Performance analysis of ionic liquids for simultaneous cooling and heating absorption system
A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by simulation analysis. An imidazolium-based ionic liquid (IL) was used as an absorbent in the new working fluid and H2O and R32 were used as refri...
Saved in:
Published in | Energy (Oxford) Vol. 271; p. 127005 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by simulation analysis. An imidazolium-based ionic liquid (IL) was used as an absorbent in the new working fluid and H2O and R32 were used as refrigerants. The states of the solution mixed with the refrigerant and absorbent were predicted using a non-random two-liquid (NRTL) model. The ILs with H2O refrigerant were 1,3-dimethylimidazolium dimethylphosphate ([DMIM][DMP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]), and 1-ethyl-3-methyl tetrafluoroborate ([EMIM][BF4]), and the IL with R32 refrigerant was 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][Tf2N]). Changes in the cooling, heating, and total coefficient of performances (COPs) according to the generation temperature and generator and condenser split ratios were analyzed. It was concluded that H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4] were suitable for simultaneous cooling and heating absorption systems with reasonable cooling, heating and total COPs. However, R32/[HMIM][Tf2N] had advantages for subzero cooling temperature and compactness of system size, while its COPs were lower than those of H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4]. The total COP of H2O/[DMIM][DMP] was 0.98, indicating the highest performance. H2O/[EMIM][DMP] and H2O/[EMIM][BF4] exhibited total COPs of 0.96 and 0.97, whereas R32/[HMIM][Tf2N] showed a value of 0.55, under certain simulation conditions.
•Performance analysis of simultaneous cooling and heating absorption system is conducted.•Using novel working fluids, weaknesses of absorption system can be solved.•H2O/[DMIM][DMP], H2O/[EMIM][DMP] and H2O/[EMIM][BF4] are suitable for the absorption system.•Using R32/[HMIM][Tf2N], the absorption system can be more compact.•H2O/ILs show 0.96–0.98 maximum COP while R32/IL does 0.55 maximum COP. |
---|---|
AbstractList | A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by simulation analysis. An imidazolium-based ionic liquid (IL) was used as an absorbent in the new working fluid and H2O and R32 were used as refrigerants. The states of the solution mixed with the refrigerant and absorbent were predicted using a non-random two-liquid (NRTL) model. The ILs with H2O refrigerant were 1,3-dimethylimidazolium dimethylphosphate ([DMIM][DMP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]), and 1-ethyl-3-methyl tetrafluoroborate ([EMIM][BF4]), and the IL with R32 refrigerant was 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][Tf2N]). Changes in the cooling, heating, and total coefficient of performances (COPs) according to the generation temperature and generator and condenser split ratios were analyzed. It was concluded that H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4] were suitable for simultaneous cooling and heating absorption systems with reasonable cooling, heating and total COPs. However, R32/[HMIM][Tf2N] had advantages for subzero cooling temperature and compactness of system size, while its COPs were lower than those of H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4]. The total COP of H2O/[DMIM][DMP] was 0.98, indicating the highest performance. H2O/[EMIM][DMP] and H2O/[EMIM][BF4] exhibited total COPs of 0.96 and 0.97, whereas R32/[HMIM][Tf2N] showed a value of 0.55, under certain simulation conditions.
•Performance analysis of simultaneous cooling and heating absorption system is conducted.•Using novel working fluids, weaknesses of absorption system can be solved.•H2O/[DMIM][DMP], H2O/[EMIM][DMP] and H2O/[EMIM][BF4] are suitable for the absorption system.•Using R32/[HMIM][Tf2N], the absorption system can be more compact.•H2O/ILs show 0.96–0.98 maximum COP while R32/IL does 0.55 maximum COP. |
ArticleNumber | 127005 |
Author | Lee, Jae Won Lee, Nam Soo Kang, Yong Tae Park, Sejun Cho, Hyun Uk Choi, Hyung Won |
Author_xml | – sequence: 1 givenname: Sejun surname: Park fullname: Park, Sejun organization: Graduate School of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea – sequence: 2 givenname: Hyung Won surname: Choi fullname: Choi, Hyung Won organization: Graduate School of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea – sequence: 3 givenname: Jae Won orcidid: 0000-0003-1898-4338 surname: Lee fullname: Lee, Jae Won organization: Department of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea – sequence: 4 givenname: Hyun Uk surname: Cho fullname: Cho, Hyun Uk organization: H&A Company, LG Electronics, South Korea – sequence: 5 givenname: Nam Soo surname: Lee fullname: Lee, Nam Soo organization: H&A Company, LG Electronics, South Korea – sequence: 6 givenname: Yong Tae surname: Kang fullname: Kang, Yong Tae email: ytkang@korea.ac.kr organization: Department of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea |
BookMark | eNp9kMtOwzAQRb0oEi3wByz8Awl-JXY2SKjiJVWCBeyQLNeZFFeJXewUKX-PS1izmtFoztXVWaGFDx4QuqakpITWN_sSPMTdVDLCeEmZJKRaoCXhNSkqIdg5WqW0J_mqmmaJPl4hdiEOxlvAxpt-Si7h0GEXvLO4d19H1yacX3Byw7EfjYdwTNiG0Du_y0iLP8GMv_s2hXgYM4nTlEYYLtFZZ_oEV3_zAr0_3L-tn4rNy-Pz-m5TWE7qsbDUWk5NyzpBqkqpessYSElF3UlLRUNzVwIgeWMESCqVIkp1UgFww2lL-AUSc66NIaUInT5EN5g4aUr0yYre69mKPlnRs5WM3c4Y5G7fDqJO1kEW0boIdtRtcP8H_AB6LHI_ |
CitedBy_id | crossref_primary_10_12944_CWE_18_3_03 crossref_primary_10_1016_j_energy_2024_132325 crossref_primary_10_1016_j_enbuild_2024_114373 crossref_primary_10_1016_j_enconman_2023_117910 crossref_primary_10_1016_j_ijrefrig_2024_06_012 |
Cites_doi | 10.1016/j.enconman.2019.112370 10.1016/j.jct.2021.106715 10.1016/j.enconman.2018.12.030 10.1021/je034183r 10.1016/j.applthermaleng.2019.114120 10.1021/je501069b 10.1021/ie901700b 10.1016/j.ijrefrig.2014.08.008 10.1021/je025591i 10.1016/j.apenergy.2015.01.147 10.1016/j.enconman.2020.113072 10.1002/er.5252 10.1016/j.applthermaleng.2020.115145 10.1021/jp058015c 10.1016/j.apenergy.2012.03.044 10.1016/j.apenergy.2014.02.061 10.1021/ie800330v 10.1016/j.enconman.2019.112100 10.1016/j.cherd.2021.05.024 10.1016/j.rser.2014.04.046 10.1016/j.energy.2012.04.048 10.1016/j.energy.2018.10.052 10.1016/j.electacta.2008.03.085 10.1016/j.ijrefrig.2019.10.007 10.1021/acssuschemeng.8b00397 10.1016/j.enconman.2021.114296 10.1016/j.seppur.2021.119363 10.1016/j.rser.2015.12.192 10.1021/acs.iecr.7b02343 10.1016/j.applthermaleng.2011.11.006 10.1016/j.applthermaleng.2011.06.011 10.1016/j.applthermaleng.2020.115161 10.1016/j.ijrefrig.2017.12.011 10.1016/j.energy.2021.122872 10.1016/j.fluid.2021.113291 10.1016/j.enconman.2014.05.024 10.1002/er.4939 10.1016/j.enconman.2018.05.091 10.1002/er.2997 10.1016/j.ijrefrig.2018.03.004 10.1016/j.tsep.2018.04.017 10.1016/j.ijrefrig.2021.07.020 10.1016/j.enconman.2018.08.060 10.1016/j.enconman.2021.114213 10.1016/j.jct.2010.11.014 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.energy.2023.127005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2023_127005 S0360544223003997 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABFNM ABXDB ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- RIG SAC WUQ |
ID | FETCH-LOGICAL-c306t-c1cc31ad2f4055886b22e77146f7c14910580ee739a4e71788088f78ee3a31d03 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Thu Sep 26 17:02:40 EDT 2024 Sat Feb 17 16:11:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | R32 Simultaneous cooling and Heating H2O Coefficient of performance Absorption system Ionic liquid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-c1cc31ad2f4055886b22e77146f7c14910580ee739a4e71788088f78ee3a31d03 |
ORCID | 0000-0003-1898-4338 |
ParticipantIDs | crossref_primary_10_1016_j_energy_2023_127005 elsevier_sciencedirect_doi_10_1016_j_energy_2023_127005 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-15 |
PublicationDateYYYYMMDD | 2023-05-15 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Hu (bib29) 2012; 37 Liu, Xie, Yang (bib8) 2020; 205 Xu, Gao, Mao, Liu, Wang (bib7) 2020; 220 Asensio-Delgado, Pardo, Zarca, Urtiaga, Technology (bib16) 2021; 276 Brückner, Liu, Miró, Radspieler, Cabeza, Lävemann (bib5) 2015; 151 Domańska, Bogel-Łukasik (bib12) 2005; 109 Wu, Leung, Ding, Huang, Bai, Deng (bib44) 2020; 172 Forman, Muritala, Pardemann, Meyer (bib3) 2016; 57 Esaki, Kobayashi (bib35) 2021; 171 Sun, Di, Wang, Wang, Wu (bib32) 2020; 109 Zhang, Hu (bib20) 2011; 31 (bib1) 2021 Bai, Liu, Ye, He (bib31) 2019; 161 Trindade, Visak, Bogel-Lukasik, Bogel-Lukasik, da Ponte (bib13) 2010; 49 Wu, You, Zhang, Li (bib30) 2018; 88 Wu, You, Leung (bib28) 2020; 44 Jouhara, Khordehgah, Almahmoud, Delpech, Chauhan, Tassou (bib2) 2018; 6 Kim, Hayashi, Onoda, Sato, Nishimura, Mori (bib10) 2008; 53 Liu, Ye, Bai, He (bib14) 2019; 181 Klein, Alvarado (bib39) 2002; vol. 1 Yang, Wang, Gao, Zhang, Liu, Olabi (bib4) 2018; 6 Ren, Zhao, Zhang (bib40) 2011; 43 Jiang, Meng, Sun, Jin, Wei, Wang (bib33) 2021; 131:178-185 Preißinger, Pöllinger, Brüggemann (bib23) 2013; 37 Chen, Liang, Guo, Tang (bib25) 2014; 85 Gardas, Coutinho (bib43) 2008; 47 Kim, Jung, Park, Kang (bib27) 2022; 241 Zheng, Dong, Huang, Wu, Nie (bib18) 2014; 37 Ruiz, Ferro, de Riva, Moreno, Palomar (bib26) 2014; 123 Xu, Mao, Liu, Wang (bib6) 2018; 165 Zhang, Li, Li, Shan, Zhu, Wang (bib15) 2022; 167 Wang, Becker, Schouten, Vlugt (bib48) 2018; 174 Wu, Zhang, You, Li (bib24) 2017; 56 Jork, Seiler, Beste, Arlt (bib41) 2004; 49 Gao, Xu, Wang (bib36) 2021; 241 Herold, Radermacher, Klein (bib46) 2016 Shirazi, Taylor, Morrison, White (bib9) 2018; 171 Sujatha, Venkatarathnam (bib22) 2018; 88 Hong, Lee, Lee, Kim, Park (bib45) 2019; 201 Kim, Gonzalez (bib47) 2014; 48 Li, Zhang, Shen, Chen, Ma, Zhu (bib17) 2022; 552 Song, Liu, Ye, He (bib37) 2020; 44 Dong, Zheng, Nie, Li (bib21) 2012; 98 Zhai, Sui, Sui, Wu (bib38) 2021; 239 Liu, He, Lv, Qi, Su (bib42) 2015; 60 Paulechka, Kabo, Blokhin, Vydrov, Magee, Frenkel (bib11) 2003; 48 Kim, Kim, Joshi, Fedorov, Kohl (bib19) 2012; 44 Sun, Di, Wang, Hu, Wang, He (bib34) 2020; 172 Trindade (10.1016/j.energy.2023.127005_bib13) 2010; 49 Zhang (10.1016/j.energy.2023.127005_bib15) 2022; 167 Kim (10.1016/j.energy.2023.127005_bib27) 2022; 241 Gao (10.1016/j.energy.2023.127005_bib36) 2021; 241 Zhang (10.1016/j.energy.2023.127005_bib29) 2012; 37 Jiang (10.1016/j.energy.2023.127005_bib33) 2021 Jouhara (10.1016/j.energy.2023.127005_bib2) 2018; 6 Xu (10.1016/j.energy.2023.127005_bib6) 2018; 165 Zhang (10.1016/j.energy.2023.127005_bib20) 2011; 31 Hong (10.1016/j.energy.2023.127005_bib45) 2019; 201 Kim (10.1016/j.energy.2023.127005_bib47) 2014; 48 Klein (10.1016/j.energy.2023.127005_bib39) 2002; vol. 1 Zheng (10.1016/j.energy.2023.127005_bib18) 2014; 37 Preißinger (10.1016/j.energy.2023.127005_bib23) 2013; 37 Esaki (10.1016/j.energy.2023.127005_bib35) 2021; 171 Song (10.1016/j.energy.2023.127005_bib37) 2020; 44 Xu (10.1016/j.energy.2023.127005_bib7) 2020; 220 Liu (10.1016/j.energy.2023.127005_bib8) 2020; 205 Kim (10.1016/j.energy.2023.127005_bib19) 2012; 44 Dong (10.1016/j.energy.2023.127005_bib21) 2012; 98 Li (10.1016/j.energy.2023.127005_bib17) 2022; 552 Wu (10.1016/j.energy.2023.127005_bib30) 2018; 88 (10.1016/j.energy.2023.127005_bib1) 2021 Forman (10.1016/j.energy.2023.127005_bib3) 2016; 57 Shirazi (10.1016/j.energy.2023.127005_bib9) 2018; 171 Wu (10.1016/j.energy.2023.127005_bib28) 2020; 44 Bai (10.1016/j.energy.2023.127005_bib31) 2019; 161 Sujatha (10.1016/j.energy.2023.127005_bib22) 2018; 88 Domańska (10.1016/j.energy.2023.127005_bib12) 2005; 109 Sun (10.1016/j.energy.2023.127005_bib34) 2020; 172 Liu (10.1016/j.energy.2023.127005_bib42) 2015; 60 Ren (10.1016/j.energy.2023.127005_bib40) 2011; 43 Wu (10.1016/j.energy.2023.127005_bib24) 2017; 56 Chen (10.1016/j.energy.2023.127005_bib25) 2014; 85 Ruiz (10.1016/j.energy.2023.127005_bib26) 2014; 123 Zhai (10.1016/j.energy.2023.127005_bib38) 2021; 239 Liu (10.1016/j.energy.2023.127005_bib14) 2019; 181 Herold (10.1016/j.energy.2023.127005_bib46) 2016 Sun (10.1016/j.energy.2023.127005_bib32) 2020; 109 Paulechka (10.1016/j.energy.2023.127005_bib11) 2003; 48 Yang (10.1016/j.energy.2023.127005_bib4) 2018; 6 Brückner (10.1016/j.energy.2023.127005_bib5) 2015; 151 Wang (10.1016/j.energy.2023.127005_bib48) 2018; 174 Kim (10.1016/j.energy.2023.127005_bib10) 2008; 53 Jork (10.1016/j.energy.2023.127005_bib41) 2004; 49 Wu (10.1016/j.energy.2023.127005_bib44) 2020; 172 Asensio-Delgado (10.1016/j.energy.2023.127005_bib16) 2021; 276 Gardas (10.1016/j.energy.2023.127005_bib43) 2008; 47 |
References_xml | – volume: 57 start-page: 1568 year: 2016 end-page: 1579 ident: bib3 article-title: Estimating the global waste heat potential publication-title: Renew Sustain Energy Rev contributor: fullname: Meyer – volume: 60 start-page: 1354 year: 2015 end-page: 1361 ident: bib42 article-title: Vapor–liquid equilibrium of three hydrofluorocarbons with [HMIM][Tf2N] publication-title: J Chem Eng Data contributor: fullname: Su – volume: 88 start-page: 45 year: 2018 end-page: 57 ident: bib30 article-title: Comparisons of different ionic liquids combined with trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as absorption working fluids publication-title: Int J Refrig contributor: fullname: Li – volume: 37 start-page: 47 year: 2014 end-page: 68 ident: bib18 article-title: A review of imidazolium ionic liquids research and development towards working pair of absorption cycle publication-title: Renew Sustain Energy Rev contributor: fullname: Nie – volume: 552 year: 2022 ident: bib17 article-title: Molecular simulation and liquid–liquid equilibrium for the separation of n-heptane and dimethyl carbonate by ionic liquids publication-title: Fluid Phase Equil contributor: fullname: Zhu – volume: 109 start-page: 12124 year: 2005 end-page: 12132 ident: bib12 article-title: Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide publication-title: J Phys Chem B contributor: fullname: Bogel-Łukasik – volume: 56 start-page: 9906 year: 2017 end-page: 9916 ident: bib24 article-title: Thermodynamic investigation and comparison of absorption cycles using hydrofluoroolefins and ionic liquid publication-title: Ind Eng Chem Res contributor: fullname: Li – volume: 31 start-page: 3316 year: 2011 end-page: 3321 ident: bib20 article-title: Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair publication-title: Appl Therm Eng contributor: fullname: Hu – volume: 181 start-page: 319 year: 2019 end-page: 330 ident: bib14 article-title: Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair publication-title: Energy Convers Manag contributor: fullname: He – volume: 241 year: 2022 ident: bib27 article-title: Performance analysis of type 1 and type 2 hybrid absorption heat pump using novel working pairs publication-title: Energy contributor: fullname: Kang – volume: 201 year: 2019 ident: bib45 article-title: Thermally-driven hybrid vapor absorption cycle: simultaneous and flexible use of steam generation heat pump and refrigeration applications publication-title: Energy Convers Manag contributor: fullname: Park – year: 2016 ident: bib46 article-title: Absorption chillers and heat pumps contributor: fullname: Klein – volume: 88 start-page: 370 year: 2018 end-page: 382 ident: bib22 article-title: Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid [hmim][TF2N] as the absorbent publication-title: Int J Refrig contributor: fullname: Venkatarathnam – volume: 172 year: 2020 ident: bib44 article-title: Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles publication-title: Appl Therm Eng contributor: fullname: Deng – year: 2021 ident: bib1 article-title: Annual report 2020 – volume: 205 year: 2020 ident: bib8 article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat publication-title: Energy Convers Manag contributor: fullname: Yang – volume: 44 start-page: 1005 year: 2012 end-page: 1016 ident: bib19 article-title: Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid publication-title: Energy contributor: fullname: Kohl – volume: 43 start-page: 576 year: 2011 end-page: 583 ident: bib40 article-title: Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate publication-title: J Chem Thermodyn contributor: fullname: Zhang – volume: 174 start-page: 824 year: 2018 end-page: 843 ident: bib48 article-title: Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels publication-title: Energy Convers Manag contributor: fullname: Vlugt – volume: 167 year: 2022 ident: bib15 article-title: Separation of isopropyl ether and acetone using ionic liquids based on quantum chemistry calculation and liquid–liquid equilibrium publication-title: J Chem Thermodyn contributor: fullname: Wang – volume: 98 start-page: 326 year: 2012 end-page: 332 ident: bib21 article-title: Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O + [DMIM]DMP system publication-title: Appl Energy contributor: fullname: Li – volume: 37 start-page: 1382 year: 2013 end-page: 1388 ident: bib23 article-title: Ionic liquid based absorption chillers for usage of low grade waste heat in industry publication-title: Int J Energy Res contributor: fullname: Brüggemann – volume: 47 start-page: 5751 year: 2008 end-page: 5757 ident: bib43 article-title: A group contribution method for heat capacity estimation of ionic liquids publication-title: Ind Eng Chem Res contributor: fullname: Coutinho – volume: 85 start-page: 13 year: 2014 end-page: 19 ident: bib25 article-title: Thermodynamic analysis of an absorption system using [bmim]Zn2Cl5/NH3 as the working pair publication-title: Energy Convers Manag contributor: fullname: Tang – volume: 123 start-page: 281 year: 2014 end-page: 291 ident: bib26 article-title: Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations publication-title: Appl Energy contributor: fullname: Palomar – volume: 165 start-page: 1097 year: 2018 end-page: 1105 ident: bib6 article-title: Waste heat recovery of power plant with large scale serial absorption heat pumps publication-title: Energy contributor: fullname: Wang – year: 2021; 131:178-185 ident: bib33 article-title: Absorption behavior for R1234ze (E) and R1233zd (E) in [P66614][Cl] as working fluids in absorption refrigeration systems publication-title: Int J Refrig contributor: fullname: Wang – volume: 241 year: 2021 ident: bib36 article-title: Towards high-performance sorption cold energy storage and transmission with ionic liquid absorbents publication-title: Energy Convers Manag contributor: fullname: Wang – volume: 44 start-page: 4703 year: 2020 end-page: 4716 ident: bib37 article-title: A new power/cooling cogeneration system using R1234ze(E)/ionic liquid working fluid publication-title: Int J Energy Res contributor: fullname: He – volume: 172 year: 2020 ident: bib34 article-title: Gaseous solubility and thermodynamic performance of absorption system using R1234yf/IL working pairs publication-title: Appl Therm Eng contributor: fullname: He – volume: 6 start-page: 268 year: 2018 end-page: 289 ident: bib2 article-title: Waste heat recovery technologies and applications publication-title: Therm Sci Eng Prog contributor: fullname: Tassou – volume: 276 year: 2021 ident: bib16 article-title: Absorption separation of fluorinated refrigerant gases with ionic liquids: equilibrium, mass transport, and process design publication-title: Separ Purif Technol contributor: fullname: Technology – volume: 239 year: 2021 ident: bib38 article-title: Ionic liquids for microchannel membrane-based absorption heat pumps: performance comparison and geometry optimization publication-title: Energy Convers Manag contributor: fullname: Wu – volume: 37 start-page: 129 year: 2012 end-page: 135 ident: bib29 article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water publication-title: Appl Therm Eng contributor: fullname: Hu – volume: 171 start-page: 340 year: 2021 end-page: 348 ident: bib35 article-title: Experimental absorption solubility and rate of hydrofluoroolefin refrigerant in ionic liquids for absorption chiller cycles publication-title: Chem Eng Res Des contributor: fullname: Kobayashi – volume: vol. 1 year: 2002 ident: bib39 publication-title: Engineering equation solver contributor: fullname: Alvarado – volume: 48 start-page: 26 year: 2014 end-page: 37 ident: bib47 article-title: Exergy analysis of an ionic-liquid absorption refrigeration system utilizing waste-heat from datacenters publication-title: Int J Refrig contributor: fullname: Gonzalez – volume: 49 start-page: 4850 year: 2010 end-page: 4857 ident: bib13 article-title: Liquid-liquid equilibrium of mixtures of imidazolium-based ionic liquids with propanediols or glycerol publication-title: Ind Eng Chem Res contributor: fullname: da Ponte – volume: 44 start-page: 9367 year: 2020 end-page: 9381 ident: bib28 article-title: Screening of novel water/ionic liquid working fluids for absorption thermal energy storage in cooling systems publication-title: Int J Energy Res contributor: fullname: Leung – volume: 109 start-page: 25 year: 2020 end-page: 36 ident: bib32 article-title: Performance analysis of R1234yf/ionic liquid working fluids for single-effect and compression-assisted absorption refrigeration systems publication-title: Int J Refrig contributor: fullname: Wu – volume: 151 start-page: 157 year: 2015 end-page: 167 ident: bib5 article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies publication-title: Appl Energy contributor: fullname: Lävemann – volume: 171 start-page: 59 year: 2018 end-page: 81 ident: bib9 article-title: Solar-powered absorption chillers: a comprehensive and critical review publication-title: Energy Convers Manag contributor: fullname: White – volume: 220 year: 2020 ident: bib7 article-title: Double-section absorption heat pump for the deep recovery of low-grade waste heat publication-title: Energy Convers Manag contributor: fullname: Wang – volume: 6 start-page: 8350 year: 2018 end-page: 8363 ident: bib4 article-title: Performance analysis of a novel cascade absorption refrigeration for low-grade waste heat recovery publication-title: Acs Sustain Chem Eng contributor: fullname: Olabi – volume: 49 start-page: 852 year: 2004 end-page: 857 ident: bib41 article-title: Influence of ionic liquids on the phase behavior of aqueous azeotropic systems publication-title: J Chem Eng Data contributor: fullname: Arlt – volume: 48 start-page: 457 year: 2003 end-page: 462 ident: bib11 article-title: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state publication-title: J Chem Eng Data contributor: fullname: Frenkel – volume: 161 year: 2019 ident: bib31 article-title: Investigation on the performance of R1234ze(E) in absorption refrigeration and ejection refrigeration systems publication-title: Appl Therm Eng contributor: fullname: He – volume: 53 start-page: 7638 year: 2008 end-page: 7643 ident: bib10 article-title: New organic–inorganic crystalline electrolytes synthesized from 12-phosphotungstic acid and the ionic liquid [BMIM][TFSI] publication-title: Electrochim Acta contributor: fullname: Mori – volume: 205 year: 2020 ident: 10.1016/j.energy.2023.127005_bib8 article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112370 contributor: fullname: Liu – volume: 167 year: 2022 ident: 10.1016/j.energy.2023.127005_bib15 article-title: Separation of isopropyl ether and acetone using ionic liquids based on quantum chemistry calculation and liquid–liquid equilibrium publication-title: J Chem Thermodyn doi: 10.1016/j.jct.2021.106715 contributor: fullname: Zhang – volume: 181 start-page: 319 year: 2019 ident: 10.1016/j.energy.2023.127005_bib14 article-title: Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.12.030 contributor: fullname: Liu – volume: 49 start-page: 852 issue: 4 year: 2004 ident: 10.1016/j.energy.2023.127005_bib41 article-title: Influence of ionic liquids on the phase behavior of aqueous azeotropic systems publication-title: J Chem Eng Data doi: 10.1021/je034183r contributor: fullname: Jork – volume: 161 year: 2019 ident: 10.1016/j.energy.2023.127005_bib31 article-title: Investigation on the performance of R1234ze(E) in absorption refrigeration and ejection refrigeration systems publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114120 contributor: fullname: Bai – volume: 60 start-page: 1354 issue: 5 year: 2015 ident: 10.1016/j.energy.2023.127005_bib42 article-title: Vapor–liquid equilibrium of three hydrofluorocarbons with [HMIM][Tf2N] publication-title: J Chem Eng Data doi: 10.1021/je501069b contributor: fullname: Liu – volume: 49 start-page: 4850 issue: 10 year: 2010 ident: 10.1016/j.energy.2023.127005_bib13 article-title: Liquid-liquid equilibrium of mixtures of imidazolium-based ionic liquids with propanediols or glycerol publication-title: Ind Eng Chem Res doi: 10.1021/ie901700b contributor: fullname: Trindade – volume: 48 start-page: 26 year: 2014 ident: 10.1016/j.energy.2023.127005_bib47 article-title: Exergy analysis of an ionic-liquid absorption refrigeration system utilizing waste-heat from datacenters publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2014.08.008 contributor: fullname: Kim – volume: 48 start-page: 457 issue: 3 year: 2003 ident: 10.1016/j.energy.2023.127005_bib11 article-title: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state publication-title: J Chem Eng Data doi: 10.1021/je025591i contributor: fullname: Paulechka – volume: 151 start-page: 157 year: 2015 ident: 10.1016/j.energy.2023.127005_bib5 article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.147 contributor: fullname: Brückner – volume: 220 year: 2020 ident: 10.1016/j.energy.2023.127005_bib7 article-title: Double-section absorption heat pump for the deep recovery of low-grade waste heat publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113072 contributor: fullname: Xu – year: 2016 ident: 10.1016/j.energy.2023.127005_bib46 contributor: fullname: Herold – volume: 44 start-page: 4703 issue: 6 year: 2020 ident: 10.1016/j.energy.2023.127005_bib37 article-title: A new power/cooling cogeneration system using R1234ze(E)/ionic liquid working fluid publication-title: Int J Energy Res doi: 10.1002/er.5252 contributor: fullname: Song – volume: 172 year: 2020 ident: 10.1016/j.energy.2023.127005_bib44 article-title: Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115145 contributor: fullname: Wu – volume: 109 start-page: 12124 issue: 24 year: 2005 ident: 10.1016/j.energy.2023.127005_bib12 article-title: Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide publication-title: J Phys Chem B doi: 10.1021/jp058015c contributor: fullname: Domańska – volume: 98 start-page: 326 year: 2012 ident: 10.1016/j.energy.2023.127005_bib21 article-title: Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O + [DMIM]DMP system publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.03.044 contributor: fullname: Dong – volume: 123 start-page: 281 year: 2014 ident: 10.1016/j.energy.2023.127005_bib26 article-title: Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.061 contributor: fullname: Ruiz – volume: 47 start-page: 5751 issue: 15 year: 2008 ident: 10.1016/j.energy.2023.127005_bib43 article-title: A group contribution method for heat capacity estimation of ionic liquids publication-title: Ind Eng Chem Res doi: 10.1021/ie800330v contributor: fullname: Gardas – volume: 201 year: 2019 ident: 10.1016/j.energy.2023.127005_bib45 article-title: Thermally-driven hybrid vapor absorption cycle: simultaneous and flexible use of steam generation heat pump and refrigeration applications publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112100 contributor: fullname: Hong – volume: 171 start-page: 340 year: 2021 ident: 10.1016/j.energy.2023.127005_bib35 article-title: Experimental absorption solubility and rate of hydrofluoroolefin refrigerant in ionic liquids for absorption chiller cycles publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2021.05.024 contributor: fullname: Esaki – volume: 37 start-page: 47 year: 2014 ident: 10.1016/j.energy.2023.127005_bib18 article-title: A review of imidazolium ionic liquids research and development towards working pair of absorption cycle publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.04.046 contributor: fullname: Zheng – volume: 44 start-page: 1005 issue: 1 year: 2012 ident: 10.1016/j.energy.2023.127005_bib19 article-title: Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid publication-title: Energy doi: 10.1016/j.energy.2012.04.048 contributor: fullname: Kim – year: 2021 ident: 10.1016/j.energy.2023.127005_bib1 – volume: 165 start-page: 1097 year: 2018 ident: 10.1016/j.energy.2023.127005_bib6 article-title: Waste heat recovery of power plant with large scale serial absorption heat pumps publication-title: Energy doi: 10.1016/j.energy.2018.10.052 contributor: fullname: Xu – volume: 53 start-page: 7638 issue: 26 year: 2008 ident: 10.1016/j.energy.2023.127005_bib10 article-title: New organic–inorganic crystalline electrolytes synthesized from 12-phosphotungstic acid and the ionic liquid [BMIM][TFSI] publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.03.085 contributor: fullname: Kim – volume: 109 start-page: 25 year: 2020 ident: 10.1016/j.energy.2023.127005_bib32 article-title: Performance analysis of R1234yf/ionic liquid working fluids for single-effect and compression-assisted absorption refrigeration systems publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2019.10.007 contributor: fullname: Sun – volume: 6 start-page: 8350 issue: 7 year: 2018 ident: 10.1016/j.energy.2023.127005_bib4 article-title: Performance analysis of a novel cascade absorption refrigeration for low-grade waste heat recovery publication-title: Acs Sustain Chem Eng doi: 10.1021/acssuschemeng.8b00397 contributor: fullname: Yang – volume: 241 year: 2021 ident: 10.1016/j.energy.2023.127005_bib36 article-title: Towards high-performance sorption cold energy storage and transmission with ionic liquid absorbents publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114296 contributor: fullname: Gao – volume: 276 year: 2021 ident: 10.1016/j.energy.2023.127005_bib16 article-title: Absorption separation of fluorinated refrigerant gases with ionic liquids: equilibrium, mass transport, and process design publication-title: Separ Purif Technol doi: 10.1016/j.seppur.2021.119363 contributor: fullname: Asensio-Delgado – volume: 57 start-page: 1568 year: 2016 ident: 10.1016/j.energy.2023.127005_bib3 article-title: Estimating the global waste heat potential publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.192 contributor: fullname: Forman – volume: 56 start-page: 9906 issue: 35 year: 2017 ident: 10.1016/j.energy.2023.127005_bib24 article-title: Thermodynamic investigation and comparison of absorption cycles using hydrofluoroolefins and ionic liquid publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.7b02343 contributor: fullname: Wu – volume: 37 start-page: 129 year: 2012 ident: 10.1016/j.energy.2023.127005_bib29 article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.11.006 contributor: fullname: Zhang – volume: 31 start-page: 3316 issue: 16 year: 2011 ident: 10.1016/j.energy.2023.127005_bib20 article-title: Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.06.011 contributor: fullname: Zhang – volume: vol. 1 year: 2002 ident: 10.1016/j.energy.2023.127005_bib39 contributor: fullname: Klein – volume: 172 year: 2020 ident: 10.1016/j.energy.2023.127005_bib34 article-title: Gaseous solubility and thermodynamic performance of absorption system using R1234yf/IL working pairs publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115161 contributor: fullname: Sun – volume: 88 start-page: 45 year: 2018 ident: 10.1016/j.energy.2023.127005_bib30 article-title: Comparisons of different ionic liquids combined with trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as absorption working fluids publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2017.12.011 contributor: fullname: Wu – volume: 241 year: 2022 ident: 10.1016/j.energy.2023.127005_bib27 article-title: Performance analysis of type 1 and type 2 hybrid absorption heat pump using novel working pairs publication-title: Energy doi: 10.1016/j.energy.2021.122872 contributor: fullname: Kim – volume: 552 year: 2022 ident: 10.1016/j.energy.2023.127005_bib17 article-title: Molecular simulation and liquid–liquid equilibrium for the separation of n-heptane and dimethyl carbonate by ionic liquids publication-title: Fluid Phase Equil doi: 10.1016/j.fluid.2021.113291 contributor: fullname: Li – volume: 85 start-page: 13 year: 2014 ident: 10.1016/j.energy.2023.127005_bib25 article-title: Thermodynamic analysis of an absorption system using [bmim]Zn2Cl5/NH3 as the working pair publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.05.024 contributor: fullname: Chen – volume: 44 start-page: 9367 issue: 12 year: 2020 ident: 10.1016/j.energy.2023.127005_bib28 article-title: Screening of novel water/ionic liquid working fluids for absorption thermal energy storage in cooling systems publication-title: Int J Energy Res doi: 10.1002/er.4939 contributor: fullname: Wu – volume: 171 start-page: 59 year: 2018 ident: 10.1016/j.energy.2023.127005_bib9 article-title: Solar-powered absorption chillers: a comprehensive and critical review publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.05.091 contributor: fullname: Shirazi – volume: 37 start-page: 1382 issue: 11 year: 2013 ident: 10.1016/j.energy.2023.127005_bib23 article-title: Ionic liquid based absorption chillers for usage of low grade waste heat in industry publication-title: Int J Energy Res doi: 10.1002/er.2997 contributor: fullname: Preißinger – volume: 88 start-page: 370 year: 2018 ident: 10.1016/j.energy.2023.127005_bib22 article-title: Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid [hmim][TF2N] as the absorbent publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2018.03.004 contributor: fullname: Sujatha – volume: 6 start-page: 268 year: 2018 ident: 10.1016/j.energy.2023.127005_bib2 article-title: Waste heat recovery technologies and applications publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2018.04.017 contributor: fullname: Jouhara – year: 2021 ident: 10.1016/j.energy.2023.127005_bib33 article-title: Absorption behavior for R1234ze (E) and R1233zd (E) in [P66614][Cl] as working fluids in absorption refrigeration systems publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2021.07.020 contributor: fullname: Jiang – volume: 174 start-page: 824 year: 2018 ident: 10.1016/j.energy.2023.127005_bib48 article-title: Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.08.060 contributor: fullname: Wang – volume: 239 year: 2021 ident: 10.1016/j.energy.2023.127005_bib38 article-title: Ionic liquids for microchannel membrane-based absorption heat pumps: performance comparison and geometry optimization publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114213 contributor: fullname: Zhai – volume: 43 start-page: 576 issue: 4 year: 2011 ident: 10.1016/j.energy.2023.127005_bib40 article-title: Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate publication-title: J Chem Thermodyn doi: 10.1016/j.jct.2010.11.014 contributor: fullname: Ren |
SSID | ssj0005899 |
Score | 2.4739084 |
Snippet | A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 127005 |
SubjectTerms | Absorption system Coefficient of performance H2O Ionic liquid R32 Simultaneous cooling and Heating |
Title | Performance analysis of ionic liquids for simultaneous cooling and heating absorption system |
URI | https://dx.doi.org/10.1016/j.energy.2023.127005 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76OOhFtFqsj7IHr9s2r-72WEpLVSyCFnoQQvYRiUhSm_bqb3d2k1AF8eAtCTsQJtlvvtmdbwfghkfKGw0dQUXseNRXKqBCKI8K5PY-G0g3sgv6D4vhfOnfrYJVDSaVFsaUVZbYX2C6RevySb_0Zn-dJP0nxF7kGz7GNyMwHbE6NO0mUQOa49v7-WJf6cFtG0kznhqDSkFny7y0ldj1TBfxnt2FDX6PUN-izuwYjkq6SMbFG51ATactOKjUxHkL2tO9Ug0HllM1P4WXx70kgETl0SMki4lZgJXkPfnYJSonOITkiSkrjFKd7XIiM9PG5xVNFDFAba9Fnm0stpDi5OczWM6mz5M5LVspUIk5wZZKR0rPiZQbI0ELOB8K19WMIUzGTGKShCyLD7Rm3ijyNWZ4OKs5jxnX2os8Rw28NjTSLNXnQFyh-CA2yaxUGNmEEAHDpAlpgpAyHsoO0Mp94bo4MSOsSsnewsLdoXF3WLi7A6zycfjjy4cI6n9aXvzb8hIOzZ2pAnCCK2hsNzt9jeRiK7pQ73063fIX-gIuJc_l |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHuyltLZS-9xDr6vm5a5HEcXWB4UqeCiE7CMlpSTW6P_vbB7YQumht5DsQJjsfvPNZr4dgAceKKffswQVoeVQVymPCqEcKpDbu6wr7SDb0J8vepOV-7T21hUYlloYU1ZZYH-O6RlaF3c6hTc7myjqvCD2It9wMb4ZgWmfHUEN2UAfJ3tt8DidLA6VHjxrI2nGU2NQKuiyMi-dSezapot4O_sL6_0eob5FnfEpnBR0kQzyNzqDio4bUC_VxGkDmqODUg0HFks1PYfX54MkgATF0SMkCYnZgJXkI_rcRyolOISkkSkrDGKd7FMiE9PG5w1NFDFAnV2LNNlm2ELyk58vYDUeLYcTWrRSoBJzgh2VlpSOFSg7RILmcd4Ttq0ZQ5gMmcQkCVkW72rNnH7gaszwcFVzHjKutRM4luo6TajGSawvgdhC8W5oklmpMLIJITyGSRPSBCFl2JMtoKX7_E1-YoZflpK9-7m7feNuP3d3C1jpY__Hl_cR1P-0vPq35T3UJ8v5zJ89LqbXcGyemIoAy7uB6m6717dINHbirphIX04W0eI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+ionic+liquids+for+simultaneous+cooling+and+heating+absorption+system&rft.jtitle=Energy+%28Oxford%29&rft.au=Park%2C+Sejun&rft.au=Choi%2C+Hyung+Won&rft.au=Lee%2C+Jae+Won&rft.au=Cho%2C+Hyun+Uk&rft.date=2023-05-15&rft.issn=0360-5442&rft.volume=271&rft.spage=127005&rft_id=info:doi/10.1016%2Fj.energy.2023.127005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_127005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |