Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage
Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities /spl Delta/R/R up to 7.5/spl times/10/sup -7...
Saved in:
Published in | Journal of microelectromechanical systems Vol. 7; no. 1; pp. 69 - 78 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.1998
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities /spl Delta/R/R up to 7.5/spl times/10/sup -7/ per /spl Aring/ in close agreement with theoretical predictions. Separate cantilevers with integrated resistive heaters were fabricated using the same basic process. Electrical and thermal measurements on these heating devices produced results consistent with ANSYS simulations. Geometric variants of the cantilever were also tested in order to study the dependence of the thermal time constant on device parameters. Depending on the design, time constants as low as 1 /spl mu/s were achieved. A thermodynamic model was developed based on the cantilevers geometry and material properties, and the model was shown to predict device behavior accurately. A comprehensive understanding of cantilever functionality enabled us to optimize the cantilever for high-speed thermomechanical recording. |
---|---|
AbstractList | Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities /spl Delta/R/R up to 7.5/spl times/10/sup -7/ per /spl Aring/ in close agreement with theoretical predictions. Separate cantilevers with integrated resistive heaters were fabricated using the same basic process. Electrical and thermal measurements on these heating devices produced results consistent with ANSYS simulations. Geometric variants of the cantilever were also tested in order to study the dependence of the thermal time constant on device parameters. Depending on the design, time constants as low as 1 /spl mu/s were achieved. A thermodynamic model was developed based on the cantilevers geometry and material properties, and the model was shown to predict device behavior accurately. A comprehensive understanding of cantilever functionality enabled us to optimize the cantilever for high-speed thermomechanical recording. Single-crystal silicon cantilevers 1 mum thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage. Cantilevers with integrated piezoresistive sensors were fabricated with measured sensitivities DeltaR/R up to 7.5x10(-7) per A in close agreement with theoretical predictions. Separate cantilevers with integrated resistive heaters were fabricated using the same basic process. Electrical and thermal measurements on these heating devices produced results consistent with ANSYS simulations. Geometric variants of the cantilever were also tested in order to study the dependence of the thermal time constant on device parameters. Depending on the design, time constants as low as 1 mus were achieved. A thermodynamic model was developed based on the cantilevers geometry and material properties, and the model was shown to predict device behavior accurately. A comprehensive understanding of cantilever functionality enabled us to optimize the cantilever for high-speed thermomechanical recording |
Author | Yongho Sungtaek Ju Kenny, T.W. Chui, B.W. Terris, B.D. Rugar, D. Goodson, K.E. Stowe, T.D. Mamin, H.J. Ried, R.P. |
Author_xml | – sequence: 1 givenname: B.W. surname: Chui fullname: Chui, B.W. organization: Dept. of Electr. Eng., Stanford Univ., CA, USA – sequence: 2 givenname: T.D. surname: Stowe fullname: Stowe, T.D. – sequence: 3 surname: Yongho Sungtaek Ju fullname: Yongho Sungtaek Ju – sequence: 4 givenname: K.E. surname: Goodson fullname: Goodson, K.E. – sequence: 5 givenname: T.W. surname: Kenny fullname: Kenny, T.W. – sequence: 6 givenname: H.J. surname: Mamin fullname: Mamin, H.J. – sequence: 7 givenname: B.D. surname: Terris fullname: Terris, B.D. – sequence: 8 givenname: R.P. surname: Ried fullname: Ried, R.P. – sequence: 9 givenname: D. surname: Rugar fullname: Rugar, D. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2172377$$DView record in Pascal Francis |
BookMark | eNo9kE9r3DAQxUVJIX_aQ6496RACPTiVbFnSHkNImsCWXtqzGcujtYJX2miUhPQL9GtXZZecZnjvNw_mnbKjmCIydi7FlZRi9c2qK61lZ_UHdiJXSjZC9vao7qI3jZG9OWanRI9CSKWsPmF_1-m1oRK8j0jEKSzBpcgdxBIWfMFM_DWUmYdYcJOh4MRnrKPqECe-C_gnZaRQI16QE0ZK1fIp8zls5maqQihv_PruBy8z5m3aopshBgcLn6AAp5IybPAT--hhIfx8mGfs993tr5v7Zv3z-8PN9bpxndClcS1qmGQ_opsm7f2o0fse7biyVshu1WqrWiUMCgDfj2o0bpwUWFRjN3oD3Rm73Ofucnp6RirDNpDDZYGI6ZmG1nZad1ZW8OsedDkRZfTDLoct5LdBiuF_1YNVw77qyl4cQoHqYz5DdIHeD1pp2s6Yin3ZYwER391Dxj-pMIyG |
CODEN | JMIYET |
CitedBy_id | crossref_primary_10_3390_mi8030090 crossref_primary_10_1088_0268_1242_29_11_115018 crossref_primary_10_3390_s120201758 crossref_primary_10_1016_j_sna_2007_06_008 crossref_primary_10_1063_1_2435589 crossref_primary_10_1146_annurev_matsci_29_1_261 crossref_primary_10_1021_jp4092859 crossref_primary_10_1063_1_2720263 crossref_primary_10_1016_j_sna_2011_12_014 crossref_primary_10_1063_1_1351846 crossref_primary_10_1016_j_measen_2022_100637 crossref_primary_10_1177_104538901400438109 crossref_primary_10_5050_KSNVN_2002_12_3_187 crossref_primary_10_1016_j_mssp_2007_11_004 crossref_primary_10_1109_JMEMS_2008_926980 crossref_primary_10_1016_S0167_9317_00_00289_6 crossref_primary_10_1016_j_applthermaleng_2008_07_019 crossref_primary_10_1016_S0167_9317_03_00189_8 crossref_primary_10_1016_S0167_9317_99_00006_4 crossref_primary_10_1007_s12541_014_0573_9 crossref_primary_10_1080_10584580108016900 crossref_primary_10_1109_JMEMS_2008_918423 crossref_primary_10_1109_JMEMS_2002_803283 crossref_primary_10_1063_1_3154567 crossref_primary_10_1109_JMEMS_2011_2127455 crossref_primary_10_1002_smll_201100486 crossref_primary_10_1063_1_2403862 crossref_primary_10_1016_j_ijsolstr_2012_03_011 crossref_primary_10_1063_1_3263954 crossref_primary_10_1063_1_3361157 crossref_primary_10_1088_0960_1317_15_12_028 crossref_primary_10_1016_j_mejo_2003_12_001 crossref_primary_10_1016_j_snb_2006_03_053 crossref_primary_10_3390_s130404088 crossref_primary_10_1088_0957_4484_23_3_035401 crossref_primary_10_1016_j_mee_2008_01_105 crossref_primary_10_4028_www_scientific_net_AMM_120_218 crossref_primary_10_1063_1_3250434 crossref_primary_10_1115_1_2953238 crossref_primary_10_3390_s101109668 crossref_primary_10_1063_1_2789927 crossref_primary_10_1016_j_microrel_2005_07_117 crossref_primary_10_1016_S0167_9317_99_00030_1 crossref_primary_10_1109_84_825777 crossref_primary_10_1115_1_2764088 crossref_primary_10_1016_j_sna_2006_10_052 crossref_primary_10_1016_j_sna_2006_10_051 crossref_primary_10_1116_1_1324622 crossref_primary_10_1016_j_sna_2009_03_020 crossref_primary_10_1039_C0LC00447B crossref_primary_10_1016_j_mspro_2014_07_447 crossref_primary_10_1016_j_sna_2006_05_014 crossref_primary_10_1117_1_2743374 crossref_primary_10_1063_1_2721422 crossref_primary_10_1063_1_4797621 crossref_primary_10_1116_1_2990789 crossref_primary_10_1016_S0924_4247_02_00431_4 crossref_primary_10_1016_j_sna_2011_04_023 crossref_primary_10_1016_j_sna_2013_07_010 crossref_primary_10_1109_JMEMS_2008_2006811 crossref_primary_10_1143_JJAP_39_7103 crossref_primary_10_1063_1_4792656 crossref_primary_10_1088_0957_4484_18_28_285302 crossref_primary_10_1016_j_sna_2006_10_034 crossref_primary_10_1016_S0924_4247_01_00545_3 crossref_primary_10_1088_0957_0233_23_2_022001 crossref_primary_10_1109_JSTQE_2007_894190 crossref_primary_10_1063_1_2164916 crossref_primary_10_1364_AO_38_001959 crossref_primary_10_1016_j_eurpolymj_2011_06_003 crossref_primary_10_1038_s43586_022_00110_0 crossref_primary_10_1109_TNANO_2007_901910 crossref_primary_10_1063_1_123540 crossref_primary_10_1063_1_4732861 crossref_primary_10_1016_j_sna_2007_10_028 crossref_primary_10_1016_j_sna_2006_06_042 crossref_primary_10_35848_1347_4065_abe7ff crossref_primary_10_1016_j_sna_2018_01_004 crossref_primary_10_1088_0022_3727_44_28_285402 crossref_primary_10_1016_j_addr_2021_114077 crossref_primary_10_1115_1_2824246 crossref_primary_10_1080_15583724_2010_493255 crossref_primary_10_1021_nn101665k crossref_primary_10_1109_5_763314 crossref_primary_10_1109_JPROC_2009_2013612 crossref_primary_10_1063_1_1606852 crossref_primary_10_1063_1_1785860 crossref_primary_10_1088_0960_1317_25_6_065003 crossref_primary_10_1016_j_ultramic_2019_05_011 crossref_primary_10_1021_acs_analchem_5b04619 crossref_primary_10_1063_1_1932313 crossref_primary_10_1063_1_4972048 crossref_primary_10_1116_1_1614252 crossref_primary_10_1063_1_2722386 crossref_primary_10_1063_1_3587624 crossref_primary_10_1109_JMEMS_2006_886020 crossref_primary_10_1109_JMEMS_2006_889498 crossref_primary_10_1088_0960_1317_18_8_085015 crossref_primary_10_1109_JMEMS_2003_823239 crossref_primary_10_1063_1_2472277 crossref_primary_10_1088_0957_4484_20_9_095301 crossref_primary_10_5370_JEET_2011_6_1_001 crossref_primary_10_1063_1_2204833 crossref_primary_10_1143_JJAP_45_208 crossref_primary_10_1063_1_1541949 crossref_primary_10_3390_s8053497 crossref_primary_10_1063_1_2164394 crossref_primary_10_1063_1_3673279 crossref_primary_10_1016_j_sna_2007_10_049 crossref_primary_10_1021_nl801203c crossref_primary_10_1021_acsnano_5b00659 crossref_primary_10_1002_sca_20074 crossref_primary_10_5370_JEET_2011_6_1_119 |
Cites_doi | 10.1109/SENSOR.1991.148908 10.1063/1.111746 10.1007/s003390051247 10.1109/84.650125 10.1143/JJAP.32.5514 10.1016/0924-4247(95)01001-7 10.1143/JJAP.32.L464 10.1063/1.117669 10.1116/1.588015 10.1063/1.108460 10.1063/1.1713251 10.1147/rd.396.0681 10.1116/1.588753 10.1116/1.576520 10.1007/BF00323873 10.1109/55.568750 10.1063/1.108593 10.1016/0924-4247(92)85002-J 10.1116/1.585195 10.1063/1.114105 10.1115/1.2830059 10.1063/1.108268 10.1063/1.115317 10.1063/1.114243 10.1063/1.118085 10.1063/1.111176 10.1063/1.349388 10.1109/16.137316 |
ContentType | Journal Article |
Copyright | 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 INIST-CNRS |
DBID | RIA RIE IQODW AAYXX CITATION 7SP 7TB 7U5 8FD FR3 L7M |
DOI | 10.1109/84.661386 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online Pascal-Francis CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Applied Sciences |
EISSN | 1941-0158 |
EndPage | 78 |
ExternalDocumentID | 10_1109_84_661386 2172377 661386 |
GroupedDBID | -~X .DC 0R~ 29L 4.4 5GY 5VS 6IK 97E 9M8 AAIKC AAJGR AAMNW AASAJ ABQJQ ABVLG ACBEA ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 TWZ VH1 XFK XWC ABPTK IQODW AAYXX CITATION 7SP 7TB 7U5 8FD FR3 L7M |
ID | FETCH-LOGICAL-c306t-c2e6ad15becdd6ffb6eff5e8b988013926842407e0aaf5b4b7cbd4a8e4b3bf7a3 |
IEDL.DBID | RIE |
ISSN | 1057-7157 |
IngestDate | Fri Oct 25 09:43:52 EDT 2024 Fri Aug 23 01:12:35 EDT 2024 Sun Oct 29 17:06:57 EDT 2023 Wed Jun 26 19:31:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Atomic force microscopy Reading Piezoresistive sensor Thermodynamic model Data storage Silicon Modeling Cantilever beam |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c2e6ad15becdd6ffb6eff5e8b988013926842407e0aaf5b4b7cbd4a8e4b3bf7a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 28366381 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_2172377 crossref_primary_10_1109_84_661386 ieee_primary_661386 proquest_miscellaneous_28366381 |
PublicationCentury | 1900 |
PublicationDate | 1998-03-01 |
PublicationDateYYYYMMDD | 1998-03-01 |
PublicationDate_xml | – month: 03 year: 1998 text: 1998-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Journal of microelectromechanical systems |
PublicationTitleAbbrev | JMEMS |
PublicationYear | 1998 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref35 ref13 ref34 ref14 ref31 chui (ref18) 1996 ref11 ref32 ref10 ibis technology corp (ref19) 0 ref2 ref1 ref17 ref16 (ref33) 0 asheghi (ref30) 0 tortonese (ref15) 1994 ref24 ref23 ref25 solecon laboratories (ref20) 0 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 mamin (ref12) 1994; 48 ref4 ref3 ref6 ref5 incropera (ref26) 1990 |
References_xml | – ident: ref16 doi: 10.1109/SENSOR.1991.148908 – ident: ref5 doi: 10.1063/1.111746 – ident: ref22 doi: 10.1007/s003390051247 – ident: ref21 doi: 10.1109/84.650125 – ident: ref31 doi: 10.1143/JJAP.32.5514 – year: 0 ident: ref19 contributor: fullname: ibis technology corp – volume: 48 start-page: 215 year: 1994 ident: ref12 article-title: tip-based data storage using micromechanical cantilevers publication-title: Sens Actuators A doi: 10.1016/0924-4247(95)01001-7 contributor: fullname: mamin – ident: ref9 doi: 10.1143/JJAP.32.L464 – ident: ref17 doi: 10.1063/1.117669 – ident: ref24 doi: 10.1116/1.588015 – ident: ref11 doi: 10.1063/1.108460 – start-page: 219 year: 1996 ident: ref18 article-title: improved cantilevers for afm thermomechanical data storage publication-title: Proc Solid-State Sensor and Actuator Workshop contributor: fullname: chui – ident: ref27 doi: 10.1063/1.1713251 – ident: ref7 doi: 10.1147/rd.396.0681 – ident: ref35 doi: 10.1116/1.588753 – year: 1994 ident: ref15 publication-title: Ph D Dissertation contributor: fullname: tortonese – year: 0 ident: ref30 publication-title: Thermal conduction in single-crystal silicon cantilevers contributor: fullname: asheghi – ident: ref1 doi: 10.1116/1.576520 – ident: ref28 doi: 10.1007/BF00323873 – year: 1990 ident: ref26 publication-title: Fundamentals of Heat and Mass Transfer contributor: fullname: incropera – year: 0 ident: ref33 publication-title: Polytec Laser Vibrometer OVF-501-0 – ident: ref32 doi: 10.1109/55.568750 – ident: ref14 doi: 10.1063/1.108593 – ident: ref2 doi: 10.1016/0924-4247(92)85002-J – ident: ref3 doi: 10.1116/1.585195 – ident: ref6 doi: 10.1063/1.114105 – ident: ref29 doi: 10.1115/1.2830059 – ident: ref4 doi: 10.1063/1.108268 – ident: ref34 doi: 10.1063/1.115317 – ident: ref10 doi: 10.1063/1.114243 – year: 0 ident: ref20 contributor: fullname: solecon laboratories – ident: ref25 doi: 10.1063/1.118085 – ident: ref13 doi: 10.1063/1.111176 – ident: ref8 doi: 10.1063/1.349388 – ident: ref23 doi: 10.1109/16.137316 |
SSID | ssj0014486 |
Score | 1.9994929 |
Snippet | Single-crystal silicon cantilevers 1 /spl mu/m thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data... Single-crystal silicon cantilevers 1 mum thick have been demonstrated for use in high-density atomic-force microscopy (AFM) thermomechanical data storage.... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 69 |
SubjectTerms | Applied sciences Atomic force microscopes Atomic force microscopy Atomic measurements Electric variables measurement Electronics Exact sciences and technology Instruments, apparatus, components and techniques common to several branches of physics and astronomy Memory Miscellaneous Physics Piezoresistance Predictive models Resistance heating Scanning probe microscopes, components and techniques Silicon Solid modeling Storage and reproduction of information Thermomechanical processes |
Title | Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage |
URI | https://ieeexplore.ieee.org/document/661386 https://search.proquest.com/docview/28366381 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXoSkhw2IUCorAFC3FNmzSJP46r1VYVopyo1Ftkx2OpgiYVSXe1_QP7t3fGaSsKHLhEUZxEyXg8fmPPvGHsszAGvNUyMlmCDoqa6MhI9Hk0TjbaWakMkKM4_yZmi-zLMl_uebZDLgwAhOAzGNFp2Mt3dbmlpbIxziWpEj3Wk1p3qVrHDQP0MkIiEcKPSCa53JMIJbEeq2zUPXgy9YRaKhQJaRoUhu-qWPxlkMMsM73o0rebQE5IwSU_RtvWjsrdH9SN__kDL9j5Hm3yq049XrInUPXZ8984CPvsaYgBLZtX7OFrfRfhiPeezB9vVj9RSypOskfTQeEbnFZt-ZFhwnGy5HTdVI5vVrDD72nIaNwCb9A_rrEJQTEnTuTIUah8e8-vpnNOqHNdr4HSjklLOAWqcgrURPP2mi2mN9-vZ9G-TkNUosPRRuUEhHFJjurgnPDeCvA-B2U1GgdEmEQoQ44jxMb43GZWltZlRkFmU-ulSd-ws6qu4C3jEFvhjBYqVTYDkRjEU7GTCPPwmJjJgH06dGGx6eg4iuDGxLpQWdHJd8D6JPrjDYerw5O-PjZTia5UygH7eOj7AocY7ZuYCuptUyACQ1ymknf_fO979uyQpxgnl-ys_bWFIQKV1n4IKvoIsfXrsg |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB21VFXLoR_boi6FYlW9Zkk2ie0cEWK1bXc5gcQtsuOxhCgJItlW8Af428w4u6vScuASRXESJePx-I098wbgmzQGvS1UZLKEHBQ9LiKjyOcpaLIpnFXaIDuK82M5Pc1-nOVnS57tkAuDiCH4DEd8GvbyXVMteKlsn-aSVMvn8IJgtZZ9stZ6y4D8jJBKRAAkUkmuljRCSVzs62zUP_pg8gnVVDgW0rQkDt_XsfjPJId5ZvK2T-BuAz0hh5dcjBadHVW3_5A3PvEX3sGbJd4UB72CvIdnWA9g8y8WwgG8DFGgVfsB7mbNn4jGvPdsAEV7_ov0pBYsfTIeHMAheN1WrDkmnGBbztdN7cTVOd7S97RsNn6jaMlDbqiJYLFgVuTIcbB8dyMOJnPBuPOyuUROPGY9ERyqKjhUkwzcRzidHJ0cTqNlpYaoIpeji6oxSuOSnBTCOem9leh9jtoWZB4IYzKlDLuOGBvjc5tZVVmXGY2ZTa1XJt2Cjbqp8RMIjK10ppA61TZDmRhCVLFTBPTomJjxEL6uurC86gk5yuDIxEWps7KX7xAGLPr1Dauruw_6et3MRbpSpYawt-r7kgYZ75yYGptFWxIGI2Smk-1H37sHr6Yn81k5-3788zO8XmUtxskObHTXC9wl2NLZL0Fd7wEeuu79 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-stiffness+silicon+cantilevers+with+integrated+heaters+and+piezoresistive+sensors+for+high-density+AFM+thermomechanical+data+storage&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Chui%2C+B.W.&rft.au=Stowe%2C+T.D.&rft.au=Yongho+Sungtaek+Ju&rft.au=Goodson%2C+K.E.&rft.date=1998-03-01&rft.issn=1057-7157&rft.volume=7&rft.issue=1&rft.spage=69&rft.epage=78&rft_id=info:doi/10.1109%2F84.661386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_84_661386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon |