A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms

Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 190; p. 108309
Main Authors Bouguettaya, Abdelmalek, Zarzour, Hafed, Taberkit, Amine Mohammed, Kechida, Ahmed
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text
ISSN0165-1684
1872-7557
DOI10.1016/j.sigpro.2021.108309

Cover

Loading…
Abstract Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the most demanded strategies to fight against wildfires, especially UAV-based remote sensing technologies. They have been adopted to detect forest fires at their early stages, before becoming uncontrollable. Autonomous wildfire early detection from UAV-based visual data using different deep learning algorithms has attracted significant interest in the last few years. To this end, in this paper, we focused on wildfires detection at their early stages in forest and wildland areas, using deep learning-based computer vision algorithms to prevent and then reduce disastrous losses in terms of human lives and forest resources.
AbstractList Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the most demanded strategies to fight against wildfires, especially UAV-based remote sensing technologies. They have been adopted to detect forest fires at their early stages, before becoming uncontrollable. Autonomous wildfire early detection from UAV-based visual data using different deep learning algorithms has attracted significant interest in the last few years. To this end, in this paper, we focused on wildfires detection at their early stages in forest and wildland areas, using deep learning-based computer vision algorithms to prevent and then reduce disastrous losses in terms of human lives and forest resources.
ArticleNumber 108309
Author Bouguettaya, Abdelmalek
Kechida, Ahmed
Zarzour, Hafed
Taberkit, Amine Mohammed
Author_xml – sequence: 1
  givenname: Abdelmalek
  surname: Bouguettaya
  fullname: Bouguettaya, Abdelmalek
  email: a.bouguettaya@crti.dz
  organization: Research Centre in Industrial Technologies (CRTI), P.O.Box 64, Cheraga 16014 Algiers, Algeria
– sequence: 2
  givenname: Hafed
  surname: Zarzour
  fullname: Zarzour, Hafed
  email: hafed.zarzour@gmail.com
  organization: Department of Mathematics and Computer Science, Souk Ahras University, Souk-Ahras, 41000, Algeria
– sequence: 3
  givenname: Amine Mohammed
  surname: Taberkit
  fullname: Taberkit, Amine Mohammed
  email: a.taberkit@crti.dz
  organization: Research Centre in Industrial Technologies (CRTI), P.O.Box 64, Cheraga 16014 Algiers, Algeria
– sequence: 4
  givenname: Ahmed
  surname: Kechida
  fullname: Kechida, Ahmed
  email: a.kechida@crti.dz
  organization: Research Centre in Industrial Technologies (CRTI), P.O.Box 64, Cheraga 16014 Algiers, Algeria
BookMark eNqFkM1qwzAQhEVJoUnaN-hBL-BUki3_9FAIoX8Q6KU9C1leJQqybCQnIW9fGffUQ3tadndmYL4FmrnOAUL3lKwoofnDYRXMrvfdihFG46lMSXWF5rQsWFJwXszQPMp4QvMyu0GLEA6EEJrmZI7Oa-zhZOCMO4dBenvBZ2MbbTzgBgZQg4kP7bsWH10rnYMGS_BGWnyCvVEWAj4G43ZRDT22McLFLalliErVtf1xAI9PJow50u46b4Z9G27RtZY2wN3PXKKvl-fPzVuy_Xh936y3iUpJPiS1rkogJWOS1WlVQKabiuqMFITnBTAuCVDJa06glLqhuom1KkZ4UWnOqK7TJXqccpXvQvCghTKDHEsNXhorKBEjQnEQE0IxIhQTwmjOfpl7b1rpL__ZniYbxGKRrRdBGXAKmkhVDaLpzN8B395KklA
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124783
crossref_primary_10_3390_rs16091627
crossref_primary_10_3390_fire6110441
crossref_primary_10_1109_ACCESS_2024_3406215
crossref_primary_10_1007_s11676_024_01810_x
crossref_primary_10_1016_j_neucom_2024_127975
crossref_primary_10_1007_s00170_024_13341_0
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_3390_fire6080315
crossref_primary_10_3390_s22239384
crossref_primary_10_1016_j_eswa_2024_124661
crossref_primary_10_1016_j_inffus_2024_102369
crossref_primary_10_3103_S0147688223040081
crossref_primary_10_1109_ACCESS_2024_3501336
crossref_primary_10_3390_s23010006
crossref_primary_10_1371_journal_pone_0313200
crossref_primary_10_1016_j_imu_2022_101158
crossref_primary_10_3390_su15065591
crossref_primary_10_3390_mining4020013
crossref_primary_10_61260_1998_8990_2024_2_74_83
crossref_primary_10_3390_s22051824
crossref_primary_10_3390_s25072043
crossref_primary_10_3390_machines10010012
crossref_primary_10_33904_ejfe_1322396
crossref_primary_10_1109_ACCESS_2023_3262701
crossref_primary_10_1080_00401706_2024_2322645
crossref_primary_10_3390_info15090538
crossref_primary_10_3390_s25061786
crossref_primary_10_3389_fpls_2022_966639
crossref_primary_10_1038_s41524_023_01048_x
crossref_primary_10_1109_ACCESS_2023_3326101
crossref_primary_10_1016_j_eswa_2022_118594
crossref_primary_10_1109_TCSVT_2024_3462432
crossref_primary_10_1021_acs_est_4c06653
crossref_primary_10_1016_j_sigpro_2024_109844
crossref_primary_10_3390_electronics12010228
crossref_primary_10_1016_j_ecoinf_2024_102527
crossref_primary_10_3390_photonics11070656
crossref_primary_10_3233_JIFS_231550
crossref_primary_10_1007_s12040_024_02391_3
crossref_primary_10_3390_rs14225861
crossref_primary_10_3390_sym14102155
crossref_primary_10_3390_drones8090454
crossref_primary_10_3390_su141912270
crossref_primary_10_1109_JSTARS_2024_3406767
crossref_primary_10_1155_2023_7939516
crossref_primary_10_3390_rs15194694
crossref_primary_10_1016_j_sciaf_2023_e01656
crossref_primary_10_1007_s11042_024_20199_7
crossref_primary_10_1080_21642583_2023_2294991
crossref_primary_10_29130_dubited_1103375
crossref_primary_10_3390_f14040663
crossref_primary_10_3390_electronics12183888
crossref_primary_10_3390_electronics13163175
crossref_primary_10_3390_fire8020066
crossref_primary_10_1016_j_asoc_2023_110362
crossref_primary_10_33166_AETiC_2022_03_005
crossref_primary_10_3390_fire7080286
crossref_primary_10_1109_ACCESS_2022_3222805
crossref_primary_10_1109_ACCESS_2025_3528983
crossref_primary_10_3389_fenvs_2025_1522933
crossref_primary_10_1016_j_measurement_2024_115881
crossref_primary_10_1016_j_jag_2023_103554
crossref_primary_10_1007_s00521_024_09610_4
crossref_primary_10_1016_j_geomat_2024_100008
crossref_primary_10_1016_j_measurement_2024_114411
crossref_primary_10_1007_s11042_024_18685_z
crossref_primary_10_1016_j_patcog_2024_110749
crossref_primary_10_1016_j_heliyon_2024_e25757
crossref_primary_10_1186_s42408_022_00165_0
crossref_primary_10_3390_app132011548
crossref_primary_10_1007_s11554_024_01413_z
crossref_primary_10_3390_pr12040747
crossref_primary_10_3390_rs15164112
crossref_primary_10_1016_j_rsase_2024_101181
crossref_primary_10_1016_j_sigpro_2024_109583
crossref_primary_10_1109_TASE_2022_3183233
crossref_primary_10_1007_s11276_024_03718_0
crossref_primary_10_1016_j_rsase_2024_101346
crossref_primary_10_37468_2307_1400_2023_2_76_90
crossref_primary_10_1115_1_4067645
crossref_primary_10_3389_fpls_2024_1391628
crossref_primary_10_3390_rs15071821
crossref_primary_10_1016_j_ins_2022_06_035
crossref_primary_10_1007_s00521_024_10440_7
crossref_primary_10_1016_j_spasta_2024_100811
crossref_primary_10_1109_JSAC_2023_3242730
crossref_primary_10_1109_LGRS_2024_3465892
crossref_primary_10_3390_a18010008
crossref_primary_10_1016_j_jag_2022_103146
crossref_primary_10_1016_j_ejor_2023_08_008
crossref_primary_10_1142_S0218126624501056
crossref_primary_10_1007_s12559_024_10290_4
crossref_primary_10_1016_j_compag_2024_109078
crossref_primary_10_3390_f15040689
crossref_primary_10_1109_JIOT_2024_3419710
crossref_primary_10_3390_drones8050169
crossref_primary_10_3390_drones8050203
crossref_primary_10_3390_s23042235
crossref_primary_10_1007_s10586_022_03627_x
crossref_primary_10_1007_s11042_024_19696_6
crossref_primary_10_1016_j_sigpro_2024_109406
crossref_primary_10_1088_1402_4896_adb467
crossref_primary_10_1007_s00500_025_10434_0
crossref_primary_10_3390_f15101781
crossref_primary_10_3390_make5030039
crossref_primary_10_7731_KIFSE_c3023a49
crossref_primary_10_3390_math12040534
crossref_primary_10_3390_rs15081995
crossref_primary_10_1109_JSTARS_2025_3541205
crossref_primary_10_3390_f14091697
crossref_primary_10_3390_f14091852
crossref_primary_10_1007_s11119_025_10220_w
Cites_doi 10.1016/j.scitotenv.2020.138044
10.1109/TPAMI.2016.2577031
10.5194/isprs-archives-XLIII-B3-2020-1671-2020
10.1016/j.imavis.2019.08.007
10.3390/drones3010017
10.1001/jamainternmed.2020.0703
10.3390/plants8110468
10.3390/s19235082
10.1088/1757-899X/1022/1/012079
10.1016/j.envsoft.2021.104984
10.1007/978-3-030-63007-2_63
10.35940/ijitee.F4106.049620
10.1016/j.imavis.2021.104117
10.3390/s20226442
10.1016/j.egyr.2019.11.002
10.3390/rs12010166
10.1139/juvs-2020-0009
10.3390/rs12193177
10.1016/j.watres.2020.116071
10.1016/j.eswa.2019.03.030
10.1016/j.imavis.2019.05.003
10.1016/j.scitotenv.2020.142793
10.1109/ACCESS.2019.2906695
10.1016/j.imavis.2007.07.002
10.3390/s20195508
10.1016/j.rse.2016.02.054
10.1016/j.proeng.2017.12.034
10.1145/3065386
10.1109/TCSVT.2016.2527340
10.1016/j.comnet.2021.108001
10.1016/j.ijdrr.2019.101444
10.1016/j.forpol.2017.04.011
10.1155/2014/597368
10.1016/j.ijdrr.2020.101530
10.1016/j.dsp.2013.07.003
10.1109/TPAMI.2017.2699184
10.1162/neco.1997.9.8.1735
10.1109/TPAMI.2016.2644615
10.1109/ACCESS.2019.2946712
10.1162/neco.2006.18.7.1527
10.1016/j.envsoft.2010.06.003
10.1016/j.imavis.2021.104108
10.3390/info10110349
10.3390/s18030712
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2021.108309
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2021_108309
S0165168421003467
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-bf98e0822a2b397e4fd91f4070567e25a0e1a5b50e8afd1fd013920579f521fb3
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Thu Apr 24 23:02:41 EDT 2025
Tue Jul 01 02:07:32 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Computer vision
Smoke detection system
Unmanned aerial vehicle
Wildfire detection system
Aerial images processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-bf98e0822a2b397e4fd91f4070567e25a0e1a5b50e8afd1fd013920579f521fb3
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2021_108309
crossref_primary_10_1016_j_sigpro_2021_108309
elsevier_sciencedirect_doi_10_1016_j_sigpro_2021_108309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ren, He, Girshick, Sun (bib0068) 2017; 39
Cao, Yang, Tang, Lu (bib0020) 2019; 7
Vardoulakis, Marks, Abramson (bib0081) 2020; 180
Aslan, Güdükbay, Töreyin, Çetin (bib0006) 2019
Allauddin, Kiran, Kiran, Srinivas, Mouli, Prasad (bib0004) 2019
(2021).
Yadav (bib0084) 2020; 3
Aydin, Selvi, Tao, Starek (bib0007) 2019; 3
Luo, Zhang, Wang, Xu, Zhang (bib0060) 2019; 7
Zope, Dadlani, Matai, Tembhurnikar, Kalani (bib0093) 2020
Lee, Kim, Lee, Lee, Choi (bib0056) 2017
Solovyev, Wang, Gabruseva (bib0074) 2021; 107
Zhang, Huang, Zhao (bib0086) 2019; 19
Lin, Goyal, Girshick, He, Dollr (bib0058) 2017
Novac, Geipel, de Domingo, Paula, Hyttel, Chrysostomou (bib0064) 2020
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0059) 2016
DeepQuestAI, Fire-smoke-dataset, 2019.
Bu, Gharajeh (bib0018) 2019; 91
Shamsoshoara, Afghah, Razi, Zheng, Fulé, Blasch (bib0072) 2021; 193
.
Hochreiter, Schmidhuber (bib0041) 1997; 9
Benjdira, Khursheed, Koubaa, Ammar, Ouni (bib0012) 2019
AGetin, Dimitropoulos, Gouverneur, Grammalidis, GAnay, Habiboǧlu, Töreyin, Verstockt (bib0094) 2013; 23
Giglio, Schroeder, Justice (bib0032) 2016; 178
Kinaneva, Hristov, Raychev, Zahariev (bib0052) 2019
Zanchi, Yu, Akselsson, Bishop, Köhler, Olofsson, Belyazid (bib0085) 2021; 138
Grala, Grala, Hussain, Cooke, Varner (bib0038) 2017; 81
Zhao, Ma, Li, Zhang (bib0089) 2018; 18
Filkov, Ngo, Matthews, Telfer, Penman (bib0031) 2020; 1
Hossain, Zhang, Tonima (bib0042) 2020; 8
Kanand, Kemper, König, Kemper (bib0049) 2020; XLIII-B3-2020
Cair, Fire-detection-image-dataset, 2017.
Khryashchev, Larionov (bib0050) 2020
Rodrigues, Gelabert, Ameztegui, Coll, Vega-Garcia (bib0069) 2021; 765
Tsouros, Bibi, Sarigiannidis (bib0080) 2019; 10
Xiao, Kamat, Menassa (bib0083) 2019; 88
J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv preprint arXiv
Jiao, Zhang, Mu, Xin, Jiao, Liu, Liu (bib0046) 2020
Zhu, Li (bib0091) 2020
(2020).
Boylan, Lawrence (bib0017) 2020; 47
Redmon, Farhadi (bib0066) 2017
Barmpoutis, Stathaki (bib0010) 2020
Zhang, Lin, Zhang, Xu, Wang (bib0088) 2018; 211
Goyal, Kaur, Vohra, Singh (bib0037) 2020; 9
Barmpoutis, Papaioannou, Dimitropoulos, Grammalidis (bib0009) 2020; 20
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition
Girshick, Donahue, Darrell, Malik (bib0034) 2014
Kaabi, Sayadi, Bouchouicha, Fnaiech, Moreau, Ginoux (bib0048) 2018
Alexandrov, Pertseva, Berman, Pantiukhin, Kapitonov (bib0002) 2019
S. Aslan, U. Güdükbay, B.U. Töreyin, A.E. Çetin, Deep convolutional generative adversarial networks for flame detection in video, in: N.T. Nguyen, B.H. Hoang, C.P. Huynh, D. Hwang, B. Trawiński, G. Vossen (Eds.), Computational Collective Intelligence, Springer International Publishing, Cham, 2020, pp. 807–815. 10.1007/978-3-030-63007-2_63
Cazzolato, Avalhais, Chino, Ramos, de Souza, Rodrigues, Traina (bib0023) 2017
Hinton, Osindero, Teh (bib0040) 2006; 18
Barmpoutis, Stathaki, Dimitropoulos, Grammalidis (bib0011) 2020; 12
Jeong, Park, Nam, Ko (bib0045) 2020; 20
Z. Li, Y. Sun, J. Tang, CTNet: context-based tandem network for semantic segmentation
Bo, Mercalli, Pognant, Cat Berro, Clerico (bib0014) 2020; 6
Govil, Welch, Ball, Pennypacker (bib0036) 2020; 12
Benzekri, Moussati, Moussaoui, Berrajaa (bib0013) 2020; 11
Zhou, Li, Ning, Tang (bib0090) 2017
Emmerton, Cooke, Hustins, Silins, Emelko, Lewis, Kruk, Taube, Zhu, Jackson, Stone, Kerr, Orwin (bib0030) 2020; 183
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0035) 2014
Redmon, Divvala, Girshick, Farhadi (bib0065) 2016
Akca, Stylianidis, Poli, Gruen, Altan, Hofer, Smagas, Martin, Walli, Jimeno, Garcia (bib0001) 2019
Kinaneva, Hristov, Raychev, Zahariev (bib0053) 2019
A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, Yolov4: optimal speed and accuracy of object detection
Jiao, Zhang, Xin, Mu, Yi, Liu, Liu (bib0047) 2019
Krizhevsky, Sutskever, Hinton (bib0055) 2017; 60
Martinez-de Dios, Arrue, Ollero, Merino, Gmez-Rodriguez (bib0061) 2008; 26
Kountouris (bib0054) 2020; 727
Zhang, Xu, Xu, Guo (bib0087) 2016/01
Hristov, Raychev, Kinaneva, Zahariev (bib0043) 2018
Alkhatib (bib0003) 2014; 10
(2019).
Szegedy, Ioffe, Vanhoucke, Alemi (bib0077) 2017
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bib0021) 2020
Zong, Wang, Chen, Chen, Gong (bib0092) 2021; 107
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0078) 2015
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0025) 2018; 40
Dimitropoulos, Barmpoutis, Grammalidis (bib0029) 2017; 27
A. Jadon, M. Omama, A. Varshney, M.S. Ansari, R. Sharma, FireNet: a specialized lightweight fire & smoke detection model for real-time IoT applications
Herrmann, Willersinn, Beyerer (bib0039) 2016
Girshick (bib0033) 2015
Mockrin, Fishler, Stewart (bib0063) 2020; 45
Viseras, Marchal, Schaab, Pages, Estivill (bib0082) 2019
Srinivas, Dua (bib0076) 2020
Chen, Zhang, Xin, Wang, Mu, Yi, Liu, Liu (bib0026) 2019
Sousa, Moutinho, Almeida (bib0075) 2019; 129
A.E. Cetin, Computer vision based fire detection software, 2007
Ronneberger, Fischer, Brox (bib0070) 2015
Badrinarayanan, Kendall, Cipolla (bib0008) 2017; 39
C. Maxouris, Here’s just how bad the devastating australian fires are – by the numbers, 2020
(2014).
Totakura, Vuribindi, Reddy (bib0079) 2021; 1022
Carvalheiro, Bernardo, Orgaz, Yamazaki (bib0022) 2010; 25
Kim, Kim, Kim (bib0051) 2019
(2018).
Saleem, Potgieter, Arif (bib0071) 2019; 8
Chen, Zhang, Xin, Yi, Liu, Liu (bib0027) 2018
Bouguettaya, Kechida, Taberkit (bib0016) 2019; 2
Tsouros (10.1016/j.sigpro.2021.108309_sbref0080) 2019; 10
Zope (10.1016/j.sigpro.2021.108309_bib0093) 2020
Zhang (10.1016/j.sigpro.2021.108309_sbref0088) 2018; 211
Rodrigues (10.1016/j.sigpro.2021.108309_bib0069) 2021; 765
Alkhatib (10.1016/j.sigpro.2021.108309_bib0003) 2014; 10
Goodfellow (10.1016/j.sigpro.2021.108309_bib0035) 2014
Zhang (10.1016/j.sigpro.2021.108309_bib0087) 2016
Chen (10.1016/j.sigpro.2021.108309_bib0025) 2018; 40
Zanchi (10.1016/j.sigpro.2021.108309_bib0085) 2021; 138
Chen (10.1016/j.sigpro.2021.108309_bib0026) 2019
Kinaneva (10.1016/j.sigpro.2021.108309_bib0052) 2019
Kim (10.1016/j.sigpro.2021.108309_bib0051) 2019
AGetin (10.1016/j.sigpro.2021.108309_bib0094) 2013; 23
Govil (10.1016/j.sigpro.2021.108309_bib0036) 2020; 12
Cao (10.1016/j.sigpro.2021.108309_bib0020) 2019; 7
Bo (10.1016/j.sigpro.2021.108309_sbref0014) 2020; 6
Girshick (10.1016/j.sigpro.2021.108309_bib0033) 2015
Totakura (10.1016/j.sigpro.2021.108309_bib0079) 2021; 1022
Dimitropoulos (10.1016/j.sigpro.2021.108309_bib0029) 2017; 27
Kanand (10.1016/j.sigpro.2021.108309_bib0049) 2020; XLIII-B3-2020
Lee (10.1016/j.sigpro.2021.108309_bib0056) 2017
10.1016/j.sigpro.2021.108309_bib0005
Bouguettaya (10.1016/j.sigpro.2021.108309_bib0016) 2019; 2
Ren (10.1016/j.sigpro.2021.108309_bib0068) 2017; 39
Jeong (10.1016/j.sigpro.2021.108309_bib0045) 2020; 20
Hristov (10.1016/j.sigpro.2021.108309_bib0043) 2018
Viseras (10.1016/j.sigpro.2021.108309_bib0082) 2019
Zhang (10.1016/j.sigpro.2021.108309_bib0086) 2019; 19
Grala (10.1016/j.sigpro.2021.108309_sbref0038) 2017; 81
Szegedy (10.1016/j.sigpro.2021.108309_bib0078) 2015
Kountouris (10.1016/j.sigpro.2021.108309_bib0054) 2020; 727
Aslan (10.1016/j.sigpro.2021.108309_bib0006) 2019
10.1016/j.sigpro.2021.108309_bib0044
Liu (10.1016/j.sigpro.2021.108309_bib0059) 2016
Kinaneva (10.1016/j.sigpro.2021.108309_bib0053) 2019
Krizhevsky (10.1016/j.sigpro.2021.108309_bib0055) 2017; 60
Zhao (10.1016/j.sigpro.2021.108309_bib0089) 2018; 18
Carvalheiro (10.1016/j.sigpro.2021.108309_bib0022) 2010; 25
Emmerton (10.1016/j.sigpro.2021.108309_bib0030) 2020; 183
Ronneberger (10.1016/j.sigpro.2021.108309_bib0070) 2015
Saleem (10.1016/j.sigpro.2021.108309_bib0071) 2019; 8
Barmpoutis (10.1016/j.sigpro.2021.108309_bib0010) 2020
Giglio (10.1016/j.sigpro.2021.108309_bib0032) 2016; 178
Sousa (10.1016/j.sigpro.2021.108309_bib0075) 2019; 129
Aydin (10.1016/j.sigpro.2021.108309_bib0007) 2019; 3
Solovyev (10.1016/j.sigpro.2021.108309_bib0074) 2021; 107
Hochreiter (10.1016/j.sigpro.2021.108309_bib0041) 1997; 9
Lin (10.1016/j.sigpro.2021.108309_bib0058) 2017
Filkov (10.1016/j.sigpro.2021.108309_bib0031) 2020; 1
10.1016/j.sigpro.2021.108309_bib0073
Kaabi (10.1016/j.sigpro.2021.108309_bib0048) 2018
Zhou (10.1016/j.sigpro.2021.108309_bib0090) 2017
Allauddin (10.1016/j.sigpro.2021.108309_bib0004) 2019
Zong (10.1016/j.sigpro.2021.108309_bib0092) 2021; 107
Martinez-de Dios (10.1016/j.sigpro.2021.108309_bib0061) 2008; 26
Novac (10.1016/j.sigpro.2021.108309_bib0064) 2020
Carion (10.1016/j.sigpro.2021.108309_bib0021) 2020
Girshick (10.1016/j.sigpro.2021.108309_bib0034) 2014
Xiao (10.1016/j.sigpro.2021.108309_bib0083) 2019; 88
Akca (10.1016/j.sigpro.2021.108309_bib0001) 2019
Chen (10.1016/j.sigpro.2021.108309_bib0027) 2018
Vardoulakis (10.1016/j.sigpro.2021.108309_bib0081) 2020; 180
Mockrin (10.1016/j.sigpro.2021.108309_bib0063) 2020; 45
Redmon (10.1016/j.sigpro.2021.108309_bib0065) 2016
Benjdira (10.1016/j.sigpro.2021.108309_bib0012) 2019
Herrmann (10.1016/j.sigpro.2021.108309_bib0039) 2016
Szegedy (10.1016/j.sigpro.2021.108309_bib0077) 2017
10.1016/j.sigpro.2021.108309_bib0024
Barmpoutis (10.1016/j.sigpro.2021.108309_bib0009) 2020; 20
10.1016/j.sigpro.2021.108309_bib0028
Jiao (10.1016/j.sigpro.2021.108309_bib0046) 2020
Yadav (10.1016/j.sigpro.2021.108309_bib0084) 2020; 3
Shamsoshoara (10.1016/j.sigpro.2021.108309_bib0072) 2021; 193
Bu (10.1016/j.sigpro.2021.108309_bib0018) 2019; 91
10.1016/j.sigpro.2021.108309_bib0062
Zhu (10.1016/j.sigpro.2021.108309_sbref0091) 2020
10.1016/j.sigpro.2021.108309_bib0067
Badrinarayanan (10.1016/j.sigpro.2021.108309_bib0008) 2017; 39
Barmpoutis (10.1016/j.sigpro.2021.108309_bib0011) 2020; 12
Cazzolato (10.1016/j.sigpro.2021.108309_bib0023) 2017
Hossain (10.1016/j.sigpro.2021.108309_bib0042) 2020; 8
Hinton (10.1016/j.sigpro.2021.108309_bib0040) 2006; 18
Alexandrov (10.1016/j.sigpro.2021.108309_bib0002) 2019
Redmon (10.1016/j.sigpro.2021.108309_bib0066) 2017
Benzekri (10.1016/j.sigpro.2021.108309_bib0013) 2020; 11
Khryashchev (10.1016/j.sigpro.2021.108309_bib0050) 2020
Goyal (10.1016/j.sigpro.2021.108309_bib0037) 2020; 9
Srinivas (10.1016/j.sigpro.2021.108309_bib0076) 2020
Luo (10.1016/j.sigpro.2021.108309_bib0060) 2019; 7
10.1016/j.sigpro.2021.108309_bib0057
Boylan (10.1016/j.sigpro.2021.108309_bib0017) 2020; 47
10.1016/j.sigpro.2021.108309_bib0015
Jiao (10.1016/j.sigpro.2021.108309_bib0047) 2019
10.1016/j.sigpro.2021.108309_bib0019
References_xml – volume: 20
  year: 2020
  ident: bib0045
  article-title: Light-weight student LSTM for real-time wildfire smoke detection
  publication-title: Sensors
– start-page: 50
  year: 2019
  end-page: 53
  ident: bib0052
  article-title: Application of artificial intelligence in UAV platforms for early forest fire detection
  publication-title: 2019 27th National Conference with International Participation (TELECOM)
– reference: (2014).
– start-page: 213
  year: 2020
  end-page: 229
  ident: bib0021
  article-title: End-to-end object detection with transformers
  publication-title: European Conference on Computer Vision
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0078
  article-title: Going deeper with convolutions
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 12
  year: 2020
  ident: bib0011
  article-title: Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures
  publication-title: Remote Sens.
– reference: Cair, Fire-detection-image-dataset, 2017.
– volume: 27
  start-page: 1143
  year: 2017
  end-page: 1154
  ident: bib0029
  article-title: Higher order linear dynamical systems for smoke detection in video surveillance applications
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 10
  year: 2019
  ident: bib0080
  article-title: A review on UAV-based applications for precision agriculture
  publication-title: Information
– volume: 9
  start-page: 1357
  year: 2020
  end-page: 1362
  ident: bib0037
  article-title: A YOLO based technique for early forest fire detection
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– volume: 7
  start-page: 154732
  year: 2019
  end-page: 154742
  ident: bib0020
  article-title: An attention enhanced bidirectional LSTM for early forest fire smoke recognition
  publication-title: IEEE Access
– start-page: 63
  year: 2020
  end-page: 74
  ident: bib0010
  article-title: A novel framework for early fire detection using terrestrial and aerial 360-degree images
  publication-title: Advanced Concepts for Intelligent Vision Systems
– start-page: 10305
  year: 2018
  end-page: 10310
  ident: bib0027
  article-title: A UAV-based forest fire detection algorithm using convolutional neural network
  publication-title: 2018 37th Chinese Control Conference (CCC)
– volume: 183
  start-page: 116071
  year: 2020
  ident: bib0030
  article-title: Severe western Canadian wildfire affects water quality even at large basin scales
  publication-title: Water Res.
– reference: A. Jadon, M. Omama, A. Varshney, M.S. Ansari, R. Sharma, FireNet: a specialized lightweight fire & smoke detection model for real-time IoT applications,
– volume: 6
  start-page: 781
  year: 2020
  end-page: 786
  ident: bib0014
  article-title: Urban air pollution, climate change and wildfires: the case study of an extended forest fire episode in northern italy favoured by drought and warm weather conditions
  publication-title: Energy Rep.
– reference: (2021).
– start-page: 73
  year: 2020
  end-page: 82
  ident: bib0091
  article-title: Online video object detection via local and mid-range feature propagation
  publication-title: Proceedings of the 1st International Workshop on Human-Centric Multimedia Analysis, HuMA’20
– start-page: 9361
  year: 2019
  end-page: 9363
  ident: bib0004
  article-title: Development of a surveillance system for forest fire detection and monitoring using drones
  publication-title: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium
– volume: 8
  year: 2019
  ident: bib0071
  article-title: Plant disease detection and classification by deep learning
  publication-title: Plants
– start-page: 646
  year: 2020
  end-page: 652
  ident: bib0076
  article-title: Fog computing and deep CNN based efficient approach to early forest fire detection with unmanned aerial vehicles
  publication-title: Inventive Computation Technologies
– volume: 81
  start-page: 38
  year: 2017
  end-page: 47
  ident: bib0038
  article-title: Impact of human factors on wildfire occurrence in mississippi, United States
  publication-title: Forest Policy Econ.
– volume: 2
  start-page: 28
  year: 2019
  end-page: 44
  ident: bib0016
  article-title: A survey on lightweight CNN-based object detection algorithms for platforms with limited computational resources
  publication-title: Int. J. Inform. Appl. Math.
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0012
  article-title: Car detection using unmanned aerial vehicles: comparison between faster r-CNN and YOLOv3
  publication-title: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS)
– volume: 25
  start-page: 1909
  year: 2010
  end-page: 1914
  ident: bib0022
  article-title: Forest fires mapping and monitoring of current and past forest fire activity from meteosat second generation data
  publication-title: Environ. Model. Softw.
– volume: 20
  year: 2020
  ident: bib0009
  article-title: A review on early forest fire detection systems using optical remote sensing
  publication-title: Sensors
– volume: 180
  start-page: 635
  year: 2020
  end-page: 636
  ident: bib0081
  article-title: Lessons learned from the australian bushfires: climate change, air pollution, and public health
  publication-title: JAMA Intern. Med.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib0068
  article-title: Faster r-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 26
  start-page: 550
  year: 2008
  end-page: 562
  ident: bib0061
  article-title: Computer vision techniques for forest fire perception
  publication-title: Image Vis. Comput.
– start-page: 252
  year: 2017
  end-page: 253
  ident: bib0056
  article-title: Deep neural networks for wild fire detection with unmanned aerial vehicle
  publication-title: 2017 IEEE International Conference on Consumer Electronics (ICCE)
– reference: S. Aslan, U. Güdükbay, B.U. Töreyin, A.E. Çetin, Deep convolutional generative adversarial networks for flame detection in video, in: N.T. Nguyen, B.H. Hoang, C.P. Huynh, D. Hwang, B. Trawiński, G. Vossen (Eds.), Computational Collective Intelligence, Springer International Publishing, Cham, 2020, pp. 807–815. 10.1007/978-3-030-63007-2_63
– start-page: 2672
  year: 2014
  end-page: -2680
  ident: bib0035
  article-title: Generative adversarial nets
  publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14
– volume: 3
  year: 2019
  ident: bib0007
  article-title: Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting
  publication-title: Drones
– volume: 211
  start-page: 441
  year: 2018
  end-page: 446
  ident: bib0088
  article-title: Wildland forest fire smoke detection based on faster r-CNN using synthetic smoke images
  publication-title: Procedia Eng.
– start-page: 221
  year: 2016
  end-page: 227
  ident: bib0039
  article-title: Low-resolution convolutional neural networks for video face recognition
  publication-title: 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib0047
  article-title: A deep learning based forest fire detection approach using UAV and YOLOv3
  publication-title: 2019 1st International Conference on Industrial Artificial Intelligence (IAI)
– start-page: 265
  year: 2019
  end-page: 294
  ident: bib0001
  article-title: Pre- and post-fire comparison of forest areas in 3D
  publication-title: Intelligent Systems for Crisis Management
– volume: 1
  start-page: 44
  year: 2020
  end-page: 56
  ident: bib0031
  article-title: Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. retrospective analysis and current trends
  publication-title: J. Saf. Sci. Resil.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib0084
  article-title: Deep learning based fire recognition for wildfire drone automation
  publication-title: Can. Sci. Fair J.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0070
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 867
  year: 2020
  end-page: 872
  ident: bib0064
  article-title: A framework for wildfire inspection using deep convolutional neural networks
  publication-title: 2020IEEE/SICE International Symposium on System Integration (SII)
– reference: J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv preprint arXiv:
– volume: XLIII-B3-2020
  start-page: 1671
  year: 2020
  end-page: 1675
  ident: bib0049
  article-title: Wildfire detection and disaster monitoring system using UAS and sensor fusion technologies
  publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci.
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: bib0033
  article-title: Fast r-CNN
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– volume: 107
  start-page: 104117
  year: 2021
  ident: bib0074
  article-title: Weighted boxes fusion: ensembling boxes from different object detection models
  publication-title: Image Vis. Comput.
– start-page: 2999
  year: 2017
  end-page: 3007
  ident: bib0058
  article-title: Focal loss for dense object detection
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– volume: 18
  start-page: 1527
  year: 2006
  end-page: -1554
  ident: bib0040
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– start-page: 213
  year: 2017
  end-page: 223
  ident: bib0023
  article-title: FiSmo: a compilation of datasets from emergency situations for fire and smoke analysis
  publication-title: Brazilian Symposium on Databases-SBBD
– volume: 60
  start-page: 84
  year: 2017
  end-page: -90
  ident: bib0055
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition,
– volume: 11
  year: 2020
  ident: bib0013
  article-title: Early forest fire detection system using wireless sensor network and deep learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0059
  article-title: SSD: single shot multibox detector
  publication-title: Computer Vision – ECCV 2016
– reference: (2019).
– volume: 18
  year: 2018
  ident: bib0089
  article-title: Saliency detection and deep learning-based wildfire identification in UAV imagery
  publication-title: Sensors
– start-page: 580
  year: 2014
  end-page: 587
  ident: bib0034
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 138
  start-page: 104984
  year: 2021
  ident: bib0085
  article-title: Simulation of water and chemical transport of chloride from the forest ecosystem to the stream
  publication-title: Environ. Model. Softw.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: -1780
  ident: bib0041
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 19
  year: 2019
  ident: bib0086
  article-title: A new model of RGB-d camera calibration based on 3Dcontrol field
  publication-title: Sensors
– start-page: 3
  year: 2019
  end-page: 9
  ident: bib0002
  article-title: Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicles
  publication-title: 2019 24th Conference of Open Innovations Association (FRUCT)
– reference: (2020).
– reference: A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, Yolov4: optimal speed and accuracy of object detection,
– volume: 88
  start-page: 67
  year: 2019
  end-page: 75
  ident: bib0083
  article-title: Human tracking from single RGB-d camera using online learning
  publication-title: Image Vis. Comput.
– volume: 129
  start-page: 216
  year: 2019
  end-page: 232
  ident: bib0075
  article-title: Classification of potential fire outbreaks: a fuzzy modeling approach based on thermal images
  publication-title: Expert Syst. Appl.
– volume: 12
  year: 2020
  ident: bib0036
  article-title: Preliminary results from a wildfire detection system using deep learning on remote camera images
  publication-title: Remote Sens.
– volume: 765
  start-page: 142793
  year: 2021
  ident: bib0069
  article-title: Has COVID-19 halted winter-spring wildfires in the mediterranean? Insights for wildfire science under a pandemic context
  publication-title: Sci. Total Environ.
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib0050
  article-title: Wildfire segmentation on satellite images using deep learning
  publication-title: 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT)
– reference: Z. Li, Y. Sun, J. Tang, CTNet: context-based tandem network for semantic segmentation,
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0008
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 6517
  year: 2017
  end-page: 6525
  ident: bib0066
  article-title: Yolo9000: better, faster, stronger
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 760
  year: 2017
  end-page: 768
  ident: bib0090
  article-title: Cad: scale invariant framework for real-time object detection
  publication-title: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW)
– volume: 178
  start-page: 31
  year: 2016
  end-page: 41
  ident: bib0032
  article-title: The collection 6 MODIS active fire detection algorithm and fire products
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 597368
  year: 2014
  ident: bib0003
  article-title: A review on forest fire detection techniques
  publication-title: Int. J. Distrib. Sens. Netw.
– start-page: 205
  year: 2020
  end-page: 208
  ident: bib0093
  article-title: IoT sensor and deep neural network based wildfire prediction system
  publication-title: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS)
– reference: (2018).
– volume: 1022
  start-page: 012079
  year: 2021
  ident: bib0079
  article-title: Improved safety of self-driving car using voice recognition through CNN
  publication-title: IOP Conf. Ser.
– start-page: 102
  year: 2019
  end-page: 103
  ident: bib0082
  article-title: Wildfire monitoring and hotspots detection with aerial robots: measurement campaign and first results
  publication-title: 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
– volume: 727
  start-page: 138044
  year: 2020
  ident: bib0054
  article-title: Human activity, daylight saving time and wildfire occurrence
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 101444
  year: 2020
  ident: bib0063
  article-title: After the fire: perceptions of land use planning to reduce wildfire risk in eight communities across the united states
  publication-title: Int. J. Disaster Risk Reduct.
– start-page: 2118
  year: 2019
  end-page: 2123
  ident: bib0026
  article-title: UAV image-based forest fire detection approach using convolutional neural network
  publication-title: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib0043
  article-title: Emerging methods for early detection of forest fires using unmanned aerial vehicles and lorawan sensor networks
  publication-title: 2018 28th EAEEIE Annual Conference (EAEEIE)
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0048
  article-title: Early smoke detection of forest wildfire video using deep belief network
  publication-title: 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)
– start-page: 564
  year: 2019
  end-page: 567
  ident: bib0051
  article-title: Fire detection using video images and temporal variations
  publication-title: 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0025
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 4963
  year: 2020
  end-page: 4967
  ident: bib0046
  article-title: A YOLOv3-based learning strategy for real-time UAV-based forest fire detection
  publication-title: 2020 Chinese Control And Decision Conference (CCDC)
– volume: 7
  start-page: 42889
  year: 2019
  end-page: 42896
  ident: bib0060
  article-title: A slight smoke perceptual network
  publication-title: IEEE Access
– start-page: 8315
  year: 2019
  end-page: 8319
  ident: bib0006
  article-title: Early wildfire smoke detection based on motion-based geometric image transformation and deep convolutional generative adversarial networks
  publication-title: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 193
  start-page: 108001
  year: 2021
  ident: bib0072
  article-title: Aerial imagery pile burn detection using deep learning: the FLAME dataset
  publication-title: Comput. Netw.
– start-page: 4278
  year: 2017
  end-page: -4284
  ident: bib0077
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0065
  article-title: You only look once: unified, real-time object detection
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 107
  start-page: 104108
  year: 2021
  ident: bib0092
  article-title: Motion saliency based multi-stream multiplier resnets for action recognition
  publication-title: Image Vis. Comput.
– volume: 23
  start-page: 1827
  year: 2013
  end-page: 1843
  ident: bib0094
  article-title: Video fire detection review
  publication-title: Digit. Signal Process.
– reference: .
– start-page: 1060
  year: 2019
  end-page: 1065
  ident: bib0053
  article-title: Early forest fire detection using drones and artificial intelligence
  publication-title: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
– start-page: 568
  year: 2016/01
  end-page: 575
  ident: bib0087
  article-title: Deep convolutional neural networks for forest fire detection
  publication-title: Proceedings of the 2016 International Forum on Management, Education and Information Technology Application
– volume: 91
  start-page: 103803
  year: 2019
  ident: bib0018
  article-title: Intelligent and vision-based fire detection systems: a survey
  publication-title: Image Vis. Comput.
– reference: C. Maxouris, Here’s just how bad the devastating australian fires are – by the numbers, 2020,
– volume: 47
  start-page: 101530
  year: 2020
  ident: bib0017
  article-title: The development and validation of the bushfire psychological preparedness scale
  publication-title: Int. J. Disaster Risk Reduct.
– volume: 8
  start-page: 285
  year: 2020
  end-page: 309
  ident: bib0042
  article-title: Forest fire flame and smoke detection from UAV-captured images using fire-specific color features and multi-color space local binary pattern
  publication-title: J. Unmanned Veh. Syst.
– reference: A.E. Cetin, Computer vision based fire detection software, 2007,
– reference: DeepQuestAI, Fire-smoke-dataset, 2019.
– volume: 727
  start-page: 138044
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0054
  article-title: Human activity, daylight saving time and wildfire occurrence
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138044
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0068
  article-title: Faster r-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 1
  year: 2018
  ident: 10.1016/j.sigpro.2021.108309_bib0043
  article-title: Emerging methods for early detection of forest fires using unmanned aerial vehicles and lorawan sensor networks
– start-page: 252
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0056
  article-title: Deep neural networks for wild fire detection with unmanned aerial vehicle
– start-page: 3
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0002
  article-title: Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicles
– start-page: 564
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0051
  article-title: Fire detection using video images and temporal variations
– start-page: 234
  year: 2015
  ident: 10.1016/j.sigpro.2021.108309_bib0070
  article-title: U-Net: convolutional networks for biomedical image segmentation
– volume: XLIII-B3-2020
  start-page: 1671
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0049
  article-title: Wildfire detection and disaster monitoring system using UAS and sensor fusion technologies
  publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLIII-B3-2020-1671-2020
– start-page: 50
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0052
  article-title: Application of artificial intelligence in UAV platforms for early forest fire detection
– volume: 91
  start-page: 103803
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0018
  article-title: Intelligent and vision-based fire detection systems: a survey
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2019.08.007
– start-page: 2999
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0058
  article-title: Focal loss for dense object detection
– volume: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0007
  article-title: Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting
  publication-title: Drones
  doi: 10.3390/drones3010017
– volume: 180
  start-page: 635
  issue: 5
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0081
  article-title: Lessons learned from the australian bushfires: climate change, air pollution, and public health
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2020.0703
– volume: 8
  issue: 11
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0071
  article-title: Plant disease detection and classification by deep learning
  publication-title: Plants
  doi: 10.3390/plants8110468
– start-page: 4278
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0077
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– start-page: 1
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0012
  article-title: Car detection using unmanned aerial vehicles: comparison between faster r-CNN and YOLOv3
– volume: 19
  issue: 23
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0086
  article-title: A new model of RGB-d camera calibration based on 3Dcontrol field
  publication-title: Sensors
  doi: 10.3390/s19235082
– ident: 10.1016/j.sigpro.2021.108309_bib0019
– volume: 1
  start-page: 44
  issue: 1
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0031
  article-title: Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. retrospective analysis and current trends
  publication-title: J. Saf. Sci. Resil.
– ident: 10.1016/j.sigpro.2021.108309_bib0067
– start-page: 221
  year: 2016
  ident: 10.1016/j.sigpro.2021.108309_bib0039
  article-title: Low-resolution convolutional neural networks for video face recognition
– start-page: 265
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0001
  article-title: Pre- and post-fire comparison of forest areas in 3D
– volume: 1022
  start-page: 012079
  year: 2021
  ident: 10.1016/j.sigpro.2021.108309_bib0079
  article-title: Improved safety of self-driving car using voice recognition through CNN
  publication-title: IOP Conf. Ser.
  doi: 10.1088/1757-899X/1022/1/012079
– volume: 2
  start-page: 28
  issue: 2
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0016
  article-title: A survey on lightweight CNN-based object detection algorithms for platforms with limited computational resources
  publication-title: Int. J. Inform. Appl. Math.
– volume: 138
  start-page: 104984
  year: 2021
  ident: 10.1016/j.sigpro.2021.108309_bib0085
  article-title: Simulation of water and chemical transport of chloride from the forest ecosystem to the stream
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.104984
– ident: 10.1016/j.sigpro.2021.108309_bib0005
  doi: 10.1007/978-3-030-63007-2_63
– volume: 9
  start-page: 1357
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0037
  article-title: A YOLO based technique for early forest fire detection
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
  doi: 10.35940/ijitee.F4106.049620
– start-page: 2118
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0026
  article-title: UAV image-based forest fire detection approach using convolutional neural network
– start-page: 213
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0023
  article-title: FiSmo: a compilation of datasets from emergency situations for fire and smoke analysis
– ident: 10.1016/j.sigpro.2021.108309_bib0073
– volume: 107
  start-page: 104117
  year: 2021
  ident: 10.1016/j.sigpro.2021.108309_bib0074
  article-title: Weighted boxes fusion: ensembling boxes from different object detection models
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2021.104117
– volume: 20
  issue: 22
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0009
  article-title: A review on early forest fire detection systems using optical remote sensing
  publication-title: Sensors
  doi: 10.3390/s20226442
– volume: 6
  start-page: 781
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_sbref0014
  article-title: Urban air pollution, climate change and wildfires: the case study of an extended forest fire episode in northern italy favoured by drought and warm weather conditions
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.11.002
– start-page: 2672
  year: 2014
  ident: 10.1016/j.sigpro.2021.108309_bib0035
  article-title: Generative adversarial nets
– ident: 10.1016/j.sigpro.2021.108309_bib0015
– start-page: 213
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0021
  article-title: End-to-end object detection with transformers
– start-page: 867
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0064
  article-title: A framework for wildfire inspection using deep convolutional neural networks
– start-page: 580
  year: 2014
  ident: 10.1016/j.sigpro.2021.108309_bib0034
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0036
  article-title: Preliminary results from a wildfire detection system using deep learning on remote camera images
  publication-title: Remote Sens.
  doi: 10.3390/rs12010166
– start-page: 1
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0047
  article-title: A deep learning based forest fire detection approach using UAV and YOLOv3
– volume: 8
  start-page: 285
  issue: 4
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0042
  article-title: Forest fire flame and smoke detection from UAV-captured images using fire-specific color features and multi-color space local binary pattern
  publication-title: J. Unmanned Veh. Syst.
  doi: 10.1139/juvs-2020-0009
– start-page: 10305
  year: 2018
  ident: 10.1016/j.sigpro.2021.108309_bib0027
  article-title: A UAV-based forest fire detection algorithm using convolutional neural network
– volume: 12
  issue: 19
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0011
  article-title: Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures
  publication-title: Remote Sens.
  doi: 10.3390/rs12193177
– volume: 183
  start-page: 116071
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0030
  article-title: Severe western Canadian wildfire affects water quality even at large basin scales
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116071
– volume: 129
  start-page: 216
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0075
  article-title: Classification of potential fire outbreaks: a fuzzy modeling approach based on thermal images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.030
– volume: 88
  start-page: 67
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0083
  article-title: Human tracking from single RGB-d camera using online learning
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2019.05.003
– start-page: 1440
  year: 2015
  ident: 10.1016/j.sigpro.2021.108309_bib0033
  article-title: Fast r-CNN
– start-page: 1
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0050
  article-title: Wildfire segmentation on satellite images using deep learning
– volume: 765
  start-page: 142793
  year: 2021
  ident: 10.1016/j.sigpro.2021.108309_bib0069
  article-title: Has COVID-19 halted winter-spring wildfires in the mediterranean? Insights for wildfire science under a pandemic context
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142793
– volume: 7
  start-page: 42889
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0060
  article-title: A slight smoke perceptual network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906695
– volume: 26
  start-page: 550
  issue: 4
  year: 2008
  ident: 10.1016/j.sigpro.2021.108309_bib0061
  article-title: Computer vision techniques for forest fire perception
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2007.07.002
– volume: 20
  issue: 19
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0045
  article-title: Light-weight student LSTM for real-time wildfire smoke detection
  publication-title: Sensors
  doi: 10.3390/s20195508
– start-page: 1
  year: 2018
  ident: 10.1016/j.sigpro.2021.108309_bib0048
  article-title: Early smoke detection of forest wildfire video using deep belief network
– ident: 10.1016/j.sigpro.2021.108309_bib0057
– volume: 178
  start-page: 31
  year: 2016
  ident: 10.1016/j.sigpro.2021.108309_bib0032
  article-title: The collection 6 MODIS active fire detection algorithm and fire products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.054
– start-page: 646
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0076
  article-title: Fog computing and deep CNN based efficient approach to early forest fire detection with unmanned aerial vehicles
– start-page: 9361
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0004
  article-title: Development of a surveillance system for forest fire detection and monitoring using drones
– volume: 211
  start-page: 441
  year: 2018
  ident: 10.1016/j.sigpro.2021.108309_sbref0088
  article-title: Wildland forest fire smoke detection based on faster r-CNN using synthetic smoke images
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.12.034
– start-page: 1060
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0053
  article-title: Early forest fire detection using drones and artificial intelligence
– start-page: 779
  year: 2016
  ident: 10.1016/j.sigpro.2021.108309_bib0065
  article-title: You only look once: unified, real-time object detection
– start-page: 63
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0010
  article-title: A novel framework for early fire detection using terrestrial and aerial 360-degree images
– ident: 10.1016/j.sigpro.2021.108309_bib0062
– start-page: 8315
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0006
  article-title: Early wildfire smoke detection based on motion-based geometric image transformation and deep convolutional generative adversarial networks
– volume: 11
  issue: 5
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0013
  article-title: Early forest fire detection system using wireless sensor network and deep learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: 10.1016/j.sigpro.2021.108309_bib0028
– start-page: 4963
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0046
  article-title: A YOLOv3-based learning strategy for real-time UAV-based forest fire detection
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0055
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– start-page: 1
  year: 2015
  ident: 10.1016/j.sigpro.2021.108309_bib0078
  article-title: Going deeper with convolutions
– ident: 10.1016/j.sigpro.2021.108309_bib0024
– volume: 27
  start-page: 1143
  issue: 5
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0029
  article-title: Higher order linear dynamical systems for smoke detection in video surveillance applications
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2527340
– ident: 10.1016/j.sigpro.2021.108309_bib0044
– volume: 3
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0084
  article-title: Deep learning based fire recognition for wildfire drone automation
  publication-title: Can. Sci. Fair J.
– volume: 193
  start-page: 108001
  year: 2021
  ident: 10.1016/j.sigpro.2021.108309_bib0072
  article-title: Aerial imagery pile burn detection using deep learning: the FLAME dataset
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108001
– volume: 45
  start-page: 101444
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0063
  article-title: After the fire: perceptions of land use planning to reduce wildfire risk in eight communities across the united states
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2019.101444
– volume: 81
  start-page: 38
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_sbref0038
  article-title: Impact of human factors on wildfire occurrence in mississippi, United States
  publication-title: Forest Policy Econ.
  doi: 10.1016/j.forpol.2017.04.011
– volume: 10
  start-page: 597368
  issue: 3
  year: 2014
  ident: 10.1016/j.sigpro.2021.108309_bib0003
  article-title: A review on forest fire detection techniques
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2014/597368
– volume: 47
  start-page: 101530
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0017
  article-title: The development and validation of the bushfire psychological preparedness scale
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2020.101530
– start-page: 205
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_bib0093
  article-title: IoT sensor and deep neural network based wildfire prediction system
– volume: 23
  start-page: 1827
  issue: 6
  year: 2013
  ident: 10.1016/j.sigpro.2021.108309_bib0094
  article-title: Video fire detection review
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.07.003
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.sigpro.2021.108309_bib0025
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 73
  year: 2020
  ident: 10.1016/j.sigpro.2021.108309_sbref0091
  article-title: Online video object detection via local and mid-range feature propagation
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.sigpro.2021.108309_bib0041
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 6517
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0066
  article-title: Yolo9000: better, faster, stronger
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0008
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 760
  year: 2017
  ident: 10.1016/j.sigpro.2021.108309_bib0090
  article-title: Cad: scale invariant framework for real-time object detection
– start-page: 21
  year: 2016
  ident: 10.1016/j.sigpro.2021.108309_bib0059
  article-title: SSD: single shot multibox detector
– start-page: 102
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0082
  article-title: Wildfire monitoring and hotspots detection with aerial robots: measurement campaign and first results
– volume: 7
  start-page: 154732
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_bib0020
  article-title: An attention enhanced bidirectional LSTM for early forest fire smoke recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946712
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.sigpro.2021.108309_bib0040
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 568
  year: 2016
  ident: 10.1016/j.sigpro.2021.108309_bib0087
  article-title: Deep convolutional neural networks for forest fire detection
– volume: 25
  start-page: 1909
  issue: 12
  year: 2010
  ident: 10.1016/j.sigpro.2021.108309_bib0022
  article-title: Forest fires mapping and monitoring of current and past forest fire activity from meteosat second generation data
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2010.06.003
– volume: 107
  start-page: 104108
  year: 2021
  ident: 10.1016/j.sigpro.2021.108309_bib0092
  article-title: Motion saliency based multi-stream multiplier resnets for action recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2021.104108
– volume: 10
  issue: 11
  year: 2019
  ident: 10.1016/j.sigpro.2021.108309_sbref0080
  article-title: A review on UAV-based applications for precision agriculture
  publication-title: Information
  doi: 10.3390/info10110349
– volume: 18
  issue: 3
  year: 2018
  ident: 10.1016/j.sigpro.2021.108309_bib0089
  article-title: Saliency detection and deep learning-based wildfire identification in UAV imagery
  publication-title: Sensors
  doi: 10.3390/s18030712
SSID ssj0001360
Score 2.6380143
SecondaryResourceType review_article
Snippet Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108309
SubjectTerms Aerial images processing
Computer vision
Deep learning
Smoke detection system
Unmanned aerial vehicle
Wildfire detection system
Title A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms
URI https://dx.doi.org/10.1016/j.sigpro.2021.108309
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5Y-TgNa5p07U9juGYirvoYLeSNElX2bqxdXrzbzcvbXWCKHgrJYH29fHe99Lvew-h60CIUHDGCKUiISxwJRGOuYq0l3gh85SyRxePo-5wzO4n_qSB-rUWBmiVVewvY7qN1tWdTmXNzjLLOk8gxKHwG4lCk5UuKMoZC8DLb96_aB7Us0phWExgdS2fsxyvdZaaOGWqRJcC2c4DWuJP6Wkr5QwO0H6FFXGvfJxD1FD5Edrb6iB4jN56uBSf4EWOFTQrxgb8Sm1eCktVWJ5VjkFDgjf5nENQxdw6HX5VU0uJw0B9T81qtcTVDImUQHKTOKlGPuBSgY75LF2ssmI6X5-g8eD2uT8k1SwFkpiioCBCR6GC7u7cFQaCKKZlRLWp5gwACpTrc0dR7gvfUSHXkmoJ0NAFpao2CV4L7xQ180WuzhA2tXjiMCl1ZMCUSESkXZ5EBihpx_OZq1rIq00YJ1WjcZh3MYtrRtlLXBo-BsPHpeFbiHzuWpaNNv5YH9RfJ_7mMLHJBb_uPP_3zgu064L6wZ7AXKJmsdqoK4NJCtG2TtdGO727h-HoAzDQ4-Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPXpdk8muZYiiVa7UWF3sJudjettGmxqf59d5JNURAFbyHsQDJZZr7ZfN8MwE0oREdw36eMiZT6oSupcMxVpL3U6_ieUuXRxeOwHb_496NgtAG9WguDtEob-6uYXkZre6dlvdlaTCatJxTiMPyNxLDJSjvchC3sThU0YKt7N4iH64DMvFIsjOspGtQKupLmtZxkJlSZQtFlyLfzkJn4U4b6knX6-7Bn4SLpVk90ABsqP4TdL00Ej-CjSyr9CZnnRGG_YmLwr9TmvYhURUm1ygnKSMgqn3GMq4SX-468q3HJiiPIfs_MarUgdoxERjG_SZLaqQ-kEqETPs3mb5NiPFsew0v_9rkXUztOgaamLiio0FFHYYN37gqDQpSvZcS0KegMBgqVG3BHMR6IwFEdriXTEtGhi2JVbXK8Ft4JNPJ5rk6BmHI8dXwpdWTwlEhFpF2eRgYraccLfFc1watdmKS21ziOvJgmNansNakcn6Djk8rxTaBrq0XVa-OP9WH9dZJveyYx6eBXy7N_W17Ddvz8-JA83A0H57DjohiiPJC5gEbxtlKXBqIU4spuwU8CIeaX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+early+wildfire+detection+from+unmanned+aerial+vehicles+using+deep+learning-based+computer+vision+algorithms&rft.jtitle=Signal+processing&rft.au=Bouguettaya%2C+Abdelmalek&rft.au=Zarzour%2C+Hafed&rft.au=Taberkit%2C+Amine+Mohammed&rft.au=Kechida%2C+Ahmed&rft.date=2022-01-01&rft.issn=0165-1684&rft.volume=190&rft.spage=108309&rft_id=info:doi/10.1016%2Fj.sigpro.2021.108309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2021_108309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon