Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle
Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor seals have evolved a whisker array that can accurately measure and identify environmental information in their surroundings. Inspired by the...
Saved in:
Published in | Nano energy Vol. 129; p. 110011 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor seals have evolved a whisker array that can accurately measure and identify environmental information in their surroundings. Inspired by the "smart" whiskers of harbor seals, the study has designed a deep learning-assisted bionic underwater triboelectric whisker sensor (UTWS) to passively perceive diverse hydrodynamic flow fields, including omni-directional steady flow and wakes induced by bluff body upstream. The device mainly comprised an elliptical whisker shaft with a high-aspect-ratio of 0.403, four flexible triboelectric sensing units mimicking the nerve in the follicular sinus complex, and a flexible corrugated joint imitating the surface skin of marine organisms' cheeks. The UTWS demonstrated impressive advantages of rapid response times of 21 ms, high sensitivity of 1.16 V/m.s−1, high signal-to-noise-ratio of 61.66 dB. By implementing deep learning analytics to process the multi-channel signals, the underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently, with an approximate root mean square error of approximately 0.093 in the verification case. Thus, this UTWS-based, deep-learning-assisted perception could become a promising tool for integration with underwater vehicles in the local navigation tasks.
[Display omitted]
•A deep learning-assisted bionic underwater triboelectric whisker was designed to passively perceive diverse flow fields.•The double-layer air chamber shielding technique has been employed to minimize signal interference from ions in water.•The UTWS demonstrated impressive advantages of response times of 21 ms, sensitivity of 1.16 V/m.s−1, SNR of 61.66 dB.•The underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently with a RMSE of 0.093. |
---|---|
AbstractList | Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor seals have evolved a whisker array that can accurately measure and identify environmental information in their surroundings. Inspired by the "smart" whiskers of harbor seals, the study has designed a deep learning-assisted bionic underwater triboelectric whisker sensor (UTWS) to passively perceive diverse hydrodynamic flow fields, including omni-directional steady flow and wakes induced by bluff body upstream. The device mainly comprised an elliptical whisker shaft with a high-aspect-ratio of 0.403, four flexible triboelectric sensing units mimicking the nerve in the follicular sinus complex, and a flexible corrugated joint imitating the surface skin of marine organisms' cheeks. The UTWS demonstrated impressive advantages of rapid response times of 21 ms, high sensitivity of 1.16 V/m.s−1, high signal-to-noise-ratio of 61.66 dB. By implementing deep learning analytics to process the multi-channel signals, the underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently, with an approximate root mean square error of approximately 0.093 in the verification case. Thus, this UTWS-based, deep-learning-assisted perception could become a promising tool for integration with underwater vehicles in the local navigation tasks.
[Display omitted]
•A deep learning-assisted bionic underwater triboelectric whisker was designed to passively perceive diverse flow fields.•The double-layer air chamber shielding technique has been employed to minimize signal interference from ions in water.•The UTWS demonstrated impressive advantages of response times of 21 ms, sensitivity of 1.16 V/m.s−1, SNR of 61.66 dB.•The underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently with a RMSE of 0.093. |
ArticleNumber | 110011 |
Author | Xu, Peng Liu, Bo Guan, Tangzhen Liu, Jianhua Jin, Hao Mu, Zhaoyang Xu, Minyi Li, Yuanzheng Xie, Guangming Wang, Hao |
Author_xml | – sequence: 1 givenname: Peng surname: Xu fullname: Xu, Peng organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 2 givenname: Jianhua surname: Liu fullname: Liu, Jianhua organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 3 givenname: Bo surname: Liu fullname: Liu, Bo organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 4 givenname: Yuanzheng surname: Li fullname: Li, Yuanzheng organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 5 givenname: Hao surname: Jin fullname: Jin, Hao organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 6 givenname: Zhaoyang surname: Mu fullname: Mu, Zhaoyang organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 7 givenname: Tangzhen surname: Guan fullname: Guan, Tangzhen organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 8 givenname: Guangming surname: Xie fullname: Xie, Guangming email: xiegming@pku.edu.cn organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China – sequence: 9 givenname: Hao surname: Wang fullname: Wang, Hao email: hao8901@dlmu.edu.cn organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 10 givenname: Minyi surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China |
BookMark | eNqFkE1PwzAMhnMYEmPsH3DIH-hImqQtHJDQ-JQmcYFzlA-XZZSkSsIG_55u5cQBfLFl-31lPydo4oMHhM4oWVBCq_PNwisfwC9KUvIFpYRQOkHTsqS0KBshjtE8pQ0ZohK0puUUfd4A9EUHKnrnXwuVkksZLM7R6QAdmKEweLd26Q0ibkPEftjFrYPO4h6igT674LHyFgffOQ84ZZUBQ8ruXR1mocUf3kLcDf2It7B2poNTdNSqLsH8J8_Qy93t8_KhWD3dPy6vV4VhpMqFtkwQ2jBjoRWtqa2-0BUHralWlvEaBNM105YqxpigXDek4VDzmoOpBWvYDF2OviaGlCK00rh8uCtH5TpJidyjkxs5opN7dHJEN4j5L3Efh6_i13-yq1EGw2NbB1Em48AbsC4ORKUN7m-Db9LTkcU |
CitedBy_id | crossref_primary_10_1016_j_cej_2025_160604 crossref_primary_10_1016_j_nanoen_2025_110763 crossref_primary_10_1016_j_ymssp_2025_112459 crossref_primary_10_1002_admt_202500072 crossref_primary_10_1557_s43577_025_00875_1 crossref_primary_10_1063_5_0244010 |
Cites_doi | 10.1089/soro.2016.0069 10.1007/s00542-014-2350-1 10.1109/TVT.2021.3135438 10.1007/s42235-021-0034-y 10.1002/adem.202000821 10.1109/JOE.2012.2235664 10.1088/1361-6501/aae128 10.1109/TVT.2021.3097084 10.1038/s41528-022-00160-0 10.1016/j.nanoen.2012.01.004 10.1146/annurev-fluid-121108-145456 10.1002/advs.202002017 10.1016/j.apor.2020.102321 10.1002/admt.202101098 10.1039/C5EE01532D 10.1109/48.107149 10.1117/12.2586895 10.1089/soro.2021.0166 10.1109/ACCESS.2019.2929932 10.1016/j.oceaneng.2011.10.010 10.1109/ACCESS.2020.3031808 10.3723/ut.34.107 10.3390/s17061220 10.1002/adfm.201302453 10.1145/1121776.1121779 10.1016/j.fmre.2021.03.002 10.1098/rstb.2011.0155 10.3390/photonics6040123 10.1186/s10033-021-00674-0 10.34133/2021/5963293 10.1021/nn4053292 10.34133/2021/9864967 10.1016/j.nanoen.2022.107210 10.1109/JSEN.2013.2259227 10.1016/j.nanoen.2017.06.035 10.1007/s00422-012-0525-3 10.1109/JOE.2012.2221812 10.1016/j.nanoen.2022.107633 10.3390/s21237849 10.4031/MTSJ.50.4.3 10.1017/jfm.2015.513 10.1016/j.measurement.2020.108866 10.1016/j.oceaneng.2017.10.046 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2024.110011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2024_110011 S2211285524007614 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABMAC ABXDB ABXRA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-bd350183cdef5fc7db9b64ebb1bad347e53b73bd1a333514b8084e7474ec75383 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:57:15 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Sat Sep 21 16:01:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Triboelectric nanogenerators Self-powered Underwater perception Whisker sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-bd350183cdef5fc7db9b64ebb1bad347e53b73bd1a333514b8084e7474ec75383 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2024_110011 crossref_primary_10_1016_j_nanoen_2024_110011 elsevier_sciencedirect_doi_10_1016_j_nanoen_2024_110011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Xu, Zheng, Liu, Wang, Wang, Guan, Xie, Xu (bib42) 2022; 101 Fitzpatrick, Singhvi, Arbabian (bib13) 2020; 8 Fan, Tian, Wang (bib35) 2012; 1 Wang, Chen, Lin (bib34) 2015; 8 Tu, Duman, Stojanovic, Proakis (bib19) 2012; 38 Catipovic (bib20) 1990; 15 Zhang, H., Yang, Y., Su, Y., Chen, J., Adams, K., Lee, S., … Wang, Z.L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Advanced Functional Materials, 24(10), 1401-1407. Shizhe (bib24) 2014; 20 Zhang, H., Yang, Y., Zhong, X., Su, Y., Zhou, Y., Hu, C., Wang, Z.L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS nano, 8(1), 680-689. Wang, Han, Hou, Guizani, Peng (bib15) 2021; 71 Mogdans, Bleckmann (bib23) 2012; 106 Zhai, Zheng, Xie (bib25) 2021; 18 Abreu, Antonelli, Arrichiello, Caffaz, Caiti, Casalino, Volpi, De Jong, De Palma, Duarte (bib14) 2016; 50 Jiang, Ma, Fu, Zhang (bib30) 2017; 17 Xu, Wang, Wang, Chen, Liu, Zheng, Li, Xu, Tao, Xie (bib43) 2021 Sun, Cui, Chen (bib7) 2021; 21 Sheikh, Felemban, Felemban, Qaisar (bib9) 2016 Xie, Gao, Wu, Chen, Wang, Tong, Zhang, Lan, He, Mu (bib37) 2021 Wang, Liu, Wang, Zheng, Guan, Liu, Wang, Chen, Wang, Xie (bib33) 2022; 7 J. Shi, X. Zhuo, C. Zhang, Y.X. Bian, H. ShenResearch on key technologies of underwater target detection. In: Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Vol. 11763, SPIE, 2021, pp. 1128–1137. . Goyal, Dave, Verma (bib4) 2017; 34 Ghafoor, Noh (bib1) 2019; 7 Zhang, Shan, Xie, Miao, Du, Song (bib48) 2021; 172 Fallon, Folkesson, McClelland, Leonard (bib11) 2013; 38 Zhou, Ren, Chen, Niu, Han, Ren (bib28) 2021; 8 Davies, Reaud, Dussud, Woerther (bib5) 2011; 38 Wang, Xu, Wang, Zheng, Liu, Liu, Chen, Wang, Xie, Tao (bib45) 2022; 97 Teague, Allen, Scott (bib6) 2018; 147 Zhang, Zhang, Wang, Liu, Yang, Zhou, Bian (bib12) 2021; 107 Chen, Mathai, Xu, Wang (bib18) 2019; 6 Asadnia, Kottapalli, Shen, Miao, Triantafyllou (bib29) 2013; 13 Beem, Hildner, Triantafyllou (bib31) 2012 Shelley, Zhang (bib22) 2011; 43 Liu, Gao, Sarkodie-Gyan, Li (bib46) 2018; 29 Beem, Triantafyllou (bib26) 2015; 783 Gul, Su, Choi (bib49) 2018; 5 Rong, Zhang, Zhang, Mao, Liu, Song (bib27) 2021; 23 Beem (bib32) 2015 Cong, Gu, Zhang, Gao (bib8) 2021; 1 Xu, Liu, Liu, Wang, Zheng, Wang, Chen, Wang, Wang, Fu (bib41) 2022; 6 Stocking, Eberhardt, Shakhsheer, Calhoun, Paulus, Appleby (bib47) 2010 Miersch, Hanke, Wieskotten, Hanke, Oeffner, Leder, Brede, Witte, Dehnhardt (bib21) 2011; 366 Han, Gong, Wang, Mart´ınez-Garc´ıa, Peng (bib3) 2021; 70 Xu, Zheng, Liu, Liu, Wang, Wang, Guan, Fu, Xu, Xie (bib44) 2023; 6 Akyildiz, Pompili, Melodia (bib16) 2004; 1 Liu, Jiang, Wu, Ma, Chen, Zhang (bib50) 2023; 10 Wang, Jiang, Xu (bib36) 2017; 39 Wang, Shi, Yang, Tao, Li, Lei, Liu, Wang, Chen (bib40) 2022; 18 Cochenour, Mullen, Laux (bib17) 2008 Sun, Wang, Lu, Chen, Yang, Ni (bib10) 2022; 35 Miersch (10.1016/j.nanoen.2024.110011_bib21) 2011; 366 Asadnia (10.1016/j.nanoen.2024.110011_bib29) 2013; 13 Wang (10.1016/j.nanoen.2024.110011_bib15) 2021; 71 Shelley (10.1016/j.nanoen.2024.110011_bib22) 2011; 43 Fitzpatrick (10.1016/j.nanoen.2024.110011_bib13) 2020; 8 Teague (10.1016/j.nanoen.2024.110011_bib6) 2018; 147 Fallon (10.1016/j.nanoen.2024.110011_bib11) 2013; 38 Abreu (10.1016/j.nanoen.2024.110011_bib14) 2016; 50 Rong (10.1016/j.nanoen.2024.110011_bib27) 2021; 23 10.1016/j.nanoen.2024.110011_bib39 10.1016/j.nanoen.2024.110011_bib38 Ghafoor (10.1016/j.nanoen.2024.110011_bib1) 2019; 7 Xu (10.1016/j.nanoen.2024.110011_bib41) 2022; 6 Beem (10.1016/j.nanoen.2024.110011_bib31) 2012 Mogdans (10.1016/j.nanoen.2024.110011_bib23) 2012; 106 Fan (10.1016/j.nanoen.2024.110011_bib35) 2012; 1 Cochenour (10.1016/j.nanoen.2024.110011_bib17) 2008 Sun (10.1016/j.nanoen.2024.110011_bib7) 2021; 21 Cong (10.1016/j.nanoen.2024.110011_bib8) 2021; 1 Liu (10.1016/j.nanoen.2024.110011_bib46) 2018; 29 Han (10.1016/j.nanoen.2024.110011_bib3) 2021; 70 Liu (10.1016/j.nanoen.2024.110011_bib50) 2023; 10 Zhang (10.1016/j.nanoen.2024.110011_bib12) 2021; 107 Zhai (10.1016/j.nanoen.2024.110011_bib25) 2021; 18 Sun (10.1016/j.nanoen.2024.110011_bib10) 2022; 35 Wang (10.1016/j.nanoen.2024.110011_bib34) 2015; 8 Wang (10.1016/j.nanoen.2024.110011_bib36) 2017; 39 Catipovic (10.1016/j.nanoen.2024.110011_bib20) 1990; 15 Shizhe (10.1016/j.nanoen.2024.110011_bib24) 2014; 20 Jiang (10.1016/j.nanoen.2024.110011_bib30) 2017; 17 Gul (10.1016/j.nanoen.2024.110011_bib49) 2018; 5 Wang (10.1016/j.nanoen.2024.110011_bib33) 2022; 7 Wang (10.1016/j.nanoen.2024.110011_bib40) 2022; 18 Akyildiz (10.1016/j.nanoen.2024.110011_bib16) 2004; 1 Stocking (10.1016/j.nanoen.2024.110011_bib47) 2010 Tu (10.1016/j.nanoen.2024.110011_bib19) 2012; 38 Liu (10.1016/j.nanoen.2024.110011_bib42) 2022; 101 Xu (10.1016/j.nanoen.2024.110011_bib44) 2023; 6 Wang (10.1016/j.nanoen.2024.110011_bib45) 2022; 97 Zhang (10.1016/j.nanoen.2024.110011_bib48) 2021; 172 Beem (10.1016/j.nanoen.2024.110011_bib26) 2015; 783 Davies (10.1016/j.nanoen.2024.110011_bib5) 2011; 38 10.1016/j.nanoen.2024.110011_bib2 Chen (10.1016/j.nanoen.2024.110011_bib18) 2019; 6 Xu (10.1016/j.nanoen.2024.110011_bib43) 2021 Xie (10.1016/j.nanoen.2024.110011_bib37) 2021 Sheikh (10.1016/j.nanoen.2024.110011_bib9) 2016 Goyal (10.1016/j.nanoen.2024.110011_bib4) 2017; 34 Beem (10.1016/j.nanoen.2024.110011_bib32) 2015 Zhou (10.1016/j.nanoen.2024.110011_bib28) 2021; 8 |
References_xml | – year: 2021 ident: bib37 article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting publication-title: Research – volume: 8 year: 2021 ident: bib28 article-title: Bio-inspired soft grippers based on impactive gripping publication-title: Adv. Sci. – volume: 366 start-page: 3077 year: 2011 end-page: 3084 ident: bib21 article-title: Flow sensing by pinniped whiskers publication-title: Philos. Trans. R. Soc. B: Biol. Sci. – volume: 10 start-page: 97 year: 2023 end-page: 105 ident: bib50 article-title: Artificial whisker sensor with undulated morphology and self-spread piezoresistors for diverse flow analyses publication-title: Soft Robot. – volume: 1 start-page: 337 year: 2021 end-page: 345 ident: bib8 article-title: Underwater robot sensing technology: a survey publication-title: Fundam. Res. – volume: 106 start-page: 627 year: 2012 end-page: 642 ident: bib23 article-title: Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system publication-title: Biol. Cybern. – start-page: 2224 year: 2010 end-page: 2229 ident: bib47 article-title: A capacitance-based whisker-like artificial sensor for fluid motion sensing publication-title: Proceedings of the Sensors – volume: 29 year: 2018 ident: bib46 article-title: A novel biomimetic sensor system for vibration source perception of autonomous underwater vehicles based on artificial lateral lines publication-title: Meas. Sci. Technol. – volume: 107 year: 2021 ident: bib12 article-title: Subsea pipeline leak inspection by autonomous underwater vehicle publication-title: Appl. Ocean Res. – volume: 21 start-page: 7849 year: 2021 ident: bib7 article-title: Review of underwater sensing technologies and applications publication-title: Sensors – volume: 71 start-page: 2058 year: 2021 end-page: 2069 ident: bib15 article-title: A multi-channel interference based source location privacy protection scheme in underwater acoustic sensor networks publication-title: IEEE Trans. Veh. Technol. – volume: 17 start-page: 1220 year: 2017 ident: bib30 article-title: Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection publication-title: Sensors – reference: J. Shi, X. Zhuo, C. Zhang, Y.X. Bian, H. ShenResearch on key technologies of underwater target detection. In: Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Vol. 11763, SPIE, 2021, pp. 1128–1137. . – volume: 23 year: 2021 ident: bib27 article-title: Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/nanostructured arrays publication-title: Adv. Eng. Mater. – start-page: 1 year: 2016 end-page: 6 ident: bib9 article-title: Challenges and opportunities for underwater sensor networks publication-title: Proceedings of the 12th International Conference on Innovations in Information Technology (IIT) – volume: 5 start-page: 122 year: 2018 end-page: 132 ident: bib49 article-title: Fully 3d printed multi-material soft bio-inspired whisker sensor for underwater-induced vortex detection publication-title: Soft Robot. – volume: 8 start-page: 189945 year: 2020 end-page: 189959 ident: bib13 article-title: An airborne sonar system for underwater remote sensing and imaging publication-title: IEEE Access – volume: 1 start-page: 3 year: 2004 end-page: 8 ident: bib16 article-title: Challenges for efficient communication in underwater acoustic sensor networks publication-title: ACM Sigbed Rev. – volume: 18 year: 2022 ident: bib40 article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring publication-title: Small – volume: 7 year: 2022 ident: bib33 article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring publication-title: Adv. Mater. Technol. – volume: 7 start-page: 98841 year: 2019 end-page: 98853 ident: bib1 article-title: An overview of next-generation underwater target detection and tracking: an integrated underwater architecture publication-title: IEEE Access – volume: 18 start-page: 264 year: 2021 end-page: 291 ident: bib25 article-title: Fish lateral line inspired flow sensors and flow-aided control: a review publication-title: J. Bionic Eng. – volume: 6 start-page: 25 year: 2022 ident: bib41 article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception publication-title: npj Flex. Electron. – volume: 70 start-page: 9294 year: 2021 end-page: 9305 ident: bib3 article-title: Multi-auv collaborative data collection algorithm based on q-learning in underwater acoustic sensor networks publication-title: IEEE Trans. Veh. Technol. – volume: 43 start-page: 449 year: 2011 end-page: 465 ident: bib22 article-title: Flapping and bending bodies interacting with fluid flows publication-title: Annu. Rev. Fluid Mech. – volume: 172 year: 2021 ident: bib48 article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity publication-title: Measurement – volume: 39 start-page: 9 year: 2017 end-page: 23 ident: bib36 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy – volume: 6 start-page: 123 year: 2019 ident: bib18 article-title: A study into the effects of factors influencing an underwater, single-pixel imaging system’s performance publication-title: : Photonics – year: 2015 ident: bib32 article-title: Passive Wake Detection Using Seal Whisker-inspired Sensing – volume: 50 start-page: 42 year: 2016 end-page: 53 ident: bib14 article-title: Widely scalable mobile underwater sonar technology: An overview of the h2020 wimust project publication-title: Mar. Technol. Soc. J. – volume: 35 start-page: 5 year: 2022 ident: bib10 article-title: Underwater laser welding/cladding for high-performance repair of marine metal materials: a review publication-title: Chin. J. Mech. Eng. – start-page: 1 year: 2008 end-page: 7 ident: bib17 article-title: Spatial and temporal dispersion in high bandwidth underwater laser communication links publication-title: Proceedings of the MILCOM 2008-2008 IEEE Military Communications Conference – year: 2021 ident: bib43 article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping publication-title: Research – volume: 38 start-page: 500 year: 2013 end-page: 513 ident: bib11 article-title: Relocating underwater features autonomously using sonar-based slam publication-title: IEEE J. Ocean. Eng. – start-page: 1 year: 2012 end-page: 4 ident: bib31 article-title: Characterization of a harbor seal whisker-inspired flow sensor publication-title: Proceedings of the 2012 Oceans – volume: 147 start-page: 333 year: 2018 end-page: 339 ident: bib6 article-title: The potential of low-cost rov for use in deep-sea mineral, ore prospecting and monitoring publication-title: Ocean Eng. – reference: Zhang, H., Yang, Y., Su, Y., Chen, J., Adams, K., Lee, S., … Wang, Z.L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Advanced Functional Materials, 24(10), 1401-1407. – volume: 97 year: 2022 ident: bib45 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception publication-title: Nano Energy – volume: 6 start-page: 0062 year: 2023 ident: bib44 article-title: Deep-learning-assisted underwater 3d tactile tensegrity publication-title: Re-Search – volume: 20 start-page: 2123 year: 2014 end-page: 2136 ident: bib24 article-title: Underwater artificial lateral line flow sensors publication-title: Microsyst. Technol. – volume: 101 year: 2022 ident: bib42 article-title: Whisker-inspired and self-powered triboelectric sensor for under-water obstacle detection and collision avoidance publication-title: Nano Energy – volume: 38 start-page: 2208 year: 2011 end-page: 2214 ident: bib5 article-title: Mechanical behaviour of hmpe and aramid fibre ropes for deep sea handling operations publication-title: Ocean Eng. – volume: 783 start-page: 306 year: 2015 end-page: 322 ident: bib26 article-title: Wake-induced ‘slaloming’ response ex-plains exquisite sensitivity of seal whisker-like sensors publication-title: J. Fluid Mech. – reference: Zhang, H., Yang, Y., Zhong, X., Su, Y., Zhou, Y., Hu, C., Wang, Z.L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS nano, 8(1), 680-689. – volume: 13 start-page: 3918 year: 2013 end-page: 3925 ident: bib29 article-title: Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles publication-title: IEEE Sens. J. – volume: 34 year: 2017 ident: bib4 article-title: Trust model for cluster head validation in underwater wireless sensor networks publication-title: Underw. Technol. – volume: 38 start-page: 333 year: 2012 end-page: 346 ident: bib19 article-title: Multiple-resampling receiver design for ofdm over doppler-distorted underwater acoustic channels publication-title: IEEE J. Ocean. Eng. – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bib35 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: bib34 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. – volume: 15 start-page: 205 year: 1990 end-page: 216 ident: bib20 article-title: Performance limitations in underwater acoustic telemetry publication-title: IEEE J. Ocean. Eng. – volume: 5 start-page: 122 issue: 2 year: 2018 ident: 10.1016/j.nanoen.2024.110011_bib49 article-title: Fully 3d printed multi-material soft bio-inspired whisker sensor for underwater-induced vortex detection publication-title: Soft Robot. doi: 10.1089/soro.2016.0069 – volume: 20 start-page: 2123 year: 2014 ident: 10.1016/j.nanoen.2024.110011_bib24 article-title: Underwater artificial lateral line flow sensors publication-title: Microsyst. Technol. doi: 10.1007/s00542-014-2350-1 – volume: 71 start-page: 2058 issue: 2 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib15 article-title: A multi-channel interference based source location privacy protection scheme in underwater acoustic sensor networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3135438 – volume: 18 start-page: 264 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib25 article-title: Fish lateral line inspired flow sensors and flow-aided control: a review publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-0034-y – volume: 23 issue: 1 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib27 article-title: Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/nanostructured arrays publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202000821 – volume: 38 start-page: 500 issue: 3 year: 2013 ident: 10.1016/j.nanoen.2024.110011_bib11 article-title: Relocating underwater features autonomously using sonar-based slam publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2012.2235664 – volume: 29 issue: 12 year: 2018 ident: 10.1016/j.nanoen.2024.110011_bib46 article-title: A novel biomimetic sensor system for vibration source perception of autonomous underwater vehicles based on artificial lateral lines publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aae128 – volume: 70 start-page: 9294 issue: 9 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib3 article-title: Multi-auv collaborative data collection algorithm based on q-learning in underwater acoustic sensor networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3097084 – start-page: 1 year: 2012 ident: 10.1016/j.nanoen.2024.110011_bib31 article-title: Characterization of a harbor seal whisker-inspired flow sensor – volume: 18 issue: 10 year: 2022 ident: 10.1016/j.nanoen.2024.110011_bib40 article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring publication-title: Small – volume: 6 start-page: 25 issue: 1 year: 2022 ident: 10.1016/j.nanoen.2024.110011_bib41 article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception publication-title: npj Flex. Electron. doi: 10.1038/s41528-022-00160-0 – volume: 1 start-page: 328 issue: 2 year: 2012 ident: 10.1016/j.nanoen.2024.110011_bib35 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 43 start-page: 449 year: 2011 ident: 10.1016/j.nanoen.2024.110011_bib22 article-title: Flapping and bending bodies interacting with fluid flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-121108-145456 – volume: 8 issue: 9 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib28 article-title: Bio-inspired soft grippers based on impactive gripping publication-title: Adv. Sci. doi: 10.1002/advs.202002017 – volume: 107 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib12 article-title: Subsea pipeline leak inspection by autonomous underwater vehicle publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102321 – volume: 7 issue: 6 year: 2022 ident: 10.1016/j.nanoen.2024.110011_bib33 article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202101098 – volume: 8 start-page: 2250 issue: 8 year: 2015 ident: 10.1016/j.nanoen.2024.110011_bib34 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – start-page: 1 year: 2016 ident: 10.1016/j.nanoen.2024.110011_bib9 article-title: Challenges and opportunities for underwater sensor networks – volume: 15 start-page: 205 issue: 3 year: 1990 ident: 10.1016/j.nanoen.2024.110011_bib20 article-title: Performance limitations in underwater acoustic telemetry publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.107149 – ident: 10.1016/j.nanoen.2024.110011_bib2 doi: 10.1117/12.2586895 – volume: 10 start-page: 97 issue: 1 year: 2023 ident: 10.1016/j.nanoen.2024.110011_bib50 article-title: Artificial whisker sensor with undulated morphology and self-spread piezoresistors for diverse flow analyses publication-title: Soft Robot. doi: 10.1089/soro.2021.0166 – volume: 7 start-page: 98841 year: 2019 ident: 10.1016/j.nanoen.2024.110011_bib1 article-title: An overview of next-generation underwater target detection and tracking: an integrated underwater architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929932 – volume: 38 start-page: 2208 issue: 17-18 year: 2011 ident: 10.1016/j.nanoen.2024.110011_bib5 article-title: Mechanical behaviour of hmpe and aramid fibre ropes for deep sea handling operations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2011.10.010 – volume: 8 start-page: 189945 year: 2020 ident: 10.1016/j.nanoen.2024.110011_bib13 article-title: An airborne sonar system for underwater remote sensing and imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031808 – volume: 34 issue: 3 year: 2017 ident: 10.1016/j.nanoen.2024.110011_bib4 article-title: Trust model for cluster head validation in underwater wireless sensor networks publication-title: Underw. Technol. doi: 10.3723/ut.34.107 – start-page: 2224 year: 2010 ident: 10.1016/j.nanoen.2024.110011_bib47 article-title: A capacitance-based whisker-like artificial sensor for fluid motion sensing – volume: 17 start-page: 1220 issue: 6 year: 2017 ident: 10.1016/j.nanoen.2024.110011_bib30 article-title: Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection publication-title: Sensors doi: 10.3390/s17061220 – ident: 10.1016/j.nanoen.2024.110011_bib38 doi: 10.1002/adfm.201302453 – volume: 1 start-page: 3 issue: 2 year: 2004 ident: 10.1016/j.nanoen.2024.110011_bib16 article-title: Challenges for efficient communication in underwater acoustic sensor networks publication-title: ACM Sigbed Rev. doi: 10.1145/1121776.1121779 – volume: 1 start-page: 337 issue: 3 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib8 article-title: Underwater robot sensing technology: a survey publication-title: Fundam. Res. doi: 10.1016/j.fmre.2021.03.002 – volume: 366 start-page: 3077 issue: 1581 year: 2011 ident: 10.1016/j.nanoen.2024.110011_bib21 article-title: Flow sensing by pinniped whiskers publication-title: Philos. Trans. R. Soc. B: Biol. Sci. doi: 10.1098/rstb.2011.0155 – volume: 6 start-page: 123 year: 2019 ident: 10.1016/j.nanoen.2024.110011_bib18 article-title: A study into the effects of factors influencing an underwater, single-pixel imaging system’s performance publication-title: : Photonics doi: 10.3390/photonics6040123 – volume: 35 start-page: 5 issue: 1 year: 2022 ident: 10.1016/j.nanoen.2024.110011_bib10 article-title: Underwater laser welding/cladding for high-performance repair of marine metal materials: a review publication-title: Chin. J. Mech. Eng. doi: 10.1186/s10033-021-00674-0 – year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib37 article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting publication-title: Research doi: 10.34133/2021/5963293 – ident: 10.1016/j.nanoen.2024.110011_bib39 doi: 10.1021/nn4053292 – year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib43 article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping publication-title: Research doi: 10.34133/2021/9864967 – volume: 97 year: 2022 ident: 10.1016/j.nanoen.2024.110011_bib45 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107210 – volume: 13 start-page: 3918 issue: 10 year: 2013 ident: 10.1016/j.nanoen.2024.110011_bib29 article-title: Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2259227 – volume: 39 start-page: 9 year: 2017 ident: 10.1016/j.nanoen.2024.110011_bib36 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 106 start-page: 627 year: 2012 ident: 10.1016/j.nanoen.2024.110011_bib23 article-title: Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system publication-title: Biol. Cybern. doi: 10.1007/s00422-012-0525-3 – start-page: 1 year: 2008 ident: 10.1016/j.nanoen.2024.110011_bib17 article-title: Spatial and temporal dispersion in high bandwidth underwater laser communication links – volume: 38 start-page: 333 issue: 2 year: 2012 ident: 10.1016/j.nanoen.2024.110011_bib19 article-title: Multiple-resampling receiver design for ofdm over doppler-distorted underwater acoustic channels publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2012.2221812 – volume: 101 year: 2022 ident: 10.1016/j.nanoen.2024.110011_bib42 article-title: Whisker-inspired and self-powered triboelectric sensor for under-water obstacle detection and collision avoidance publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107633 – volume: 21 start-page: 7849 issue: 23 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib7 article-title: Review of underwater sensing technologies and applications publication-title: Sensors doi: 10.3390/s21237849 – volume: 50 start-page: 42 issue: 4 year: 2016 ident: 10.1016/j.nanoen.2024.110011_bib14 article-title: Widely scalable mobile underwater sonar technology: An overview of the h2020 wimust project publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.50.4.3 – volume: 783 start-page: 306 year: 2015 ident: 10.1016/j.nanoen.2024.110011_bib26 article-title: Wake-induced ‘slaloming’ response ex-plains exquisite sensitivity of seal whisker-like sensors publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.513 – volume: 172 year: 2021 ident: 10.1016/j.nanoen.2024.110011_bib48 article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity publication-title: Measurement doi: 10.1016/j.measurement.2020.108866 – volume: 147 start-page: 333 year: 2018 ident: 10.1016/j.nanoen.2024.110011_bib6 article-title: The potential of low-cost rov for use in deep-sea mineral, ore prospecting and monitoring publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.10.046 – volume: 6 start-page: 0062 year: 2023 ident: 10.1016/j.nanoen.2024.110011_bib44 article-title: Deep-learning-assisted underwater 3d tactile tensegrity publication-title: Re-Search – year: 2015 ident: 10.1016/j.nanoen.2024.110011_bib32 |
SSID | ssj0000651712 |
Score | 2.4549682 |
Snippet | Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110011 |
SubjectTerms | Deep learning Self-powered Triboelectric nanogenerators Underwater perception Whisker sensor |
Title | Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle |
URI | https://dx.doi.org/10.1016/j.nanoen.2024.110011 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qBa1i7pE13nAbTALELTNqtahKXDVBXjcE48duJm3YaEgKJY6NYihwnttPPnwk59zoqTARCcbhWTEjeYSrU9uClqZfoBMIU8L3jbhgORuJmHIxrpFfVwiCssrz73Z1e3NblSKvUZiufTlv3bZu7tKMgQBSkTcaRE1QIiVZ-8emv3lmsi_Vl8dMT5zMUqCroCphXlmQzQCLUtkBIvOf7P3uoNa_T3yHbZbhIu25Fu6QG2R7ZWiMR3CcflwA5K7s_PDIbDOPOGYqtrGauy81U0-Vk-voMc2pjVJrZubSArtF8hWuhSWao482gRZURRf4NV9hIZynFYrP50o7P6TtMcDUHZNS_eugNWNlPgWmbGCyYMgV9H9cG0iDV0ii7UQKU8lViuJAQcCW5Mn7COQL8VeRFAmy-IUDbrCbih6SezTI4ItRPIQTtC3t-pRBGJlpGIQ-10cZ6u07QILzSYaxLsnHsefESV6iyp9hpPkbNx07zDcJWUrkj2_hjvqy2J_5mNLH1B79KHv9b8oRs4pfD852S-mL-Bmc2LlmoZmF4TbLRvb4dDL8Apu3krg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4inGMweuYeuSNt0R8dB4XmDSblWTuDBA3TQG48Rvx27aCSQEEtc0liInju3082fGDpptE6WKoDjSGqG0bAsTWTS8LGumNoUoA3rvuL6JOl110Qt7M-y4qoUhWGV59_s7vbity5FGqc3GsN9v3LYwd2nFYUgoSEzG1SybU2i-1Mbg8COYPrSgjw108deTBARJVCV0Bc4rT_MBEBNqSxEmvhkEP7uoL27nbJktlfEiP_JLWmEzkK-yxS8sgmvs_QRgKMr2D_cCo2HaOsepl9XAt7npWz556L88wYhjkMpznMsL7BofToEtPM0d98QZvCgz4kTA4Ssb-SDjVG02muD4iL_BA61mnXXPTu-OO6JsqCAsZgZjYVzB3yetgyzMrHYGd0qBMYFJnVQaQmm0NC5IpSSEv4mbsQJMOBRYTGtiucFq-SCHTcaDDCKwgUID1ko5nVodRzKyzjp0d-2wzmSlw8SWbOPU9OI5qWBlj4nXfEKaT7zm60xMpYaebeOP-branuTbqUnQIfwqufVvyX0237m7vkquzm8ut9kCffHgvh1WG49eYReDlLHZKw7hJ_M75jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-assisted+triboelectric+whisker+for+near+field+perception+and+online+state+estimation+of+underwater+vehicle&rft.jtitle=Nano+energy&rft.au=Xu%2C+Peng&rft.au=Liu%2C+Jianhua&rft.au=Liu%2C+Bo&rft.au=Li%2C+Yuanzheng&rft.date=2024-10-01&rft.issn=2211-2855&rft.volume=129&rft.spage=110011&rft_id=info:doi/10.1016%2Fj.nanoen.2024.110011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2024_110011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |