A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms
Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the...
Saved in:
Published in | Signal processing Vol. 190; p. 108309 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-1684 1872-7557 |
DOI | 10.1016/j.sigpro.2021.108309 |
Cover
Loading…
Abstract | Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the most demanded strategies to fight against wildfires, especially UAV-based remote sensing technologies. They have been adopted to detect forest fires at their early stages, before becoming uncontrollable. Autonomous wildfire early detection from UAV-based visual data using different deep learning algorithms has attracted significant interest in the last few years. To this end, in this paper, we focused on wildfires detection at their early stages in forest and wildland areas, using deep learning-based computer vision algorithms to prevent and then reduce disastrous losses in terms of human lives and forest resources. |
---|---|
AbstractList | Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the most demanded strategies to fight against wildfires, especially UAV-based remote sensing technologies. They have been adopted to detect forest fires at their early stages, before becoming uncontrollable. Autonomous wildfire early detection from UAV-based visual data using different deep learning algorithms has attracted significant interest in the last few years. To this end, in this paper, we focused on wildfires detection at their early stages in forest and wildland areas, using deep learning-based computer vision algorithms to prevent and then reduce disastrous losses in terms of human lives and forest resources. |
ArticleNumber | 108309 |
Author | Bouguettaya, Abdelmalek Kechida, Ahmed Zarzour, Hafed Taberkit, Amine Mohammed |
Author_xml | – sequence: 1 givenname: Abdelmalek surname: Bouguettaya fullname: Bouguettaya, Abdelmalek email: a.bouguettaya@crti.dz organization: Research Centre in Industrial Technologies (CRTI), P.O.Box 64, Cheraga 16014 Algiers, Algeria – sequence: 2 givenname: Hafed surname: Zarzour fullname: Zarzour, Hafed email: hafed.zarzour@gmail.com organization: Department of Mathematics and Computer Science, Souk Ahras University, Souk-Ahras, 41000, Algeria – sequence: 3 givenname: Amine Mohammed surname: Taberkit fullname: Taberkit, Amine Mohammed email: a.taberkit@crti.dz organization: Research Centre in Industrial Technologies (CRTI), P.O.Box 64, Cheraga 16014 Algiers, Algeria – sequence: 4 givenname: Ahmed surname: Kechida fullname: Kechida, Ahmed email: a.kechida@crti.dz organization: Research Centre in Industrial Technologies (CRTI), P.O.Box 64, Cheraga 16014 Algiers, Algeria |
BookMark | eNqFkM1qwzAQhEVJoUnaN-hBL-BUki3_9FAIoX8Q6KU9C1leJQqybCQnIW9fGffUQ3tadndmYL4FmrnOAUL3lKwoofnDYRXMrvfdihFG46lMSXWF5rQsWFJwXszQPMp4QvMyu0GLEA6EEJrmZI7Oa-zhZOCMO4dBenvBZ2MbbTzgBgZQg4kP7bsWH10rnYMGS_BGWnyCvVEWAj4G43ZRDT22McLFLalliErVtf1xAI9PJow50u46b4Z9G27RtZY2wN3PXKKvl-fPzVuy_Xh936y3iUpJPiS1rkogJWOS1WlVQKabiuqMFITnBTAuCVDJa06glLqhuom1KkZ4UWnOqK7TJXqccpXvQvCghTKDHEsNXhorKBEjQnEQE0IxIhQTwmjOfpl7b1rpL__ZniYbxGKRrRdBGXAKmkhVDaLpzN8B395KklA |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124783 crossref_primary_10_3390_rs16091627 crossref_primary_10_3390_fire6110441 crossref_primary_10_1109_ACCESS_2024_3406215 crossref_primary_10_1007_s11676_024_01810_x crossref_primary_10_1016_j_neucom_2024_127975 crossref_primary_10_1007_s00170_024_13341_0 crossref_primary_10_1016_j_isprsjprs_2024_03_012 crossref_primary_10_3390_fire6080315 crossref_primary_10_3390_s22239384 crossref_primary_10_1016_j_eswa_2024_124661 crossref_primary_10_1016_j_inffus_2024_102369 crossref_primary_10_3103_S0147688223040081 crossref_primary_10_1109_ACCESS_2024_3501336 crossref_primary_10_3390_s23010006 crossref_primary_10_1371_journal_pone_0313200 crossref_primary_10_1016_j_imu_2022_101158 crossref_primary_10_3390_su15065591 crossref_primary_10_3390_mining4020013 crossref_primary_10_61260_1998_8990_2024_2_74_83 crossref_primary_10_3390_s22051824 crossref_primary_10_3390_s25072043 crossref_primary_10_3390_machines10010012 crossref_primary_10_33904_ejfe_1322396 crossref_primary_10_1109_ACCESS_2023_3262701 crossref_primary_10_1080_00401706_2024_2322645 crossref_primary_10_3390_info15090538 crossref_primary_10_3390_s25061786 crossref_primary_10_3389_fpls_2022_966639 crossref_primary_10_1038_s41524_023_01048_x crossref_primary_10_1109_ACCESS_2023_3326101 crossref_primary_10_1016_j_eswa_2022_118594 crossref_primary_10_1109_TCSVT_2024_3462432 crossref_primary_10_1021_acs_est_4c06653 crossref_primary_10_1016_j_sigpro_2024_109844 crossref_primary_10_3390_electronics12010228 crossref_primary_10_1016_j_ecoinf_2024_102527 crossref_primary_10_3390_photonics11070656 crossref_primary_10_3233_JIFS_231550 crossref_primary_10_1007_s12040_024_02391_3 crossref_primary_10_3390_rs14225861 crossref_primary_10_3390_sym14102155 crossref_primary_10_3390_drones8090454 crossref_primary_10_3390_su141912270 crossref_primary_10_1109_JSTARS_2024_3406767 crossref_primary_10_1155_2023_7939516 crossref_primary_10_3390_rs15194694 crossref_primary_10_1016_j_sciaf_2023_e01656 crossref_primary_10_1007_s11042_024_20199_7 crossref_primary_10_1080_21642583_2023_2294991 crossref_primary_10_29130_dubited_1103375 crossref_primary_10_3390_f14040663 crossref_primary_10_3390_electronics12183888 crossref_primary_10_3390_electronics13163175 crossref_primary_10_3390_fire8020066 crossref_primary_10_1016_j_asoc_2023_110362 crossref_primary_10_33166_AETiC_2022_03_005 crossref_primary_10_3390_fire7080286 crossref_primary_10_1109_ACCESS_2022_3222805 crossref_primary_10_1109_ACCESS_2025_3528983 crossref_primary_10_3389_fenvs_2025_1522933 crossref_primary_10_1016_j_measurement_2024_115881 crossref_primary_10_1016_j_jag_2023_103554 crossref_primary_10_1007_s00521_024_09610_4 crossref_primary_10_1016_j_geomat_2024_100008 crossref_primary_10_1016_j_measurement_2024_114411 crossref_primary_10_1007_s11042_024_18685_z crossref_primary_10_1016_j_patcog_2024_110749 crossref_primary_10_1016_j_heliyon_2024_e25757 crossref_primary_10_1186_s42408_022_00165_0 crossref_primary_10_3390_app132011548 crossref_primary_10_1007_s11554_024_01413_z crossref_primary_10_3390_pr12040747 crossref_primary_10_3390_rs15164112 crossref_primary_10_1016_j_rsase_2024_101181 crossref_primary_10_1016_j_sigpro_2024_109583 crossref_primary_10_1109_TASE_2022_3183233 crossref_primary_10_1007_s11276_024_03718_0 crossref_primary_10_1016_j_rsase_2024_101346 crossref_primary_10_37468_2307_1400_2023_2_76_90 crossref_primary_10_1115_1_4067645 crossref_primary_10_3389_fpls_2024_1391628 crossref_primary_10_3390_rs15071821 crossref_primary_10_1016_j_ins_2022_06_035 crossref_primary_10_1007_s00521_024_10440_7 crossref_primary_10_1016_j_spasta_2024_100811 crossref_primary_10_1109_JSAC_2023_3242730 crossref_primary_10_1109_LGRS_2024_3465892 crossref_primary_10_3390_a18010008 crossref_primary_10_1016_j_jag_2022_103146 crossref_primary_10_1016_j_ejor_2023_08_008 crossref_primary_10_1142_S0218126624501056 crossref_primary_10_1007_s12559_024_10290_4 crossref_primary_10_1016_j_compag_2024_109078 crossref_primary_10_3390_f15040689 crossref_primary_10_1109_JIOT_2024_3419710 crossref_primary_10_3390_drones8050169 crossref_primary_10_3390_drones8050203 crossref_primary_10_3390_s23042235 crossref_primary_10_1007_s10586_022_03627_x crossref_primary_10_1007_s11042_024_19696_6 crossref_primary_10_1016_j_sigpro_2024_109406 crossref_primary_10_1088_1402_4896_adb467 crossref_primary_10_1007_s00500_025_10434_0 crossref_primary_10_3390_f15101781 crossref_primary_10_3390_make5030039 crossref_primary_10_7731_KIFSE_c3023a49 crossref_primary_10_3390_math12040534 crossref_primary_10_3390_rs15081995 crossref_primary_10_1109_JSTARS_2025_3541205 crossref_primary_10_3390_f14091697 crossref_primary_10_3390_f14091852 crossref_primary_10_1007_s11119_025_10220_w |
Cites_doi | 10.1016/j.scitotenv.2020.138044 10.1109/TPAMI.2016.2577031 10.5194/isprs-archives-XLIII-B3-2020-1671-2020 10.1016/j.imavis.2019.08.007 10.3390/drones3010017 10.1001/jamainternmed.2020.0703 10.3390/plants8110468 10.3390/s19235082 10.1088/1757-899X/1022/1/012079 10.1016/j.envsoft.2021.104984 10.1007/978-3-030-63007-2_63 10.35940/ijitee.F4106.049620 10.1016/j.imavis.2021.104117 10.3390/s20226442 10.1016/j.egyr.2019.11.002 10.3390/rs12010166 10.1139/juvs-2020-0009 10.3390/rs12193177 10.1016/j.watres.2020.116071 10.1016/j.eswa.2019.03.030 10.1016/j.imavis.2019.05.003 10.1016/j.scitotenv.2020.142793 10.1109/ACCESS.2019.2906695 10.1016/j.imavis.2007.07.002 10.3390/s20195508 10.1016/j.rse.2016.02.054 10.1016/j.proeng.2017.12.034 10.1145/3065386 10.1109/TCSVT.2016.2527340 10.1016/j.comnet.2021.108001 10.1016/j.ijdrr.2019.101444 10.1016/j.forpol.2017.04.011 10.1155/2014/597368 10.1016/j.ijdrr.2020.101530 10.1016/j.dsp.2013.07.003 10.1109/TPAMI.2017.2699184 10.1162/neco.1997.9.8.1735 10.1109/TPAMI.2016.2644615 10.1109/ACCESS.2019.2946712 10.1162/neco.2006.18.7.1527 10.1016/j.envsoft.2010.06.003 10.1016/j.imavis.2021.104108 10.3390/info10110349 10.3390/s18030712 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2021.108309 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
ExternalDocumentID | 10_1016_j_sigpro_2021_108309 S0165168421003467 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-bf98e0822a2b397e4fd91f4070567e25a0e1a5b50e8afd1fd013920579f521fb3 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Thu Apr 24 23:02:41 EDT 2025 Tue Jul 01 02:07:32 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Computer vision Smoke detection system Unmanned aerial vehicle Wildfire detection system Aerial images processing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-bf98e0822a2b397e4fd91f4070567e25a0e1a5b50e8afd1fd013920579f521fb3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2021_108309 crossref_primary_10_1016_j_sigpro_2021_108309 elsevier_sciencedirect_doi_10_1016_j_sigpro_2021_108309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ren, He, Girshick, Sun (bib0068) 2017; 39 Cao, Yang, Tang, Lu (bib0020) 2019; 7 Vardoulakis, Marks, Abramson (bib0081) 2020; 180 Aslan, Güdükbay, Töreyin, Çetin (bib0006) 2019 Allauddin, Kiran, Kiran, Srinivas, Mouli, Prasad (bib0004) 2019 (2021). Yadav (bib0084) 2020; 3 Aydin, Selvi, Tao, Starek (bib0007) 2019; 3 Luo, Zhang, Wang, Xu, Zhang (bib0060) 2019; 7 Zope, Dadlani, Matai, Tembhurnikar, Kalani (bib0093) 2020 Lee, Kim, Lee, Lee, Choi (bib0056) 2017 Solovyev, Wang, Gabruseva (bib0074) 2021; 107 Zhang, Huang, Zhao (bib0086) 2019; 19 Lin, Goyal, Girshick, He, Dollr (bib0058) 2017 Novac, Geipel, de Domingo, Paula, Hyttel, Chrysostomou (bib0064) 2020 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0059) 2016 DeepQuestAI, Fire-smoke-dataset, 2019. Bu, Gharajeh (bib0018) 2019; 91 Shamsoshoara, Afghah, Razi, Zheng, Fulé, Blasch (bib0072) 2021; 193 . Hochreiter, Schmidhuber (bib0041) 1997; 9 Benjdira, Khursheed, Koubaa, Ammar, Ouni (bib0012) 2019 AGetin, Dimitropoulos, Gouverneur, Grammalidis, GAnay, Habiboǧlu, Töreyin, Verstockt (bib0094) 2013; 23 Giglio, Schroeder, Justice (bib0032) 2016; 178 Kinaneva, Hristov, Raychev, Zahariev (bib0052) 2019 Zanchi, Yu, Akselsson, Bishop, Köhler, Olofsson, Belyazid (bib0085) 2021; 138 Grala, Grala, Hussain, Cooke, Varner (bib0038) 2017; 81 Zhao, Ma, Li, Zhang (bib0089) 2018; 18 Filkov, Ngo, Matthews, Telfer, Penman (bib0031) 2020; 1 Hossain, Zhang, Tonima (bib0042) 2020; 8 Kanand, Kemper, König, Kemper (bib0049) 2020; XLIII-B3-2020 Cair, Fire-detection-image-dataset, 2017. Khryashchev, Larionov (bib0050) 2020 Rodrigues, Gelabert, Ameztegui, Coll, Vega-Garcia (bib0069) 2021; 765 Tsouros, Bibi, Sarigiannidis (bib0080) 2019; 10 Xiao, Kamat, Menassa (bib0083) 2019; 88 J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv preprint arXiv Jiao, Zhang, Mu, Xin, Jiao, Liu, Liu (bib0046) 2020 Zhu, Li (bib0091) 2020 (2020). Boylan, Lawrence (bib0017) 2020; 47 Redmon, Farhadi (bib0066) 2017 Barmpoutis, Stathaki (bib0010) 2020 Zhang, Lin, Zhang, Xu, Wang (bib0088) 2018; 211 Goyal, Kaur, Vohra, Singh (bib0037) 2020; 9 Barmpoutis, Papaioannou, Dimitropoulos, Grammalidis (bib0009) 2020; 20 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition Girshick, Donahue, Darrell, Malik (bib0034) 2014 Kaabi, Sayadi, Bouchouicha, Fnaiech, Moreau, Ginoux (bib0048) 2018 Alexandrov, Pertseva, Berman, Pantiukhin, Kapitonov (bib0002) 2019 S. Aslan, U. Güdükbay, B.U. Töreyin, A.E. Çetin, Deep convolutional generative adversarial networks for flame detection in video, in: N.T. Nguyen, B.H. Hoang, C.P. Huynh, D. Hwang, B. Trawiński, G. Vossen (Eds.), Computational Collective Intelligence, Springer International Publishing, Cham, 2020, pp. 807–815. 10.1007/978-3-030-63007-2_63 Cazzolato, Avalhais, Chino, Ramos, de Souza, Rodrigues, Traina (bib0023) 2017 Hinton, Osindero, Teh (bib0040) 2006; 18 Barmpoutis, Stathaki, Dimitropoulos, Grammalidis (bib0011) 2020; 12 Jeong, Park, Nam, Ko (bib0045) 2020; 20 Z. Li, Y. Sun, J. Tang, CTNet: context-based tandem network for semantic segmentation Bo, Mercalli, Pognant, Cat Berro, Clerico (bib0014) 2020; 6 Govil, Welch, Ball, Pennypacker (bib0036) 2020; 12 Benzekri, Moussati, Moussaoui, Berrajaa (bib0013) 2020; 11 Zhou, Li, Ning, Tang (bib0090) 2017 Emmerton, Cooke, Hustins, Silins, Emelko, Lewis, Kruk, Taube, Zhu, Jackson, Stone, Kerr, Orwin (bib0030) 2020; 183 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0035) 2014 Redmon, Divvala, Girshick, Farhadi (bib0065) 2016 Akca, Stylianidis, Poli, Gruen, Altan, Hofer, Smagas, Martin, Walli, Jimeno, Garcia (bib0001) 2019 Kinaneva, Hristov, Raychev, Zahariev (bib0053) 2019 A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, Yolov4: optimal speed and accuracy of object detection Jiao, Zhang, Xin, Mu, Yi, Liu, Liu (bib0047) 2019 Krizhevsky, Sutskever, Hinton (bib0055) 2017; 60 Martinez-de Dios, Arrue, Ollero, Merino, Gmez-Rodriguez (bib0061) 2008; 26 Kountouris (bib0054) 2020; 727 Zhang, Xu, Xu, Guo (bib0087) 2016/01 Hristov, Raychev, Kinaneva, Zahariev (bib0043) 2018 Alkhatib (bib0003) 2014; 10 (2019). Szegedy, Ioffe, Vanhoucke, Alemi (bib0077) 2017 Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bib0021) 2020 Zong, Wang, Chen, Chen, Gong (bib0092) 2021; 107 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0078) 2015 Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0025) 2018; 40 Dimitropoulos, Barmpoutis, Grammalidis (bib0029) 2017; 27 A. Jadon, M. Omama, A. Varshney, M.S. Ansari, R. Sharma, FireNet: a specialized lightweight fire & smoke detection model for real-time IoT applications Herrmann, Willersinn, Beyerer (bib0039) 2016 Girshick (bib0033) 2015 Mockrin, Fishler, Stewart (bib0063) 2020; 45 Viseras, Marchal, Schaab, Pages, Estivill (bib0082) 2019 Srinivas, Dua (bib0076) 2020 Chen, Zhang, Xin, Wang, Mu, Yi, Liu, Liu (bib0026) 2019 Sousa, Moutinho, Almeida (bib0075) 2019; 129 A.E. Cetin, Computer vision based fire detection software, 2007 Ronneberger, Fischer, Brox (bib0070) 2015 Badrinarayanan, Kendall, Cipolla (bib0008) 2017; 39 C. Maxouris, Here’s just how bad the devastating australian fires are – by the numbers, 2020 (2014). Totakura, Vuribindi, Reddy (bib0079) 2021; 1022 Carvalheiro, Bernardo, Orgaz, Yamazaki (bib0022) 2010; 25 Kim, Kim, Kim (bib0051) 2019 (2018). Saleem, Potgieter, Arif (bib0071) 2019; 8 Chen, Zhang, Xin, Yi, Liu, Liu (bib0027) 2018 Bouguettaya, Kechida, Taberkit (bib0016) 2019; 2 Tsouros (10.1016/j.sigpro.2021.108309_sbref0080) 2019; 10 Zope (10.1016/j.sigpro.2021.108309_bib0093) 2020 Zhang (10.1016/j.sigpro.2021.108309_sbref0088) 2018; 211 Rodrigues (10.1016/j.sigpro.2021.108309_bib0069) 2021; 765 Alkhatib (10.1016/j.sigpro.2021.108309_bib0003) 2014; 10 Goodfellow (10.1016/j.sigpro.2021.108309_bib0035) 2014 Zhang (10.1016/j.sigpro.2021.108309_bib0087) 2016 Chen (10.1016/j.sigpro.2021.108309_bib0025) 2018; 40 Zanchi (10.1016/j.sigpro.2021.108309_bib0085) 2021; 138 Chen (10.1016/j.sigpro.2021.108309_bib0026) 2019 Kinaneva (10.1016/j.sigpro.2021.108309_bib0052) 2019 Kim (10.1016/j.sigpro.2021.108309_bib0051) 2019 AGetin (10.1016/j.sigpro.2021.108309_bib0094) 2013; 23 Govil (10.1016/j.sigpro.2021.108309_bib0036) 2020; 12 Cao (10.1016/j.sigpro.2021.108309_bib0020) 2019; 7 Bo (10.1016/j.sigpro.2021.108309_sbref0014) 2020; 6 Girshick (10.1016/j.sigpro.2021.108309_bib0033) 2015 Totakura (10.1016/j.sigpro.2021.108309_bib0079) 2021; 1022 Dimitropoulos (10.1016/j.sigpro.2021.108309_bib0029) 2017; 27 Kanand (10.1016/j.sigpro.2021.108309_bib0049) 2020; XLIII-B3-2020 Lee (10.1016/j.sigpro.2021.108309_bib0056) 2017 10.1016/j.sigpro.2021.108309_bib0005 Bouguettaya (10.1016/j.sigpro.2021.108309_bib0016) 2019; 2 Ren (10.1016/j.sigpro.2021.108309_bib0068) 2017; 39 Jeong (10.1016/j.sigpro.2021.108309_bib0045) 2020; 20 Hristov (10.1016/j.sigpro.2021.108309_bib0043) 2018 Viseras (10.1016/j.sigpro.2021.108309_bib0082) 2019 Zhang (10.1016/j.sigpro.2021.108309_bib0086) 2019; 19 Grala (10.1016/j.sigpro.2021.108309_sbref0038) 2017; 81 Szegedy (10.1016/j.sigpro.2021.108309_bib0078) 2015 Kountouris (10.1016/j.sigpro.2021.108309_bib0054) 2020; 727 Aslan (10.1016/j.sigpro.2021.108309_bib0006) 2019 10.1016/j.sigpro.2021.108309_bib0044 Liu (10.1016/j.sigpro.2021.108309_bib0059) 2016 Kinaneva (10.1016/j.sigpro.2021.108309_bib0053) 2019 Krizhevsky (10.1016/j.sigpro.2021.108309_bib0055) 2017; 60 Zhao (10.1016/j.sigpro.2021.108309_bib0089) 2018; 18 Carvalheiro (10.1016/j.sigpro.2021.108309_bib0022) 2010; 25 Emmerton (10.1016/j.sigpro.2021.108309_bib0030) 2020; 183 Ronneberger (10.1016/j.sigpro.2021.108309_bib0070) 2015 Saleem (10.1016/j.sigpro.2021.108309_bib0071) 2019; 8 Barmpoutis (10.1016/j.sigpro.2021.108309_bib0010) 2020 Giglio (10.1016/j.sigpro.2021.108309_bib0032) 2016; 178 Sousa (10.1016/j.sigpro.2021.108309_bib0075) 2019; 129 Aydin (10.1016/j.sigpro.2021.108309_bib0007) 2019; 3 Solovyev (10.1016/j.sigpro.2021.108309_bib0074) 2021; 107 Hochreiter (10.1016/j.sigpro.2021.108309_bib0041) 1997; 9 Lin (10.1016/j.sigpro.2021.108309_bib0058) 2017 Filkov (10.1016/j.sigpro.2021.108309_bib0031) 2020; 1 10.1016/j.sigpro.2021.108309_bib0073 Kaabi (10.1016/j.sigpro.2021.108309_bib0048) 2018 Zhou (10.1016/j.sigpro.2021.108309_bib0090) 2017 Allauddin (10.1016/j.sigpro.2021.108309_bib0004) 2019 Zong (10.1016/j.sigpro.2021.108309_bib0092) 2021; 107 Martinez-de Dios (10.1016/j.sigpro.2021.108309_bib0061) 2008; 26 Novac (10.1016/j.sigpro.2021.108309_bib0064) 2020 Carion (10.1016/j.sigpro.2021.108309_bib0021) 2020 Girshick (10.1016/j.sigpro.2021.108309_bib0034) 2014 Xiao (10.1016/j.sigpro.2021.108309_bib0083) 2019; 88 Akca (10.1016/j.sigpro.2021.108309_bib0001) 2019 Chen (10.1016/j.sigpro.2021.108309_bib0027) 2018 Vardoulakis (10.1016/j.sigpro.2021.108309_bib0081) 2020; 180 Mockrin (10.1016/j.sigpro.2021.108309_bib0063) 2020; 45 Redmon (10.1016/j.sigpro.2021.108309_bib0065) 2016 Benjdira (10.1016/j.sigpro.2021.108309_bib0012) 2019 Herrmann (10.1016/j.sigpro.2021.108309_bib0039) 2016 Szegedy (10.1016/j.sigpro.2021.108309_bib0077) 2017 10.1016/j.sigpro.2021.108309_bib0024 Barmpoutis (10.1016/j.sigpro.2021.108309_bib0009) 2020; 20 10.1016/j.sigpro.2021.108309_bib0028 Jiao (10.1016/j.sigpro.2021.108309_bib0046) 2020 Yadav (10.1016/j.sigpro.2021.108309_bib0084) 2020; 3 Shamsoshoara (10.1016/j.sigpro.2021.108309_bib0072) 2021; 193 Bu (10.1016/j.sigpro.2021.108309_bib0018) 2019; 91 10.1016/j.sigpro.2021.108309_bib0062 Zhu (10.1016/j.sigpro.2021.108309_sbref0091) 2020 10.1016/j.sigpro.2021.108309_bib0067 Badrinarayanan (10.1016/j.sigpro.2021.108309_bib0008) 2017; 39 Barmpoutis (10.1016/j.sigpro.2021.108309_bib0011) 2020; 12 Cazzolato (10.1016/j.sigpro.2021.108309_bib0023) 2017 Hossain (10.1016/j.sigpro.2021.108309_bib0042) 2020; 8 Hinton (10.1016/j.sigpro.2021.108309_bib0040) 2006; 18 Alexandrov (10.1016/j.sigpro.2021.108309_bib0002) 2019 Redmon (10.1016/j.sigpro.2021.108309_bib0066) 2017 Benzekri (10.1016/j.sigpro.2021.108309_bib0013) 2020; 11 Khryashchev (10.1016/j.sigpro.2021.108309_bib0050) 2020 Goyal (10.1016/j.sigpro.2021.108309_bib0037) 2020; 9 Srinivas (10.1016/j.sigpro.2021.108309_bib0076) 2020 Luo (10.1016/j.sigpro.2021.108309_bib0060) 2019; 7 10.1016/j.sigpro.2021.108309_bib0057 Boylan (10.1016/j.sigpro.2021.108309_bib0017) 2020; 47 10.1016/j.sigpro.2021.108309_bib0015 Jiao (10.1016/j.sigpro.2021.108309_bib0047) 2019 10.1016/j.sigpro.2021.108309_bib0019 |
References_xml | – volume: 20 year: 2020 ident: bib0045 article-title: Light-weight student LSTM for real-time wildfire smoke detection publication-title: Sensors – start-page: 50 year: 2019 end-page: 53 ident: bib0052 article-title: Application of artificial intelligence in UAV platforms for early forest fire detection publication-title: 2019 27th National Conference with International Participation (TELECOM) – reference: (2014). – start-page: 213 year: 2020 end-page: 229 ident: bib0021 article-title: End-to-end object detection with transformers publication-title: European Conference on Computer Vision – start-page: 1 year: 2015 end-page: 9 ident: bib0078 article-title: Going deeper with convolutions publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 12 year: 2020 ident: bib0011 article-title: Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures publication-title: Remote Sens. – reference: Cair, Fire-detection-image-dataset, 2017. – volume: 27 start-page: 1143 year: 2017 end-page: 1154 ident: bib0029 article-title: Higher order linear dynamical systems for smoke detection in video surveillance applications publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 10 year: 2019 ident: bib0080 article-title: A review on UAV-based applications for precision agriculture publication-title: Information – volume: 9 start-page: 1357 year: 2020 end-page: 1362 ident: bib0037 article-title: A YOLO based technique for early forest fire detection publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) – volume: 7 start-page: 154732 year: 2019 end-page: 154742 ident: bib0020 article-title: An attention enhanced bidirectional LSTM for early forest fire smoke recognition publication-title: IEEE Access – start-page: 63 year: 2020 end-page: 74 ident: bib0010 article-title: A novel framework for early fire detection using terrestrial and aerial 360-degree images publication-title: Advanced Concepts for Intelligent Vision Systems – start-page: 10305 year: 2018 end-page: 10310 ident: bib0027 article-title: A UAV-based forest fire detection algorithm using convolutional neural network publication-title: 2018 37th Chinese Control Conference (CCC) – volume: 183 start-page: 116071 year: 2020 ident: bib0030 article-title: Severe western Canadian wildfire affects water quality even at large basin scales publication-title: Water Res. – reference: A. Jadon, M. Omama, A. Varshney, M.S. Ansari, R. Sharma, FireNet: a specialized lightweight fire & smoke detection model for real-time IoT applications, – volume: 6 start-page: 781 year: 2020 end-page: 786 ident: bib0014 article-title: Urban air pollution, climate change and wildfires: the case study of an extended forest fire episode in northern italy favoured by drought and warm weather conditions publication-title: Energy Rep. – reference: (2021). – start-page: 73 year: 2020 end-page: 82 ident: bib0091 article-title: Online video object detection via local and mid-range feature propagation publication-title: Proceedings of the 1st International Workshop on Human-Centric Multimedia Analysis, HuMA’20 – start-page: 9361 year: 2019 end-page: 9363 ident: bib0004 article-title: Development of a surveillance system for forest fire detection and monitoring using drones publication-title: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium – volume: 8 year: 2019 ident: bib0071 article-title: Plant disease detection and classification by deep learning publication-title: Plants – start-page: 646 year: 2020 end-page: 652 ident: bib0076 article-title: Fog computing and deep CNN based efficient approach to early forest fire detection with unmanned aerial vehicles publication-title: Inventive Computation Technologies – volume: 81 start-page: 38 year: 2017 end-page: 47 ident: bib0038 article-title: Impact of human factors on wildfire occurrence in mississippi, United States publication-title: Forest Policy Econ. – volume: 2 start-page: 28 year: 2019 end-page: 44 ident: bib0016 article-title: A survey on lightweight CNN-based object detection algorithms for platforms with limited computational resources publication-title: Int. J. Inform. Appl. Math. – start-page: 1 year: 2019 end-page: 6 ident: bib0012 article-title: Car detection using unmanned aerial vehicles: comparison between faster r-CNN and YOLOv3 publication-title: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS) – volume: 25 start-page: 1909 year: 2010 end-page: 1914 ident: bib0022 article-title: Forest fires mapping and monitoring of current and past forest fire activity from meteosat second generation data publication-title: Environ. Model. Softw. – volume: 20 year: 2020 ident: bib0009 article-title: A review on early forest fire detection systems using optical remote sensing publication-title: Sensors – volume: 180 start-page: 635 year: 2020 end-page: 636 ident: bib0081 article-title: Lessons learned from the australian bushfires: climate change, air pollution, and public health publication-title: JAMA Intern. Med. – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: bib0068 article-title: Faster r-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 26 start-page: 550 year: 2008 end-page: 562 ident: bib0061 article-title: Computer vision techniques for forest fire perception publication-title: Image Vis. Comput. – start-page: 252 year: 2017 end-page: 253 ident: bib0056 article-title: Deep neural networks for wild fire detection with unmanned aerial vehicle publication-title: 2017 IEEE International Conference on Consumer Electronics (ICCE) – reference: S. Aslan, U. Güdükbay, B.U. Töreyin, A.E. Çetin, Deep convolutional generative adversarial networks for flame detection in video, in: N.T. Nguyen, B.H. Hoang, C.P. Huynh, D. Hwang, B. Trawiński, G. Vossen (Eds.), Computational Collective Intelligence, Springer International Publishing, Cham, 2020, pp. 807–815. 10.1007/978-3-030-63007-2_63 – start-page: 2672 year: 2014 end-page: -2680 ident: bib0035 article-title: Generative adversarial nets publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14 – volume: 3 year: 2019 ident: bib0007 article-title: Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting publication-title: Drones – volume: 211 start-page: 441 year: 2018 end-page: 446 ident: bib0088 article-title: Wildland forest fire smoke detection based on faster r-CNN using synthetic smoke images publication-title: Procedia Eng. – start-page: 221 year: 2016 end-page: 227 ident: bib0039 article-title: Low-resolution convolutional neural networks for video face recognition publication-title: 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) – start-page: 1 year: 2019 end-page: 5 ident: bib0047 article-title: A deep learning based forest fire detection approach using UAV and YOLOv3 publication-title: 2019 1st International Conference on Industrial Artificial Intelligence (IAI) – start-page: 265 year: 2019 end-page: 294 ident: bib0001 article-title: Pre- and post-fire comparison of forest areas in 3D publication-title: Intelligent Systems for Crisis Management – volume: 1 start-page: 44 year: 2020 end-page: 56 ident: bib0031 article-title: Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. retrospective analysis and current trends publication-title: J. Saf. Sci. Resil. – volume: 3 start-page: 1 year: 2020 end-page: 8 ident: bib0084 article-title: Deep learning based fire recognition for wildfire drone automation publication-title: Can. Sci. Fair J. – start-page: 234 year: 2015 end-page: 241 ident: bib0070 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 867 year: 2020 end-page: 872 ident: bib0064 article-title: A framework for wildfire inspection using deep convolutional neural networks publication-title: 2020IEEE/SICE International Symposium on System Integration (SII) – reference: J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv preprint arXiv: – volume: XLIII-B3-2020 start-page: 1671 year: 2020 end-page: 1675 ident: bib0049 article-title: Wildfire detection and disaster monitoring system using UAS and sensor fusion technologies publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. – start-page: 1440 year: 2015 end-page: 1448 ident: bib0033 article-title: Fast r-CNN publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) – volume: 107 start-page: 104117 year: 2021 ident: bib0074 article-title: Weighted boxes fusion: ensembling boxes from different object detection models publication-title: Image Vis. Comput. – start-page: 2999 year: 2017 end-page: 3007 ident: bib0058 article-title: Focal loss for dense object detection publication-title: 2017 IEEE International Conference on Computer Vision (ICCV) – volume: 18 start-page: 1527 year: 2006 end-page: -1554 ident: bib0040 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – start-page: 213 year: 2017 end-page: 223 ident: bib0023 article-title: FiSmo: a compilation of datasets from emergency situations for fire and smoke analysis publication-title: Brazilian Symposium on Databases-SBBD – volume: 60 start-page: 84 year: 2017 end-page: -90 ident: bib0055 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, – volume: 11 year: 2020 ident: bib0013 article-title: Early forest fire detection system using wireless sensor network and deep learning publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 21 year: 2016 end-page: 37 ident: bib0059 article-title: SSD: single shot multibox detector publication-title: Computer Vision – ECCV 2016 – reference: (2019). – volume: 18 year: 2018 ident: bib0089 article-title: Saliency detection and deep learning-based wildfire identification in UAV imagery publication-title: Sensors – start-page: 580 year: 2014 end-page: 587 ident: bib0034 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition – volume: 138 start-page: 104984 year: 2021 ident: bib0085 article-title: Simulation of water and chemical transport of chloride from the forest ecosystem to the stream publication-title: Environ. Model. Softw. – volume: 9 start-page: 1735 year: 1997 end-page: -1780 ident: bib0041 article-title: Long short-term memory publication-title: Neural Comput. – volume: 19 year: 2019 ident: bib0086 article-title: A new model of RGB-d camera calibration based on 3Dcontrol field publication-title: Sensors – start-page: 3 year: 2019 end-page: 9 ident: bib0002 article-title: Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicles publication-title: 2019 24th Conference of Open Innovations Association (FRUCT) – reference: (2020). – reference: A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, Yolov4: optimal speed and accuracy of object detection, – volume: 88 start-page: 67 year: 2019 end-page: 75 ident: bib0083 article-title: Human tracking from single RGB-d camera using online learning publication-title: Image Vis. Comput. – volume: 129 start-page: 216 year: 2019 end-page: 232 ident: bib0075 article-title: Classification of potential fire outbreaks: a fuzzy modeling approach based on thermal images publication-title: Expert Syst. Appl. – volume: 12 year: 2020 ident: bib0036 article-title: Preliminary results from a wildfire detection system using deep learning on remote camera images publication-title: Remote Sens. – volume: 765 start-page: 142793 year: 2021 ident: bib0069 article-title: Has COVID-19 halted winter-spring wildfires in the mediterranean? Insights for wildfire science under a pandemic context publication-title: Sci. Total Environ. – start-page: 1 year: 2020 end-page: 5 ident: bib0050 article-title: Wildfire segmentation on satellite images using deep learning publication-title: 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT) – reference: Z. Li, Y. Sun, J. Tang, CTNet: context-based tandem network for semantic segmentation, – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bib0008 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 6517 year: 2017 end-page: 6525 ident: bib0066 article-title: Yolo9000: better, faster, stronger publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 760 year: 2017 end-page: 768 ident: bib0090 article-title: Cad: scale invariant framework for real-time object detection publication-title: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) – volume: 178 start-page: 31 year: 2016 end-page: 41 ident: bib0032 article-title: The collection 6 MODIS active fire detection algorithm and fire products publication-title: Remote Sens. Environ. – volume: 10 start-page: 597368 year: 2014 ident: bib0003 article-title: A review on forest fire detection techniques publication-title: Int. J. Distrib. Sens. Netw. – start-page: 205 year: 2020 end-page: 208 ident: bib0093 article-title: IoT sensor and deep neural network based wildfire prediction system publication-title: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS) – reference: (2018). – volume: 1022 start-page: 012079 year: 2021 ident: bib0079 article-title: Improved safety of self-driving car using voice recognition through CNN publication-title: IOP Conf. Ser. – start-page: 102 year: 2019 end-page: 103 ident: bib0082 article-title: Wildfire monitoring and hotspots detection with aerial robots: measurement campaign and first results publication-title: 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) – volume: 727 start-page: 138044 year: 2020 ident: bib0054 article-title: Human activity, daylight saving time and wildfire occurrence publication-title: Sci. Total Environ. – volume: 45 start-page: 101444 year: 2020 ident: bib0063 article-title: After the fire: perceptions of land use planning to reduce wildfire risk in eight communities across the united states publication-title: Int. J. Disaster Risk Reduct. – start-page: 2118 year: 2019 end-page: 2123 ident: bib0026 article-title: UAV image-based forest fire detection approach using convolutional neural network publication-title: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) – start-page: 1 year: 2018 end-page: 9 ident: bib0043 article-title: Emerging methods for early detection of forest fires using unmanned aerial vehicles and lorawan sensor networks publication-title: 2018 28th EAEEIE Annual Conference (EAEEIE) – start-page: 1 year: 2018 end-page: 6 ident: bib0048 article-title: Early smoke detection of forest wildfire video using deep belief network publication-title: 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) – start-page: 564 year: 2019 end-page: 567 ident: bib0051 article-title: Fire detection using video images and temporal variations publication-title: 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: bib0025 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 4963 year: 2020 end-page: 4967 ident: bib0046 article-title: A YOLOv3-based learning strategy for real-time UAV-based forest fire detection publication-title: 2020 Chinese Control And Decision Conference (CCDC) – volume: 7 start-page: 42889 year: 2019 end-page: 42896 ident: bib0060 article-title: A slight smoke perceptual network publication-title: IEEE Access – start-page: 8315 year: 2019 end-page: 8319 ident: bib0006 article-title: Early wildfire smoke detection based on motion-based geometric image transformation and deep convolutional generative adversarial networks publication-title: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 193 start-page: 108001 year: 2021 ident: bib0072 article-title: Aerial imagery pile burn detection using deep learning: the FLAME dataset publication-title: Comput. Netw. – start-page: 4278 year: 2017 end-page: -4284 ident: bib0077 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17 – start-page: 779 year: 2016 end-page: 788 ident: bib0065 article-title: You only look once: unified, real-time object detection publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 107 start-page: 104108 year: 2021 ident: bib0092 article-title: Motion saliency based multi-stream multiplier resnets for action recognition publication-title: Image Vis. Comput. – volume: 23 start-page: 1827 year: 2013 end-page: 1843 ident: bib0094 article-title: Video fire detection review publication-title: Digit. Signal Process. – reference: . – start-page: 1060 year: 2019 end-page: 1065 ident: bib0053 article-title: Early forest fire detection using drones and artificial intelligence publication-title: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) – start-page: 568 year: 2016/01 end-page: 575 ident: bib0087 article-title: Deep convolutional neural networks for forest fire detection publication-title: Proceedings of the 2016 International Forum on Management, Education and Information Technology Application – volume: 91 start-page: 103803 year: 2019 ident: bib0018 article-title: Intelligent and vision-based fire detection systems: a survey publication-title: Image Vis. Comput. – reference: C. Maxouris, Here’s just how bad the devastating australian fires are – by the numbers, 2020, – volume: 47 start-page: 101530 year: 2020 ident: bib0017 article-title: The development and validation of the bushfire psychological preparedness scale publication-title: Int. J. Disaster Risk Reduct. – volume: 8 start-page: 285 year: 2020 end-page: 309 ident: bib0042 article-title: Forest fire flame and smoke detection from UAV-captured images using fire-specific color features and multi-color space local binary pattern publication-title: J. Unmanned Veh. Syst. – reference: A.E. Cetin, Computer vision based fire detection software, 2007, – reference: DeepQuestAI, Fire-smoke-dataset, 2019. – volume: 727 start-page: 138044 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0054 article-title: Human activity, daylight saving time and wildfire occurrence publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138044 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0068 article-title: Faster r-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – start-page: 1 year: 2018 ident: 10.1016/j.sigpro.2021.108309_bib0043 article-title: Emerging methods for early detection of forest fires using unmanned aerial vehicles and lorawan sensor networks – start-page: 252 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0056 article-title: Deep neural networks for wild fire detection with unmanned aerial vehicle – start-page: 3 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0002 article-title: Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicles – start-page: 564 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0051 article-title: Fire detection using video images and temporal variations – start-page: 234 year: 2015 ident: 10.1016/j.sigpro.2021.108309_bib0070 article-title: U-Net: convolutional networks for biomedical image segmentation – volume: XLIII-B3-2020 start-page: 1671 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0049 article-title: Wildfire detection and disaster monitoring system using UAS and sensor fusion technologies publication-title: Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLIII-B3-2020-1671-2020 – start-page: 50 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0052 article-title: Application of artificial intelligence in UAV platforms for early forest fire detection – volume: 91 start-page: 103803 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0018 article-title: Intelligent and vision-based fire detection systems: a survey publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2019.08.007 – start-page: 2999 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0058 article-title: Focal loss for dense object detection – volume: 3 issue: 1 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0007 article-title: Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting publication-title: Drones doi: 10.3390/drones3010017 – volume: 180 start-page: 635 issue: 5 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0081 article-title: Lessons learned from the australian bushfires: climate change, air pollution, and public health publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2020.0703 – volume: 8 issue: 11 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0071 article-title: Plant disease detection and classification by deep learning publication-title: Plants doi: 10.3390/plants8110468 – start-page: 4278 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0077 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – start-page: 1 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0012 article-title: Car detection using unmanned aerial vehicles: comparison between faster r-CNN and YOLOv3 – volume: 19 issue: 23 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0086 article-title: A new model of RGB-d camera calibration based on 3Dcontrol field publication-title: Sensors doi: 10.3390/s19235082 – ident: 10.1016/j.sigpro.2021.108309_bib0019 – volume: 1 start-page: 44 issue: 1 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0031 article-title: Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. retrospective analysis and current trends publication-title: J. Saf. Sci. Resil. – ident: 10.1016/j.sigpro.2021.108309_bib0067 – start-page: 221 year: 2016 ident: 10.1016/j.sigpro.2021.108309_bib0039 article-title: Low-resolution convolutional neural networks for video face recognition – start-page: 265 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0001 article-title: Pre- and post-fire comparison of forest areas in 3D – volume: 1022 start-page: 012079 year: 2021 ident: 10.1016/j.sigpro.2021.108309_bib0079 article-title: Improved safety of self-driving car using voice recognition through CNN publication-title: IOP Conf. Ser. doi: 10.1088/1757-899X/1022/1/012079 – volume: 2 start-page: 28 issue: 2 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0016 article-title: A survey on lightweight CNN-based object detection algorithms for platforms with limited computational resources publication-title: Int. J. Inform. Appl. Math. – volume: 138 start-page: 104984 year: 2021 ident: 10.1016/j.sigpro.2021.108309_bib0085 article-title: Simulation of water and chemical transport of chloride from the forest ecosystem to the stream publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.104984 – ident: 10.1016/j.sigpro.2021.108309_bib0005 doi: 10.1007/978-3-030-63007-2_63 – volume: 9 start-page: 1357 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0037 article-title: A YOLO based technique for early forest fire detection publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) doi: 10.35940/ijitee.F4106.049620 – start-page: 2118 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0026 article-title: UAV image-based forest fire detection approach using convolutional neural network – start-page: 213 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0023 article-title: FiSmo: a compilation of datasets from emergency situations for fire and smoke analysis – ident: 10.1016/j.sigpro.2021.108309_bib0073 – volume: 107 start-page: 104117 year: 2021 ident: 10.1016/j.sigpro.2021.108309_bib0074 article-title: Weighted boxes fusion: ensembling boxes from different object detection models publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104117 – volume: 20 issue: 22 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0009 article-title: A review on early forest fire detection systems using optical remote sensing publication-title: Sensors doi: 10.3390/s20226442 – volume: 6 start-page: 781 year: 2020 ident: 10.1016/j.sigpro.2021.108309_sbref0014 article-title: Urban air pollution, climate change and wildfires: the case study of an extended forest fire episode in northern italy favoured by drought and warm weather conditions publication-title: Energy Rep. doi: 10.1016/j.egyr.2019.11.002 – start-page: 2672 year: 2014 ident: 10.1016/j.sigpro.2021.108309_bib0035 article-title: Generative adversarial nets – ident: 10.1016/j.sigpro.2021.108309_bib0015 – start-page: 213 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0021 article-title: End-to-end object detection with transformers – start-page: 867 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0064 article-title: A framework for wildfire inspection using deep convolutional neural networks – start-page: 580 year: 2014 ident: 10.1016/j.sigpro.2021.108309_bib0034 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – volume: 12 issue: 1 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0036 article-title: Preliminary results from a wildfire detection system using deep learning on remote camera images publication-title: Remote Sens. doi: 10.3390/rs12010166 – start-page: 1 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0047 article-title: A deep learning based forest fire detection approach using UAV and YOLOv3 – volume: 8 start-page: 285 issue: 4 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0042 article-title: Forest fire flame and smoke detection from UAV-captured images using fire-specific color features and multi-color space local binary pattern publication-title: J. Unmanned Veh. Syst. doi: 10.1139/juvs-2020-0009 – start-page: 10305 year: 2018 ident: 10.1016/j.sigpro.2021.108309_bib0027 article-title: A UAV-based forest fire detection algorithm using convolutional neural network – volume: 12 issue: 19 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0011 article-title: Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures publication-title: Remote Sens. doi: 10.3390/rs12193177 – volume: 183 start-page: 116071 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0030 article-title: Severe western Canadian wildfire affects water quality even at large basin scales publication-title: Water Res. doi: 10.1016/j.watres.2020.116071 – volume: 129 start-page: 216 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0075 article-title: Classification of potential fire outbreaks: a fuzzy modeling approach based on thermal images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.030 – volume: 88 start-page: 67 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0083 article-title: Human tracking from single RGB-d camera using online learning publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2019.05.003 – start-page: 1440 year: 2015 ident: 10.1016/j.sigpro.2021.108309_bib0033 article-title: Fast r-CNN – start-page: 1 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0050 article-title: Wildfire segmentation on satellite images using deep learning – volume: 765 start-page: 142793 year: 2021 ident: 10.1016/j.sigpro.2021.108309_bib0069 article-title: Has COVID-19 halted winter-spring wildfires in the mediterranean? Insights for wildfire science under a pandemic context publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142793 – volume: 7 start-page: 42889 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0060 article-title: A slight smoke perceptual network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906695 – volume: 26 start-page: 550 issue: 4 year: 2008 ident: 10.1016/j.sigpro.2021.108309_bib0061 article-title: Computer vision techniques for forest fire perception publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2007.07.002 – volume: 20 issue: 19 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0045 article-title: Light-weight student LSTM for real-time wildfire smoke detection publication-title: Sensors doi: 10.3390/s20195508 – start-page: 1 year: 2018 ident: 10.1016/j.sigpro.2021.108309_bib0048 article-title: Early smoke detection of forest wildfire video using deep belief network – ident: 10.1016/j.sigpro.2021.108309_bib0057 – volume: 178 start-page: 31 year: 2016 ident: 10.1016/j.sigpro.2021.108309_bib0032 article-title: The collection 6 MODIS active fire detection algorithm and fire products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.054 – start-page: 646 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0076 article-title: Fog computing and deep CNN based efficient approach to early forest fire detection with unmanned aerial vehicles – start-page: 9361 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0004 article-title: Development of a surveillance system for forest fire detection and monitoring using drones – volume: 211 start-page: 441 year: 2018 ident: 10.1016/j.sigpro.2021.108309_sbref0088 article-title: Wildland forest fire smoke detection based on faster r-CNN using synthetic smoke images publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.12.034 – start-page: 1060 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0053 article-title: Early forest fire detection using drones and artificial intelligence – start-page: 779 year: 2016 ident: 10.1016/j.sigpro.2021.108309_bib0065 article-title: You only look once: unified, real-time object detection – start-page: 63 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0010 article-title: A novel framework for early fire detection using terrestrial and aerial 360-degree images – ident: 10.1016/j.sigpro.2021.108309_bib0062 – start-page: 8315 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0006 article-title: Early wildfire smoke detection based on motion-based geometric image transformation and deep convolutional generative adversarial networks – volume: 11 issue: 5 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0013 article-title: Early forest fire detection system using wireless sensor network and deep learning publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: 10.1016/j.sigpro.2021.108309_bib0028 – start-page: 4963 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0046 article-title: A YOLOv3-based learning strategy for real-time UAV-based forest fire detection – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0055 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – start-page: 1 year: 2015 ident: 10.1016/j.sigpro.2021.108309_bib0078 article-title: Going deeper with convolutions – ident: 10.1016/j.sigpro.2021.108309_bib0024 – volume: 27 start-page: 1143 issue: 5 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0029 article-title: Higher order linear dynamical systems for smoke detection in video surveillance applications publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2527340 – ident: 10.1016/j.sigpro.2021.108309_bib0044 – volume: 3 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0084 article-title: Deep learning based fire recognition for wildfire drone automation publication-title: Can. Sci. Fair J. – volume: 193 start-page: 108001 year: 2021 ident: 10.1016/j.sigpro.2021.108309_bib0072 article-title: Aerial imagery pile burn detection using deep learning: the FLAME dataset publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.108001 – volume: 45 start-page: 101444 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0063 article-title: After the fire: perceptions of land use planning to reduce wildfire risk in eight communities across the united states publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2019.101444 – volume: 81 start-page: 38 year: 2017 ident: 10.1016/j.sigpro.2021.108309_sbref0038 article-title: Impact of human factors on wildfire occurrence in mississippi, United States publication-title: Forest Policy Econ. doi: 10.1016/j.forpol.2017.04.011 – volume: 10 start-page: 597368 issue: 3 year: 2014 ident: 10.1016/j.sigpro.2021.108309_bib0003 article-title: A review on forest fire detection techniques publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2014/597368 – volume: 47 start-page: 101530 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0017 article-title: The development and validation of the bushfire psychological preparedness scale publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2020.101530 – start-page: 205 year: 2020 ident: 10.1016/j.sigpro.2021.108309_bib0093 article-title: IoT sensor and deep neural network based wildfire prediction system – volume: 23 start-page: 1827 issue: 6 year: 2013 ident: 10.1016/j.sigpro.2021.108309_bib0094 article-title: Video fire detection review publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.07.003 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 10.1016/j.sigpro.2021.108309_bib0025 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – start-page: 73 year: 2020 ident: 10.1016/j.sigpro.2021.108309_sbref0091 article-title: Online video object detection via local and mid-range feature propagation – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.sigpro.2021.108309_bib0041 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 6517 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0066 article-title: Yolo9000: better, faster, stronger – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0008 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – start-page: 760 year: 2017 ident: 10.1016/j.sigpro.2021.108309_bib0090 article-title: Cad: scale invariant framework for real-time object detection – start-page: 21 year: 2016 ident: 10.1016/j.sigpro.2021.108309_bib0059 article-title: SSD: single shot multibox detector – start-page: 102 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0082 article-title: Wildfire monitoring and hotspots detection with aerial robots: measurement campaign and first results – volume: 7 start-page: 154732 year: 2019 ident: 10.1016/j.sigpro.2021.108309_bib0020 article-title: An attention enhanced bidirectional LSTM for early forest fire smoke recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946712 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.sigpro.2021.108309_bib0040 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – start-page: 568 year: 2016 ident: 10.1016/j.sigpro.2021.108309_bib0087 article-title: Deep convolutional neural networks for forest fire detection – volume: 25 start-page: 1909 issue: 12 year: 2010 ident: 10.1016/j.sigpro.2021.108309_bib0022 article-title: Forest fires mapping and monitoring of current and past forest fire activity from meteosat second generation data publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2010.06.003 – volume: 107 start-page: 104108 year: 2021 ident: 10.1016/j.sigpro.2021.108309_bib0092 article-title: Motion saliency based multi-stream multiplier resnets for action recognition publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104108 – volume: 10 issue: 11 year: 2019 ident: 10.1016/j.sigpro.2021.108309_sbref0080 article-title: A review on UAV-based applications for precision agriculture publication-title: Information doi: 10.3390/info10110349 – volume: 18 issue: 3 year: 2018 ident: 10.1016/j.sigpro.2021.108309_bib0089 article-title: Saliency detection and deep learning-based wildfire identification in UAV imagery publication-title: Sensors doi: 10.3390/s18030712 |
SSID | ssj0001360 |
Score | 2.6380143 |
SecondaryResourceType | review_article |
Snippet | Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108309 |
SubjectTerms | Aerial images processing Computer vision Deep learning Smoke detection system Unmanned aerial vehicle Wildfire detection system |
Title | A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms |
URI | https://dx.doi.org/10.1016/j.sigpro.2021.108309 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5Y-TgNa5p07U9juGYirvoYLeSNElX2bqxdXrzbzcvbXWCKHgrJYH29fHe99Lvew-h60CIUHDGCKUiISxwJRGOuYq0l3gh85SyRxePo-5wzO4n_qSB-rUWBmiVVewvY7qN1tWdTmXNzjLLOk8gxKHwG4lCk5UuKMoZC8DLb96_aB7Us0phWExgdS2fsxyvdZaaOGWqRJcC2c4DWuJP6Wkr5QwO0H6FFXGvfJxD1FD5Edrb6iB4jN56uBSf4EWOFTQrxgb8Sm1eCktVWJ5VjkFDgjf5nENQxdw6HX5VU0uJw0B9T81qtcTVDImUQHKTOKlGPuBSgY75LF2ssmI6X5-g8eD2uT8k1SwFkpiioCBCR6GC7u7cFQaCKKZlRLWp5gwACpTrc0dR7gvfUSHXkmoJ0NAFpao2CV4L7xQ180WuzhA2tXjiMCl1ZMCUSESkXZ5EBihpx_OZq1rIq00YJ1WjcZh3MYtrRtlLXBo-BsPHpeFbiHzuWpaNNv5YH9RfJ_7mMLHJBb_uPP_3zgu064L6wZ7AXKJmsdqoK4NJCtG2TtdGO727h-HoAzDQ4-Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPXpdk8muZYiiVa7UWF3sJudjettGmxqf59d5JNURAFbyHsQDJZZr7ZfN8MwE0oREdw36eMiZT6oSupcMxVpL3U6_ieUuXRxeOwHb_496NgtAG9WguDtEob-6uYXkZre6dlvdlaTCatJxTiMPyNxLDJSjvchC3sThU0YKt7N4iH64DMvFIsjOspGtQKupLmtZxkJlSZQtFlyLfzkJn4U4b6knX6-7Bn4SLpVk90ABsqP4TdL00Ej-CjSyr9CZnnRGG_YmLwr9TmvYhURUm1ygnKSMgqn3GMq4SX-468q3HJiiPIfs_MarUgdoxERjG_SZLaqQ-kEqETPs3mb5NiPFsew0v_9rkXUztOgaamLiio0FFHYYN37gqDQpSvZcS0KegMBgqVG3BHMR6IwFEdriXTEtGhi2JVbXK8Ft4JNPJ5rk6BmHI8dXwpdWTwlEhFpF2eRgYraccLfFc1watdmKS21ziOvJgmNansNakcn6Djk8rxTaBrq0XVa-OP9WH9dZJveyYx6eBXy7N_W17Ddvz8-JA83A0H57DjohiiPJC5gEbxtlKXBqIU4spuwU8CIeaX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+early+wildfire+detection+from+unmanned+aerial+vehicles+using+deep+learning-based+computer+vision+algorithms&rft.jtitle=Signal+processing&rft.au=Bouguettaya%2C+Abdelmalek&rft.au=Zarzour%2C+Hafed&rft.au=Taberkit%2C+Amine+Mohammed&rft.au=Kechida%2C+Ahmed&rft.date=2022-01-01&rft.issn=0165-1684&rft.volume=190&rft.spage=108309&rft_id=info:doi/10.1016%2Fj.sigpro.2021.108309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2021_108309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |