Performance analysis of ionic liquids for simultaneous cooling and heating absorption system

A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by simulation analysis. An imidazolium-based ionic liquid (IL) was used as an absorbent in the new working fluid and H2O and R32 were used as refri...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 271; p. 127005
Main Authors Park, Sejun, Choi, Hyung Won, Lee, Jae Won, Cho, Hyun Uk, Lee, Nam Soo, Kang, Yong Tae
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by simulation analysis. An imidazolium-based ionic liquid (IL) was used as an absorbent in the new working fluid and H2O and R32 were used as refrigerants. The states of the solution mixed with the refrigerant and absorbent were predicted using a non-random two-liquid (NRTL) model. The ILs with H2O refrigerant were 1,3-dimethylimidazolium dimethylphosphate ([DMIM][DMP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]), and 1-ethyl-3-methyl tetrafluoroborate ([EMIM][BF4]), and the IL with R32 refrigerant was 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][Tf2N]). Changes in the cooling, heating, and total coefficient of performances (COPs) according to the generation temperature and generator and condenser split ratios were analyzed. It was concluded that H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4] were suitable for simultaneous cooling and heating absorption systems with reasonable cooling, heating and total COPs. However, R32/[HMIM][Tf2N] had advantages for subzero cooling temperature and compactness of system size, while its COPs were lower than those of H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4]. The total COP of H2O/[DMIM][DMP] was 0.98, indicating the highest performance. H2O/[EMIM][DMP] and H2O/[EMIM][BF4] exhibited total COPs of 0.96 and 0.97, whereas R32/[HMIM][Tf2N] showed a value of 0.55, under certain simulation conditions. •Performance analysis of simultaneous cooling and heating absorption system is conducted.•Using novel working fluids, weaknesses of absorption system can be solved.•H2O/[DMIM][DMP], H2O/[EMIM][DMP] and H2O/[EMIM][BF4] are suitable for the absorption system.•Using R32/[HMIM][Tf2N], the absorption system can be more compact.•H2O/ILs show 0.96–0.98 maximum COP while R32/IL does 0.55 maximum COP.
AbstractList A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by simulation analysis. An imidazolium-based ionic liquid (IL) was used as an absorbent in the new working fluid and H2O and R32 were used as refrigerants. The states of the solution mixed with the refrigerant and absorbent were predicted using a non-random two-liquid (NRTL) model. The ILs with H2O refrigerant were 1,3-dimethylimidazolium dimethylphosphate ([DMIM][DMP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]), and 1-ethyl-3-methyl tetrafluoroborate ([EMIM][BF4]), and the IL with R32 refrigerant was 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][Tf2N]). Changes in the cooling, heating, and total coefficient of performances (COPs) according to the generation temperature and generator and condenser split ratios were analyzed. It was concluded that H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4] were suitable for simultaneous cooling and heating absorption systems with reasonable cooling, heating and total COPs. However, R32/[HMIM][Tf2N] had advantages for subzero cooling temperature and compactness of system size, while its COPs were lower than those of H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4]. The total COP of H2O/[DMIM][DMP] was 0.98, indicating the highest performance. H2O/[EMIM][DMP] and H2O/[EMIM][BF4] exhibited total COPs of 0.96 and 0.97, whereas R32/[HMIM][Tf2N] showed a value of 0.55, under certain simulation conditions. •Performance analysis of simultaneous cooling and heating absorption system is conducted.•Using novel working fluids, weaknesses of absorption system can be solved.•H2O/[DMIM][DMP], H2O/[EMIM][DMP] and H2O/[EMIM][BF4] are suitable for the absorption system.•Using R32/[HMIM][Tf2N], the absorption system can be more compact.•H2O/ILs show 0.96–0.98 maximum COP while R32/IL does 0.55 maximum COP.
ArticleNumber 127005
Author Lee, Jae Won
Lee, Nam Soo
Kang, Yong Tae
Park, Sejun
Cho, Hyun Uk
Choi, Hyung Won
Author_xml – sequence: 1
  givenname: Sejun
  surname: Park
  fullname: Park, Sejun
  organization: Graduate School of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea
– sequence: 2
  givenname: Hyung Won
  surname: Choi
  fullname: Choi, Hyung Won
  organization: Graduate School of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea
– sequence: 3
  givenname: Jae Won
  orcidid: 0000-0003-1898-4338
  surname: Lee
  fullname: Lee, Jae Won
  organization: Department of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea
– sequence: 4
  givenname: Hyun Uk
  surname: Cho
  fullname: Cho, Hyun Uk
  organization: H&A Company, LG Electronics, South Korea
– sequence: 5
  givenname: Nam Soo
  surname: Lee
  fullname: Lee, Nam Soo
  organization: H&A Company, LG Electronics, South Korea
– sequence: 6
  givenname: Yong Tae
  surname: Kang
  fullname: Kang, Yong Tae
  email: ytkang@korea.ac.kr
  organization: Department of Mechanical Engineering, Korea University, Seoul, 136-713, South Korea
BookMark eNp9kMtOwzAQRb0oEi3wByz8Awl-JXY2SKjiJVWCBeyQLNeZFFeJXewUKX-PS1izmtFoztXVWaGFDx4QuqakpITWN_sSPMTdVDLCeEmZJKRaoCXhNSkqIdg5WqW0J_mqmmaJPl4hdiEOxlvAxpt-Si7h0GEXvLO4d19H1yacX3Byw7EfjYdwTNiG0Du_y0iLP8GMv_s2hXgYM4nTlEYYLtFZZ_oEV3_zAr0_3L-tn4rNy-Pz-m5TWE7qsbDUWk5NyzpBqkqpessYSElF3UlLRUNzVwIgeWMESCqVIkp1UgFww2lL-AUSc66NIaUInT5EN5g4aUr0yYre69mKPlnRs5WM3c4Y5G7fDqJO1kEW0boIdtRtcP8H_AB6LHI_
CitedBy_id crossref_primary_10_12944_CWE_18_3_03
crossref_primary_10_1016_j_energy_2024_132325
crossref_primary_10_1016_j_enbuild_2024_114373
crossref_primary_10_1016_j_enconman_2023_117910
crossref_primary_10_1016_j_ijrefrig_2024_06_012
Cites_doi 10.1016/j.enconman.2019.112370
10.1016/j.jct.2021.106715
10.1016/j.enconman.2018.12.030
10.1021/je034183r
10.1016/j.applthermaleng.2019.114120
10.1021/je501069b
10.1021/ie901700b
10.1016/j.ijrefrig.2014.08.008
10.1021/je025591i
10.1016/j.apenergy.2015.01.147
10.1016/j.enconman.2020.113072
10.1002/er.5252
10.1016/j.applthermaleng.2020.115145
10.1021/jp058015c
10.1016/j.apenergy.2012.03.044
10.1016/j.apenergy.2014.02.061
10.1021/ie800330v
10.1016/j.enconman.2019.112100
10.1016/j.cherd.2021.05.024
10.1016/j.rser.2014.04.046
10.1016/j.energy.2012.04.048
10.1016/j.energy.2018.10.052
10.1016/j.electacta.2008.03.085
10.1016/j.ijrefrig.2019.10.007
10.1021/acssuschemeng.8b00397
10.1016/j.enconman.2021.114296
10.1016/j.seppur.2021.119363
10.1016/j.rser.2015.12.192
10.1021/acs.iecr.7b02343
10.1016/j.applthermaleng.2011.11.006
10.1016/j.applthermaleng.2011.06.011
10.1016/j.applthermaleng.2020.115161
10.1016/j.ijrefrig.2017.12.011
10.1016/j.energy.2021.122872
10.1016/j.fluid.2021.113291
10.1016/j.enconman.2014.05.024
10.1002/er.4939
10.1016/j.enconman.2018.05.091
10.1002/er.2997
10.1016/j.ijrefrig.2018.03.004
10.1016/j.tsep.2018.04.017
10.1016/j.ijrefrig.2021.07.020
10.1016/j.enconman.2018.08.060
10.1016/j.enconman.2021.114213
10.1016/j.jct.2010.11.014
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2023.127005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_127005
S0360544223003997
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
RIG
SAC
WUQ
ID FETCH-LOGICAL-c306t-c1cc31ad2f4055886b22e77146f7c14910580ee739a4e71788088f78ee3a31d03
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Thu Sep 26 17:02:40 EDT 2024
Sat Feb 17 16:11:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords R32
Simultaneous cooling and Heating
H2O
Coefficient of performance
Absorption system
Ionic liquid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c1cc31ad2f4055886b22e77146f7c14910580ee739a4e71788088f78ee3a31d03
ORCID 0000-0003-1898-4338
ParticipantIDs crossref_primary_10_1016_j_energy_2023_127005
elsevier_sciencedirect_doi_10_1016_j_energy_2023_127005
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Hu (bib29) 2012; 37
Liu, Xie, Yang (bib8) 2020; 205
Xu, Gao, Mao, Liu, Wang (bib7) 2020; 220
Asensio-Delgado, Pardo, Zarca, Urtiaga, Technology (bib16) 2021; 276
Brückner, Liu, Miró, Radspieler, Cabeza, Lävemann (bib5) 2015; 151
Domańska, Bogel-Łukasik (bib12) 2005; 109
Wu, Leung, Ding, Huang, Bai, Deng (bib44) 2020; 172
Forman, Muritala, Pardemann, Meyer (bib3) 2016; 57
Esaki, Kobayashi (bib35) 2021; 171
Sun, Di, Wang, Wang, Wu (bib32) 2020; 109
Zhang, Hu (bib20) 2011; 31
(bib1) 2021
Bai, Liu, Ye, He (bib31) 2019; 161
Trindade, Visak, Bogel-Lukasik, Bogel-Lukasik, da Ponte (bib13) 2010; 49
Wu, You, Zhang, Li (bib30) 2018; 88
Wu, You, Leung (bib28) 2020; 44
Jouhara, Khordehgah, Almahmoud, Delpech, Chauhan, Tassou (bib2) 2018; 6
Kim, Hayashi, Onoda, Sato, Nishimura, Mori (bib10) 2008; 53
Liu, Ye, Bai, He (bib14) 2019; 181
Klein, Alvarado (bib39) 2002; vol. 1
Yang, Wang, Gao, Zhang, Liu, Olabi (bib4) 2018; 6
Ren, Zhao, Zhang (bib40) 2011; 43
Jiang, Meng, Sun, Jin, Wei, Wang (bib33) 2021; 131:178-185
Preißinger, Pöllinger, Brüggemann (bib23) 2013; 37
Chen, Liang, Guo, Tang (bib25) 2014; 85
Gardas, Coutinho (bib43) 2008; 47
Kim, Jung, Park, Kang (bib27) 2022; 241
Zheng, Dong, Huang, Wu, Nie (bib18) 2014; 37
Ruiz, Ferro, de Riva, Moreno, Palomar (bib26) 2014; 123
Xu, Mao, Liu, Wang (bib6) 2018; 165
Zhang, Li, Li, Shan, Zhu, Wang (bib15) 2022; 167
Wang, Becker, Schouten, Vlugt (bib48) 2018; 174
Wu, Zhang, You, Li (bib24) 2017; 56
Jork, Seiler, Beste, Arlt (bib41) 2004; 49
Gao, Xu, Wang (bib36) 2021; 241
Herold, Radermacher, Klein (bib46) 2016
Shirazi, Taylor, Morrison, White (bib9) 2018; 171
Sujatha, Venkatarathnam (bib22) 2018; 88
Hong, Lee, Lee, Kim, Park (bib45) 2019; 201
Kim, Gonzalez (bib47) 2014; 48
Li, Zhang, Shen, Chen, Ma, Zhu (bib17) 2022; 552
Song, Liu, Ye, He (bib37) 2020; 44
Dong, Zheng, Nie, Li (bib21) 2012; 98
Zhai, Sui, Sui, Wu (bib38) 2021; 239
Liu, He, Lv, Qi, Su (bib42) 2015; 60
Paulechka, Kabo, Blokhin, Vydrov, Magee, Frenkel (bib11) 2003; 48
Kim, Kim, Joshi, Fedorov, Kohl (bib19) 2012; 44
Sun, Di, Wang, Hu, Wang, He (bib34) 2020; 172
Trindade (10.1016/j.energy.2023.127005_bib13) 2010; 49
Zhang (10.1016/j.energy.2023.127005_bib15) 2022; 167
Kim (10.1016/j.energy.2023.127005_bib27) 2022; 241
Gao (10.1016/j.energy.2023.127005_bib36) 2021; 241
Zhang (10.1016/j.energy.2023.127005_bib29) 2012; 37
Jiang (10.1016/j.energy.2023.127005_bib33) 2021
Jouhara (10.1016/j.energy.2023.127005_bib2) 2018; 6
Xu (10.1016/j.energy.2023.127005_bib6) 2018; 165
Zhang (10.1016/j.energy.2023.127005_bib20) 2011; 31
Hong (10.1016/j.energy.2023.127005_bib45) 2019; 201
Kim (10.1016/j.energy.2023.127005_bib47) 2014; 48
Klein (10.1016/j.energy.2023.127005_bib39) 2002; vol. 1
Zheng (10.1016/j.energy.2023.127005_bib18) 2014; 37
Preißinger (10.1016/j.energy.2023.127005_bib23) 2013; 37
Esaki (10.1016/j.energy.2023.127005_bib35) 2021; 171
Song (10.1016/j.energy.2023.127005_bib37) 2020; 44
Xu (10.1016/j.energy.2023.127005_bib7) 2020; 220
Liu (10.1016/j.energy.2023.127005_bib8) 2020; 205
Kim (10.1016/j.energy.2023.127005_bib19) 2012; 44
Dong (10.1016/j.energy.2023.127005_bib21) 2012; 98
Li (10.1016/j.energy.2023.127005_bib17) 2022; 552
Wu (10.1016/j.energy.2023.127005_bib30) 2018; 88
(10.1016/j.energy.2023.127005_bib1) 2021
Forman (10.1016/j.energy.2023.127005_bib3) 2016; 57
Shirazi (10.1016/j.energy.2023.127005_bib9) 2018; 171
Wu (10.1016/j.energy.2023.127005_bib28) 2020; 44
Bai (10.1016/j.energy.2023.127005_bib31) 2019; 161
Sujatha (10.1016/j.energy.2023.127005_bib22) 2018; 88
Domańska (10.1016/j.energy.2023.127005_bib12) 2005; 109
Sun (10.1016/j.energy.2023.127005_bib34) 2020; 172
Liu (10.1016/j.energy.2023.127005_bib42) 2015; 60
Ren (10.1016/j.energy.2023.127005_bib40) 2011; 43
Wu (10.1016/j.energy.2023.127005_bib24) 2017; 56
Chen (10.1016/j.energy.2023.127005_bib25) 2014; 85
Ruiz (10.1016/j.energy.2023.127005_bib26) 2014; 123
Zhai (10.1016/j.energy.2023.127005_bib38) 2021; 239
Liu (10.1016/j.energy.2023.127005_bib14) 2019; 181
Herold (10.1016/j.energy.2023.127005_bib46) 2016
Sun (10.1016/j.energy.2023.127005_bib32) 2020; 109
Paulechka (10.1016/j.energy.2023.127005_bib11) 2003; 48
Yang (10.1016/j.energy.2023.127005_bib4) 2018; 6
Brückner (10.1016/j.energy.2023.127005_bib5) 2015; 151
Wang (10.1016/j.energy.2023.127005_bib48) 2018; 174
Kim (10.1016/j.energy.2023.127005_bib10) 2008; 53
Jork (10.1016/j.energy.2023.127005_bib41) 2004; 49
Wu (10.1016/j.energy.2023.127005_bib44) 2020; 172
Asensio-Delgado (10.1016/j.energy.2023.127005_bib16) 2021; 276
Gardas (10.1016/j.energy.2023.127005_bib43) 2008; 47
References_xml – volume: 57
  start-page: 1568
  year: 2016
  end-page: 1579
  ident: bib3
  article-title: Estimating the global waste heat potential
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Meyer
– volume: 60
  start-page: 1354
  year: 2015
  end-page: 1361
  ident: bib42
  article-title: Vapor–liquid equilibrium of three hydrofluorocarbons with [HMIM][Tf2N]
  publication-title: J Chem Eng Data
  contributor:
    fullname: Su
– volume: 88
  start-page: 45
  year: 2018
  end-page: 57
  ident: bib30
  article-title: Comparisons of different ionic liquids combined with trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as absorption working fluids
  publication-title: Int J Refrig
  contributor:
    fullname: Li
– volume: 37
  start-page: 47
  year: 2014
  end-page: 68
  ident: bib18
  article-title: A review of imidazolium ionic liquids research and development towards working pair of absorption cycle
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Nie
– volume: 552
  year: 2022
  ident: bib17
  article-title: Molecular simulation and liquid–liquid equilibrium for the separation of n-heptane and dimethyl carbonate by ionic liquids
  publication-title: Fluid Phase Equil
  contributor:
    fullname: Zhu
– volume: 109
  start-page: 12124
  year: 2005
  end-page: 12132
  ident: bib12
  article-title: Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide
  publication-title: J Phys Chem B
  contributor:
    fullname: Bogel-Łukasik
– volume: 56
  start-page: 9906
  year: 2017
  end-page: 9916
  ident: bib24
  article-title: Thermodynamic investigation and comparison of absorption cycles using hydrofluoroolefins and ionic liquid
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Li
– volume: 31
  start-page: 3316
  year: 2011
  end-page: 3321
  ident: bib20
  article-title: Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair
  publication-title: Appl Therm Eng
  contributor:
    fullname: Hu
– volume: 181
  start-page: 319
  year: 2019
  end-page: 330
  ident: bib14
  article-title: Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair
  publication-title: Energy Convers Manag
  contributor:
    fullname: He
– volume: 241
  year: 2022
  ident: bib27
  article-title: Performance analysis of type 1 and type 2 hybrid absorption heat pump using novel working pairs
  publication-title: Energy
  contributor:
    fullname: Kang
– volume: 201
  year: 2019
  ident: bib45
  article-title: Thermally-driven hybrid vapor absorption cycle: simultaneous and flexible use of steam generation heat pump and refrigeration applications
  publication-title: Energy Convers Manag
  contributor:
    fullname: Park
– year: 2016
  ident: bib46
  article-title: Absorption chillers and heat pumps
  contributor:
    fullname: Klein
– volume: 88
  start-page: 370
  year: 2018
  end-page: 382
  ident: bib22
  article-title: Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid [hmim][TF2N] as the absorbent
  publication-title: Int J Refrig
  contributor:
    fullname: Venkatarathnam
– volume: 172
  year: 2020
  ident: bib44
  article-title: Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles
  publication-title: Appl Therm Eng
  contributor:
    fullname: Deng
– year: 2021
  ident: bib1
  article-title: Annual report 2020
– volume: 205
  year: 2020
  ident: bib8
  article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat
  publication-title: Energy Convers Manag
  contributor:
    fullname: Yang
– volume: 44
  start-page: 1005
  year: 2012
  end-page: 1016
  ident: bib19
  article-title: Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid
  publication-title: Energy
  contributor:
    fullname: Kohl
– volume: 43
  start-page: 576
  year: 2011
  end-page: 583
  ident: bib40
  article-title: Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate
  publication-title: J Chem Thermodyn
  contributor:
    fullname: Zhang
– volume: 174
  start-page: 824
  year: 2018
  end-page: 843
  ident: bib48
  article-title: Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels
  publication-title: Energy Convers Manag
  contributor:
    fullname: Vlugt
– volume: 167
  year: 2022
  ident: bib15
  article-title: Separation of isopropyl ether and acetone using ionic liquids based on quantum chemistry calculation and liquid–liquid equilibrium
  publication-title: J Chem Thermodyn
  contributor:
    fullname: Wang
– volume: 98
  start-page: 326
  year: 2012
  end-page: 332
  ident: bib21
  article-title: Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O + [DMIM]DMP system
  publication-title: Appl Energy
  contributor:
    fullname: Li
– volume: 37
  start-page: 1382
  year: 2013
  end-page: 1388
  ident: bib23
  article-title: Ionic liquid based absorption chillers for usage of low grade waste heat in industry
  publication-title: Int J Energy Res
  contributor:
    fullname: Brüggemann
– volume: 47
  start-page: 5751
  year: 2008
  end-page: 5757
  ident: bib43
  article-title: A group contribution method for heat capacity estimation of ionic liquids
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Coutinho
– volume: 85
  start-page: 13
  year: 2014
  end-page: 19
  ident: bib25
  article-title: Thermodynamic analysis of an absorption system using [bmim]Zn2Cl5/NH3 as the working pair
  publication-title: Energy Convers Manag
  contributor:
    fullname: Tang
– volume: 123
  start-page: 281
  year: 2014
  end-page: 291
  ident: bib26
  article-title: Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations
  publication-title: Appl Energy
  contributor:
    fullname: Palomar
– volume: 165
  start-page: 1097
  year: 2018
  end-page: 1105
  ident: bib6
  article-title: Waste heat recovery of power plant with large scale serial absorption heat pumps
  publication-title: Energy
  contributor:
    fullname: Wang
– year: 2021; 131:178-185
  ident: bib33
  article-title: Absorption behavior for R1234ze (E) and R1233zd (E) in [P66614][Cl] as working fluids in absorption refrigeration systems
  publication-title: Int J Refrig
  contributor:
    fullname: Wang
– volume: 241
  year: 2021
  ident: bib36
  article-title: Towards high-performance sorption cold energy storage and transmission with ionic liquid absorbents
  publication-title: Energy Convers Manag
  contributor:
    fullname: Wang
– volume: 44
  start-page: 4703
  year: 2020
  end-page: 4716
  ident: bib37
  article-title: A new power/cooling cogeneration system using R1234ze(E)/ionic liquid working fluid
  publication-title: Int J Energy Res
  contributor:
    fullname: He
– volume: 172
  year: 2020
  ident: bib34
  article-title: Gaseous solubility and thermodynamic performance of absorption system using R1234yf/IL working pairs
  publication-title: Appl Therm Eng
  contributor:
    fullname: He
– volume: 6
  start-page: 268
  year: 2018
  end-page: 289
  ident: bib2
  article-title: Waste heat recovery technologies and applications
  publication-title: Therm Sci Eng Prog
  contributor:
    fullname: Tassou
– volume: 276
  year: 2021
  ident: bib16
  article-title: Absorption separation of fluorinated refrigerant gases with ionic liquids: equilibrium, mass transport, and process design
  publication-title: Separ Purif Technol
  contributor:
    fullname: Technology
– volume: 239
  year: 2021
  ident: bib38
  article-title: Ionic liquids for microchannel membrane-based absorption heat pumps: performance comparison and geometry optimization
  publication-title: Energy Convers Manag
  contributor:
    fullname: Wu
– volume: 37
  start-page: 129
  year: 2012
  end-page: 135
  ident: bib29
  article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water
  publication-title: Appl Therm Eng
  contributor:
    fullname: Hu
– volume: 171
  start-page: 340
  year: 2021
  end-page: 348
  ident: bib35
  article-title: Experimental absorption solubility and rate of hydrofluoroolefin refrigerant in ionic liquids for absorption chiller cycles
  publication-title: Chem Eng Res Des
  contributor:
    fullname: Kobayashi
– volume: vol. 1
  year: 2002
  ident: bib39
  publication-title: Engineering equation solver
  contributor:
    fullname: Alvarado
– volume: 48
  start-page: 26
  year: 2014
  end-page: 37
  ident: bib47
  article-title: Exergy analysis of an ionic-liquid absorption refrigeration system utilizing waste-heat from datacenters
  publication-title: Int J Refrig
  contributor:
    fullname: Gonzalez
– volume: 49
  start-page: 4850
  year: 2010
  end-page: 4857
  ident: bib13
  article-title: Liquid-liquid equilibrium of mixtures of imidazolium-based ionic liquids with propanediols or glycerol
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: da Ponte
– volume: 44
  start-page: 9367
  year: 2020
  end-page: 9381
  ident: bib28
  article-title: Screening of novel water/ionic liquid working fluids for absorption thermal energy storage in cooling systems
  publication-title: Int J Energy Res
  contributor:
    fullname: Leung
– volume: 109
  start-page: 25
  year: 2020
  end-page: 36
  ident: bib32
  article-title: Performance analysis of R1234yf/ionic liquid working fluids for single-effect and compression-assisted absorption refrigeration systems
  publication-title: Int J Refrig
  contributor:
    fullname: Wu
– volume: 151
  start-page: 157
  year: 2015
  end-page: 167
  ident: bib5
  article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies
  publication-title: Appl Energy
  contributor:
    fullname: Lävemann
– volume: 171
  start-page: 59
  year: 2018
  end-page: 81
  ident: bib9
  article-title: Solar-powered absorption chillers: a comprehensive and critical review
  publication-title: Energy Convers Manag
  contributor:
    fullname: White
– volume: 220
  year: 2020
  ident: bib7
  article-title: Double-section absorption heat pump for the deep recovery of low-grade waste heat
  publication-title: Energy Convers Manag
  contributor:
    fullname: Wang
– volume: 6
  start-page: 8350
  year: 2018
  end-page: 8363
  ident: bib4
  article-title: Performance analysis of a novel cascade absorption refrigeration for low-grade waste heat recovery
  publication-title: Acs Sustain Chem Eng
  contributor:
    fullname: Olabi
– volume: 49
  start-page: 852
  year: 2004
  end-page: 857
  ident: bib41
  article-title: Influence of ionic liquids on the phase behavior of aqueous azeotropic systems
  publication-title: J Chem Eng Data
  contributor:
    fullname: Arlt
– volume: 48
  start-page: 457
  year: 2003
  end-page: 462
  ident: bib11
  article-title: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state
  publication-title: J Chem Eng Data
  contributor:
    fullname: Frenkel
– volume: 161
  year: 2019
  ident: bib31
  article-title: Investigation on the performance of R1234ze(E) in absorption refrigeration and ejection refrigeration systems
  publication-title: Appl Therm Eng
  contributor:
    fullname: He
– volume: 53
  start-page: 7638
  year: 2008
  end-page: 7643
  ident: bib10
  article-title: New organic–inorganic crystalline electrolytes synthesized from 12-phosphotungstic acid and the ionic liquid [BMIM][TFSI]
  publication-title: Electrochim Acta
  contributor:
    fullname: Mori
– volume: 205
  year: 2020
  ident: 10.1016/j.energy.2023.127005_bib8
  article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112370
  contributor:
    fullname: Liu
– volume: 167
  year: 2022
  ident: 10.1016/j.energy.2023.127005_bib15
  article-title: Separation of isopropyl ether and acetone using ionic liquids based on quantum chemistry calculation and liquid–liquid equilibrium
  publication-title: J Chem Thermodyn
  doi: 10.1016/j.jct.2021.106715
  contributor:
    fullname: Zhang
– volume: 181
  start-page: 319
  year: 2019
  ident: 10.1016/j.energy.2023.127005_bib14
  article-title: Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.12.030
  contributor:
    fullname: Liu
– volume: 49
  start-page: 852
  issue: 4
  year: 2004
  ident: 10.1016/j.energy.2023.127005_bib41
  article-title: Influence of ionic liquids on the phase behavior of aqueous azeotropic systems
  publication-title: J Chem Eng Data
  doi: 10.1021/je034183r
  contributor:
    fullname: Jork
– volume: 161
  year: 2019
  ident: 10.1016/j.energy.2023.127005_bib31
  article-title: Investigation on the performance of R1234ze(E) in absorption refrigeration and ejection refrigeration systems
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114120
  contributor:
    fullname: Bai
– volume: 60
  start-page: 1354
  issue: 5
  year: 2015
  ident: 10.1016/j.energy.2023.127005_bib42
  article-title: Vapor–liquid equilibrium of three hydrofluorocarbons with [HMIM][Tf2N]
  publication-title: J Chem Eng Data
  doi: 10.1021/je501069b
  contributor:
    fullname: Liu
– volume: 49
  start-page: 4850
  issue: 10
  year: 2010
  ident: 10.1016/j.energy.2023.127005_bib13
  article-title: Liquid-liquid equilibrium of mixtures of imidazolium-based ionic liquids with propanediols or glycerol
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie901700b
  contributor:
    fullname: Trindade
– volume: 48
  start-page: 26
  year: 2014
  ident: 10.1016/j.energy.2023.127005_bib47
  article-title: Exergy analysis of an ionic-liquid absorption refrigeration system utilizing waste-heat from datacenters
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2014.08.008
  contributor:
    fullname: Kim
– volume: 48
  start-page: 457
  issue: 3
  year: 2003
  ident: 10.1016/j.energy.2023.127005_bib11
  article-title: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state
  publication-title: J Chem Eng Data
  doi: 10.1021/je025591i
  contributor:
    fullname: Paulechka
– volume: 151
  start-page: 157
  year: 2015
  ident: 10.1016/j.energy.2023.127005_bib5
  article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.147
  contributor:
    fullname: Brückner
– volume: 220
  year: 2020
  ident: 10.1016/j.energy.2023.127005_bib7
  article-title: Double-section absorption heat pump for the deep recovery of low-grade waste heat
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113072
  contributor:
    fullname: Xu
– year: 2016
  ident: 10.1016/j.energy.2023.127005_bib46
  contributor:
    fullname: Herold
– volume: 44
  start-page: 4703
  issue: 6
  year: 2020
  ident: 10.1016/j.energy.2023.127005_bib37
  article-title: A new power/cooling cogeneration system using R1234ze(E)/ionic liquid working fluid
  publication-title: Int J Energy Res
  doi: 10.1002/er.5252
  contributor:
    fullname: Song
– volume: 172
  year: 2020
  ident: 10.1016/j.energy.2023.127005_bib44
  article-title: Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115145
  contributor:
    fullname: Wu
– volume: 109
  start-page: 12124
  issue: 24
  year: 2005
  ident: 10.1016/j.energy.2023.127005_bib12
  article-title: Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide
  publication-title: J Phys Chem B
  doi: 10.1021/jp058015c
  contributor:
    fullname: Domańska
– volume: 98
  start-page: 326
  year: 2012
  ident: 10.1016/j.energy.2023.127005_bib21
  article-title: Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O + [DMIM]DMP system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.03.044
  contributor:
    fullname: Dong
– volume: 123
  start-page: 281
  year: 2014
  ident: 10.1016/j.energy.2023.127005_bib26
  article-title: Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.061
  contributor:
    fullname: Ruiz
– volume: 47
  start-page: 5751
  issue: 15
  year: 2008
  ident: 10.1016/j.energy.2023.127005_bib43
  article-title: A group contribution method for heat capacity estimation of ionic liquids
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie800330v
  contributor:
    fullname: Gardas
– volume: 201
  year: 2019
  ident: 10.1016/j.energy.2023.127005_bib45
  article-title: Thermally-driven hybrid vapor absorption cycle: simultaneous and flexible use of steam generation heat pump and refrigeration applications
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112100
  contributor:
    fullname: Hong
– volume: 171
  start-page: 340
  year: 2021
  ident: 10.1016/j.energy.2023.127005_bib35
  article-title: Experimental absorption solubility and rate of hydrofluoroolefin refrigerant in ionic liquids for absorption chiller cycles
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2021.05.024
  contributor:
    fullname: Esaki
– volume: 37
  start-page: 47
  year: 2014
  ident: 10.1016/j.energy.2023.127005_bib18
  article-title: A review of imidazolium ionic liquids research and development towards working pair of absorption cycle
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.04.046
  contributor:
    fullname: Zheng
– volume: 44
  start-page: 1005
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2023.127005_bib19
  article-title: Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2012.04.048
  contributor:
    fullname: Kim
– year: 2021
  ident: 10.1016/j.energy.2023.127005_bib1
– volume: 165
  start-page: 1097
  year: 2018
  ident: 10.1016/j.energy.2023.127005_bib6
  article-title: Waste heat recovery of power plant with large scale serial absorption heat pumps
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.052
  contributor:
    fullname: Xu
– volume: 53
  start-page: 7638
  issue: 26
  year: 2008
  ident: 10.1016/j.energy.2023.127005_bib10
  article-title: New organic–inorganic crystalline electrolytes synthesized from 12-phosphotungstic acid and the ionic liquid [BMIM][TFSI]
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2008.03.085
  contributor:
    fullname: Kim
– volume: 109
  start-page: 25
  year: 2020
  ident: 10.1016/j.energy.2023.127005_bib32
  article-title: Performance analysis of R1234yf/ionic liquid working fluids for single-effect and compression-assisted absorption refrigeration systems
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2019.10.007
  contributor:
    fullname: Sun
– volume: 6
  start-page: 8350
  issue: 7
  year: 2018
  ident: 10.1016/j.energy.2023.127005_bib4
  article-title: Performance analysis of a novel cascade absorption refrigeration for low-grade waste heat recovery
  publication-title: Acs Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b00397
  contributor:
    fullname: Yang
– volume: 241
  year: 2021
  ident: 10.1016/j.energy.2023.127005_bib36
  article-title: Towards high-performance sorption cold energy storage and transmission with ionic liquid absorbents
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114296
  contributor:
    fullname: Gao
– volume: 276
  year: 2021
  ident: 10.1016/j.energy.2023.127005_bib16
  article-title: Absorption separation of fluorinated refrigerant gases with ionic liquids: equilibrium, mass transport, and process design
  publication-title: Separ Purif Technol
  doi: 10.1016/j.seppur.2021.119363
  contributor:
    fullname: Asensio-Delgado
– volume: 57
  start-page: 1568
  year: 2016
  ident: 10.1016/j.energy.2023.127005_bib3
  article-title: Estimating the global waste heat potential
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.192
  contributor:
    fullname: Forman
– volume: 56
  start-page: 9906
  issue: 35
  year: 2017
  ident: 10.1016/j.energy.2023.127005_bib24
  article-title: Thermodynamic investigation and comparison of absorption cycles using hydrofluoroolefins and ionic liquid
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.7b02343
  contributor:
    fullname: Wu
– volume: 37
  start-page: 129
  year: 2012
  ident: 10.1016/j.energy.2023.127005_bib29
  article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.11.006
  contributor:
    fullname: Zhang
– volume: 31
  start-page: 3316
  issue: 16
  year: 2011
  ident: 10.1016/j.energy.2023.127005_bib20
  article-title: Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.06.011
  contributor:
    fullname: Zhang
– volume: vol. 1
  year: 2002
  ident: 10.1016/j.energy.2023.127005_bib39
  contributor:
    fullname: Klein
– volume: 172
  year: 2020
  ident: 10.1016/j.energy.2023.127005_bib34
  article-title: Gaseous solubility and thermodynamic performance of absorption system using R1234yf/IL working pairs
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115161
  contributor:
    fullname: Sun
– volume: 88
  start-page: 45
  year: 2018
  ident: 10.1016/j.energy.2023.127005_bib30
  article-title: Comparisons of different ionic liquids combined with trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as absorption working fluids
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2017.12.011
  contributor:
    fullname: Wu
– volume: 241
  year: 2022
  ident: 10.1016/j.energy.2023.127005_bib27
  article-title: Performance analysis of type 1 and type 2 hybrid absorption heat pump using novel working pairs
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122872
  contributor:
    fullname: Kim
– volume: 552
  year: 2022
  ident: 10.1016/j.energy.2023.127005_bib17
  article-title: Molecular simulation and liquid–liquid equilibrium for the separation of n-heptane and dimethyl carbonate by ionic liquids
  publication-title: Fluid Phase Equil
  doi: 10.1016/j.fluid.2021.113291
  contributor:
    fullname: Li
– volume: 85
  start-page: 13
  year: 2014
  ident: 10.1016/j.energy.2023.127005_bib25
  article-title: Thermodynamic analysis of an absorption system using [bmim]Zn2Cl5/NH3 as the working pair
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.05.024
  contributor:
    fullname: Chen
– volume: 44
  start-page: 9367
  issue: 12
  year: 2020
  ident: 10.1016/j.energy.2023.127005_bib28
  article-title: Screening of novel water/ionic liquid working fluids for absorption thermal energy storage in cooling systems
  publication-title: Int J Energy Res
  doi: 10.1002/er.4939
  contributor:
    fullname: Wu
– volume: 171
  start-page: 59
  year: 2018
  ident: 10.1016/j.energy.2023.127005_bib9
  article-title: Solar-powered absorption chillers: a comprehensive and critical review
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.05.091
  contributor:
    fullname: Shirazi
– volume: 37
  start-page: 1382
  issue: 11
  year: 2013
  ident: 10.1016/j.energy.2023.127005_bib23
  article-title: Ionic liquid based absorption chillers for usage of low grade waste heat in industry
  publication-title: Int J Energy Res
  doi: 10.1002/er.2997
  contributor:
    fullname: Preißinger
– volume: 88
  start-page: 370
  year: 2018
  ident: 10.1016/j.energy.2023.127005_bib22
  article-title: Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid [hmim][TF2N] as the absorbent
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2018.03.004
  contributor:
    fullname: Sujatha
– volume: 6
  start-page: 268
  year: 2018
  ident: 10.1016/j.energy.2023.127005_bib2
  article-title: Waste heat recovery technologies and applications
  publication-title: Therm Sci Eng Prog
  doi: 10.1016/j.tsep.2018.04.017
  contributor:
    fullname: Jouhara
– year: 2021
  ident: 10.1016/j.energy.2023.127005_bib33
  article-title: Absorption behavior for R1234ze (E) and R1233zd (E) in [P66614][Cl] as working fluids in absorption refrigeration systems
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2021.07.020
  contributor:
    fullname: Jiang
– volume: 174
  start-page: 824
  year: 2018
  ident: 10.1016/j.energy.2023.127005_bib48
  article-title: Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.08.060
  contributor:
    fullname: Wang
– volume: 239
  year: 2021
  ident: 10.1016/j.energy.2023.127005_bib38
  article-title: Ionic liquids for microchannel membrane-based absorption heat pumps: performance comparison and geometry optimization
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114213
  contributor:
    fullname: Zhai
– volume: 43
  start-page: 576
  issue: 4
  year: 2011
  ident: 10.1016/j.energy.2023.127005_bib40
  article-title: Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate
  publication-title: J Chem Thermodyn
  doi: 10.1016/j.jct.2010.11.014
  contributor:
    fullname: Ren
SSID ssj0005899
Score 2.4739084
Snippet A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 127005
SubjectTerms Absorption system
Coefficient of performance
H2O
Ionic liquid
R32
Simultaneous cooling and Heating
Title Performance analysis of ionic liquids for simultaneous cooling and heating absorption system
URI https://dx.doi.org/10.1016/j.energy.2023.127005
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76OOhFtFqsj7IHr9s2r-72WEpLVSyCFnoQQvYRiUhSm_bqb3d2k1AF8eAtCTsQJtlvvtmdbwfghkfKGw0dQUXseNRXKqBCKI8K5PY-G0g3sgv6D4vhfOnfrYJVDSaVFsaUVZbYX2C6RevySb_0Zn-dJP0nxF7kGz7GNyMwHbE6NO0mUQOa49v7-WJf6cFtG0kznhqDSkFny7y0ldj1TBfxnt2FDX6PUN-izuwYjkq6SMbFG51ATactOKjUxHkL2tO9Ug0HllM1P4WXx70kgETl0SMki4lZgJXkPfnYJSonOITkiSkrjFKd7XIiM9PG5xVNFDFAba9Fnm0stpDi5OczWM6mz5M5LVspUIk5wZZKR0rPiZQbI0ELOB8K19WMIUzGTGKShCyLD7Rm3ijyNWZ4OKs5jxnX2os8Rw28NjTSLNXnQFyh-CA2yaxUGNmEEAHDpAlpgpAyHsoO0Mp94bo4MSOsSsnewsLdoXF3WLi7A6zycfjjy4cI6n9aXvzb8hIOzZ2pAnCCK2hsNzt9jeRiK7pQ73063fIX-gIuJc_l
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHuyltLZS-9xDr6vm5a5HEcXWB4UqeCiE7CMlpSTW6P_vbB7YQumht5DsQJjsfvPNZr4dgAceKKffswQVoeVQVymPCqEcKpDbu6wr7SDb0J8vepOV-7T21hUYlloYU1ZZYH-O6RlaF3c6hTc7myjqvCD2It9wMb4ZgWmfHUEN2UAfJ3tt8DidLA6VHjxrI2nGU2NQKuiyMi-dSezapot4O_sL6_0eob5FnfEpnBR0kQzyNzqDio4bUC_VxGkDmqODUg0HFks1PYfX54MkgATF0SMkCYnZgJXkI_rcRyolOISkkSkrDGKd7FMiE9PG5w1NFDFAnV2LNNlm2ELyk58vYDUeLYcTWrRSoBJzgh2VlpSOFSg7RILmcd4Ttq0ZQ5gMmcQkCVkW72rNnH7gaszwcFVzHjKutRM4luo6TajGSawvgdhC8W5oklmpMLIJITyGSRPSBCFl2JMtoKX7_E1-YoZflpK9-7m7feNuP3d3C1jpY__Hl_cR1P-0vPq35T3UJ8v5zJ89LqbXcGyemIoAy7uB6m6717dINHbirphIX04W0eI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+ionic+liquids+for+simultaneous+cooling+and+heating+absorption+system&rft.jtitle=Energy+%28Oxford%29&rft.au=Park%2C+Sejun&rft.au=Choi%2C+Hyung+Won&rft.au=Lee%2C+Jae+Won&rft.au=Cho%2C+Hyun+Uk&rft.date=2023-05-15&rft.issn=0360-5442&rft.volume=271&rft.spage=127005&rft_id=info:doi/10.1016%2Fj.energy.2023.127005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_127005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon