Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle

Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor seals have evolved a whisker array that can accurately measure and identify environmental information in their surroundings. Inspired by the...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 129; p. 110011
Main Authors Xu, Peng, Liu, Jianhua, Liu, Bo, Li, Yuanzheng, Jin, Hao, Mu, Zhaoyang, Guan, Tangzhen, Xie, Guangming, Wang, Hao, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor seals have evolved a whisker array that can accurately measure and identify environmental information in their surroundings. Inspired by the "smart" whiskers of harbor seals, the study has designed a deep learning-assisted bionic underwater triboelectric whisker sensor (UTWS) to passively perceive diverse hydrodynamic flow fields, including omni-directional steady flow and wakes induced by bluff body upstream. The device mainly comprised an elliptical whisker shaft with a high-aspect-ratio of 0.403, four flexible triboelectric sensing units mimicking the nerve in the follicular sinus complex, and a flexible corrugated joint imitating the surface skin of marine organisms' cheeks. The UTWS demonstrated impressive advantages of rapid response times of 21 ms, high sensitivity of 1.16 V/m.s−1, high signal-to-noise-ratio of 61.66 dB. By implementing deep learning analytics to process the multi-channel signals, the underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently, with an approximate root mean square error of approximately 0.093 in the verification case. Thus, this UTWS-based, deep-learning-assisted perception could become a promising tool for integration with underwater vehicles in the local navigation tasks. [Display omitted] •A deep learning-assisted bionic underwater triboelectric whisker was designed to passively perceive diverse flow fields.•The double-layer air chamber shielding technique has been employed to minimize signal interference from ions in water.•The UTWS demonstrated impressive advantages of response times of 21 ms, sensitivity of 1.16 V/m.s−1, SNR of 61.66 dB.•The underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently with a RMSE of 0.093.
AbstractList Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor seals have evolved a whisker array that can accurately measure and identify environmental information in their surroundings. Inspired by the "smart" whiskers of harbor seals, the study has designed a deep learning-assisted bionic underwater triboelectric whisker sensor (UTWS) to passively perceive diverse hydrodynamic flow fields, including omni-directional steady flow and wakes induced by bluff body upstream. The device mainly comprised an elliptical whisker shaft with a high-aspect-ratio of 0.403, four flexible triboelectric sensing units mimicking the nerve in the follicular sinus complex, and a flexible corrugated joint imitating the surface skin of marine organisms' cheeks. The UTWS demonstrated impressive advantages of rapid response times of 21 ms, high sensitivity of 1.16 V/m.s−1, high signal-to-noise-ratio of 61.66 dB. By implementing deep learning analytics to process the multi-channel signals, the underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently, with an approximate root mean square error of approximately 0.093 in the verification case. Thus, this UTWS-based, deep-learning-assisted perception could become a promising tool for integration with underwater vehicles in the local navigation tasks. [Display omitted] •A deep learning-assisted bionic underwater triboelectric whisker was designed to passively perceive diverse flow fields.•The double-layer air chamber shielding technique has been employed to minimize signal interference from ions in water.•The UTWS demonstrated impressive advantages of response times of 21 ms, sensitivity of 1.16 V/m.s−1, SNR of 61.66 dB.•The underwater vehicle equipped with the UTWS can accomplish online velocity estimation proficiently with a RMSE of 0.093.
ArticleNumber 110011
Author Xu, Peng
Liu, Bo
Guan, Tangzhen
Liu, Jianhua
Jin, Hao
Mu, Zhaoyang
Xu, Minyi
Li, Yuanzheng
Xie, Guangming
Wang, Hao
Author_xml – sequence: 1
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 2
  givenname: Jianhua
  surname: Liu
  fullname: Liu, Jianhua
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 3
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 4
  givenname: Yuanzheng
  surname: Li
  fullname: Li, Yuanzheng
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 5
  givenname: Hao
  surname: Jin
  fullname: Jin, Hao
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 6
  givenname: Zhaoyang
  surname: Mu
  fullname: Mu, Zhaoyang
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 7
  givenname: Tangzhen
  surname: Guan
  fullname: Guan, Tangzhen
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 8
  givenname: Guangming
  surname: Xie
  fullname: Xie, Guangming
  email: xiegming@pku.edu.cn
  organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China
– sequence: 9
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: hao8901@dlmu.edu.cn
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 10
  givenname: Minyi
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
BookMark eNqFkE1PwzAMhnMYEmPsH3DIH-hImqQtHJDQ-JQmcYFzlA-XZZSkSsIG_55u5cQBfLFl-31lPydo4oMHhM4oWVBCq_PNwisfwC9KUvIFpYRQOkHTsqS0KBshjtE8pQ0ZohK0puUUfd4A9EUHKnrnXwuVkksZLM7R6QAdmKEweLd26Q0ibkPEftjFrYPO4h6igT674LHyFgffOQ84ZZUBQ8ruXR1mocUf3kLcDf2It7B2poNTdNSqLsH8J8_Qy93t8_KhWD3dPy6vV4VhpMqFtkwQ2jBjoRWtqa2-0BUHralWlvEaBNM105YqxpigXDek4VDzmoOpBWvYDF2OviaGlCK00rh8uCtH5TpJidyjkxs5opN7dHJEN4j5L3Efh6_i13-yq1EGw2NbB1Em48AbsC4ORKUN7m-Db9LTkcU
CitedBy_id crossref_primary_10_1016_j_cej_2025_160604
crossref_primary_10_1016_j_nanoen_2025_110763
crossref_primary_10_1016_j_ymssp_2025_112459
crossref_primary_10_1002_admt_202500072
crossref_primary_10_1557_s43577_025_00875_1
crossref_primary_10_1063_5_0244010
Cites_doi 10.1089/soro.2016.0069
10.1007/s00542-014-2350-1
10.1109/TVT.2021.3135438
10.1007/s42235-021-0034-y
10.1002/adem.202000821
10.1109/JOE.2012.2235664
10.1088/1361-6501/aae128
10.1109/TVT.2021.3097084
10.1038/s41528-022-00160-0
10.1016/j.nanoen.2012.01.004
10.1146/annurev-fluid-121108-145456
10.1002/advs.202002017
10.1016/j.apor.2020.102321
10.1002/admt.202101098
10.1039/C5EE01532D
10.1109/48.107149
10.1117/12.2586895
10.1089/soro.2021.0166
10.1109/ACCESS.2019.2929932
10.1016/j.oceaneng.2011.10.010
10.1109/ACCESS.2020.3031808
10.3723/ut.34.107
10.3390/s17061220
10.1002/adfm.201302453
10.1145/1121776.1121779
10.1016/j.fmre.2021.03.002
10.1098/rstb.2011.0155
10.3390/photonics6040123
10.1186/s10033-021-00674-0
10.34133/2021/5963293
10.1021/nn4053292
10.34133/2021/9864967
10.1016/j.nanoen.2022.107210
10.1109/JSEN.2013.2259227
10.1016/j.nanoen.2017.06.035
10.1007/s00422-012-0525-3
10.1109/JOE.2012.2221812
10.1016/j.nanoen.2022.107633
10.3390/s21237849
10.4031/MTSJ.50.4.3
10.1017/jfm.2015.513
10.1016/j.measurement.2020.108866
10.1016/j.oceaneng.2017.10.046
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2024.110011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2024_110011
S2211285524007614
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-bd350183cdef5fc7db9b64ebb1bad347e53b73bd1a333514b8084e7474ec75383
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:57:15 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Sat Sep 21 16:01:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Triboelectric nanogenerators
Self-powered
Underwater perception
Whisker sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-bd350183cdef5fc7db9b64ebb1bad347e53b73bd1a333514b8084e7474ec75383
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2024_110011
crossref_primary_10_1016_j_nanoen_2024_110011
elsevier_sciencedirect_doi_10_1016_j_nanoen_2024_110011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Xu, Zheng, Liu, Wang, Wang, Guan, Xie, Xu (bib42) 2022; 101
Fitzpatrick, Singhvi, Arbabian (bib13) 2020; 8
Fan, Tian, Wang (bib35) 2012; 1
Wang, Chen, Lin (bib34) 2015; 8
Tu, Duman, Stojanovic, Proakis (bib19) 2012; 38
Catipovic (bib20) 1990; 15
Zhang, H., Yang, Y., Su, Y., Chen, J., Adams, K., Lee, S., … Wang, Z.L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Advanced Functional Materials, 24(10), 1401-1407.
Shizhe (bib24) 2014; 20
Zhang, H., Yang, Y., Zhong, X., Su, Y., Zhou, Y., Hu, C., Wang, Z.L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS nano, 8(1), 680-689.
Wang, Han, Hou, Guizani, Peng (bib15) 2021; 71
Mogdans, Bleckmann (bib23) 2012; 106
Zhai, Zheng, Xie (bib25) 2021; 18
Abreu, Antonelli, Arrichiello, Caffaz, Caiti, Casalino, Volpi, De Jong, De Palma, Duarte (bib14) 2016; 50
Jiang, Ma, Fu, Zhang (bib30) 2017; 17
Xu, Wang, Wang, Chen, Liu, Zheng, Li, Xu, Tao, Xie (bib43) 2021
Sun, Cui, Chen (bib7) 2021; 21
Sheikh, Felemban, Felemban, Qaisar (bib9) 2016
Xie, Gao, Wu, Chen, Wang, Tong, Zhang, Lan, He, Mu (bib37) 2021
Wang, Liu, Wang, Zheng, Guan, Liu, Wang, Chen, Wang, Xie (bib33) 2022; 7
J. Shi, X. Zhuo, C. Zhang, Y.X. Bian, H. ShenResearch on key technologies of underwater target detection. In: Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Vol. 11763, SPIE, 2021, pp. 1128–1137. .
Goyal, Dave, Verma (bib4) 2017; 34
Ghafoor, Noh (bib1) 2019; 7
Zhang, Shan, Xie, Miao, Du, Song (bib48) 2021; 172
Fallon, Folkesson, McClelland, Leonard (bib11) 2013; 38
Zhou, Ren, Chen, Niu, Han, Ren (bib28) 2021; 8
Davies, Reaud, Dussud, Woerther (bib5) 2011; 38
Wang, Xu, Wang, Zheng, Liu, Liu, Chen, Wang, Xie, Tao (bib45) 2022; 97
Teague, Allen, Scott (bib6) 2018; 147
Zhang, Zhang, Wang, Liu, Yang, Zhou, Bian (bib12) 2021; 107
Chen, Mathai, Xu, Wang (bib18) 2019; 6
Asadnia, Kottapalli, Shen, Miao, Triantafyllou (bib29) 2013; 13
Beem, Hildner, Triantafyllou (bib31) 2012
Shelley, Zhang (bib22) 2011; 43
Liu, Gao, Sarkodie-Gyan, Li (bib46) 2018; 29
Beem, Triantafyllou (bib26) 2015; 783
Gul, Su, Choi (bib49) 2018; 5
Rong, Zhang, Zhang, Mao, Liu, Song (bib27) 2021; 23
Beem (bib32) 2015
Cong, Gu, Zhang, Gao (bib8) 2021; 1
Xu, Liu, Liu, Wang, Zheng, Wang, Chen, Wang, Wang, Fu (bib41) 2022; 6
Stocking, Eberhardt, Shakhsheer, Calhoun, Paulus, Appleby (bib47) 2010
Miersch, Hanke, Wieskotten, Hanke, Oeffner, Leder, Brede, Witte, Dehnhardt (bib21) 2011; 366
Han, Gong, Wang, Mart´ınez-Garc´ıa, Peng (bib3) 2021; 70
Xu, Zheng, Liu, Liu, Wang, Wang, Guan, Fu, Xu, Xie (bib44) 2023; 6
Akyildiz, Pompili, Melodia (bib16) 2004; 1
Liu, Jiang, Wu, Ma, Chen, Zhang (bib50) 2023; 10
Wang, Jiang, Xu (bib36) 2017; 39
Wang, Shi, Yang, Tao, Li, Lei, Liu, Wang, Chen (bib40) 2022; 18
Cochenour, Mullen, Laux (bib17) 2008
Sun, Wang, Lu, Chen, Yang, Ni (bib10) 2022; 35
Miersch (10.1016/j.nanoen.2024.110011_bib21) 2011; 366
Asadnia (10.1016/j.nanoen.2024.110011_bib29) 2013; 13
Wang (10.1016/j.nanoen.2024.110011_bib15) 2021; 71
Shelley (10.1016/j.nanoen.2024.110011_bib22) 2011; 43
Fitzpatrick (10.1016/j.nanoen.2024.110011_bib13) 2020; 8
Teague (10.1016/j.nanoen.2024.110011_bib6) 2018; 147
Fallon (10.1016/j.nanoen.2024.110011_bib11) 2013; 38
Abreu (10.1016/j.nanoen.2024.110011_bib14) 2016; 50
Rong (10.1016/j.nanoen.2024.110011_bib27) 2021; 23
10.1016/j.nanoen.2024.110011_bib39
10.1016/j.nanoen.2024.110011_bib38
Ghafoor (10.1016/j.nanoen.2024.110011_bib1) 2019; 7
Xu (10.1016/j.nanoen.2024.110011_bib41) 2022; 6
Beem (10.1016/j.nanoen.2024.110011_bib31) 2012
Mogdans (10.1016/j.nanoen.2024.110011_bib23) 2012; 106
Fan (10.1016/j.nanoen.2024.110011_bib35) 2012; 1
Cochenour (10.1016/j.nanoen.2024.110011_bib17) 2008
Sun (10.1016/j.nanoen.2024.110011_bib7) 2021; 21
Cong (10.1016/j.nanoen.2024.110011_bib8) 2021; 1
Liu (10.1016/j.nanoen.2024.110011_bib46) 2018; 29
Han (10.1016/j.nanoen.2024.110011_bib3) 2021; 70
Liu (10.1016/j.nanoen.2024.110011_bib50) 2023; 10
Zhang (10.1016/j.nanoen.2024.110011_bib12) 2021; 107
Zhai (10.1016/j.nanoen.2024.110011_bib25) 2021; 18
Sun (10.1016/j.nanoen.2024.110011_bib10) 2022; 35
Wang (10.1016/j.nanoen.2024.110011_bib34) 2015; 8
Wang (10.1016/j.nanoen.2024.110011_bib36) 2017; 39
Catipovic (10.1016/j.nanoen.2024.110011_bib20) 1990; 15
Shizhe (10.1016/j.nanoen.2024.110011_bib24) 2014; 20
Jiang (10.1016/j.nanoen.2024.110011_bib30) 2017; 17
Gul (10.1016/j.nanoen.2024.110011_bib49) 2018; 5
Wang (10.1016/j.nanoen.2024.110011_bib33) 2022; 7
Wang (10.1016/j.nanoen.2024.110011_bib40) 2022; 18
Akyildiz (10.1016/j.nanoen.2024.110011_bib16) 2004; 1
Stocking (10.1016/j.nanoen.2024.110011_bib47) 2010
Tu (10.1016/j.nanoen.2024.110011_bib19) 2012; 38
Liu (10.1016/j.nanoen.2024.110011_bib42) 2022; 101
Xu (10.1016/j.nanoen.2024.110011_bib44) 2023; 6
Wang (10.1016/j.nanoen.2024.110011_bib45) 2022; 97
Zhang (10.1016/j.nanoen.2024.110011_bib48) 2021; 172
Beem (10.1016/j.nanoen.2024.110011_bib26) 2015; 783
Davies (10.1016/j.nanoen.2024.110011_bib5) 2011; 38
10.1016/j.nanoen.2024.110011_bib2
Chen (10.1016/j.nanoen.2024.110011_bib18) 2019; 6
Xu (10.1016/j.nanoen.2024.110011_bib43) 2021
Xie (10.1016/j.nanoen.2024.110011_bib37) 2021
Sheikh (10.1016/j.nanoen.2024.110011_bib9) 2016
Goyal (10.1016/j.nanoen.2024.110011_bib4) 2017; 34
Beem (10.1016/j.nanoen.2024.110011_bib32) 2015
Zhou (10.1016/j.nanoen.2024.110011_bib28) 2021; 8
References_xml – year: 2021
  ident: bib37
  article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting
  publication-title: Research
– volume: 8
  year: 2021
  ident: bib28
  article-title: Bio-inspired soft grippers based on impactive gripping
  publication-title: Adv. Sci.
– volume: 366
  start-page: 3077
  year: 2011
  end-page: 3084
  ident: bib21
  article-title: Flow sensing by pinniped whiskers
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
– volume: 10
  start-page: 97
  year: 2023
  end-page: 105
  ident: bib50
  article-title: Artificial whisker sensor with undulated morphology and self-spread piezoresistors for diverse flow analyses
  publication-title: Soft Robot.
– volume: 1
  start-page: 337
  year: 2021
  end-page: 345
  ident: bib8
  article-title: Underwater robot sensing technology: a survey
  publication-title: Fundam. Res.
– volume: 106
  start-page: 627
  year: 2012
  end-page: 642
  ident: bib23
  article-title: Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system
  publication-title: Biol. Cybern.
– start-page: 2224
  year: 2010
  end-page: 2229
  ident: bib47
  article-title: A capacitance-based whisker-like artificial sensor for fluid motion sensing
  publication-title: Proceedings of the Sensors
– volume: 29
  year: 2018
  ident: bib46
  article-title: A novel biomimetic sensor system for vibration source perception of autonomous underwater vehicles based on artificial lateral lines
  publication-title: Meas. Sci. Technol.
– volume: 107
  year: 2021
  ident: bib12
  article-title: Subsea pipeline leak inspection by autonomous underwater vehicle
  publication-title: Appl. Ocean Res.
– volume: 21
  start-page: 7849
  year: 2021
  ident: bib7
  article-title: Review of underwater sensing technologies and applications
  publication-title: Sensors
– volume: 71
  start-page: 2058
  year: 2021
  end-page: 2069
  ident: bib15
  article-title: A multi-channel interference based source location privacy protection scheme in underwater acoustic sensor networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 17
  start-page: 1220
  year: 2017
  ident: bib30
  article-title: Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection
  publication-title: Sensors
– reference: J. Shi, X. Zhuo, C. Zhang, Y.X. Bian, H. ShenResearch on key technologies of underwater target detection. In: Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Vol. 11763, SPIE, 2021, pp. 1128–1137. .
– volume: 23
  year: 2021
  ident: bib27
  article-title: Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/nanostructured arrays
  publication-title: Adv. Eng. Mater.
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib9
  article-title: Challenges and opportunities for underwater sensor networks
  publication-title: Proceedings of the 12th International Conference on Innovations in Information Technology (IIT)
– volume: 5
  start-page: 122
  year: 2018
  end-page: 132
  ident: bib49
  article-title: Fully 3d printed multi-material soft bio-inspired whisker sensor for underwater-induced vortex detection
  publication-title: Soft Robot.
– volume: 8
  start-page: 189945
  year: 2020
  end-page: 189959
  ident: bib13
  article-title: An airborne sonar system for underwater remote sensing and imaging
  publication-title: IEEE Access
– volume: 1
  start-page: 3
  year: 2004
  end-page: 8
  ident: bib16
  article-title: Challenges for efficient communication in underwater acoustic sensor networks
  publication-title: ACM Sigbed Rev.
– volume: 18
  year: 2022
  ident: bib40
  article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring
  publication-title: Small
– volume: 7
  year: 2022
  ident: bib33
  article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring
  publication-title: Adv. Mater. Technol.
– volume: 7
  start-page: 98841
  year: 2019
  end-page: 98853
  ident: bib1
  article-title: An overview of next-generation underwater target detection and tracking: an integrated underwater architecture
  publication-title: IEEE Access
– volume: 18
  start-page: 264
  year: 2021
  end-page: 291
  ident: bib25
  article-title: Fish lateral line inspired flow sensors and flow-aided control: a review
  publication-title: J. Bionic Eng.
– volume: 6
  start-page: 25
  year: 2022
  ident: bib41
  article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception
  publication-title: npj Flex. Electron.
– volume: 70
  start-page: 9294
  year: 2021
  end-page: 9305
  ident: bib3
  article-title: Multi-auv collaborative data collection algorithm based on q-learning in underwater acoustic sensor networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 43
  start-page: 449
  year: 2011
  end-page: 465
  ident: bib22
  article-title: Flapping and bending bodies interacting with fluid flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 172
  year: 2021
  ident: bib48
  article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity
  publication-title: Measurement
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  ident: bib36
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
– volume: 6
  start-page: 123
  year: 2019
  ident: bib18
  article-title: A study into the effects of factors influencing an underwater, single-pixel imaging system’s performance
  publication-title: : Photonics
– year: 2015
  ident: bib32
  article-title: Passive Wake Detection Using Seal Whisker-inspired Sensing
– volume: 50
  start-page: 42
  year: 2016
  end-page: 53
  ident: bib14
  article-title: Widely scalable mobile underwater sonar technology: An overview of the h2020 wimust project
  publication-title: Mar. Technol. Soc. J.
– volume: 35
  start-page: 5
  year: 2022
  ident: bib10
  article-title: Underwater laser welding/cladding for high-performance repair of marine metal materials: a review
  publication-title: Chin. J. Mech. Eng.
– start-page: 1
  year: 2008
  end-page: 7
  ident: bib17
  article-title: Spatial and temporal dispersion in high bandwidth underwater laser communication links
  publication-title: Proceedings of the MILCOM 2008-2008 IEEE Military Communications Conference
– year: 2021
  ident: bib43
  article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping
  publication-title: Research
– volume: 38
  start-page: 500
  year: 2013
  end-page: 513
  ident: bib11
  article-title: Relocating underwater features autonomously using sonar-based slam
  publication-title: IEEE J. Ocean. Eng.
– start-page: 1
  year: 2012
  end-page: 4
  ident: bib31
  article-title: Characterization of a harbor seal whisker-inspired flow sensor
  publication-title: Proceedings of the 2012 Oceans
– volume: 147
  start-page: 333
  year: 2018
  end-page: 339
  ident: bib6
  article-title: The potential of low-cost rov for use in deep-sea mineral, ore prospecting and monitoring
  publication-title: Ocean Eng.
– reference: Zhang, H., Yang, Y., Su, Y., Chen, J., Adams, K., Lee, S., … Wang, Z.L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Advanced Functional Materials, 24(10), 1401-1407.
– volume: 97
  year: 2022
  ident: bib45
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception
  publication-title: Nano Energy
– volume: 6
  start-page: 0062
  year: 2023
  ident: bib44
  article-title: Deep-learning-assisted underwater 3d tactile tensegrity
  publication-title: Re-Search
– volume: 20
  start-page: 2123
  year: 2014
  end-page: 2136
  ident: bib24
  article-title: Underwater artificial lateral line flow sensors
  publication-title: Microsyst. Technol.
– volume: 101
  year: 2022
  ident: bib42
  article-title: Whisker-inspired and self-powered triboelectric sensor for under-water obstacle detection and collision avoidance
  publication-title: Nano Energy
– volume: 38
  start-page: 2208
  year: 2011
  end-page: 2214
  ident: bib5
  article-title: Mechanical behaviour of hmpe and aramid fibre ropes for deep sea handling operations
  publication-title: Ocean Eng.
– volume: 783
  start-page: 306
  year: 2015
  end-page: 322
  ident: bib26
  article-title: Wake-induced ‘slaloming’ response ex-plains exquisite sensitivity of seal whisker-like sensors
  publication-title: J. Fluid Mech.
– reference: Zhang, H., Yang, Y., Zhong, X., Su, Y., Zhou, Y., Hu, C., Wang, Z.L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS nano, 8(1), 680-689.
– volume: 13
  start-page: 3918
  year: 2013
  end-page: 3925
  ident: bib29
  article-title: Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles
  publication-title: IEEE Sens. J.
– volume: 34
  year: 2017
  ident: bib4
  article-title: Trust model for cluster head validation in underwater wireless sensor networks
  publication-title: Underw. Technol.
– volume: 38
  start-page: 333
  year: 2012
  end-page: 346
  ident: bib19
  article-title: Multiple-resampling receiver design for ofdm over doppler-distorted underwater acoustic channels
  publication-title: IEEE J. Ocean. Eng.
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bib35
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: bib34
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 205
  year: 1990
  end-page: 216
  ident: bib20
  article-title: Performance limitations in underwater acoustic telemetry
  publication-title: IEEE J. Ocean. Eng.
– volume: 5
  start-page: 122
  issue: 2
  year: 2018
  ident: 10.1016/j.nanoen.2024.110011_bib49
  article-title: Fully 3d printed multi-material soft bio-inspired whisker sensor for underwater-induced vortex detection
  publication-title: Soft Robot.
  doi: 10.1089/soro.2016.0069
– volume: 20
  start-page: 2123
  year: 2014
  ident: 10.1016/j.nanoen.2024.110011_bib24
  article-title: Underwater artificial lateral line flow sensors
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-014-2350-1
– volume: 71
  start-page: 2058
  issue: 2
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib15
  article-title: A multi-channel interference based source location privacy protection scheme in underwater acoustic sensor networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3135438
– volume: 18
  start-page: 264
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib25
  article-title: Fish lateral line inspired flow sensors and flow-aided control: a review
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-021-0034-y
– volume: 23
  issue: 1
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib27
  article-title: Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/nanostructured arrays
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202000821
– volume: 38
  start-page: 500
  issue: 3
  year: 2013
  ident: 10.1016/j.nanoen.2024.110011_bib11
  article-title: Relocating underwater features autonomously using sonar-based slam
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2012.2235664
– volume: 29
  issue: 12
  year: 2018
  ident: 10.1016/j.nanoen.2024.110011_bib46
  article-title: A novel biomimetic sensor system for vibration source perception of autonomous underwater vehicles based on artificial lateral lines
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aae128
– volume: 70
  start-page: 9294
  issue: 9
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib3
  article-title: Multi-auv collaborative data collection algorithm based on q-learning in underwater acoustic sensor networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3097084
– start-page: 1
  year: 2012
  ident: 10.1016/j.nanoen.2024.110011_bib31
  article-title: Characterization of a harbor seal whisker-inspired flow sensor
– volume: 18
  issue: 10
  year: 2022
  ident: 10.1016/j.nanoen.2024.110011_bib40
  article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring
  publication-title: Small
– volume: 6
  start-page: 25
  issue: 1
  year: 2022
  ident: 10.1016/j.nanoen.2024.110011_bib41
  article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-022-00160-0
– volume: 1
  start-page: 328
  issue: 2
  year: 2012
  ident: 10.1016/j.nanoen.2024.110011_bib35
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 43
  start-page: 449
  year: 2011
  ident: 10.1016/j.nanoen.2024.110011_bib22
  article-title: Flapping and bending bodies interacting with fluid flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-121108-145456
– volume: 8
  issue: 9
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib28
  article-title: Bio-inspired soft grippers based on impactive gripping
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002017
– volume: 107
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib12
  article-title: Subsea pipeline leak inspection by autonomous underwater vehicle
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102321
– volume: 7
  issue: 6
  year: 2022
  ident: 10.1016/j.nanoen.2024.110011_bib33
  article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202101098
– volume: 8
  start-page: 2250
  issue: 8
  year: 2015
  ident: 10.1016/j.nanoen.2024.110011_bib34
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– start-page: 1
  year: 2016
  ident: 10.1016/j.nanoen.2024.110011_bib9
  article-title: Challenges and opportunities for underwater sensor networks
– volume: 15
  start-page: 205
  issue: 3
  year: 1990
  ident: 10.1016/j.nanoen.2024.110011_bib20
  article-title: Performance limitations in underwater acoustic telemetry
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.107149
– ident: 10.1016/j.nanoen.2024.110011_bib2
  doi: 10.1117/12.2586895
– volume: 10
  start-page: 97
  issue: 1
  year: 2023
  ident: 10.1016/j.nanoen.2024.110011_bib50
  article-title: Artificial whisker sensor with undulated morphology and self-spread piezoresistors for diverse flow analyses
  publication-title: Soft Robot.
  doi: 10.1089/soro.2021.0166
– volume: 7
  start-page: 98841
  year: 2019
  ident: 10.1016/j.nanoen.2024.110011_bib1
  article-title: An overview of next-generation underwater target detection and tracking: an integrated underwater architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929932
– volume: 38
  start-page: 2208
  issue: 17-18
  year: 2011
  ident: 10.1016/j.nanoen.2024.110011_bib5
  article-title: Mechanical behaviour of hmpe and aramid fibre ropes for deep sea handling operations
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2011.10.010
– volume: 8
  start-page: 189945
  year: 2020
  ident: 10.1016/j.nanoen.2024.110011_bib13
  article-title: An airborne sonar system for underwater remote sensing and imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031808
– volume: 34
  issue: 3
  year: 2017
  ident: 10.1016/j.nanoen.2024.110011_bib4
  article-title: Trust model for cluster head validation in underwater wireless sensor networks
  publication-title: Underw. Technol.
  doi: 10.3723/ut.34.107
– start-page: 2224
  year: 2010
  ident: 10.1016/j.nanoen.2024.110011_bib47
  article-title: A capacitance-based whisker-like artificial sensor for fluid motion sensing
– volume: 17
  start-page: 1220
  issue: 6
  year: 2017
  ident: 10.1016/j.nanoen.2024.110011_bib30
  article-title: Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection
  publication-title: Sensors
  doi: 10.3390/s17061220
– ident: 10.1016/j.nanoen.2024.110011_bib38
  doi: 10.1002/adfm.201302453
– volume: 1
  start-page: 3
  issue: 2
  year: 2004
  ident: 10.1016/j.nanoen.2024.110011_bib16
  article-title: Challenges for efficient communication in underwater acoustic sensor networks
  publication-title: ACM Sigbed Rev.
  doi: 10.1145/1121776.1121779
– volume: 1
  start-page: 337
  issue: 3
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib8
  article-title: Underwater robot sensing technology: a survey
  publication-title: Fundam. Res.
  doi: 10.1016/j.fmre.2021.03.002
– volume: 366
  start-page: 3077
  issue: 1581
  year: 2011
  ident: 10.1016/j.nanoen.2024.110011_bib21
  article-title: Flow sensing by pinniped whiskers
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
  doi: 10.1098/rstb.2011.0155
– volume: 6
  start-page: 123
  year: 2019
  ident: 10.1016/j.nanoen.2024.110011_bib18
  article-title: A study into the effects of factors influencing an underwater, single-pixel imaging system’s performance
  publication-title: : Photonics
  doi: 10.3390/photonics6040123
– volume: 35
  start-page: 5
  issue: 1
  year: 2022
  ident: 10.1016/j.nanoen.2024.110011_bib10
  article-title: Underwater laser welding/cladding for high-performance repair of marine metal materials: a review
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-021-00674-0
– year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib37
  article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting
  publication-title: Research
  doi: 10.34133/2021/5963293
– ident: 10.1016/j.nanoen.2024.110011_bib39
  doi: 10.1021/nn4053292
– year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib43
  article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping
  publication-title: Research
  doi: 10.34133/2021/9864967
– volume: 97
  year: 2022
  ident: 10.1016/j.nanoen.2024.110011_bib45
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107210
– volume: 13
  start-page: 3918
  issue: 10
  year: 2013
  ident: 10.1016/j.nanoen.2024.110011_bib29
  article-title: Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2259227
– volume: 39
  start-page: 9
  year: 2017
  ident: 10.1016/j.nanoen.2024.110011_bib36
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 106
  start-page: 627
  year: 2012
  ident: 10.1016/j.nanoen.2024.110011_bib23
  article-title: Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-012-0525-3
– start-page: 1
  year: 2008
  ident: 10.1016/j.nanoen.2024.110011_bib17
  article-title: Spatial and temporal dispersion in high bandwidth underwater laser communication links
– volume: 38
  start-page: 333
  issue: 2
  year: 2012
  ident: 10.1016/j.nanoen.2024.110011_bib19
  article-title: Multiple-resampling receiver design for ofdm over doppler-distorted underwater acoustic channels
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2012.2221812
– volume: 101
  year: 2022
  ident: 10.1016/j.nanoen.2024.110011_bib42
  article-title: Whisker-inspired and self-powered triboelectric sensor for under-water obstacle detection and collision avoidance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107633
– volume: 21
  start-page: 7849
  issue: 23
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib7
  article-title: Review of underwater sensing technologies and applications
  publication-title: Sensors
  doi: 10.3390/s21237849
– volume: 50
  start-page: 42
  issue: 4
  year: 2016
  ident: 10.1016/j.nanoen.2024.110011_bib14
  article-title: Widely scalable mobile underwater sonar technology: An overview of the h2020 wimust project
  publication-title: Mar. Technol. Soc. J.
  doi: 10.4031/MTSJ.50.4.3
– volume: 783
  start-page: 306
  year: 2015
  ident: 10.1016/j.nanoen.2024.110011_bib26
  article-title: Wake-induced ‘slaloming’ response ex-plains exquisite sensitivity of seal whisker-like sensors
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.513
– volume: 172
  year: 2021
  ident: 10.1016/j.nanoen.2024.110011_bib48
  article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108866
– volume: 147
  start-page: 333
  year: 2018
  ident: 10.1016/j.nanoen.2024.110011_bib6
  article-title: The potential of low-cost rov for use in deep-sea mineral, ore prospecting and monitoring
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.10.046
– volume: 6
  start-page: 0062
  year: 2023
  ident: 10.1016/j.nanoen.2024.110011_bib44
  article-title: Deep-learning-assisted underwater 3d tactile tensegrity
  publication-title: Re-Search
– year: 2015
  ident: 10.1016/j.nanoen.2024.110011_bib32
SSID ssj0000651712
Score 2.4549682
Snippet Agile near field perception remains a challenge for underwater vehicles, which could significantly enhance their capability of online state estimation. Harbor...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110011
SubjectTerms Deep learning
Self-powered
Triboelectric nanogenerators
Underwater perception
Whisker sensor
Title Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle
URI https://dx.doi.org/10.1016/j.nanoen.2024.110011
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qBa1i7pE13nAbTALELTNqtahKXDVBXjcE48duJm3YaEgKJY6NYihwnttPPnwk59zoqTARCcbhWTEjeYSrU9uClqZfoBMIU8L3jbhgORuJmHIxrpFfVwiCssrz73Z1e3NblSKvUZiufTlv3bZu7tKMgQBSkTcaRE1QIiVZ-8emv3lmsi_Vl8dMT5zMUqCroCphXlmQzQCLUtkBIvOf7P3uoNa_T3yHbZbhIu25Fu6QG2R7ZWiMR3CcflwA5K7s_PDIbDOPOGYqtrGauy81U0-Vk-voMc2pjVJrZubSArtF8hWuhSWao482gRZURRf4NV9hIZynFYrP50o7P6TtMcDUHZNS_eugNWNlPgWmbGCyYMgV9H9cG0iDV0ii7UQKU8lViuJAQcCW5Mn7COQL8VeRFAmy-IUDbrCbih6SezTI4ItRPIQTtC3t-pRBGJlpGIQ-10cZ6u07QILzSYaxLsnHsefESV6iyp9hpPkbNx07zDcJWUrkj2_hjvqy2J_5mNLH1B79KHv9b8oRs4pfD852S-mL-Bmc2LlmoZmF4TbLRvb4dDL8Apu3krg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4inGMweuYeuSNt0R8dB4XmDSblWTuDBA3TQG48Rvx27aCSQEEtc0liInju3082fGDpptE6WKoDjSGqG0bAsTWTS8LGumNoUoA3rvuL6JOl110Qt7M-y4qoUhWGV59_s7vbity5FGqc3GsN9v3LYwd2nFYUgoSEzG1SybU2i-1Mbg8COYPrSgjw108deTBARJVCV0Bc4rT_MBEBNqSxEmvhkEP7uoL27nbJktlfEiP_JLWmEzkK-yxS8sgmvs_QRgKMr2D_cCo2HaOsepl9XAt7npWz556L88wYhjkMpznMsL7BofToEtPM0d98QZvCgz4kTA4Ssb-SDjVG02muD4iL_BA61mnXXPTu-OO6JsqCAsZgZjYVzB3yetgyzMrHYGd0qBMYFJnVQaQmm0NC5IpSSEv4mbsQJMOBRYTGtiucFq-SCHTcaDDCKwgUID1ko5nVodRzKyzjp0d-2wzmSlw8SWbOPU9OI5qWBlj4nXfEKaT7zm60xMpYaebeOP-branuTbqUnQIfwqufVvyX0237m7vkquzm8ut9kCffHgvh1WG49eYReDlLHZKw7hJ_M75jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-assisted+triboelectric+whisker+for+near+field+perception+and+online+state+estimation+of+underwater+vehicle&rft.jtitle=Nano+energy&rft.au=Xu%2C+Peng&rft.au=Liu%2C+Jianhua&rft.au=Liu%2C+Bo&rft.au=Li%2C+Yuanzheng&rft.date=2024-10-01&rft.issn=2211-2855&rft.volume=129&rft.spage=110011&rft_id=info:doi/10.1016%2Fj.nanoen.2024.110011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2024_110011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon