Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage

Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities /spl Delta/R/R up to 7.5/spl times/10/sup -7...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 7; no. 1; pp. 69 - 78
Main Authors Chui, B.W., Stowe, T.D., Yongho Sungtaek Ju, Goodson, K.E., Kenny, T.W., Mamin, H.J., Terris, B.D., Ried, R.P., Rugar, D.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.1998
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities /spl Delta/R/R up to 7.5/spl times/10/sup -7/ per /spl Aring/ in close agreement with theoretical predictions. Separate cantilevers with integrated resistive heaters were fabricated using the same basic process. Electrical and thermal measurements on these heating devices produced results consistent with ANSYS simulations. Geometric variants of the cantilever were also tested in order to study the dependence of the thermal time constant on device parameters. Depending on the design, time constants as low as 1 /spl mu/s were achieved. A thermodynamic model was developed based on the cantilevers geometry and material properties, and the model was shown to predict device behavior accurately. A comprehensive understanding of cantilever functionality enabled us to optimize the cantilever for high-speed thermomechanical recording.
AbstractList Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities /spl Delta/R/R up to 7.5/spl times/10/sup -7/ per /spl Aring/ in close agreement with theoretical predictions. Separate cantilevers with integrated resistive heaters were fabricated using the same basic process. Electrical and thermal measurements on these heating devices produced results consistent with ANSYS simulations. Geometric variants of the cantilever were also tested in order to study the dependence of the thermal time constant on device parameters. Depending on the design, time constants as low as 1 /spl mu/s were achieved. A thermodynamic model was developed based on the cantilevers geometry and material properties, and the model was shown to predict device behavior accurately. A comprehensive understanding of cantilever functionality enabled us to optimize the cantilever for high-speed thermomechanical recording.
Single-crystal silicon cantilevers 1 mum thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities DeltaR/R up to 7.5x10(-7) per A in close agreement with theoretical predictions. Separate cantilevers with integrated resistive heaters were fabricated using the same basic process. Electrical and thermal measurements on these heating devices produced results consistent with ANSYS simulations. Geometric variants of the cantilever were also tested in order to study the dependence of the thermal time constant on device parameters. Depending on the design, time constants as low as 1 mus were achieved. A thermodynamic model was developed based on the cantilevers geometry and material properties, and the model was shown to predict device behavior accurately. A comprehensive understanding of cantilever functionality enabled us to optimize the cantilever for high-speed thermomechanical recording
Author Yongho Sungtaek Ju
Kenny, T.W.
Chui, B.W.
Terris, B.D.
Rugar, D.
Goodson, K.E.
Stowe, T.D.
Mamin, H.J.
Ried, R.P.
Author_xml – sequence: 1
  givenname: B.W.
  surname: Chui
  fullname: Chui, B.W.
  organization: Dept. of Electr. Eng., Stanford Univ., CA, USA
– sequence: 2
  givenname: T.D.
  surname: Stowe
  fullname: Stowe, T.D.
– sequence: 3
  surname: Yongho Sungtaek Ju
  fullname: Yongho Sungtaek Ju
– sequence: 4
  givenname: K.E.
  surname: Goodson
  fullname: Goodson, K.E.
– sequence: 5
  givenname: T.W.
  surname: Kenny
  fullname: Kenny, T.W.
– sequence: 6
  givenname: H.J.
  surname: Mamin
  fullname: Mamin, H.J.
– sequence: 7
  givenname: B.D.
  surname: Terris
  fullname: Terris, B.D.
– sequence: 8
  givenname: R.P.
  surname: Ried
  fullname: Ried, R.P.
– sequence: 9
  givenname: D.
  surname: Rugar
  fullname: Rugar, D.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2172377$$DView record in Pascal Francis
BookMark eNo9kE9r3DAQxUVJIX_aQ6496RACPTiVbFnSHkNImsCWXtqzGcujtYJX2miUhPQL9GtXZZecZnjvNw_mnbKjmCIydi7FlZRi9c2qK61lZ_UHdiJXSjZC9vao7qI3jZG9OWanRI9CSKWsPmF_1-m1oRK8j0jEKSzBpcgdxBIWfMFM_DWUmYdYcJOh4MRnrKPqECe-C_gnZaRQI16QE0ZK1fIp8zls5maqQihv_PruBy8z5m3aopshBgcLn6AAp5IybPAT--hhIfx8mGfs993tr5v7Zv3z-8PN9bpxndClcS1qmGQ_opsm7f2o0fse7biyVshu1WqrWiUMCgDfj2o0bpwUWFRjN3oD3Rm73Ofucnp6RirDNpDDZYGI6ZmG1nZad1ZW8OsedDkRZfTDLoct5LdBiuF_1YNVw77qyl4cQoHqYz5DdIHeD1pp2s6Yin3ZYwER391Dxj-pMIyG
CODEN JMIYET
CitedBy_id crossref_primary_10_3390_mi8030090
crossref_primary_10_1088_0268_1242_29_11_115018
crossref_primary_10_3390_s120201758
crossref_primary_10_1016_j_sna_2007_06_008
crossref_primary_10_1063_1_2435589
crossref_primary_10_1146_annurev_matsci_29_1_261
crossref_primary_10_1021_jp4092859
crossref_primary_10_1063_1_2720263
crossref_primary_10_1016_j_sna_2011_12_014
crossref_primary_10_1063_1_1351846
crossref_primary_10_1016_j_measen_2022_100637
crossref_primary_10_1177_104538901400438109
crossref_primary_10_5050_KSNVN_2002_12_3_187
crossref_primary_10_1016_j_mssp_2007_11_004
crossref_primary_10_1109_JMEMS_2008_926980
crossref_primary_10_1016_S0167_9317_00_00289_6
crossref_primary_10_1016_j_applthermaleng_2008_07_019
crossref_primary_10_1016_S0167_9317_03_00189_8
crossref_primary_10_1016_S0167_9317_99_00006_4
crossref_primary_10_1007_s12541_014_0573_9
crossref_primary_10_1080_10584580108016900
crossref_primary_10_1109_JMEMS_2008_918423
crossref_primary_10_1109_JMEMS_2002_803283
crossref_primary_10_1063_1_3154567
crossref_primary_10_1109_JMEMS_2011_2127455
crossref_primary_10_1002_smll_201100486
crossref_primary_10_1063_1_2403862
crossref_primary_10_1016_j_ijsolstr_2012_03_011
crossref_primary_10_1063_1_3263954
crossref_primary_10_1063_1_3361157
crossref_primary_10_1088_0960_1317_15_12_028
crossref_primary_10_1016_j_mejo_2003_12_001
crossref_primary_10_1016_j_snb_2006_03_053
crossref_primary_10_3390_s130404088
crossref_primary_10_1088_0957_4484_23_3_035401
crossref_primary_10_1016_j_mee_2008_01_105
crossref_primary_10_4028_www_scientific_net_AMM_120_218
crossref_primary_10_1063_1_3250434
crossref_primary_10_1115_1_2953238
crossref_primary_10_3390_s101109668
crossref_primary_10_1063_1_2789927
crossref_primary_10_1016_j_microrel_2005_07_117
crossref_primary_10_1016_S0167_9317_99_00030_1
crossref_primary_10_1109_84_825777
crossref_primary_10_1115_1_2764088
crossref_primary_10_1016_j_sna_2006_10_052
crossref_primary_10_1016_j_sna_2006_10_051
crossref_primary_10_1116_1_1324622
crossref_primary_10_1016_j_sna_2009_03_020
crossref_primary_10_1039_C0LC00447B
crossref_primary_10_1016_j_mspro_2014_07_447
crossref_primary_10_1016_j_sna_2006_05_014
crossref_primary_10_1117_1_2743374
crossref_primary_10_1063_1_2721422
crossref_primary_10_1063_1_4797621
crossref_primary_10_1116_1_2990789
crossref_primary_10_1016_S0924_4247_02_00431_4
crossref_primary_10_1016_j_sna_2011_04_023
crossref_primary_10_1016_j_sna_2013_07_010
crossref_primary_10_1109_JMEMS_2008_2006811
crossref_primary_10_1143_JJAP_39_7103
crossref_primary_10_1063_1_4792656
crossref_primary_10_1088_0957_4484_18_28_285302
crossref_primary_10_1016_j_sna_2006_10_034
crossref_primary_10_1016_S0924_4247_01_00545_3
crossref_primary_10_1088_0957_0233_23_2_022001
crossref_primary_10_1109_JSTQE_2007_894190
crossref_primary_10_1063_1_2164916
crossref_primary_10_1364_AO_38_001959
crossref_primary_10_1016_j_eurpolymj_2011_06_003
crossref_primary_10_1038_s43586_022_00110_0
crossref_primary_10_1109_TNANO_2007_901910
crossref_primary_10_1063_1_123540
crossref_primary_10_1063_1_4732861
crossref_primary_10_1016_j_sna_2007_10_028
crossref_primary_10_1016_j_sna_2006_06_042
crossref_primary_10_35848_1347_4065_abe7ff
crossref_primary_10_1016_j_sna_2018_01_004
crossref_primary_10_1088_0022_3727_44_28_285402
crossref_primary_10_1016_j_addr_2021_114077
crossref_primary_10_1115_1_2824246
crossref_primary_10_1080_15583724_2010_493255
crossref_primary_10_1021_nn101665k
crossref_primary_10_1109_5_763314
crossref_primary_10_1109_JPROC_2009_2013612
crossref_primary_10_1063_1_1606852
crossref_primary_10_1063_1_1785860
crossref_primary_10_1088_0960_1317_25_6_065003
crossref_primary_10_1016_j_ultramic_2019_05_011
crossref_primary_10_1021_acs_analchem_5b04619
crossref_primary_10_1063_1_1932313
crossref_primary_10_1063_1_4972048
crossref_primary_10_1116_1_1614252
crossref_primary_10_1063_1_2722386
crossref_primary_10_1063_1_3587624
crossref_primary_10_1109_JMEMS_2006_886020
crossref_primary_10_1109_JMEMS_2006_889498
crossref_primary_10_1088_0960_1317_18_8_085015
crossref_primary_10_1109_JMEMS_2003_823239
crossref_primary_10_1063_1_2472277
crossref_primary_10_1088_0957_4484_20_9_095301
crossref_primary_10_5370_JEET_2011_6_1_001
crossref_primary_10_1063_1_2204833
crossref_primary_10_1143_JJAP_45_208
crossref_primary_10_1063_1_1541949
crossref_primary_10_3390_s8053497
crossref_primary_10_1063_1_2164394
crossref_primary_10_1063_1_3673279
crossref_primary_10_1016_j_sna_2007_10_049
crossref_primary_10_1021_nl801203c
crossref_primary_10_1021_acsnano_5b00659
crossref_primary_10_1002_sca_20074
crossref_primary_10_5370_JEET_2011_6_1_119
Cites_doi 10.1109/SENSOR.1991.148908
10.1063/1.111746
10.1007/s003390051247
10.1109/84.650125
10.1143/JJAP.32.5514
10.1016/0924-4247(95)01001-7
10.1143/JJAP.32.L464
10.1063/1.117669
10.1116/1.588015
10.1063/1.108460
10.1063/1.1713251
10.1147/rd.396.0681
10.1116/1.588753
10.1116/1.576520
10.1007/BF00323873
10.1109/55.568750
10.1063/1.108593
10.1016/0924-4247(92)85002-J
10.1116/1.585195
10.1063/1.114105
10.1115/1.2830059
10.1063/1.108268
10.1063/1.115317
10.1063/1.114243
10.1063/1.118085
10.1063/1.111176
10.1063/1.349388
10.1109/16.137316
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID RIA
RIE
IQODW
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
DOI 10.1109/84.661386
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1941-0158
EndPage 78
ExternalDocumentID 10_1109_84_661386
2172377
661386
GroupedDBID -~X
.DC
0R~
29L
4.4
5GY
5VS
6IK
97E
9M8
AAIKC
AAJGR
AAMNW
AASAJ
ABQJQ
ABVLG
ACBEA
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
TWZ
VH1
XFK
XWC
ABPTK
IQODW
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c306t-c2e6ad15becdd6ffb6eff5e8b988013926842407e0aaf5b4b7cbd4a8e4b3bf7a3
IEDL.DBID RIE
ISSN 1057-7157
IngestDate Fri Oct 25 09:43:52 EDT 2024
Fri Aug 23 01:12:35 EDT 2024
Sun Oct 29 17:06:57 EDT 2023
Wed Jun 26 19:31:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Atomic force microscopy
Reading
Piezoresistive sensor
Thermodynamic model
Data storage
Silicon
Modeling
Cantilever beam
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c2e6ad15becdd6ffb6eff5e8b988013926842407e0aaf5b4b7cbd4a8e4b3bf7a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28366381
PQPubID 23500
PageCount 10
ParticipantIDs pascalfrancis_primary_2172377
crossref_primary_10_1109_84_661386
ieee_primary_661386
proquest_miscellaneous_28366381
PublicationCentury 1900
PublicationDate 1998-03-01
PublicationDateYYYYMMDD 1998-03-01
PublicationDate_xml – month: 03
  year: 1998
  text: 1998-03-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Journal of microelectromechanical systems
PublicationTitleAbbrev JMEMS
PublicationYear 1998
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref34
ref14
ref31
chui (ref18) 1996
ref11
ref32
ref10
ibis technology corp (ref19) 0
ref2
ref1
ref17
ref16
(ref33) 0
asheghi (ref30) 0
tortonese (ref15) 1994
ref24
ref23
ref25
solecon laboratories (ref20) 0
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
mamin (ref12) 1994; 48
ref4
ref3
ref6
ref5
incropera (ref26) 1990
References_xml – ident: ref16
  doi: 10.1109/SENSOR.1991.148908
– ident: ref5
  doi: 10.1063/1.111746
– ident: ref22
  doi: 10.1007/s003390051247
– ident: ref21
  doi: 10.1109/84.650125
– ident: ref31
  doi: 10.1143/JJAP.32.5514
– year: 0
  ident: ref19
  contributor:
    fullname: ibis technology corp
– volume: 48
  start-page: 215
  year: 1994
  ident: ref12
  article-title: tip-based data storage using micromechanical cantilevers
  publication-title: Sens Actuators A
  doi: 10.1016/0924-4247(95)01001-7
  contributor:
    fullname: mamin
– ident: ref9
  doi: 10.1143/JJAP.32.L464
– ident: ref17
  doi: 10.1063/1.117669
– ident: ref24
  doi: 10.1116/1.588015
– ident: ref11
  doi: 10.1063/1.108460
– start-page: 219
  year: 1996
  ident: ref18
  article-title: improved cantilevers for afm thermomechanical data storage
  publication-title: Proc Solid-State Sensor and Actuator Workshop
  contributor:
    fullname: chui
– ident: ref27
  doi: 10.1063/1.1713251
– ident: ref7
  doi: 10.1147/rd.396.0681
– ident: ref35
  doi: 10.1116/1.588753
– year: 1994
  ident: ref15
  publication-title: Ph D Dissertation
  contributor:
    fullname: tortonese
– year: 0
  ident: ref30
  publication-title: Thermal conduction in single-crystal silicon cantilevers
  contributor:
    fullname: asheghi
– ident: ref1
  doi: 10.1116/1.576520
– ident: ref28
  doi: 10.1007/BF00323873
– year: 1990
  ident: ref26
  publication-title: Fundamentals of Heat and Mass Transfer
  contributor:
    fullname: incropera
– year: 0
  ident: ref33
  publication-title: Polytec Laser Vibrometer OVF-501-0
– ident: ref32
  doi: 10.1109/55.568750
– ident: ref14
  doi: 10.1063/1.108593
– ident: ref2
  doi: 10.1016/0924-4247(92)85002-J
– ident: ref3
  doi: 10.1116/1.585195
– ident: ref6
  doi: 10.1063/1.114105
– ident: ref29
  doi: 10.1115/1.2830059
– ident: ref4
  doi: 10.1063/1.108268
– ident: ref34
  doi: 10.1063/1.115317
– ident: ref10
  doi: 10.1063/1.114243
– year: 0
  ident: ref20
  contributor:
    fullname: solecon laboratories
– ident: ref25
  doi: 10.1063/1.118085
– ident: ref13
  doi: 10.1063/1.111176
– ident: ref8
  doi: 10.1063/1.349388
– ident: ref23
  doi: 10.1109/16.137316
SSID ssj0014486
Score 1.9994929
Snippet Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data...
Single-crystal silicon cantilevers 1 mum thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage....
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 69
SubjectTerms Applied sciences
Atomic force microscopes
Atomic force microscopy
Atomic measurements
Electric variables measurement
Electronics
Exact sciences and technology
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Memory
Miscellaneous
Physics
Piezoresistance
Predictive models
Resistance heating
Scanning probe microscopes, components and techniques
Silicon
Solid modeling
Storage and reproduction of information
Thermomechanical processes
Title Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage
URI https://ieeexplore.ieee.org/document/661386
https://search.proquest.com/docview/28366381
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXoSkhw2IUCorAFC3FNmzSJP46r1VYVopyo1Ftkx2OpgiYVSXe1_QP7t3fGaSsKHLhEUZxEyXg8fmPPvGHsszAGvNUyMlmCDoqa6MhI9Hk0TjbaWakMkKM4_yZmi-zLMl_uebZDLgwAhOAzGNFp2Mt3dbmlpbIxziWpEj3Wk1p3qVrHDQP0MkIiEcKPSCa53JMIJbEeq2zUPXgy9YRaKhQJaRoUhu-qWPxlkMMsM73o0rebQE5IwSU_RtvWjsrdH9SN__kDL9j5Hm3yq049XrInUPXZ8984CPvsaYgBLZtX7OFrfRfhiPeezB9vVj9RSypOskfTQeEbnFZt-ZFhwnGy5HTdVI5vVrDD72nIaNwCb9A_rrEJQTEnTuTIUah8e8-vpnNOqHNdr4HSjklLOAWqcgrURPP2mi2mN9-vZ9G-TkNUosPRRuUEhHFJjurgnPDeCvA-B2U1GgdEmEQoQ44jxMb43GZWltZlRkFmU-ulSd-ws6qu4C3jEFvhjBYqVTYDkRjEU7GTCPPwmJjJgH06dGGx6eg4iuDGxLpQWdHJd8D6JPrjDYerw5O-PjZTia5UygH7eOj7AocY7ZuYCuptUyACQ1ymknf_fO979uyQpxgnl-ys_bWFIQKV1n4IKvoIsfXrsg
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB21VFXLoR_boi6FYlW9Zkk2ie0cEWK1bXc5gcQtsuOxhCgJItlW8Af428w4u6vScuASRXESJePx-I098wbgmzQGvS1UZLKEHBQ9LiKjyOcpaLIpnFXaIDuK82M5Pc1-nOVnS57tkAuDiCH4DEd8GvbyXVMteKlsn-aSVMvn8IJgtZZ9stZ6y4D8jJBKRAAkUkmuljRCSVzs62zUP_pg8gnVVDgW0rQkDt_XsfjPJId5ZvK2T-BuAz0hh5dcjBadHVW3_5A3PvEX3sGbJd4UB72CvIdnWA9g8y8WwgG8DFGgVfsB7mbNn4jGvPdsAEV7_ov0pBYsfTIeHMAheN1WrDkmnGBbztdN7cTVOd7S97RsNn6jaMlDbqiJYLFgVuTIcbB8dyMOJnPBuPOyuUROPGY9ERyqKjhUkwzcRzidHJ0cTqNlpYaoIpeji6oxSuOSnBTCOem9leh9jtoWZB4IYzKlDLuOGBvjc5tZVVmXGY2ZTa1XJt2Cjbqp8RMIjK10ppA61TZDmRhCVLFTBPTomJjxEL6uurC86gk5yuDIxEWps7KX7xAGLPr1Dauruw_6et3MRbpSpYawt-r7kgYZ75yYGptFWxIGI2Smk-1H37sHr6Yn81k5-3788zO8XmUtxskObHTXC9wl2NLZL0Fd7wEeuu79
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-stiffness+silicon+cantilevers+with+integrated+heaters+and+piezoresistive+sensors+for+high-density+AFM+thermomechanical+data+storage&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Chui%2C+B.W.&rft.au=Stowe%2C+T.D.&rft.au=Yongho+Sungtaek+Ju&rft.au=Goodson%2C+K.E.&rft.date=1998-03-01&rft.issn=1057-7157&rft.volume=7&rft.issue=1&rft.spage=69&rft.epage=78&rft_id=info:doi/10.1109%2F84.661386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_84_661386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon