Perivascular Niche–Resident Alveolar Macrophages Promote Interstitial Pneumonitis Related to Trastuzumab Deruxtecan Treatment
Trastuzumab deruxtecan (T-DXd) is a transformative HER2-targeting antibody–drug conjugate (ADC) for treating breast cancer. Unfortunately, T-DXd has also been implicated in causing fatal interstitial lung disease (ILD) in multiple clinical trials. A better understanding of the mechanistic basis of t...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 85; no. 11; pp. 2081 - 2099 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
02.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Trastuzumab deruxtecan (T-DXd) is a transformative HER2-targeting antibody–drug conjugate (ADC) for treating breast cancer. Unfortunately, T-DXd has also been implicated in causing fatal interstitial lung disease (ILD) in multiple clinical trials. A better understanding of the mechanistic basis of these ADC-induced adverse effects could enable development of strategies to prevent or treat T-DXd–related ILD. In this study, we determined that T-DXd–induced ILD represents an off-target adverse event rather than an on-target off-tumor adverse event. To further investigate this phenomenon, an immunocompetent murine model that recapitulates T-DXd–induced ILD events was developed, facilitating in-depth mechanistic studies. Single-cell RNA sequencing in this model implicated alveolar macrophages (AM) as the primary cell type impacted by T-DXd in the lung microenvironment. Intravital microscopy further revealed that AMs resident in perivascular niches directly engulfed blood-circulating T-DXd via Fc–FcγR engagement. This Fc–FcγR interaction with T-DXd triggered a phenotypic shift in AMs from an immunosuppressive to a pro-ILD state, characterized by inflammation and immune activation, mediated through the SPP1 pathways. Finally, mitigating nonspecific T-DXd uptake in the lung by preconditioning perivascular AMs with IgG1 or the parental antibody of T-DXd significantly reduced unintended ADC absorption. These findings elucidate a mechanism by which T-DXd ignites the lung immune microenvironment and underscore the importance of off-target endocytosis by innate immune cells in the development of ADC-related toxicities.
Significance: Preconditioning the perivascular niche can prevent lung inflammation induced by antibody-drug conjugate phagocytosis by alveolar macrophages and subsequent SPP1high macrophage differentiation, providing a clinically viable strategy for mitigating interstitial lung disease. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0008-5472 1538-7445 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-24-2021 |