 Ibtehaz, Rahman (bb0035) 2020; 121 Jiang, Sun, Guo, Yan, Lu, Xu (bb0185) 2023 Jha, Smedsrud, Johansen, de Lange, Johansen, Halvorsen, Riegler (bb0040) 2021; 25 Peng, Myronenko, Hatamizadeh, Nath, Siddiquee, He, Xu, Chellappa, Yang (bb0175) 2022 Cardona, Saalfeld, Preibisch, Schmid, Cheng, Pulokas, Tomancak, Hartenstein (bb0260) 2010; 8 Xie, Zhang, Shen, Xia (bb0245) 2021 Chen, Li, Dai, Zhang, Yap (bb0280) 2023; 42 Hatamizadeh, Tang, Nath, Yang, Myronenko, Landman, Roth, Xu (bb0145) 2022 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bb0125) 2016 Milletari, Navab, Ahmadi (bb0130) 2016 Yuan, Zhang, Fang (bb0055) 2023; 136 Zhang, Vinodhini, Muthu (bb0160) 2023; 8 Fan, Zhou, Jiang, Xin, Hou (bb0290) 2024; 172 Jha, Riegler, Johansen, Halvorsen, Johansen (bb0205) 2020 Staal, Abràmoff, Niemeijer, Viergever, Van Ginneken (bb0265) 2004; 23 Wang, Chen, Ding, Yu, Zha, Li (bb0140) 2021 Zhu, Xu, Huang, Wang, Xu, Shao, Zhang (bb0030) 2023; 42 Taleb, Loetzsch, Danz, Severin, Gaertner, Bergner, Lippert (bb0195) 2020; 33 Liskowski, Krawiec (bb0275) 2016; 35 Wu, Liao, Chen, Wang, Chen, Gao, Wu (bb0060) 2023; 35 Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (bb0150) 2022 Long, Shelhamer, Darrell (bb0080) 2015 Zhao, Jia, Pang, Lv, Tian, Zhang, Sun, Lu (bb0285) 2023 You, Zhou, Zhao, Staib, Duncan (bb0015) 2022; 41 Hassan, Saleh, Abdel-Nasser, Omer, Puig (bb0155) 2021; 6 Drozdzal, Vorontsov, Chartrand, Kadoury, Pal (bb0085) 2016 Zhao (10.1016/j.imavis.2024.105069_bb0025) 2019 Hassan (10.1016/j.imavis.2024.105069_bb0155) 2021; 6 Çiçek (10.1016/j.imavis.2024.105069_bb0125) 2016 Zhu (10.1016/j.imavis.2024.105069_bb0030) 2023; 42 Zhu (10.1016/j.imavis.2024.105069_bb0075) 2023; 42 Wang (10.1016/j.imavis.2024.105069_bb0140) 2021 Jiang (10.1016/j.imavis.2024.105069_bb0185) 2023 Zhou (10.1016/j.imavis.2024.105069_bb0090) 2017; 44 Zhou (10.1016/j.imavis.2024.105069_bb0105) 2019; 39 Tang (10.1016/j.imavis.2024.105069_bb0170) 2021 Luo (10.1016/j.imavis.2024.105069_bb0010) 2023; 103 Mader (10.1016/j.imavis.2024.105069_bb0250) Zhao (10.1016/j.imavis.2024.105069_bb0285) 2023 Fitzgerald (10.1016/j.imavis.2024.105069_bb0045) 2023 Liskowski (10.1016/j.imavis.2024.105069_bb0275) 2016; 35 Myronenko (10.1016/j.imavis.2024.105069_bb0200) 2019 Staal (10.1016/j.imavis.2024.105069_bb0265) 2004; 23 Huang (10.1016/j.imavis.2024.105069_bb0020) 2023; 42 Shin (10.1016/j.imavis.2024.105069_bb0005) 2023; 108 Ibtehaz (10.1016/j.imavis.2024.105069_bb0035) 2020; 121 Vaswani (10.1016/j.imavis.2024.105069_bb0235) 2017; vol. 30 Chen (10.1016/j.imavis.2024.105069_bb0280) 2023; 42 Hatamizadeh (10.1016/j.imavis.2024.105069_bb0145) 2022 Yuan (10.1016/j.imavis.2024.105069_bb0055) 2023; 136 Ronneberger (10.1016/j.imavis.2024.105069_bb0100) 2015 Zhang (10.1016/j.imavis.2024.105069_bb0210) 2020; 192 Jha (10.1016/j.imavis.2024.105069_bb0040) 2021; 25 Gu (10.1016/j.imavis.2024.105069_bb0110) 2019; 38 Cao (10.1016/j.imavis.2024.105069_bb0150) 2022 Xian (10.1016/j.imavis.2024.105069_bb0065) 2023; 42 Rasti (10.1016/j.imavis.2024.105069_bb0070) 2023; 42 Fang (10.1016/j.imavis.2024.105069_bb0240) 2023; 42 Sinha (10.1016/j.imavis.2024.105069_bb0225) 2020; 25 Maji (10.1016/j.imavis.2024.105069_bb0230) 2022; 71 Liu (10.1016/j.imavis.2024.105069_bb0165) 2023; 213 Taleb (10.1016/j.imavis.2024.105069_bb0195) 2020; 33 Wu (10.1016/j.imavis.2024.105069_bb0060) 2023; 35 Milletari (10.1016/j.imavis.2024.105069_bb0130) 2016 Jha (10.1016/j.imavis.2024.105069_bb0215) 2019 Li (10.1016/j.imavis.2024.105069_bb0180) 2023; 158 Zhang (10.1016/j.imavis.2024.105069_bb0160) 2023; 8 Zhang (10.1016/j.imavis.2024.105069_bb0190) 2023; 138 Peng (10.1016/j.imavis.2024.105069_bb0175) 2022 You (10.1016/j.imavis.2024.105069_bb0015) 2022; 41 Cardona (10.1016/j.imavis.2024.105069_bb0260) 2010; 8 Fan (10.1016/j.imavis.2024.105069_bb0290) 2024; 172 Tang (10.1016/j.imavis.2024.105069_bb0050) 2022 Roth (10.1016/j.imavis.2024.105069_bb0095) 2018; 66 Kamnitsas (10.1016/j.imavis.2024.105069_bb0135) 2017; 36 Jha (10.1016/j.imavis.2024.105069_bb0205) 2020 Long (10.1016/j.imavis.2024.105069_bb0080) 2015 Jha (10.1016/j.imavis.2024.105069_bb0270) 2020 Wang (10.1016/j.imavis.2024.105069_bb0120) 2022; 78 Ni (10.1016/j.imavis.2024.105069_bb0220) 2019 Drozdzal (10.1016/j.imavis.2024.105069_bb0085) 2016 Chen (10.1016/j.imavis.2024.105069_bb0115) 2021 Xie (10.1016/j.imavis.2024.105069_bb0245) 2021 Bilic (10.1016/j.imavis.2024.105069_bb0255) 2023; 84 |
References_xml | – start-page: 558 year: 2020 end-page: 564 ident: bb0205 article-title: Doubleu-net: A deep convolutional neural network for medical image segmentation publication-title: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) – volume: 35 start-page: 2369 year: 2016 end-page: 2380 ident: bb0275 article-title: Segmenting retinal blood vessels with deep neural networks publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 69 year: 2023 end-page: 80 ident: bb0160 article-title: Deep learning assisted medical insurance data analytics with multimedia system publication-title: IJIMAI – start-page: 3918 year: 2021 end-page: 3928 ident: bb0170 article-title: Recurrent mask refinement for few-shot medical image segmentation publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 179 year: 2016 end-page: 187 ident: bb0085 article-title: The importance of skip connections in biomedical image segmentation publication-title: International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis – volume: 44 start-page: 5221 year: 2017 end-page: 5233 ident: bb0090 article-title: Deep learning of the sectional appearances of 3d ct images for anatomical structure segmentation based on an fcn voting method publication-title: Med. Phys. – volume: 6 start-page: 35 year: 2021 end-page: 46 ident: bb0155 article-title: Promising deep semantic nuclei segmentation models for multi-institutional histopathology images of different organs publication-title: Int. J. Interact. Multim. Artif. Intell. – volume: 192 year: 2020 ident: bb0210 article-title: Dense-inception u-net for medical image segmentation publication-title: Comput. Methods Prog. Biomed. – volume: 103 year: 2023 ident: bb0010 article-title: C2ba-unet: a context-coordination multi-atlas boundary-aware unet-like method for pet/ct images based tumor segmentation publication-title: Comput. Med. Imaging Graph. – start-page: 3431 year: 2015 end-page: 3440 ident: bb0080 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 42 start-page: 1472 year: 2023 end-page: 1483 ident: bb0030 article-title: Deep multi-modal discriminative and interpretability network for alzheimer’s disease diagnosis publication-title: IEEE Trans. Med. Imaging – volume: 8 year: 2010 ident: bb0260 article-title: An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy publication-title: PLoS Biol. – start-page: 565 year: 2016 end-page: 571 ident: bb0130 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) – start-page: 20741 year: 2022 end-page: 20751 ident: bb0175 article-title: Hypersegnas: Bridging one-shot neural architecture search with 3d medical image segmentation using hypernet publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 33 start-page: 18158 year: 2020 end-page: 18172 ident: bb0195 article-title: 3d self-supervised methods for medical imaging publication-title: Adv. Neural Inf. Proces. Syst. – start-page: 311 year: 2019 end-page: 320 ident: bb0200 article-title: 3d mri brain tumor segmentation using autoencoder regularization publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4 – start-page: 8543 year: 2019 end-page: 8553 ident: bb0025 article-title: Data augmentation using learned transformations for one-shot medical image segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 213 year: 2023 ident: bb0165 article-title: Yolactfusion: an instance segmentation method for rgb-nir multimodal image fusion based on an attention mechanism publication-title: Comput. Electron. Agric. – year: 2023 ident: bb0285 article-title: m – volume: 42 start-page: 1278 year: 2023 end-page: 1288 ident: bb0075 article-title: A compound loss function with shape aware weight map for microscopy cell segmentation publication-title: IEEE Trans. Med. Imaging – volume: 108 year: 2023 ident: bb0005 article-title: Improving segmentation and detection of lesions in ct scans using intensity distribution supervision publication-title: Comput. Med. Imaging Graph. – start-page: 234 year: 2015 end-page: 241 ident: bb0100 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 – start-page: 225 year: 2019 end-page: 2255 ident: bb0215 article-title: Resunet publication-title: 2019 IEEE International Symposium on Multimedia (ISM) – start-page: 171 year: 2021 end-page: 180 ident: bb0245 article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24 – volume: 78 year: 2022 ident: bb0120 article-title: Boundary-aware context neural network for medical image segmentation publication-title: Med. Image Anal. – volume: 39 start-page: 1856 year: 2019 end-page: 1867 ident: bb0105 article-title: Unet publication-title: IEEE Trans. Med. Imaging – year: 2021 ident: bb0115 article-title: Transunet: Transformers make strong encoders for medical image segmentation – start-page: 574 year: 2022 end-page: 584 ident: bb0145 article-title: Unetr: Transformers for 3d medical image segmentation publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – volume: 42 start-page: 1289 year: 2023 end-page: 1300 ident: bb0280 article-title: Aau-net: an adaptive attention u-net for breast lesions segmentation in ultrasound images publication-title: IEEE Trans. Med. Imaging – volume: 25 start-page: 2029 year: 2021 end-page: 2040 ident: bb0040 article-title: A comprehensive study on colorectal polyp segmentation with resunet publication-title: IEEE J. Biomed. Health Inform. – volume: 71 year: 2022 ident: bb0230 article-title: Attention res-unet with guided decoder for semantic segmentation of brain tumors publication-title: Biomed. Signal. Process. Contr. – start-page: 139 year: 2019 end-page: 149 ident: bb0220 article-title: Raunet: Residual attention u-net for semantic segmentation of cataract surgical instruments publication-title: International Conference on Neural Information Processing – volume: 35 start-page: 1931 year: 2023 end-page: 1944 ident: bb0060 article-title: D-former: a u-shaped dilated transformer for 3d medical image segmentation publication-title: Neural Comput. & Applic. – ident: bb0250 article-title: Kagglelung dataset – year: 2023 ident: bb0045 article-title: Fcb-swinv2 transformer for polyp segmentation – volume: 172 start-page: 108265 year: 2024 ident: bb0290 article-title: Csap-unet: convolution and self-attention paralleling network for medical image segmentation with edge enhancement publication-title: Comput. Biol. Med. – start-page: 20730 year: 2022 end-page: 20740 ident: bb0050 article-title: Self-supervised pre-training of swin transformers for 3d medical image analysis publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bb0135 article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation publication-title: Med. Image Anal. – start-page: 109 year: 2021 end-page: 119 ident: bb0140 article-title: Transbts: Multimodal brain tumor segmentation using transformer publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24 – volume: 84 year: 2023 ident: bb0255 article-title: The liver tumor segmentation benchmark (lits) publication-title: Med. Image Anal. – volume: 25 start-page: 121 year: 2020 end-page: 130 ident: bb0225 article-title: Multi-scale self-guided attention for medical image segmentation publication-title: IEEE J. Biomed. Health Inform. – volume: 42 start-page: 1484 year: 2023 end-page: 1494 ident: bb0020 article-title: Missformer: an effective transformer for 2d medical image segmentation publication-title: IEEE Trans. Med. Imaging – year: 2023 ident: bb0185 article-title: Anatomical invariance modeling and semantic alignment for self-supervised learning in 3d medical image segmentation – volume: 23 start-page: 501 year: 2004 end-page: 509 ident: bb0265 article-title: Ridge-based vessel segmentation in color images of the retina publication-title: IEEE Trans. Med. Imaging – volume: 121 start-page: 74 year: 2020 end-page: 87 ident: bb0035 article-title: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation publication-title: Neural Netw. – start-page: 205 year: 2022 end-page: 218 ident: bb0150 article-title: Swin-unet: Unet-like pure transformer for medical image segmentation publication-title: European Conference on Computer Vision – start-page: 424 year: 2016 end-page: 432 ident: bb0125 article-title: 3d u-net: learning dense volumetric segmentation from sparse annotation publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part II 19 – volume: 66 start-page: 90 year: 2018 end-page: 99 ident: bb0095 article-title: An application of cascaded 3d fully convolutional networks for medical image segmentation publication-title: Comput. Med. Imaging Graph. – volume: 42 start-page: 1413 year: 2023 end-page: 1423 ident: bb0070 article-title: Retifluidnet: a self-adaptive and multi-attention deep convolutional network for retinal oct fluid segmentation publication-title: IEEE Trans. Med. Imaging – volume: 42 start-page: 1774 year: 2023 end-page: 1785 ident: bb0065 article-title: Unsupervised cross-modality adaptation via dual structural-oriented guidance for 3d medical image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 158 year: 2023 ident: bb0180 article-title: Mfa-net: multiple feature association network for medical image segmentation publication-title: Comput. Biol. Med. – volume: 42 start-page: 1720 year: 2023 end-page: 1734 ident: bb0240 article-title: Reliable mutual distillation for medical image segmentation under imperfect annotations publication-title: IEEE Trans. Med. Imaging – volume: 138 year: 2023 ident: bb0190 article-title: Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation publication-title: Artif. Intell. Med. – start-page: 451 year: 2020 end-page: 462 ident: bb0270 article-title: Kvasir-seg: A segmented polyp dataset publication-title: MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26 – volume: 41 start-page: 2228 year: 2022 end-page: 2237 ident: bb0015 article-title: Simcvd: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 136 year: 2023 ident: bb0055 article-title: An effective cnn and transformer complementary network for medical image segmentation publication-title: Pattern Recogn. – volume: vol. 30 year: 2017 ident: bb0235 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – volume: 38 start-page: 2281 year: 2019 end-page: 2292 ident: bb0110 article-title: Ce-net: context encoder network for 2d medical image segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 565 year: 2016 ident: 10.1016/j.imavis.2024.105069_bb0130 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation – year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0045 – volume: 108 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0005 article-title: Improving segmentation and detection of lesions in ct scans using intensity distribution supervision publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2023.102259 – start-page: 225 year: 2019 ident: 10.1016/j.imavis.2024.105069_bb0215 article-title: Resunet++: An advanced architecture for medical image segmentation – volume: 42 start-page: 1413 issue: 5 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0070 article-title: Retifluidnet: a self-adaptive and multi-attention deep convolutional network for retinal oct fluid segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3228285 – start-page: 424 year: 2016 ident: 10.1016/j.imavis.2024.105069_bb0125 article-title: 3d u-net: learning dense volumetric segmentation from sparse annotation – volume: 138 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0190 article-title: Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2022.102476 – start-page: 171 year: 2021 ident: 10.1016/j.imavis.2024.105069_bb0245 article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation – volume: 25 start-page: 2029 issue: 6 year: 2021 ident: 10.1016/j.imavis.2024.105069_bb0040 article-title: A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3049304 – start-page: 234 year: 2015 ident: 10.1016/j.imavis.2024.105069_bb0100 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 25 start-page: 121 issue: 1 year: 2020 ident: 10.1016/j.imavis.2024.105069_bb0225 article-title: Multi-scale self-guided attention for medical image segmentation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2986926 – start-page: 20730 year: 2022 ident: 10.1016/j.imavis.2024.105069_bb0050 article-title: Self-supervised pre-training of swin transformers for 3d medical image analysis – start-page: 3918 year: 2021 ident: 10.1016/j.imavis.2024.105069_bb0170 article-title: Recurrent mask refinement for few-shot medical image segmentation – start-page: 311 year: 2019 ident: 10.1016/j.imavis.2024.105069_bb0200 article-title: 3d mri brain tumor segmentation using autoencoder regularization – start-page: 451 year: 2020 ident: 10.1016/j.imavis.2024.105069_bb0270 article-title: Kvasir-seg: A segmented polyp dataset – volume: 213 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0165 article-title: Yolactfusion: an instance segmentation method for rgb-nir multimodal image fusion based on an attention mechanism publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108186 – start-page: 8543 year: 2019 ident: 10.1016/j.imavis.2024.105069_bb0025 article-title: Data augmentation using learned transformations for one-shot medical image segmentation – volume: 42 start-page: 1774 issue: 6 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0065 article-title: Unsupervised cross-modality adaptation via dual structural-oriented guidance for 3d medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3238114 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.imavis.2024.105069_bb0135 article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 8 start-page: 69 issue: 2 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0160 article-title: Deep learning assisted medical insurance data analytics with multimedia system publication-title: IJIMAI doi: 10.9781/ijimai.2023.01.009 – volume: 71 year: 2022 ident: 10.1016/j.imavis.2024.105069_bb0230 article-title: Attention res-unet with guided decoder for semantic segmentation of brain tumors publication-title: Biomed. Signal. Process. Contr. doi: 10.1016/j.bspc.2021.103077 – start-page: 109 year: 2021 ident: 10.1016/j.imavis.2024.105069_bb0140 article-title: Transbts: Multimodal brain tumor segmentation using transformer – volume: 121 start-page: 74 year: 2020 ident: 10.1016/j.imavis.2024.105069_bb0035 article-title: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.08.025 – volume: 42 start-page: 1472 issue: 5 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0030 article-title: Deep multi-modal discriminative and interpretability network for alzheimer’s disease diagnosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3230750 – volume: 158 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0180 article-title: Mfa-net: multiple feature association network for medical image segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106834 – volume: vol. 30 year: 2017 ident: 10.1016/j.imavis.2024.105069_bb0235 article-title: Attention is all you need – start-page: 20741 year: 2022 ident: 10.1016/j.imavis.2024.105069_bb0175 article-title: Hypersegnas: Bridging one-shot neural architecture search with 3d medical image segmentation using hypernet – volume: 42 start-page: 1278 issue: 5 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0075 article-title: A compound loss function with shape aware weight map for microscopy cell segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3226226 – start-page: 574 year: 2022 ident: 10.1016/j.imavis.2024.105069_bb0145 article-title: Unetr: Transformers for 3d medical image segmentation – start-page: 558 year: 2020 ident: 10.1016/j.imavis.2024.105069_bb0205 article-title: Doubleu-net: A deep convolutional neural network for medical image segmentation – volume: 78 year: 2022 ident: 10.1016/j.imavis.2024.105069_bb0120 article-title: Boundary-aware context neural network for medical image segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102395 – volume: 6 start-page: 35 issue: 6 year: 2021 ident: 10.1016/j.imavis.2024.105069_bb0155 article-title: Promising deep semantic nuclei segmentation models for multi-institutional histopathology images of different organs publication-title: Int. J. Interact. Multim. Artif. Intell. – volume: 8 issue: 10 year: 2010 ident: 10.1016/j.imavis.2024.105069_bb0260 article-title: An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000502 – start-page: 139 year: 2019 ident: 10.1016/j.imavis.2024.105069_bb0220 article-title: Raunet: Residual attention u-net for semantic segmentation of cataract surgical instruments – year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0285 – volume: 33 start-page: 18158 year: 2020 ident: 10.1016/j.imavis.2024.105069_bb0195 article-title: 3d self-supervised methods for medical imaging publication-title: Adv. Neural Inf. Proces. Syst. – start-page: 3431 year: 2015 ident: 10.1016/j.imavis.2024.105069_bb0080 article-title: Fully convolutional networks for semantic segmentation – start-page: 205 year: 2022 ident: 10.1016/j.imavis.2024.105069_bb0150 article-title: Swin-unet: Unet-like pure transformer for medical image segmentation – start-page: 179 year: 2016 ident: 10.1016/j.imavis.2024.105069_bb0085 article-title: The importance of skip connections in biomedical image segmentation – volume: 44 start-page: 5221 issue: 10 year: 2017 ident: 10.1016/j.imavis.2024.105069_bb0090 article-title: Deep learning of the sectional appearances of 3d ct images for anatomical structure segmentation based on an fcn voting method publication-title: Med. Phys. doi: 10.1002/mp.12480 – volume: 41 start-page: 2228 issue: 9 year: 2022 ident: 10.1016/j.imavis.2024.105069_bb0015 article-title: Simcvd: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3161829 – volume: 35 start-page: 2369 issue: 11 year: 2016 ident: 10.1016/j.imavis.2024.105069_bb0275 article-title: Segmenting retinal blood vessels with deep neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2546227 – volume: 42 start-page: 1289 issue: 5 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0280 article-title: Aau-net: an adaptive attention u-net for breast lesions segmentation in ultrasound images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3226268 – volume: 136 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0055 article-title: An effective cnn and transformer complementary network for medical image segmentation publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.109228 – year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0185 – volume: 192 year: 2020 ident: 10.1016/j.imavis.2024.105069_bb0210 article-title: Dense-inception u-net for medical image segmentation publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2020.105395 – year: 2021 ident: 10.1016/j.imavis.2024.105069_bb0115 – volume: 42 start-page: 1720 issue: 6 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0240 article-title: Reliable mutual distillation for medical image segmentation under imperfect annotations publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3237183 – volume: 172 start-page: 108265 year: 2024 ident: 10.1016/j.imavis.2024.105069_bb0290 article-title: Csap-unet: convolution and self-attention paralleling network for medical image segmentation with edge enhancement publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108265 – volume: 42 start-page: 1484 issue: 5 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0020 article-title: Missformer: an effective transformer for 2d medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3230943 – volume: 23 start-page: 501 issue: 4 year: 2004 ident: 10.1016/j.imavis.2024.105069_bb0265 article-title: Ridge-based vessel segmentation in color images of the retina publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.825627 – volume: 66 start-page: 90 year: 2018 ident: 10.1016/j.imavis.2024.105069_bb0095 article-title: An application of cascaded 3d fully convolutional networks for medical image segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.03.001 – volume: 38 start-page: 2281 issue: 10 year: 2019 ident: 10.1016/j.imavis.2024.105069_bb0110 article-title: Ce-net: context encoder network for 2d medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2903562 – volume: 84 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0255 article-title: The liver tumor segmentation benchmark (lits) publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102680 – volume: 103 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0010 article-title: C2ba-unet: a context-coordination multi-atlas boundary-aware unet-like method for pet/ct images based tumor segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2022.102159 – ident: 10.1016/j.imavis.2024.105069_bb0250 – volume: 35 start-page: 1931 issue: 2 year: 2023 ident: 10.1016/j.imavis.2024.105069_bb0060 article-title: D-former: a u-shaped dilated transformer for 3d medical image segmentation publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-022-07859-1 – volume: 39 start-page: 1856 issue: 6 year: 2019 ident: 10.1016/j.imavis.2024.105069_bb0105 article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2959609 |
SSID | ssj0007079 |
Score | 2.46719 |
Snippet | Medical image segmentation is a crucial aspect of medical image processing, and has been widely used in the detection and clinical diagnosis for brain, lung,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105069 |
SubjectTerms | Channel parallel Feature parallel Medical image segmentation Multimodal parallel attention Spatial parallel |
Title | Multimodal parallel attention network for medical image segmentation |
URI | https://dx.doi.org/10.1016/j.imavis.2024.105069 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GDj6pYH2UPXmPz2N0kx1ItVbEXLfQWstlNqTRpsfXqb3c2u5EKouAlkMdA-Nj9Zjb55luAa4VJOo4y5nCmcofyyHViN1cO5pYwTiPKUk83Cj-N-WhCH6Zs2oBB3QujZZWW-w2nV2xtr_Qsmr3VfN57xtWDH0WYv6mm2gB5uOUHMWdNaPXvH0fjL0LWJnDmUwtOfgyoO-gqmde80N38uFD0qd7z1tXK558y1FbWGR7Cvi0XSd-80RE0VNmGA1s6Ejsx123Y2_IVPIbbqq22WEoM1d7ei4VaEG2kWUkbSWmk3wTrVVKYHzUEX3CmyFrNCtuMVJ7AZHj3Mhg5drsEJ8O6f4NHXCqIVOWUxdJVoRCedL00xBqNMspzEXAugzzDG1xhoRW6igW5m0kVCKFt2E-hWS5LdQYklnnqMxmGGZeUpjjJo5QjiopyFgtPdCCoIUoy6yWut7RYJLVo7DUxwCYa2MQA2wHnK2plvDT-eD6s0U--jYkE6f7XyPN_R17Arj4zgtxLaG7e3tUVlh0b0YWdmw-vawfXJ2h71yg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwFRnh5YQ9PGj2REhapA24VW6mbFsVMVJWlFy8pv5xw7UCQEEkuG2CdZJ9_d5-S7zwhdayjSUZhQj1GdeoSFvhf5qfagtvAoDgmNW6ZReDBkvTF5nNBJDXWqXhhDq3S53-b0Mlu7N03nzeZiNms-w-mhHYZQv4lJtQHk4U1CA254fTfvXzwPIwFnP7RA6MP0qn-uJHnNctPLD8fENjE33vqG9_xTfVqrOd19tOvAIr616zlANV3U0Z4DjtiF5bKOdtZUBQ_RXdlUm88VmBpl7yzTGTYymiWxEReW-I0BreLc_qbBsMCpxks9zV0rUnGExt37UafnucsSvARQ_wqecFCQsU4JjZSvuZQt5bdiDgiNUMJSGTCmgjSBAaYBZnFf0yD1E6UDKY0I-zHaKOaFPkE4UmncporzhClCYgjxMGbgRU0YjWRLNlBQuUgkTkncXGiRiYoy9iKsY4VxrLCObSDv02phlTT-mM8r74tvO0JAsv_V8vTflldoqzca9EX_Yfh0hrbNiKXmnqON1eubvgAAspKX5Qb7ADel1_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+parallel+attention+network+for+medical+image+segmentation&rft.jtitle=Image+and+vision+computing&rft.au=Wang%2C+Zhibing&rft.au=Wang%2C+Wenmin&rft.au=Li%2C+Nannan&rft.au=Zhang%2C+Shenyong&rft.date=2024-07-01&rft.issn=0262-8856&rft.volume=147&rft.spage=105069&rft_id=info:doi/10.1016%2Fj.imavis.2024.105069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2024_105069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |