Underwater triboelectric nanogenerator
Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries. Recent breakthroughs in science and technology have propelled us from surface endeavors into the depths of the underwater world. However, a host...
Saved in:
Published in | Nano energy Vol. 118; p. 109018 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries. Recent breakthroughs in science and technology have propelled us from surface endeavors into the depths of the underwater world. However, a host of challenges emerges beneath the waves, encompassing energy constraints, limited sensing capabilities, and communication obstacles for submerged equipment. These challenges, which resonate across diverse fields, demand innovative solutions to advance scientific pursuits and practical applications. Triboelectric nanogenerators (TENGs), pioneered by Zhong Lin Wang in 2012, represent a revolutionary leap in energy harvesting and self-powered sensing technologies. These devices have fostered exploration and innovation in various domains, including marine science and technology. In response to the unique challenges posed by the underwater environment, a specialized application of TENGs has emerged: underwater TENGs. These innovative devices hold the potential to transform underwater exploration by increasing energy harvesting, expanding sensing capabilities, and enhancing communication systems. This comprehensive review aims to demystify the domain of underwater TENG technology, delving into the theories, design strategies, and recent breakthroughs that underpin this emerging field. This review also contemplates the future trajectories of underwater TENGs, envisioning their transformative role in elevating underwater research and technology.
[Display omitted]
•A comprehensive review aims to demystify the domain of underwater TENG technology.•A holistic overview of the progress in the field of underwater TENGs.•A broad outlook on the future development of underwater TENG technology. |
---|---|
AbstractList | Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries. Recent breakthroughs in science and technology have propelled us from surface endeavors into the depths of the underwater world. However, a host of challenges emerges beneath the waves, encompassing energy constraints, limited sensing capabilities, and communication obstacles for submerged equipment. These challenges, which resonate across diverse fields, demand innovative solutions to advance scientific pursuits and practical applications. Triboelectric nanogenerators (TENGs), pioneered by Zhong Lin Wang in 2012, represent a revolutionary leap in energy harvesting and self-powered sensing technologies. These devices have fostered exploration and innovation in various domains, including marine science and technology. In response to the unique challenges posed by the underwater environment, a specialized application of TENGs has emerged: underwater TENGs. These innovative devices hold the potential to transform underwater exploration by increasing energy harvesting, expanding sensing capabilities, and enhancing communication systems. This comprehensive review aims to demystify the domain of underwater TENG technology, delving into the theories, design strategies, and recent breakthroughs that underpin this emerging field. This review also contemplates the future trajectories of underwater TENGs, envisioning their transformative role in elevating underwater research and technology.
[Display omitted]
•A comprehensive review aims to demystify the domain of underwater TENG technology.•A holistic overview of the progress in the field of underwater TENGs.•A broad outlook on the future development of underwater TENG technology. |
ArticleNumber | 109018 |
Author | Xu, Peng Liu, Jianhua Si, Jicang Deng, Jian Xu, Minyi Wang, Siyuan Wang, Zhong Lin Wang, Hao |
Author_xml | – sequence: 1 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China – sequence: 2 givenname: Peng surname: Xu fullname: Xu, Peng organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, Beijing, China – sequence: 3 givenname: Jianhua surname: Liu fullname: Liu, Jianhua organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China – sequence: 4 givenname: Hao surname: Wang fullname: Wang, Hao organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China – sequence: 5 givenname: Jicang surname: Si fullname: Si, Jicang organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China – sequence: 6 givenname: Jian surname: Deng fullname: Deng, Jian email: zjudengjian@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310027, Zhejiang, China – sequence: 7 givenname: Minyi orcidid: 0000-0002-3772-8340 surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China – sequence: 8 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zlwang@binn.cas.cn organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, No. 1 Yangyangdong Road, Beijing, 101400, Beijing, China |
BookMark | eNqFkE1LxDAQhnNYwXXdf-BhT95aM0mbNh4EWfyCBS_uOSTpVFJqImlQ_Pem1JMHncsMLzwvPHNGVj54JOQCaAkUxNVQeu0D-pJRxnMkKbQrsmYMoGBtXZ-S7TQNNI-ooQG2JpdH32H81AnjLkVnAo5o82F3c9Mreow6hXhOTno9Trj92RtyvL972T8Wh-eHp_3tobCcilQY22krBBe8tg3QimvJK-SVYR1jtmVti7UUHTBuegtSGsihYQ0HIdum4XxDrpdeG8M0ReyVdUknF3yK2o0KqJpF1aAWUTWLqkU0w9Uv-D26Nx2__sNuFgyz2IfDqCbr0FvsXMy_UF1wfxd8AywRcd8 |
CitedBy_id | crossref_primary_10_1039_D4TA03575E crossref_primary_10_1002_asia_202401109 crossref_primary_10_1016_j_mtchem_2024_102384 crossref_primary_10_1002_admt_202401744 crossref_primary_10_1002_admt_202500072 crossref_primary_10_1016_j_xcrp_2024_101871 crossref_primary_10_1016_j_apenergy_2024_124455 crossref_primary_10_1016_j_mtcomm_2024_109616 crossref_primary_10_1088_2631_7990_ada858 crossref_primary_10_1016_j_pnsc_2024_09_007 crossref_primary_10_1039_D4NA00222A crossref_primary_10_1109_JSEN_2024_3417340 crossref_primary_10_1016_j_jallcom_2025_179623 crossref_primary_10_1016_j_nanoen_2025_110738 crossref_primary_10_1557_s43577_025_00875_1 crossref_primary_10_3390_app15052846 crossref_primary_10_1002_ece2_78 crossref_primary_10_1109_JSEN_2024_3395970 |
Cites_doi | 10.1016/j.oceaneng.2023.113617 10.1016/j.nanoen.2017.12.049 10.1002/adfm.201805216 10.1017/jfm.2022.624 10.1016/j.nanoen.2014.11.034 10.1016/j.compscitech.2022.109542 10.1021/acsenergylett.2c01908 10.3390/s21041514 10.3390/en14185600 10.1021/acsami.0c08213 10.1063/5.0055552 10.1039/D3IM00070B 10.1038/s41467-020-15926-1 10.1016/j.nanoen.2021.106227 10.1016/j.adhoc.2005.01.004 10.1038/s41528-022-00160-0 10.1016/j.ymssp.2022.109729 10.1021/acsnano.5b00534 10.1002/adom.202102091 10.1016/j.nanoen.2019.05.007 10.1038/s41467-019-09461-x 10.1016/j.nanoen.2023.108387 10.1016/j.nanoen.2022.107691 10.3389/fmars.2019.00241 10.1016/j.isci.2020.101682 10.1002/eom2.12049 10.1016/j.nanoen.2023.108445 10.1002/aisy.202070020 10.1039/C4FD00159A 10.1039/C9NA00790C 10.1002/adfm.202106066 10.1007/s10854-022-09350-y 10.1016/j.nanoen.2018.11.022 10.1002/adfm.202111662 10.1002/admt.202001199 10.1021/acsami.0c03843 10.1039/D1TA04861A 10.1002/smll.202007805 10.1016/j.nanoen.2022.107428 10.1038/542159a 10.1016/j.mattod.2019.05.016 10.1002/aenm.202203040 10.1038/s43586-023-00220-3 10.1016/j.nanoen.2022.106926 10.1039/C9SE01184F 10.1007/s12274-022-4715-6 10.1016/j.nanoen.2021.105887 10.1021/acsaelm.2c00887 10.1021/acsnano.1c05127 10.4031/002533208786861263 10.1016/j.nanoen.2019.104272 10.1038/s41378-020-0163-1 10.1038/s41467-022-31042-8 10.1002/aelm.202100277 10.1016/j.nanoen.2021.106650 10.1007/s40544-018-0217-7 10.1146/annurev.fluid.40.111406.102139 10.1016/j.nanoen.2017.06.035 10.1016/j.nanoen.2019.02.051 10.3390/batteries8110215 10.1109/LRA.2022.3187514 10.1038/s41467-019-10433-4 10.1088/1361-6528/aa6612 10.1002/adma.201807201 10.1002/admt.202101098 10.3390/s21237849 10.1038/s41467-020-17842-w 10.1016/j.nanoen.2021.106335 10.1016/j.nanoen.2022.107633 10.1016/j.compositesb.2023.110574 10.1098/rsta.2011.0214 10.1016/j.elstat.2016.01.002 10.1016/j.nanoen.2020.104980 10.1023/A:1008984701078 10.1002/adma.201905696 10.1039/D1EE02623B 10.1002/aqc.3257 10.1016/j.ultsonch.2021.105718 10.1002/advs.202000186 10.1002/aenm.201502566 10.1016/j.nanoen.2021.106236 10.1016/j.nanoen.2022.107196 10.1038/s41467-020-19086-0 10.1063/1.5028478 10.1039/D0EE01258K 10.1016/j.nanoen.2019.04.004 10.1016/j.nanoen.2022.107879 10.1021/acsaelm.2c00537 10.1038/s41467-020-19059-3 10.1002/aesr.202000045 10.34133/research.0062 10.1007/s40820-020-0373-y 10.1007/s12274-023-6025-z 10.1109/MCE.2020.2988441 10.1016/j.nanoen.2019.104131 10.1002/adfm.202205438 10.1016/j.dsp.2021.103038 10.1016/j.nanoen.2021.106503 10.1016/j.nanoen.2021.106476 10.1016/j.nanoen.2022.107210 10.1021/acsnano.6b06622 10.1016/j.nanoen.2019.03.067 10.1007/s12274-016-1275-7 10.1002/adma.202004178 10.1039/D3IM00071K 10.1038/s41467-021-21729-9 10.1109/MNET.2019.1800425 10.1002/admi.201600187 10.1007/s12274-014-0559-z 10.1108/IR-01-2015-0010 10.1039/D1TA05694H 10.1038/s41528-023-00244-5 10.1016/j.gerr.2023.100006 10.1016/j.oceaneng.2017.11.045 10.1002/advs.201801883 10.1002/adfm.202303288 10.1002/adma.201706790 10.1016/j.nanoen.2020.104684 10.1103/PhysRevLett.126.124501 10.1038/s41467-019-14278-9 10.1016/j.mattod.2016.12.001 10.1016/j.oceaneng.2023.115376 10.1039/D0NR04326E 10.1016/j.mattod.2017.10.006 10.1016/j.nanoen.2023.108392 10.1016/j.nanoen.2016.07.028 10.3390/s22124460 10.1002/adfm.201900098 10.1002/adma.202205064 10.1016/j.apsusc.2022.154765 10.1016/j.nanoen.2012.01.004 10.1016/j.ijhydene.2019.05.035 10.1016/j.nanoen.2023.108210 10.1002/aenm.201501593 10.1016/j.nanoen.2020.105358 10.1016/j.nanoen.2018.11.006 10.1002/admt.202201245 10.1016/j.nanoen.2018.03.073 10.1016/j.nanoen.2021.105865 10.1016/j.apenergy.2022.119648 10.1016/j.nanoen.2017.04.053 10.1002/adma.202104681 10.1016/j.nanoen.2014.05.018 10.1016/j.ccr.2020.213597 10.1002/adfm.202208277 10.3390/mi13081219 10.1021/acsnano.7b02156 10.1021/acsnano.6b03042 10.1002/advs.202000261 10.1021/acsnano.6b03293 10.1016/j.rineng.2022.100487 10.1002/adma.202200724 10.1002/admt.202000531 10.1002/admt.201800588 10.1016/j.ultras.2023.107045 10.1016/j.energy.2019.01.120 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2023.109018 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2023_109018 S2211285523008558 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-bcdac663635c71043a934e34b2d22c8288e596d123bfc199b1c82b27316987733 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:04:24 EDT 2025 Tue Jul 01 00:57:07 EDT 2025 Fri Feb 23 02:35:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Underwater communication Underwater energy harvesting Underwater sensing Underwater tribolelctric nanogenerator Underwater environment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-bcdac663635c71043a934e34b2d22c8288e596d123bfc199b1c82b27316987733 |
ORCID | 0000-0002-3772-8340 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2023_109018 crossref_primary_10_1016_j_nanoen_2023_109018 elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_109018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-15 |
PublicationDateYYYYMMDD | 2023-12-15 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Akyildiz, Pompili, Melodia (b17) 2005; 3 Zou, Guo, Xue, Zhang, Shen, Liu, Wang, He, Dai, Jiang (b157) 2020; 11 Heidemann, Stojanovic, Zorzi (b18) 2012; 370 Khalil, Saeed, Babar, Jan (b15) 2020; 10 Dong, Wang, Yang, Wang, Lu, Wang (b25) 2023 Wen, Guo, Zi, Yeh, Wang, Deng, Wang, Li, Hu, Zhu (b38) 2016; 10 Zheng, Xu, Meng, Liu, Wang, Wang, Xie, Tao, Xu (b29) 2022; 7 Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu (b67) 2019; 10 Levin, Bett, Gates, Heimbach, Howe, Janssen, McCurdy, Ruhl, Snelgrove, Stocks (b3) 2019; 6 Weydahl, Gilljam, Lian, Johannessen, Holm, Hasvold (b14) 2020; 45 Oh, Hajra, Divya, Panda, Shin, Oh, Lee, Oh, Deepti, Kim (b94) 2022; 33 Xu, Zheng, Liu, Liu, Wang, Wang, Guan, Fu, Xu, Xie (b113) 2023; 6 Lai, Chang, Yang, Su, Leu, Chu, Sha, Wu (b138) 2019; 60 Mistewicz, Jesionek, Kim, Hajra, Kozioł, Chrobok, Wang (b36) 2021; 78 Si, Sun, Wu, Li, Wang, Lin, Yang, Wang (b86) 2023 Burgo, Galembeck, Pollack (b73) 2016; 80 Pan, Yuan, Liang, Zou, Zhang, Bowen (b55) 2020; 23 Chandrasekhar, Vivekananthan, Khandelwal, Kim (b151) 2019; 60 Lin, Wang, Li (b6) 2023; 1 Zhang, Jing, Wang, Fan, Zhao, Wang, Cheng (b134) 2022; 7 Stojanovic (b20) 2006; 41 Wang, Gao, Zhu, Wang, Zhu, Zhao, Wang, Cheng (b40) 2022; 323 Jin, Sun, Li, Zhang, Zhu, Zhang, Yuan, Chen, Tian, Hou (b174) 2020; 11 Ahmed, Hassan, Jiang, Youssef, Liu, Hedaya, Yazid, Zu, Wang (b77) 2017; 28 Qin, Cheng, Zi, Gu, Zhang, Shang, Yang, Yang, Du, Wang (b166) 2018; 28 Yun, Kim, Ryoo, Kim, Jo, Kim (b101) 2021; 88 Wang, Jiang, Xu (b176) 2017; 39 Yu, Song, Zhang, Zhang, Chen, Zhai, Wang (b144) 2015; 8 Zhao, Yu, Wang, Wang, Li, Wang, Cheng (b172) 2021; 89 Wang (b71) 2017; 20 Chen, Wen, Shi, Jian, Li, Yeow, Sun (b44) 2020; 11 Zhang, Yang, Ren, Yang, Li, Li, Liu, Hu, He, Xi (b112) 2023 Sui, Shan, Hou, Tian, Hu, Xie (b37) 2023; 184 Zhang, Li, Cheng, Shen, Yi, Peng, Ning, Dong, Wang (b143) 2022; 2022 Matin Nazar, Idala Egbe, Abdollahi, Hariri-Ardebili (b22) 2021; 14 Rodrigues, Nunes, Clemente, Mathias, Correia, Rosa-Santos, Taveira-Pinto, Morais, Pereira, Ventura (b49) 2020; 13 Wang, Wen, Guo, Wu, He, Lin, Cao, Wang (b97) 2016; 10 Yu, Zhu, Wang, Zhai (b160) 2019; 29 Xiao, Yin, Chen (b28) 2022 Guo, He, Yuan, Tao, Liu, Song, Gao, Wang, Pan (b146) 2023; 110 Shi, Han, Han, Li, Ren (b89) 2022; 226 Zhang, Hu, Zeng, Yang, He, Li, Li, Yang, Hu, Xi (b114) 2021; 6 Chen, Tang, Jiang, Zhu, Chen, He, Xu, Guo, Lin, Li (b119) 2018; 45 Li, Dai, Zhang, Wang, You, Zhang (b57) 2021; 113 Duan, Lin, Zhang, Li, Zhu, Wu, Lei (b83) 2022; 91 Wang, Liu, Wang, Wang, Wang, Zhang, Zhao, Xu, Wang (b131) 2021; 15 Kim, Hur, Lee, Shin, Qiao, Mun, Lee, Moon, Kim, Baik (b129) 2022; 15 Tao, Yi, Yang, Tang, Yang, Wu, Chang, Yuan (b109) 2020; 6 Zhao, Shu, Ai, Lou, Sou, Lu, Jin, Wang, Wang, Wu (b26) 2022; 12 Lee, Yoon, Jiang, Wen, Seung, Kim, Wang (b92) 2016; 6 Lv, Yu, Huang, Yu, Wang, Zhang, Zhu (b98) 2019; 55 Li, Nagy, Graving, Bak-Coleman, Xie, Couzin (b178) 2020; 11 Rock, Sima, Knapen (b4) 2020; 30 Shen, Li, Guo, Yang, Wu, Wang, Luo, Xie, Peng, Pu (b50) 2021; 7 Chen, Tang, He, Deng, Yang, Zhu, Chen, Shao, Liu, Wang (b116) 2018; 21 Niu, Wang (b70) 2015; 14 Du, Tang, Fu, Shan, Zeng, Guo, Hu (b80) 2023 Zhang, Wang, Xu, Zhang, Yang, Guo, Zhang, Zhao (b54) 2021; 427 Khandelwal, Dahiya (b56) 2022; 34 Vivekananthan, Chandrasekhar, Alluri, Purusothaman, Kim (b85) 2020; 2 Jie, Jiang, Zhang, Wang, Cao (b162) 2016; 27 Leon, Sherrell, Šutka, Ellis (b171) 2023; 110 Kottapalli, Tao, Sengupta, Triantafyllou (b177) 2019 Das, Ravipati, Badhulika (b152) 2023 Zhang, Cao, Wang (b133) 2023; 108 Chen, Yang, Li, Fan, Zi, Jing, Guo, Wen, Pradel, Niu (b78) 2015; 9 Yang, Gong, Gu, Liu, Hou, Li, Zhang, Wang (b153) 2021; 33 Yuh (b9) 2000; 8 Lin, Zhang, Liao, Zhang (b82) 2023; 254 Wang, Shi, Yang, Tao, Li, Lei, Liu, Wang, Chen (b148) 2022; 18 Qu, Yuan, Li, Wang, Xu, Fan, Zhang, Qian, Wang, Wang (b105) 2023; 111 Jiang, Sun, Fan, Zhang (b84) 2016; 10 Dharmasena, Jayawardena, Mills, Dorey, Silva (b155) 2018; 48 Cui, Yu, Wang, Wan, Zhang (b31) 2022; 13 Chitre, Shahabudeen, Stojanovic (b19) 2008; 42 Dassanayaka, Alves, Wanasekara, Dharmasena, Ventura (b87) 2022; 32 Durukan, Cicek, Doganay, Gorur, Çınar, Unalan (b165) 2022; 32 Anwer, Khan, Ansari, Baek, Yi, Kim, Noh, Jeong (b102) 2022; 22 Chen, Wang, Zhang, Wang, Liu, Chen, Wei (b93) 2021; 12 Xu, Zhao, Wang, Zhang, Li, Pan, Wang (b74) 2019; 13 Sun, Liu, Luo, Liu, Feng, Chen, Wang (b159) 2022; 102 Zeng, Wang (b16) 2023; 285 Yang, Guo, Zhu, Sun, Zhang, He, Lee (b59) 2023; 13 LináWang (b69) 2014; 176 Tripathy, Sahoo, Mishra, Das, Balasubramaniam, Ramadoss (b96) 2023; 1 Liu, Xu, Zheng, Liu, Wang, Wang, Guan, Xie, Xu (b110) 2022; 101 Fang, Tong, Bu, Cao, Xu, Qi, Zhang (b167) 2020; 2 Jeon, Lee, Yoo, Yoo, Park, Kim (b150) 2021; 9 Zhao, Tian, Kuang, Ouyang, Yan, Wang, Li, Zhu (b95) 2016; 3 Chao, Alam, Cheng (b181) 2022; 947 Chen, Koh, Liu, Li, Fan, Liu, Yeo, Tan, Tee, He (b107) 2020; 12 Cao, Shi, Tan, Sepúlveda (b139) 2022 Lin, Xu, Chi Wang, Wang (b66) 2020; 11 Jiang, Li, Ying, Ping (b128) 2021; 17 Xu, Liu, Liu, Wang, Zheng, Wang, Chen, Wang, Wang, Fu (b41) 2022; 6 Qin, Xu, Lin, Zhan, Dong, Han, Wang, Feng, Wang (b111) 2022; 32 Chen, Miao, Guo, Chen, Song, Su, Zhang (b81) 2018; 112 Song, Zhu, Wang, Yang, Chen, Hong, Cui (b51) 2022; 53 Wang, Fu, Wang, Su, Zi (b58) 2022; 97 Liu, Zhou, Zhang, Zhao, Li, Li, Yin, Wang, Wang (b76) 2021; 9 Chatterjee, Burman, Khan, Saha, Choi, Lee, Lin (b32) 2020; 12 Niu, Zhou, Wang, Liu, Lin, Bando, Wang (b163) 2014; 8 Wang, Xu, Wang, Zheng, Liu, Liu, Chen, Wang, Xie, Tao (b142) 2022; 97 Li, Pei, Zhang, Kottapalli (b27) 2021; 84 Shao, Willatzen, Jiang, Tang, Chen, Wang, Wang (b156) 2019; 59 Mahmud, Zolfagharian, Gharaie, Kaynak, Farjana, Ellis, Chen, Kouzani (b120) 2021; 2 Xu, Zi, Wang, Zou, Dai, He, Wang, Wang, Feng, Li (b63) 2018; 30 Cheng, Gao, Wang (b33) 2019; 4 Wen, Sun, He, Shi, Zhu, Zhang, Li, Zhang, Lee (b169) 2020; 7 Guo, Wen, Zi, Yeh, Wang, Zhu, Hu, Wang (b121) 2016; 6 Marx (b7) 1990 Shan, Li, Yang, Feng, Wang, Xie (b35) 2019; 172 Ferrari, Wunsch (b2) 2009; 41 Xia, Liu, Zhu, Zi (b53) 2020; 2 Li, Xiong, Lv, Chen, Gao, Zhang, Lee (b104) 2020; 78 Wang, Qian, Zhao, Wang, Jiang, Wang, Meng, Li, Zhu, Chen (b124) 2023; 8 Zou, Tan, Shi, Ouyang, Jiang, Liu, Li, Yu, Wang, Qu (b43) 2019; 10 Deng, Xu, Qin, Li, Duan, Hou, Wang (b39) 2022; 34 Liu, Xu, Wang, Zheng, Liu, Wang, Chen, Tao, Xu (b137) 2021 Slabov, Kopyl, Soares dos Santos, Kholkin (b161) 2020; 12 Gao, Lu, Xie, Chen, Wu, Wang, Wang, Yue, Tong, Lei (b123) 2020; 72 Jiao (b173) 2021; 88 Zhang, Zhao, Yang, Yuan, Zhou, Yin, Liu, Li, Wang, Wang (b132) 2020; 5 Zhang, Hao, Yang, Su, Zhang, Wang, Wang, Li (b24) 2023 TP, Kumar (b13) 2015 Li, Ravi, Xie, Couzin (b179) 2021; 477 Liu, Xu, Xiao, Zhang, Qu, Lv, Chen, Song (b91) 2022; 4 Ahmed (b122) 2022; 10 Wang (b72) 2020; 68 Zhao, Xu, Shu, An, Ding, Liu, Wang, Zhao, Yu, Wang (b45) 2022; 13 S.A. Basith, A. Chandrasekhar, Synergistic Effect of Dual Surface Modified Ecoflex Polymer for Dynamic Triboelectric Nanogenerator Towards Sustainable Battery-Free Tally Counter, Adv. Mater. Technol. 2300495. Shin, Bae, Moon, Kim, Choi, Kim, Yoon, Lee, Nah (b158) 2017; 11 Wang, Wang (b64) 2019; 30 Sun, Cui, Chen (b23) 2021; 21 Tian, Su, Wang, Wang, Zi (b46) 2022; 10 Wang, Liu, Wang, Zheng, Guan, Liu, Wang, Chen, Wang, Xie (b61) 2022; 7 Chen, Ren, Han, Wan, Zhang (b118) 2020; 75 Chen, Xing, Li, Wang, Xu (b175) 2020; 4 Melikoglu (b1) 2018; 148 Li, Zhang, Wang, Liu (b126) 2021; 21 Kaur, Singh, Sawhney, Sui, Trdan (b108) 2022; 4 Wang (b52) 2017; 542 Zhang, Jing, Wang, Zhu, Yu, Zhu, Cheng, Zhao, Wang (b135) 2023; 16 B. Shan, C. Liu, R. Chen, Q. Guanghao, S. Hao, N. Chen, G. Xing, A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator, Available at SSRN 4476236. Wang, Xu, Wang, Wang, Liu, Song, Xie, Xu (b117) 2021 Su, Zhang, Li, Gong, Venkatesan, Jiang (b11) 2019; 33 Wei, Shi, Yao, Zhi, Hu, Yan, Shi, Yu, Huang (b88) 2023; 7 Pan, Zhang (b154) 2019; 7 Zhao, Liu, Wang, Hu, Zhang, Zhang, Wang, Du, Zou, Yuan (b136) 2022; 94 Lyu, Serov (b5) 2023 Lv, Zhang, Huang, Yu, Zhu (b90) 2021; 89 Luo, Gao, Wang (b68) 2021; 33 Wang, Wu, Liu, Zheng, Liu, Xu, Kong, Feng, Zhang, Wang (b100) 2020; 12 Mi, Lu, Wang, Zhao, Cao, Wang (b168) 2022; 8 Wang, Liu, Chen, Wang, Zhu, Yu, Song, Pan, Mi, Lee (b127) 2021; 90 Sun, Zhu, Jia, Zhao, Chu, Mao (b34) 2023 Wang, Zou, Yang, Li, Guo, Jiang, Jia, Cao (b115) 2019; 55 Deng, Mao, Brandt (b180) 2021; 126 Nowacki, Mistewicz, Hajra, Kim (b145) 2023; 133 Guan, Liu, Xu, Liu, Wu, Li, Ou-Yang (b42) 2022; 104 Wei, Wang, Liu, Yuan, Liu, Du, Zhu, Nie (b103) 2022; 32 Ahmed, Hassan, Mosa, Elsanadidy, Sharafeldin, Rusling, Ren (b147) 2019; 31 Heidemann, Ye, Wills, Syed, Li (b12) 2006 Nie, Ren, Xu, Lin, Zhan, Chen, Wang (b65) 2020; 32 Liu, Tong, Gao, Liu, Li, Zhang (b62) 2023 Zhou, Shen, Cui, Shao, Li, Zhang (b170) 2021; 84 Dai, Wang, Niu, Yi, Yin, Chen, Zhang, You (b164) 2017; 10 Fan, Tian, Wang (b21) 2012; 1 Wang, Wan, Fang, Yuan, Zhuo, Wang, Zhang (b60) 2022; 605 Cheng, Shao, Wang (b30) 2023; 3 Pang, Chen, Chu, Wang, Cao (b79) 2019; 66 Liu, Zheng, Li, Wang, Zhou (b99) 2019; 61 Tavakoli, Khojasteh, Haghani, Hirdaris (b8) 2023; 272 Chen, Zhang, Zhu, Wang (b48) 2020; 7 Lai, Hsiao, Wu, Wang (b75) 2019; 6 Kaidarova, Geraldi, Wilson, Kosel, Meekan, Eguíluz, Hussain, Shamim, Liao, Srivastava (b149) 2023 Xi, Wang, Zi, Li, Han, Cao, Hu, Wang (b125) 2017; 38 Liu, Liu, Sun, Lin, Feng, Si, Yang (b141) 2022; 99 Liu, Qu, Shan, Aranda, Chen, Li, Zhou, Yu, Wang, Mi (b130) 2023; 21 Bogue (b10) 2015; 42 Radhakrishnan, Joseph, Jelmy, Saji, Sanathanakrishnan, John (b47) 2022; 15 Ahmed (10.1016/j.nanoen.2023.109018_b77) 2017; 28 Tripathy (10.1016/j.nanoen.2023.109018_b96) 2023; 1 Chen (10.1016/j.nanoen.2023.109018_b175) 2020; 4 Zhao (10.1016/j.nanoen.2023.109018_b26) 2022; 12 Wang (10.1016/j.nanoen.2023.109018_b40) 2022; 323 Durukan (10.1016/j.nanoen.2023.109018_b165) 2022; 32 Wang (10.1016/j.nanoen.2023.109018_b60) 2022; 605 Cheng (10.1016/j.nanoen.2023.109018_b33) 2019; 4 Wen (10.1016/j.nanoen.2023.109018_b169) 2020; 7 Sui (10.1016/j.nanoen.2023.109018_b37) 2023; 184 Xu (10.1016/j.nanoen.2023.109018_b63) 2018; 30 Bogue (10.1016/j.nanoen.2023.109018_b10) 2015; 42 Lv (10.1016/j.nanoen.2023.109018_b90) 2021; 89 Zhang (10.1016/j.nanoen.2023.109018_b112) 2023 Chen (10.1016/j.nanoen.2023.109018_b119) 2018; 45 Yu (10.1016/j.nanoen.2023.109018_b160) 2019; 29 Akyildiz (10.1016/j.nanoen.2023.109018_b17) 2005; 3 Dong (10.1016/j.nanoen.2023.109018_b25) 2023 Kim (10.1016/j.nanoen.2023.109018_b129) 2022; 15 Levin (10.1016/j.nanoen.2023.109018_b3) 2019; 6 Li (10.1016/j.nanoen.2023.109018_b104) 2020; 78 Leon (10.1016/j.nanoen.2023.109018_b171) 2023; 110 Ferrari (10.1016/j.nanoen.2023.109018_b2) 2009; 41 Sun (10.1016/j.nanoen.2023.109018_b34) 2023 Du (10.1016/j.nanoen.2023.109018_b80) 2023 Slabov (10.1016/j.nanoen.2023.109018_b161) 2020; 12 Kaidarova (10.1016/j.nanoen.2023.109018_b149) 2023 Dassanayaka (10.1016/j.nanoen.2023.109018_b87) 2022; 32 Zheng (10.1016/j.nanoen.2023.109018_b29) 2022; 7 Xu (10.1016/j.nanoen.2023.109018_b74) 2019; 13 Song (10.1016/j.nanoen.2023.109018_b51) 2022; 53 Zhang (10.1016/j.nanoen.2023.109018_b134) 2022; 7 Zhang (10.1016/j.nanoen.2023.109018_b135) 2023; 16 LináWang (10.1016/j.nanoen.2023.109018_b69) 2014; 176 Dai (10.1016/j.nanoen.2023.109018_b164) 2017; 10 Wang (10.1016/j.nanoen.2023.109018_b97) 2016; 10 Wang (10.1016/j.nanoen.2023.109018_b58) 2022; 97 Mahmud (10.1016/j.nanoen.2023.109018_b120) 2021; 2 Chatterjee (10.1016/j.nanoen.2023.109018_b32) 2020; 12 Anwer (10.1016/j.nanoen.2023.109018_b102) 2022; 22 Chen (10.1016/j.nanoen.2023.109018_b78) 2015; 9 Qu (10.1016/j.nanoen.2023.109018_b105) 2023; 111 Stojanovic (10.1016/j.nanoen.2023.109018_b20) 2006; 41 Chen (10.1016/j.nanoen.2023.109018_b48) 2020; 7 Pan (10.1016/j.nanoen.2023.109018_b154) 2019; 7 Xi (10.1016/j.nanoen.2023.109018_b125) 2017; 38 Shan (10.1016/j.nanoen.2023.109018_b35) 2019; 172 TP (10.1016/j.nanoen.2023.109018_b13) 2015 Zeng (10.1016/j.nanoen.2023.109018_b16) 2023; 285 Xu (10.1016/j.nanoen.2023.109018_b113) 2023; 6 Zhang (10.1016/j.nanoen.2023.109018_b132) 2020; 5 Lai (10.1016/j.nanoen.2023.109018_b138) 2019; 60 Liu (10.1016/j.nanoen.2023.109018_b91) 2022; 4 Qin (10.1016/j.nanoen.2023.109018_b111) 2022; 32 Chao (10.1016/j.nanoen.2023.109018_b181) 2022; 947 Heidemann (10.1016/j.nanoen.2023.109018_b12) 2006 Deng (10.1016/j.nanoen.2023.109018_b180) 2021; 126 10.1016/j.nanoen.2023.109018_b106 Khalil (10.1016/j.nanoen.2023.109018_b15) 2020; 10 Mi (10.1016/j.nanoen.2023.109018_b168) 2022; 8 Wang (10.1016/j.nanoen.2023.109018_b100) 2020; 12 Chandrasekhar (10.1016/j.nanoen.2023.109018_b151) 2019; 60 Cui (10.1016/j.nanoen.2023.109018_b31) 2022; 13 Xu (10.1016/j.nanoen.2023.109018_b41) 2022; 6 Rodrigues (10.1016/j.nanoen.2023.109018_b49) 2020; 13 Guo (10.1016/j.nanoen.2023.109018_b146) 2023; 110 Tao (10.1016/j.nanoen.2023.109018_b109) 2020; 6 Liu (10.1016/j.nanoen.2023.109018_b110) 2022; 101 Zhao (10.1016/j.nanoen.2023.109018_b95) 2016; 3 Liu (10.1016/j.nanoen.2023.109018_b137) 2021 Lv (10.1016/j.nanoen.2023.109018_b98) 2019; 55 Zou (10.1016/j.nanoen.2023.109018_b157) 2020; 11 Zhang (10.1016/j.nanoen.2023.109018_b114) 2021; 6 Chen (10.1016/j.nanoen.2023.109018_b116) 2018; 21 Nowacki (10.1016/j.nanoen.2023.109018_b145) 2023; 133 Fang (10.1016/j.nanoen.2023.109018_b167) 2020; 2 Weydahl (10.1016/j.nanoen.2023.109018_b14) 2020; 45 Shao (10.1016/j.nanoen.2023.109018_b156) 2019; 59 Zhou (10.1016/j.nanoen.2023.109018_b170) 2021; 84 Wang (10.1016/j.nanoen.2023.109018_b117) 2021 Wang (10.1016/j.nanoen.2023.109018_b176) 2017; 39 Lin (10.1016/j.nanoen.2023.109018_b82) 2023; 254 Pan (10.1016/j.nanoen.2023.109018_b55) 2020; 23 Wang (10.1016/j.nanoen.2023.109018_b127) 2021; 90 Sun (10.1016/j.nanoen.2023.109018_b23) 2021; 21 Dharmasena (10.1016/j.nanoen.2023.109018_b155) 2018; 48 Melikoglu (10.1016/j.nanoen.2023.109018_b1) 2018; 148 Oh (10.1016/j.nanoen.2023.109018_b94) 2022; 33 Xiao (10.1016/j.nanoen.2023.109018_b28) 2022 Duan (10.1016/j.nanoen.2023.109018_b83) 2022; 91 Wei (10.1016/j.nanoen.2023.109018_b103) 2022; 32 Wang (10.1016/j.nanoen.2023.109018_b72) 2020; 68 Tavakoli (10.1016/j.nanoen.2023.109018_b8) 2023; 272 Guan (10.1016/j.nanoen.2023.109018_b42) 2022; 104 Yang (10.1016/j.nanoen.2023.109018_b153) 2021; 33 Guo (10.1016/j.nanoen.2023.109018_b121) 2016; 6 Ahmed (10.1016/j.nanoen.2023.109018_b147) 2019; 31 Chen (10.1016/j.nanoen.2023.109018_b107) 2020; 12 Sun (10.1016/j.nanoen.2023.109018_b159) 2022; 102 Yang (10.1016/j.nanoen.2023.109018_b59) 2023; 13 Cao (10.1016/j.nanoen.2023.109018_b139) 2022 Zhang (10.1016/j.nanoen.2023.109018_b24) 2023 Chen (10.1016/j.nanoen.2023.109018_b81) 2018; 112 Pang (10.1016/j.nanoen.2023.109018_b79) 2019; 66 Lee (10.1016/j.nanoen.2023.109018_b92) 2016; 6 Yuh (10.1016/j.nanoen.2023.109018_b9) 2000; 8 Qin (10.1016/j.nanoen.2023.109018_b166) 2018; 28 Zhang (10.1016/j.nanoen.2023.109018_b133) 2023; 108 Deng (10.1016/j.nanoen.2023.109018_b39) 2022; 34 Wang (10.1016/j.nanoen.2023.109018_b61) 2022; 7 Shin (10.1016/j.nanoen.2023.109018_b158) 2017; 11 Jiao (10.1016/j.nanoen.2023.109018_b173) 2021; 88 Marx (10.1016/j.nanoen.2023.109018_b7) 1990 Radhakrishnan (10.1016/j.nanoen.2023.109018_b47) 2022; 15 Si (10.1016/j.nanoen.2023.109018_b86) 2023 Su (10.1016/j.nanoen.2023.109018_b11) 2019; 33 Luo (10.1016/j.nanoen.2023.109018_b68) 2021; 33 Lai (10.1016/j.nanoen.2023.109018_b75) 2019; 6 Chen (10.1016/j.nanoen.2023.109018_b93) 2021; 12 Liu (10.1016/j.nanoen.2023.109018_b62) 2023 Xia (10.1016/j.nanoen.2023.109018_b53) 2020; 2 Zou (10.1016/j.nanoen.2023.109018_b43) 2019; 10 Wen (10.1016/j.nanoen.2023.109018_b38) 2016; 10 Fan (10.1016/j.nanoen.2023.109018_b21) 2012; 1 Cheng (10.1016/j.nanoen.2023.109018_b30) 2023; 3 Wang (10.1016/j.nanoen.2023.109018_b52) 2017; 542 Shi (10.1016/j.nanoen.2023.109018_b89) 2022; 226 Matin Nazar (10.1016/j.nanoen.2023.109018_b22) 2021; 14 Zhao (10.1016/j.nanoen.2023.109018_b45) 2022; 13 Das (10.1016/j.nanoen.2023.109018_b152) 2023 Nie (10.1016/j.nanoen.2023.109018_b65) 2020; 32 Wang (10.1016/j.nanoen.2023.109018_b131) 2021; 15 Yun (10.1016/j.nanoen.2023.109018_b101) 2021; 88 Shen (10.1016/j.nanoen.2023.109018_b50) 2021; 7 Jiang (10.1016/j.nanoen.2023.109018_b84) 2016; 10 Liu (10.1016/j.nanoen.2023.109018_b99) 2019; 61 Mistewicz (10.1016/j.nanoen.2023.109018_b36) 2021; 78 Zhang (10.1016/j.nanoen.2023.109018_b54) 2021; 427 Tian (10.1016/j.nanoen.2023.109018_b46) 2022; 10 Wang (10.1016/j.nanoen.2023.109018_b64) 2019; 30 10.1016/j.nanoen.2023.109018_b140 Jie (10.1016/j.nanoen.2023.109018_b162) 2016; 27 Lin (10.1016/j.nanoen.2023.109018_b6) 2023; 1 Jeon (10.1016/j.nanoen.2023.109018_b150) 2021; 9 Wang (10.1016/j.nanoen.2023.109018_b115) 2019; 55 Chen (10.1016/j.nanoen.2023.109018_b118) 2020; 75 Heidemann (10.1016/j.nanoen.2023.109018_b18) 2012; 370 Niu (10.1016/j.nanoen.2023.109018_b70) 2015; 14 Chitre (10.1016/j.nanoen.2023.109018_b19) 2008; 42 Liu (10.1016/j.nanoen.2023.109018_b130) 2023; 21 Zhang (10.1016/j.nanoen.2023.109018_b143) 2022; 2022 Rock (10.1016/j.nanoen.2023.109018_b4) 2020; 30 Li (10.1016/j.nanoen.2023.109018_b27) 2021; 84 Wang (10.1016/j.nanoen.2023.109018_b148) 2022; 18 Kottapalli (10.1016/j.nanoen.2023.109018_b177) 2019 Ahmed (10.1016/j.nanoen.2023.109018_b122) 2022; 10 Li (10.1016/j.nanoen.2023.109018_b57) 2021; 113 Lin (10.1016/j.nanoen.2023.109018_b66) 2020; 11 Burgo (10.1016/j.nanoen.2023.109018_b73) 2016; 80 Niu (10.1016/j.nanoen.2023.109018_b163) 2014; 8 Kaur (10.1016/j.nanoen.2023.109018_b108) 2022; 4 Wang (10.1016/j.nanoen.2023.109018_b124) 2023; 8 Li (10.1016/j.nanoen.2023.109018_b178) 2020; 11 Li (10.1016/j.nanoen.2023.109018_b126) 2021; 21 Li (10.1016/j.nanoen.2023.109018_b179) 2021; 477 Chen (10.1016/j.nanoen.2023.109018_b44) 2020; 11 Liu (10.1016/j.nanoen.2023.109018_b141) 2022; 99 Zou (10.1016/j.nanoen.2023.109018_b67) 2019; 10 Yu (10.1016/j.nanoen.2023.109018_b144) 2015; 8 Wei (10.1016/j.nanoen.2023.109018_b88) 2023; 7 Wang (10.1016/j.nanoen.2023.109018_b71) 2017; 20 Liu (10.1016/j.nanoen.2023.109018_b76) 2021; 9 Khandelwal (10.1016/j.nanoen.2023.109018_b56) 2022; 34 Vivekananthan (10.1016/j.nanoen.2023.109018_b85) 2020; 2 Lyu (10.1016/j.nanoen.2023.109018_b5) 2023 Jiang (10.1016/j.nanoen.2023.109018_b128) 2021; 17 Gao (10.1016/j.nanoen.2023.109018_b123) 2020; 72 Zhao (10.1016/j.nanoen.2023.109018_b136) 2022; 94 Wang (10.1016/j.nanoen.2023.109018_b142) 2022; 97 Zhao (10.1016/j.nanoen.2023.109018_b172) 2021; 89 Jin (10.1016/j.nanoen.2023.109018_b174) 2020; 11 |
References_xml | – volume: 11 start-page: 399 year: 2020 ident: b66 article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer publication-title: Nat. Commun. – year: 2023 ident: b112 article-title: Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: An advanced hardware solution to long-distance target detection publication-title: Nano Energy – year: 2023 ident: b5 article-title: Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis: a brief synopsis publication-title: Ind. Chem. Mater. – volume: 13 start-page: 1219 year: 2022 ident: b31 article-title: Triboelectric nanogenerators for harvesting diverse water kinetic energy publication-title: Micromachines – volume: 23 year: 2020 ident: b55 article-title: Triboelectric and piezoelectric nanogenerators for future soft robots and machines publication-title: Iscience – volume: 34 year: 2022 ident: b56 article-title: Self-powered active sensing based on triboelectric generators publication-title: Adv. Mater. – volume: 72 year: 2020 ident: b123 article-title: A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module publication-title: Nano Energy – volume: 34 year: 2022 ident: b39 article-title: Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing publication-title: Adv. Mater. – volume: 21 start-page: 1514 year: 2021 ident: b126 article-title: A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations publication-title: Sensors – year: 2023 ident: b25 article-title: Robust solid-liquid triboelectric nanogenerators: Mechanisms, strategies and applications publication-title: Adv. Funct. Mater. – volume: 6 start-page: 0062 year: 2023 ident: b113 article-title: Deep-learning-assisted underwater 3D tactile tensegrity publication-title: Research – volume: 33 year: 2021 ident: b153 article-title: Self-powered interactive fiber electronics with visual–digital synergies publication-title: Adv. Mater. – volume: 8 start-page: 215 year: 2022 ident: b168 article-title: From triboelectric nanogenerator to uninterrupted power supply system: The key role of electrochemical batteries and supercapacitors publication-title: Batteries – volume: 7 start-page: 8659 year: 2022 end-page: 8666 ident: b29 article-title: Design, fabrication, and characterization of a hybrid bionic spherical robotics with multilegged feedback mechanism publication-title: IEEE Robot. Autom. Lett. – volume: 12 start-page: 17663 year: 2020 end-page: 17697 ident: b32 article-title: Recent advancements in solid–liquid triboelectric nanogenerators for energy harvesting and self-powered applications publication-title: Nanoscale – volume: 15 start-page: 15700 year: 2021 end-page: 15709 ident: b131 article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things publication-title: ACS Nano – volume: 32 year: 2020 ident: b65 article-title: Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface publication-title: Adv. Mater. – start-page: 1853 year: 2021 end-page: 1857 ident: b117 article-title: Bionic tactile sensor based on triboelectric nanogenerator for motion perception publication-title: 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems – volume: 33 start-page: 86 year: 2019 end-page: 93 ident: b11 article-title: Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities publication-title: IEEE Netw. – volume: 32 year: 2022 ident: b111 article-title: Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1416 year: 2021 ident: b93 article-title: Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing publication-title: Nature Commun. – volume: 5 year: 2020 ident: b132 article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting publication-title: Adv. Mater. Technol. – volume: 370 start-page: 158 year: 2012 end-page: 175 ident: b18 article-title: Underwater sensor networks: applications, advances and challenges publication-title: Phil. Trans. R. Soc. A – volume: 13 start-page: 2657 year: 2020 end-page: 2683 ident: b49 article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives publication-title: Energy Environ. Sci. – volume: 97 year: 2022 ident: b58 article-title: Tribophotonics: An emerging self-powered wireless solution toward smart city publication-title: Nano Energy – volume: 66 year: 2019 ident: b79 article-title: Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting publication-title: Nano Energy – volume: 89 year: 2021 ident: b172 article-title: Universal equivalent circuit model and verification of current source for triboelectric nanogenerator publication-title: Nano Energy – volume: 1 year: 2023 ident: b96 article-title: Fabrication and feasibility study of polymer-based triboelectric nanogenerator towards blue energy harvesting publication-title: Green Energy Resour. – volume: 97 year: 2022 ident: b142 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception publication-title: Nano Energy – volume: 4 start-page: 4694 year: 2022 end-page: 4707 ident: b108 article-title: Waste biomaterial–sno nanoparticles composite based green triboelectric nanogenerator for self-powered human motion monitoring publication-title: ACS Appl. Electron. Mater. – volume: 947 start-page: A8 year: 2022 ident: b181 article-title: Hydrodynamic performance of slender swimmer: effect of travelling wavelength publication-title: J. Fluid Mech. – volume: 7 year: 2020 ident: b169 article-title: Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications publication-title: Adv. Sci. – volume: 4 start-page: 1063 year: 2020 end-page: 1077 ident: b175 article-title: Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system publication-title: Sustain. Energy Fuels – volume: 148 start-page: 563 year: 2018 end-page: 573 ident: b1 article-title: Current status and future of ocean energy sources: A global review publication-title: Ocean Eng. – volume: 2 year: 2021 ident: b120 article-title: 3D-printed triboelectric nanogenerators: State of the art, applications, and challenges publication-title: Adv. Energy Sustain. Res. – volume: 10 start-page: 1992 year: 2022 end-page: 1998 ident: b122 article-title: Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents publication-title: J. Mater. Chem. A – volume: 75 year: 2020 ident: b118 article-title: Hybrid energy cells based on triboelectric nanogenerator: from principle to system publication-title: Nano Energy – start-page: 1 year: 2023 end-page: 7 ident: b80 article-title: Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy publication-title: Nano Res. – volume: 10 start-page: 32 year: 2020 end-page: 37 ident: b15 article-title: Toward the internet of underwater things: Recent developments and future challenges publication-title: IEEE Consum. Electron. Mag. – volume: 42 start-page: 103 year: 2008 end-page: 116 ident: b19 article-title: Underwater acoustic communications and networking: Recent advances and future challenges publication-title: Mar. Technol. Soc. J. – volume: 6 year: 2016 ident: b92 article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array publication-title: Adv. Energy Mater. – volume: 12 start-page: 1 year: 2020 end-page: 18 ident: b161 article-title: Natural and eco-friendly materials for triboelectric energy harvesting publication-title: Nano-Micro Lett. – volume: 6 year: 2021 ident: b114 article-title: A non-encapsulated polymorphous U-shaped triboelectric nanogenerator for multiform hydropower harvesting publication-title: Adv. Mater. Technol. – volume: 172 start-page: 134 year: 2019 end-page: 140 ident: b35 article-title: Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration publication-title: Energy – volume: 10 start-page: 7696 year: 2016 end-page: 7704 ident: b84 article-title: Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel publication-title: ACS Nano – volume: 101 year: 2022 ident: b110 article-title: Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance publication-title: Nano Energy – volume: 61 start-page: 454 year: 2019 end-page: 461 ident: b99 article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting publication-title: Nano Energy – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: b21 article-title: Flexible triboelectric generator publication-title: Nano Energy – year: 2023 ident: b34 article-title: Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators publication-title: J. Energy Chem. – volume: 3 year: 2016 ident: b95 article-title: Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation publication-title: Adv. Mater. Interfaces – volume: 323 year: 2022 ident: b40 article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting publication-title: Appl. Energy – volume: 45 start-page: 380 year: 2018 end-page: 389 ident: b119 article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing publication-title: Nano Energy – volume: 11 start-page: 2093 year: 2020 ident: b157 article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials publication-title: Nat. Commun. – volume: 112 year: 2018 ident: b81 article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing publication-title: Appl. Phys. Lett. – volume: 1 start-page: 299 year: 2023 end-page: 311 ident: b6 article-title: Designing active and stable Ir-based catalysts for the acidic oxygen evolution reaction publication-title: Ind. Chem. Mater. – start-page: 1 year: 2022 end-page: 10 ident: b139 article-title: Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection publication-title: Nano Res. – volume: 32 year: 2022 ident: b87 article-title: Recent progresses in wearable triboelectric nanogenerators publication-title: Adv. Funct. Mater. – volume: 60 start-page: 715 year: 2019 end-page: 723 ident: b138 article-title: Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks publication-title: Nano Energy – volume: 7 year: 2021 ident: b50 article-title: Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators publication-title: Adv. Electron. Mater. – volume: 6 year: 2016 ident: b121 article-title: A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments publication-title: Adv. Energy Mater. – volume: 94 year: 2022 ident: b136 article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures publication-title: Nano Energy – volume: 21 year: 2023 ident: b130 article-title: Underwater hybrid energy harvesting based on TENG-mteg for self-powered marine mammal condition monitoring system publication-title: Mater. Today Sustain. – volume: 11 start-page: 5408 year: 2020 ident: b178 article-title: Vortex phase matching as a strategy for schooling in robots and in fish publication-title: Nat. Commun. – volume: 3 start-page: 257 year: 2005 end-page: 279 ident: b17 article-title: Underwater acoustic sensor networks: research challenges publication-title: Ad hoc Netw. – volume: 20 start-page: 74 year: 2017 end-page: 82 ident: b71 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today – volume: 91 year: 2022 ident: b83 article-title: Machine-learned, waterproof mxene fiber-based glove platform for underwater interactivities publication-title: Nano Energy – volume: 78 year: 2020 ident: b104 article-title: Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator publication-title: Nano Energy – volume: 16 start-page: 466 year: 2023 end-page: 472 ident: b135 article-title: Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting publication-title: Nano Res. – volume: 8 start-page: 150 year: 2014 end-page: 156 ident: b163 article-title: Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system publication-title: Nano Energy – volume: 272 year: 2023 ident: b8 article-title: A review on the progress and research directions of ocean engineering publication-title: Ocean Eng. – volume: 22 start-page: 4460 year: 2022 ident: b102 article-title: Recent advances in touch sensors for flexible wearable devices publication-title: Sensors – volume: 48 start-page: 391 year: 2018 end-page: 400 ident: b155 article-title: A unified theoretical model for triboelectric nanogenerators publication-title: Nano Energy – volume: 21 start-page: 88 year: 2018 end-page: 97 ident: b116 article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator publication-title: Mater. Today – volume: 18 year: 2022 ident: b148 article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring publication-title: Small – volume: 21 start-page: 7849 year: 2021 ident: b23 article-title: Review of underwater sensing technologies and applications publication-title: Sensors – volume: 15 year: 2022 ident: b47 article-title: Triboelectric nanogenerators for marine energy harvesting and sensing applications publication-title: Results Eng. – volume: 27 start-page: 554 year: 2016 end-page: 560 ident: b162 article-title: A structural bionic design: from electric organs to systematic triboelectric generators publication-title: Nano Energy – volume: 7 year: 2022 ident: b61 article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring publication-title: Adv. Mater. Technol. – volume: 110 year: 2023 ident: b171 article-title: Decoupling piezoelectric and triboelectric signals from PENGs using the fast fourier transform publication-title: Nano Energy – volume: 30 year: 2018 ident: b63 article-title: On the electron-transfer mechanism in the contact-electrification effect publication-title: Adv. Mater. – volume: 13 start-page: 1932 year: 2019 end-page: 1939 ident: b74 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – volume: 99 year: 2022 ident: b141 article-title: Triboelectric hydrophone for underwater detection of low-frequency sounds publication-title: Nano Energy – volume: 11 start-page: 6131 year: 2017 end-page: 6138 ident: b158 article-title: Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting publication-title: ACS Nano – volume: 126 year: 2021 ident: b180 article-title: Symmetry breaking of tail-clamped filaments in Stokes flow publication-title: Phys. Rev. Lett. – volume: 14 start-page: 5600 year: 2021 ident: b22 article-title: Triboelectric nanogenerators for energy harvesting in ocean: A review on application and hybridization publication-title: Energies – start-page: 228 year: 2006 end-page: 235 ident: b12 article-title: Research challenges and applications for underwater sensor networking publication-title: IEEE Wireless Communications and Networking Conference, 2006, Vol. 1 – volume: 90 year: 2021 ident: b127 article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition publication-title: Nano Energy – volume: 110 year: 2023 ident: b146 article-title: Self-powered angle-resolved triboelectric nanogenerator for underwater vibration localization publication-title: Nano Energy – volume: 184 year: 2023 ident: b37 article-title: An underwater piezoelectric energy harvester based on magnetic coupling adaptable to low-speed water flow publication-title: Mech. Syst. Signal Process. – volume: 3 start-page: 39 year: 2023 ident: b30 article-title: Triboelectric nanogenerators publication-title: Nat. Rev. Methods Primers – volume: 7 year: 2020 ident: b48 article-title: Polymer materials for high-performance triboelectric nanogenerators publication-title: Adv. Sci. – volume: 7 start-page: 4282 year: 2022 end-page: 4289 ident: b134 article-title: Enhancing low-velocity water flow energy harvesting of triboelectric–electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism publication-title: ACS Energy Lett. – volume: 11 start-page: 5381 year: 2020 ident: b174 article-title: Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications publication-title: Nat. Commun. – volume: 427 year: 2021 ident: b54 article-title: Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators publication-title: Coord. Chem. Rev. – volume: 8 start-page: 765 year: 2015 end-page: 773 ident: b144 article-title: Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator publication-title: Nano Res. – volume: 226 year: 2022 ident: b89 article-title: Research on the mechanical and water-repellent properties of bionic carbon fiber reinforced plastic composites inspired by coelacanth scale and lotus leaf publication-title: Compos. Sci. Technol. – reference: B. Shan, C. Liu, R. Chen, Q. Guanghao, S. Hao, N. Chen, G. Xing, A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator, Available at SSRN 4476236. – volume: 55 start-page: 541 year: 2019 end-page: 547 ident: b115 article-title: Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting publication-title: Nano Energy – volume: 4 year: 2019 ident: b33 article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature publication-title: Adv. Mater. Technol. – volume: 2 year: 2020 ident: b53 article-title: Recent advances of triboelectric nanogenerator based applications in biomedical systems publication-title: EcoMat – volume: 6 year: 2019 ident: b75 article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors publication-title: Adv. Sci. – volume: 60 start-page: 850 year: 2019 end-page: 856 ident: b151 article-title: A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code publication-title: Nano Energy – volume: 31 year: 2019 ident: b147 article-title: An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface publication-title: Adv. Mater. – volume: 78 year: 2021 ident: b36 article-title: Nanogenerator for determination of acoustic power in ultrasonic reactors publication-title: Ultrason. Sonochem. – volume: 2 start-page: 746 year: 2020 end-page: 754 ident: b85 article-title: A highly reliable, impervious and sustainable triboelectric nanogenerator as a zero-power consuming active pressure sensor publication-title: Nanosci. Adv. – volume: 2 year: 2020 ident: b167 article-title: Overview of power management for triboelectric nanogenerators publication-title: Adv. Intell. Syst. – volume: 10 year: 2022 ident: b46 article-title: Underwater self-powered all-optical wireless ultrasonic sensing, positioning and communication with ultrafast response time and ultrahigh sensitivity publication-title: Adv. Opt. Mater. – year: 2023 ident: b62 article-title: Environmentally-friendly natural materials for triboelectric nanogenerators: A review publication-title: J. Mater. Chem. A – volume: 104 year: 2022 ident: b42 article-title: A self-powered acoustic sensor excited by ultrasonic wave for detecting and locating underwater ultrasonic sources publication-title: Nano Energy – volume: 88 year: 2021 ident: b173 article-title: Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators publication-title: Nano Energy – year: 1990 ident: b7 article-title: The History of Underwater Exploration – volume: 176 start-page: 447 year: 2014 end-page: 458 ident: b69 article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives publication-title: Faraday Discuss. – volume: 10 start-page: 2695 year: 2019 ident: b43 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nature Commun. – volume: 28 year: 2018 ident: b166 article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits publication-title: Adv. Funct. Mater. – volume: 32 year: 2022 ident: b103 article-title: Sustainable triboelectric materials for smart active sensing systems publication-title: Adv. Funct. Mater. – volume: 30 start-page: 532 year: 2020 end-page: 539 ident: b4 article-title: What is the ocean: A sea-change in our perceptions and values? publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst. – volume: 2022 year: 2022 ident: b143 article-title: Underwater monitoring networks based on cable-structured triboelectric nanogenerators publication-title: Research – start-page: 1 year: 2015 end-page: 3 ident: b13 article-title: Underwater communications publication-title: 2015 IEEE Underwater Technology – year: 2023 ident: b86 article-title: 3D interlocked all-textile structured triboelectric pressure sensor for accurately measuring epidermal pulse waves in amphibious environments publication-title: Nano Res. – start-page: 1943 year: 2021 end-page: 1947 ident: b137 article-title: Development of a triboelectric palm-like sensor aiming at underwater perceptual construction publication-title: 2021 China Automation Congress – volume: 33 start-page: 26852 year: 2022 end-page: 26860 ident: b94 article-title: Polymer-multiferroics composite-based sustainable triboelectric energy harvester publication-title: J. Mater. Sci., Mater. Electron. – volume: 9 start-page: 21357 year: 2021 end-page: 21365 ident: b76 article-title: A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering publication-title: J. Mater. Chem. A – volume: 14 start-page: 161 year: 2015 end-page: 192 ident: b70 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – year: 2019 ident: b177 article-title: Self-Powered and Soft Polymer MEMS/NEMS Devices – volume: 8 start-page: 7 year: 2000 end-page: 24 ident: b9 article-title: Design and control of autonomous underwater robots: A survey publication-title: Auton. Robots – volume: 7 start-page: 2 year: 2019 end-page: 17 ident: b154 article-title: Fundamental theories and basic principles of triboelectric effect: A review publication-title: Friction – volume: 285 year: 2023 ident: b16 article-title: In-situ wave energy harvesting for unmanned marine devices: A review publication-title: Ocean Eng. – volume: 9 start-page: 3324 year: 2015 end-page: 3331 ident: b78 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano – volume: 84 year: 2021 ident: b27 article-title: Bioinspired designs and biomimetic applications of triboelectric nanogenerators publication-title: Nano Energy – volume: 605 year: 2022 ident: b60 article-title: Water-based triboelectric nanogenerator for wireless energy transmission and self-powered communication via a solid-liquid-solid interaction publication-title: Appl. Surf. Sci. – volume: 45 start-page: 5543 year: 2020 end-page: 5553 ident: b14 article-title: Fuel cell systems for long-endurance autonomous underwater vehicles–challenges and benefits publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 56 year: 2020 ident: b109 article-title: Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability publication-title: Microsyst. Nanoeng. – volume: 17 year: 2021 ident: b128 article-title: Fluorinated graphene-enabled durable triboelectric coating for water energy harvesting publication-title: Small – volume: 80 start-page: 30 year: 2016 end-page: 33 ident: b73 article-title: Where is water in the triboelectric series? publication-title: J. Electrost. – volume: 10 start-page: 11369 year: 2016 end-page: 11376 ident: b97 article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator publication-title: ACS Nano – volume: 8 year: 2023 ident: b124 article-title: Highly adaptive triboelectric-electromagnetic hybrid nanogenerator for scavenging flow energy and self-powered marine wireless sensing publication-title: Adv. Mater. Technol. – volume: 12 start-page: 31975 year: 2020 end-page: 31983 ident: b107 article-title: Super tough and self-healable poly (dimethylsiloxane) elastomer via hydrogen bonding association and its applications as triboelectric nanogenerators publication-title: ACS Appl. Mater. Inter. – volume: 84 year: 2021 ident: b170 article-title: Triboelectric nanogenerator based self-powered sensor for artificial intelligence publication-title: Nano Energy – volume: 29 year: 2019 ident: b160 article-title: Progress in triboelectric materials: toward high performance and widespread applications publication-title: Adv. Funct. Mater. – volume: 68 year: 2020 ident: b72 article-title: On the first principle theory of nanogenerators from Maxwell’s equations publication-title: Nano Energy – start-page: 1 year: 2023 end-page: 13 ident: b149 article-title: Wearable sensors for monitoring marine environments and their inhabitants publication-title: Nature Biotechnol. – volume: 12 year: 2022 ident: b26 article-title: A highly sensitive triboelectric vibration sensor for machinery condition monitoring publication-title: Adv. Energy Mater. – year: 2023 ident: b152 article-title: Nickel metal-organic framework/PVDF composite nanofibers based self-powered wireless sensor for pulse monitoring of underwater divers via triboelectrically generated Maxwell-displacement current publication-title: Adv. Funct. Mater. – volume: 6 start-page: 25 year: 2022 ident: b41 article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception publication-title: npj Flex. Electron. – volume: 254 year: 2023 ident: b82 article-title: Microcracked strain sensor based on carbon nanotubes/copper composite film with high performance and waterproof property for underwater motion detection publication-title: Composites B – volume: 88 year: 2021 ident: b101 article-title: Paint based triboelectric nanogenerator using facile spray deposition towards smart traffic system and security application publication-title: Nano Energy – volume: 59 start-page: 380 year: 2019 end-page: 389 ident: b156 article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current publication-title: Nano Energy – volume: 111 year: 2023 ident: b105 article-title: All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping publication-title: Nano Energy – volume: 33 year: 2021 ident: b68 article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports publication-title: Adv. Mater. – volume: 15 start-page: 1243 year: 2022 end-page: 1255 ident: b129 article-title: Ferroelectrically augmented contact electrification enables efficient acoustic energy transfer through liquid and solid media publication-title: Energy Environ. Sci. – volume: 102 year: 2022 ident: b159 article-title: Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment publication-title: Nano Energy – volume: 39 start-page: 9 year: 2017 end-page: 23 ident: b176 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy – year: 2023 ident: b24 article-title: Recent advances in triboelectric nanogenerators for marine exploitation publication-title: Adv. Energy Mater. – volume: 477 year: 2021 ident: b179 article-title: Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 133 year: 2023 ident: b145 article-title: 3D printed triboelectric nanogenerator for underwater ultrasonic sensing publication-title: Ultrasonics – volume: 108 year: 2023 ident: b133 article-title: The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems publication-title: Nano Energy – volume: 32 year: 2022 ident: b165 article-title: Multifunctional and physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1427 year: 2019 ident: b67 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. – volume: 113 year: 2021 ident: b57 article-title: Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence publication-title: Digit. Signal Process. – volume: 10 start-page: 157 year: 2017 end-page: 171 ident: b164 article-title: Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance publication-title: Nano Res. – volume: 6 start-page: 241 year: 2019 ident: b3 article-title: Global observing needs in the deep ocean publication-title: Front. Mar. Sci. – volume: 55 start-page: 463 year: 2019 end-page: 469 ident: b98 article-title: Gas-enhanced triboelectric nanogenerator based on fully-enclosed structure for energy harvesting and sensing publication-title: Nano Energy – volume: 41 start-page: 1 year: 2006 end-page: 5 ident: b20 article-title: Underwater wireless communications: Current achievements and research challenges publication-title: IEEE Ocean. Eng. Soc. Newsl. – reference: S.A. Basith, A. Chandrasekhar, Synergistic Effect of Dual Surface Modified Ecoflex Polymer for Dynamic Triboelectric Nanogenerator Towards Sustainable Battery-Free Tally Counter, Adv. Mater. Technol. 2300495. – volume: 10 start-page: 6526 year: 2016 end-page: 6534 ident: b38 article-title: Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator publication-title: ACS Nano – volume: 89 year: 2021 ident: b90 article-title: Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator publication-title: Nano Energy – volume: 38 start-page: 101 year: 2017 end-page: 108 ident: b125 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano Energy – volume: 53 year: 2022 ident: b51 article-title: Recent advances in ocean energy harvesting based on triboelectric nanogenerators publication-title: Sustain. Energy Technol. Assess. – volume: 7 start-page: 13 year: 2023 ident: b88 article-title: Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring publication-title: npj Flex. Electron. – start-page: 1 year: 2022 end-page: 50 ident: b28 article-title: Triboelectric nanogenerator for healthcare publication-title: Handbook of Triboelectric Nanogenerators – volume: 4 start-page: 3870 year: 2022 end-page: 3879 ident: b91 article-title: Highly adaptive liquid–solid triboelectric nanogenerator-assisted self-powered water wave motion sensor publication-title: ACS Appl. Electron. Mater. – volume: 13 start-page: 3325 year: 2022 ident: b45 article-title: Underwater wireless communication via TENG-generated Maxwell’s displacement current publication-title: Nature Commun. – volume: 28 year: 2017 ident: b77 article-title: Design guidelines of triboelectric nanogenerator for water wave energy harvesters publication-title: Nanotechnology – volume: 9 year: 2021 ident: b150 article-title: Water-resistive and wearable triboelectric nanogenerators based on polyurethane/polyester textiles fabricated utilizing a planarization layer publication-title: APL Mater. – volume: 30 start-page: 34 year: 2019 end-page: 51 ident: b64 article-title: On the origin of contact-electrification publication-title: Mater. Today – volume: 542 start-page: 159 year: 2017 end-page: 160 ident: b52 article-title: New wave power publication-title: Nature – volume: 41 start-page: 253 year: 2009 end-page: 282 ident: b2 article-title: Ocean circulation kinetic energy: Reservoirs, sources, and sinks publication-title: Annu. Rev. Fluid Mech. – volume: 42 start-page: 186 year: 2015 end-page: 191 ident: b10 article-title: Underwater robots: a review of technologies and applications publication-title: Ind. Robot Int. J. – volume: 11 start-page: 4143 year: 2020 ident: b44 article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication publication-title: Nat. Commun. – volume: 13 year: 2023 ident: b59 article-title: Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth publication-title: Adv. Energy Mater. – volume: 12 start-page: 31351 year: 2020 end-page: 31359 ident: b100 article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting publication-title: ACS Appl. Mater. Inter. – volume: 272 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b8 article-title: A review on the progress and research directions of ocean engineering publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113617 – volume: 45 start-page: 380 year: 2018 ident: 10.1016/j.nanoen.2023.109018_b119 article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.049 – start-page: 1 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b80 article-title: Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy publication-title: Nano Res. – volume: 28 issue: 51 year: 2018 ident: 10.1016/j.nanoen.2023.109018_b166 article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805216 – volume: 947 start-page: A8 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b181 article-title: Hydrodynamic performance of slender swimmer: effect of travelling wavelength publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.624 – year: 1990 ident: 10.1016/j.nanoen.2023.109018_b7 – volume: 14 start-page: 161 year: 2015 ident: 10.1016/j.nanoen.2023.109018_b70 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 13 start-page: 1932 issue: 2 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b74 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – volume: 226 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b89 article-title: Research on the mechanical and water-repellent properties of bionic carbon fiber reinforced plastic composites inspired by coelacanth scale and lotus leaf publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109542 – volume: 7 start-page: 4282 issue: 12 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b134 article-title: Enhancing low-velocity water flow energy harvesting of triboelectric–electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01908 – volume: 21 start-page: 1514 issue: 4 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b126 article-title: A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations publication-title: Sensors doi: 10.3390/s21041514 – volume: 14 start-page: 5600 issue: 18 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b22 article-title: Triboelectric nanogenerators for energy harvesting in ocean: A review on application and hybridization publication-title: Energies doi: 10.3390/en14185600 – volume: 12 start-page: 31975 issue: 28 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b107 article-title: Super tough and self-healable poly (dimethylsiloxane) elastomer via hydrogen bonding association and its applications as triboelectric nanogenerators publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.0c08213 – volume: 477 issue: 2249 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b179 article-title: Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 9 issue: 8 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b150 article-title: Water-resistive and wearable triboelectric nanogenerators based on polyurethane/polyester textiles fabricated utilizing a planarization layer publication-title: APL Mater. doi: 10.1063/5.0055552 – volume: 1 start-page: 299 issue: 3 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b6 article-title: Designing active and stable Ir-based catalysts for the acidic oxygen evolution reaction publication-title: Ind. Chem. Mater. doi: 10.1039/D3IM00070B – volume: 11 start-page: 2093 issue: 1 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b157 article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials publication-title: Nat. Commun. doi: 10.1038/s41467-020-15926-1 – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b24 article-title: Recent advances in triboelectric nanogenerators for marine exploitation publication-title: Adv. Energy Mater. – volume: 88 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b173 article-title: Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106227 – volume: 3 start-page: 257 issue: 3 year: 2005 ident: 10.1016/j.nanoen.2023.109018_b17 article-title: Underwater acoustic sensor networks: research challenges publication-title: Ad hoc Netw. doi: 10.1016/j.adhoc.2005.01.004 – volume: 6 start-page: 25 issue: 1 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b41 article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception publication-title: npj Flex. Electron. doi: 10.1038/s41528-022-00160-0 – volume: 184 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b37 article-title: An underwater piezoelectric energy harvester based on magnetic coupling adaptable to low-speed water flow publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109729 – volume: 9 start-page: 3324 issue: 3 year: 2015 ident: 10.1016/j.nanoen.2023.109018_b78 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 10 issue: 5 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b46 article-title: Underwater self-powered all-optical wireless ultrasonic sensing, positioning and communication with ultrafast response time and ultrahigh sensitivity publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202102091 – volume: 61 start-page: 454 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b99 article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.007 – volume: 10 start-page: 1427 issue: 1 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b67 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 111 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b105 article-title: All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108387 – volume: 102 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b159 article-title: Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107691 – volume: 6 start-page: 241 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b3 article-title: Global observing needs in the deep ocean publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00241 – volume: 23 issue: 11 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b55 article-title: Triboelectric and piezoelectric nanogenerators for future soft robots and machines publication-title: Iscience doi: 10.1016/j.isci.2020.101682 – start-page: 1 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b139 article-title: Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection publication-title: Nano Res. – volume: 2 issue: 4 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b53 article-title: Recent advances of triboelectric nanogenerator based applications in biomedical systems publication-title: EcoMat doi: 10.1002/eom2.12049 – volume: 110 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b171 article-title: Decoupling piezoelectric and triboelectric signals from PENGs using the fast fourier transform publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108445 – volume: 2 issue: 2 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b167 article-title: Overview of power management for triboelectric nanogenerators publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202070020 – year: 2019 ident: 10.1016/j.nanoen.2023.109018_b177 – volume: 53 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b51 article-title: Recent advances in ocean energy harvesting based on triboelectric nanogenerators publication-title: Sustain. Energy Technol. Assess. – volume: 176 start-page: 447 year: 2014 ident: 10.1016/j.nanoen.2023.109018_b69 article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives publication-title: Faraday Discuss. doi: 10.1039/C4FD00159A – ident: 10.1016/j.nanoen.2023.109018_b140 – volume: 2 start-page: 746 issue: 2 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b85 article-title: A highly reliable, impervious and sustainable triboelectric nanogenerator as a zero-power consuming active pressure sensor publication-title: Nanosci. Adv. doi: 10.1039/C9NA00790C – volume: 32 issue: 1 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b165 article-title: Multifunctional and physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106066 – start-page: 1943 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b137 article-title: Development of a triboelectric palm-like sensor aiming at underwater perceptual construction – volume: 33 start-page: 26852 issue: 36 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b94 article-title: Polymer-multiferroics composite-based sustainable triboelectric energy harvester publication-title: J. Mater. Sci., Mater. Electron. doi: 10.1007/s10854-022-09350-y – volume: 55 start-page: 463 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b98 article-title: Gas-enhanced triboelectric nanogenerator based on fully-enclosed structure for energy harvesting and sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.022 – volume: 32 issue: 18 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b111 article-title: Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111662 – volume: 6 issue: 7 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b114 article-title: A non-encapsulated polymorphous U-shaped triboelectric nanogenerator for multiform hydropower harvesting publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202001199 – volume: 12 start-page: 31351 issue: 28 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b100 article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.0c03843 – start-page: 228 year: 2006 ident: 10.1016/j.nanoen.2023.109018_b12 article-title: Research challenges and applications for underwater sensor networking – volume: 10 start-page: 1992 issue: 4 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b122 article-title: Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04861A – volume: 17 issue: 8 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b128 article-title: Fluorinated graphene-enabled durable triboelectric coating for water energy harvesting publication-title: Small doi: 10.1002/smll.202007805 – volume: 99 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b141 article-title: Triboelectric hydrophone for underwater detection of low-frequency sounds publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107428 – volume: 542 start-page: 159 issue: 7640 year: 2017 ident: 10.1016/j.nanoen.2023.109018_b52 article-title: New wave power publication-title: Nature doi: 10.1038/542159a – volume: 30 start-page: 34 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b64 article-title: On the origin of contact-electrification publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.016 – volume: 13 issue: 1 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b59 article-title: Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203040 – volume: 3 start-page: 39 issue: 1 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b30 article-title: Triboelectric nanogenerators publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-023-00220-3 – volume: 94 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b136 article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106926 – volume: 4 start-page: 1063 issue: 3 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b175 article-title: Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE01184F – volume: 16 start-page: 466 issue: 1 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b135 article-title: Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting publication-title: Nano Res. doi: 10.1007/s12274-022-4715-6 – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b170 article-title: Triboelectric nanogenerator based self-powered sensor for artificial intelligence publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105887 – volume: 4 start-page: 4694 issue: 9 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b108 article-title: Waste biomaterial–sno nanoparticles composite based green triboelectric nanogenerator for self-powered human motion monitoring publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c00887 – volume: 15 start-page: 15700 issue: 10 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b131 article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things publication-title: ACS Nano doi: 10.1021/acsnano.1c05127 – volume: 42 start-page: 103 issue: 1 year: 2008 ident: 10.1016/j.nanoen.2023.109018_b19 article-title: Underwater acoustic communications and networking: Recent advances and future challenges publication-title: Mar. Technol. Soc. J. doi: 10.4031/002533208786861263 – start-page: 1853 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b117 article-title: Bionic tactile sensor based on triboelectric nanogenerator for motion perception – volume: 68 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b72 article-title: On the first principle theory of nanogenerators from Maxwell’s equations publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104272 – volume: 18 issue: 10 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b148 article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring publication-title: Small – volume: 6 start-page: 56 issue: 1 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b109 article-title: Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-0163-1 – volume: 13 start-page: 3325 issue: 1 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b45 article-title: Underwater wireless communication via TENG-generated Maxwell’s displacement current publication-title: Nature Commun. doi: 10.1038/s41467-022-31042-8 – volume: 7 issue: 9 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b50 article-title: Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202100277 – volume: 91 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b83 article-title: Machine-learned, waterproof mxene fiber-based glove platform for underwater interactivities publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106650 – start-page: 1 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b28 article-title: Triboelectric nanogenerator for healthcare – volume: 7 start-page: 2 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b154 article-title: Fundamental theories and basic principles of triboelectric effect: A review publication-title: Friction doi: 10.1007/s40544-018-0217-7 – volume: 2022 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b143 article-title: Underwater monitoring networks based on cable-structured triboelectric nanogenerators publication-title: Research – volume: 41 start-page: 253 year: 2009 ident: 10.1016/j.nanoen.2023.109018_b2 article-title: Ocean circulation kinetic energy: Reservoirs, sources, and sinks publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.40.111406.102139 – volume: 39 start-page: 9 year: 2017 ident: 10.1016/j.nanoen.2023.109018_b176 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 59 start-page: 380 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b156 article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.051 – volume: 8 start-page: 215 issue: 11 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b168 article-title: From triboelectric nanogenerator to uninterrupted power supply system: The key role of electrochemical batteries and supercapacitors publication-title: Batteries doi: 10.3390/batteries8110215 – volume: 7 start-page: 8659 issue: 4 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b29 article-title: Design, fabrication, and characterization of a hybrid bionic spherical robotics with multilegged feedback mechanism publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3187514 – volume: 10 start-page: 2695 issue: 1 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b43 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nature Commun. doi: 10.1038/s41467-019-10433-4 – volume: 28 issue: 18 year: 2017 ident: 10.1016/j.nanoen.2023.109018_b77 article-title: Design guidelines of triboelectric nanogenerator for water wave energy harvesters publication-title: Nanotechnology doi: 10.1088/1361-6528/aa6612 – volume: 31 issue: 11 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b147 article-title: An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface publication-title: Adv. Mater. doi: 10.1002/adma.201807201 – volume: 7 issue: 6 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b61 article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202101098 – volume: 21 start-page: 7849 issue: 23 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b23 article-title: Review of underwater sensing technologies and applications publication-title: Sensors doi: 10.3390/s21237849 – volume: 11 start-page: 4143 issue: 1 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b44 article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication publication-title: Nat. Commun. doi: 10.1038/s41467-020-17842-w – volume: 89 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b172 article-title: Universal equivalent circuit model and verification of current source for triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106335 – volume: 101 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b110 article-title: Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107633 – volume: 254 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b82 article-title: Microcracked strain sensor based on carbon nanotubes/copper composite film with high performance and waterproof property for underwater motion detection publication-title: Composites B doi: 10.1016/j.compositesb.2023.110574 – volume: 370 start-page: 158 issue: 1958 year: 2012 ident: 10.1016/j.nanoen.2023.109018_b18 article-title: Underwater sensor networks: applications, advances and challenges publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2011.0214 – volume: 80 start-page: 30 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b73 article-title: Where is water in the triboelectric series? publication-title: J. Electrost. doi: 10.1016/j.elstat.2016.01.002 – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b118 article-title: Hybrid energy cells based on triboelectric nanogenerator: from principle to system publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104980 – volume: 8 start-page: 7 year: 2000 ident: 10.1016/j.nanoen.2023.109018_b9 article-title: Design and control of autonomous underwater robots: A survey publication-title: Auton. Robots doi: 10.1023/A:1008984701078 – volume: 32 issue: 2 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b65 article-title: Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface publication-title: Adv. Mater. doi: 10.1002/adma.201905696 – volume: 15 start-page: 1243 issue: 3 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b129 article-title: Ferroelectrically augmented contact electrification enables efficient acoustic energy transfer through liquid and solid media publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02623B – volume: 30 start-page: 532 issue: 3 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b4 article-title: What is the ocean: A sea-change in our perceptions and values? publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst. doi: 10.1002/aqc.3257 – volume: 78 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b36 article-title: Nanogenerator for determination of acoustic power in ultrasonic reactors publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2021.105718 – start-page: 1 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b149 article-title: Wearable sensors for monitoring marine environments and their inhabitants publication-title: Nature Biotechnol. – volume: 7 issue: 14 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b48 article-title: Polymer materials for high-performance triboelectric nanogenerators publication-title: Adv. Sci. doi: 10.1002/advs.202000186 – volume: 6 issue: 11 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b92 article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502566 – volume: 88 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b101 article-title: Paint based triboelectric nanogenerator using facile spray deposition towards smart traffic system and security application publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106236 – volume: 97 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b58 article-title: Tribophotonics: An emerging self-powered wireless solution toward smart city publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107196 – volume: 11 start-page: 5408 issue: 1 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b178 article-title: Vortex phase matching as a strategy for schooling in robots and in fish publication-title: Nat. Commun. doi: 10.1038/s41467-020-19086-0 – volume: 112 issue: 20 year: 2018 ident: 10.1016/j.nanoen.2023.109018_b81 article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing publication-title: Appl. Phys. Lett. doi: 10.1063/1.5028478 – volume: 13 start-page: 2657 issue: 9 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b49 article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01258K – volume: 60 start-page: 850 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b151 article-title: A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.004 – start-page: 1 year: 2015 ident: 10.1016/j.nanoen.2023.109018_b13 article-title: Underwater communications – volume: 104 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b42 article-title: A self-powered acoustic sensor excited by ultrasonic wave for detecting and locating underwater ultrasonic sources publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107879 – volume: 4 start-page: 3870 issue: 8 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b91 article-title: Highly adaptive liquid–solid triboelectric nanogenerator-assisted self-powered water wave motion sensor publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c00537 – volume: 11 start-page: 5381 issue: 1 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b174 article-title: Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications publication-title: Nat. Commun. doi: 10.1038/s41467-020-19059-3 – volume: 2 issue: 3 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b120 article-title: 3D-printed triboelectric nanogenerators: State of the art, applications, and challenges publication-title: Adv. Energy Sustain. Res. doi: 10.1002/aesr.202000045 – volume: 6 start-page: 0062 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b113 article-title: Deep-learning-assisted underwater 3D tactile tensegrity publication-title: Research doi: 10.34133/research.0062 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b161 article-title: Natural and eco-friendly materials for triboelectric energy harvesting publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0373-y – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b86 article-title: 3D interlocked all-textile structured triboelectric pressure sensor for accurately measuring epidermal pulse waves in amphibious environments publication-title: Nano Res. doi: 10.1007/s12274-023-6025-z – volume: 10 start-page: 32 issue: 6 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b15 article-title: Toward the internet of underwater things: Recent developments and future challenges publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2020.2988441 – volume: 66 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b79 article-title: Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104131 – volume: 32 issue: 44 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b87 article-title: Recent progresses in wearable triboelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202205438 – volume: 113 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b57 article-title: Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2021.103038 – volume: 90 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b127 article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106503 – volume: 89 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b90 article-title: Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106476 – volume: 97 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b142 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107210 – volume: 10 start-page: 11369 issue: 12 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b97 article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator publication-title: ACS Nano doi: 10.1021/acsnano.6b06622 – volume: 60 start-page: 715 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b138 article-title: Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.067 – volume: 10 start-page: 157 year: 2017 ident: 10.1016/j.nanoen.2023.109018_b164 article-title: Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance publication-title: Nano Res. doi: 10.1007/s12274-016-1275-7 – volume: 33 issue: 17 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b68 article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports publication-title: Adv. Mater. doi: 10.1002/adma.202004178 – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b5 article-title: Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis: a brief synopsis publication-title: Ind. Chem. Mater. doi: 10.1039/D3IM00071K – volume: 12 start-page: 1416 issue: 1 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b93 article-title: Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing publication-title: Nature Commun. doi: 10.1038/s41467-021-21729-9 – volume: 33 start-page: 86 issue: 6 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b11 article-title: Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities publication-title: IEEE Netw. doi: 10.1109/MNET.2019.1800425 – volume: 3 issue: 17 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b95 article-title: Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600187 – volume: 8 start-page: 765 year: 2015 ident: 10.1016/j.nanoen.2023.109018_b144 article-title: Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator publication-title: Nano Res. doi: 10.1007/s12274-014-0559-z – volume: 41 start-page: 1 issue: 2 year: 2006 ident: 10.1016/j.nanoen.2023.109018_b20 article-title: Underwater wireless communications: Current achievements and research challenges publication-title: IEEE Ocean. Eng. Soc. Newsl. – volume: 42 start-page: 186 issue: 3 year: 2015 ident: 10.1016/j.nanoen.2023.109018_b10 article-title: Underwater robots: a review of technologies and applications publication-title: Ind. Robot Int. J. doi: 10.1108/IR-01-2015-0010 – volume: 9 start-page: 21357 issue: 37 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b76 article-title: A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05694H – volume: 7 start-page: 13 issue: 1 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b88 article-title: Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring publication-title: npj Flex. Electron. doi: 10.1038/s41528-023-00244-5 – volume: 1 issue: 1 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b96 article-title: Fabrication and feasibility study of polymer-based triboelectric nanogenerator towards blue energy harvesting publication-title: Green Energy Resour. doi: 10.1016/j.gerr.2023.100006 – volume: 148 start-page: 563 year: 2018 ident: 10.1016/j.nanoen.2023.109018_b1 article-title: Current status and future of ocean energy sources: A global review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.11.045 – volume: 6 issue: 5 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b75 article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors publication-title: Adv. Sci. doi: 10.1002/advs.201801883 – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b152 article-title: Nickel metal-organic framework/PVDF composite nanofibers based self-powered wireless sensor for pulse monitoring of underwater divers via triboelectrically generated Maxwell-displacement current publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303288 – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b25 article-title: Robust solid-liquid triboelectric nanogenerators: Mechanisms, strategies and applications publication-title: Adv. Funct. Mater. – volume: 30 issue: 15 year: 2018 ident: 10.1016/j.nanoen.2023.109018_b63 article-title: On the electron-transfer mechanism in the contact-electrification effect publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 72 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b123 article-title: A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104684 – volume: 126 issue: 12 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b180 article-title: Symmetry breaking of tail-clamped filaments in Stokes flow publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.124501 – volume: 11 start-page: 399 issue: 1 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b66 article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer publication-title: Nat. Commun. doi: 10.1038/s41467-019-14278-9 – volume: 20 start-page: 74 issue: 2 year: 2017 ident: 10.1016/j.nanoen.2023.109018_b71 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 285 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b16 article-title: In-situ wave energy harvesting for unmanned marine devices: A review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115376 – volume: 12 start-page: 17663 issue: 34 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b32 article-title: Recent advancements in solid–liquid triboelectric nanogenerators for energy harvesting and self-powered applications publication-title: Nanoscale doi: 10.1039/D0NR04326E – volume: 21 start-page: 88 issue: 1 year: 2018 ident: 10.1016/j.nanoen.2023.109018_b116 article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator publication-title: Mater. Today doi: 10.1016/j.mattod.2017.10.006 – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b62 article-title: Environmentally-friendly natural materials for triboelectric nanogenerators: A review publication-title: J. Mater. Chem. A – volume: 110 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b146 article-title: Self-powered angle-resolved triboelectric nanogenerator for underwater vibration localization publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108392 – ident: 10.1016/j.nanoen.2023.109018_b106 – volume: 27 start-page: 554 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b162 article-title: A structural bionic design: from electric organs to systematic triboelectric generators publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.028 – volume: 22 start-page: 4460 issue: 12 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b102 article-title: Recent advances in touch sensors for flexible wearable devices publication-title: Sensors doi: 10.3390/s22124460 – volume: 29 issue: 41 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b160 article-title: Progress in triboelectric materials: toward high performance and widespread applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900098 – volume: 34 issue: 39 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b39 article-title: Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing publication-title: Adv. Mater. doi: 10.1002/adma.202205064 – volume: 605 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b60 article-title: Water-based triboelectric nanogenerator for wireless energy transmission and self-powered communication via a solid-liquid-solid interaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154765 – volume: 12 issue: 37 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b26 article-title: A highly sensitive triboelectric vibration sensor for machinery condition monitoring publication-title: Adv. Energy Mater. – volume: 1 start-page: 328 issue: 2 year: 2012 ident: 10.1016/j.nanoen.2023.109018_b21 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 45 start-page: 5543 issue: 8 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b14 article-title: Fuel cell systems for long-endurance autonomous underwater vehicles–challenges and benefits publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.035 – volume: 108 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b133 article-title: The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108210 – volume: 6 issue: 6 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b121 article-title: A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501593 – volume: 78 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b104 article-title: Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105358 – volume: 55 start-page: 541 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b115 article-title: Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.006 – volume: 8 issue: 4 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b124 article-title: Highly adaptive triboelectric-electromagnetic hybrid nanogenerator for scavenging flow energy and self-powered marine wireless sensing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202201245 – volume: 48 start-page: 391 year: 2018 ident: 10.1016/j.nanoen.2023.109018_b155 article-title: A unified theoretical model for triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.073 – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b27 article-title: Bioinspired designs and biomimetic applications of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105865 – volume: 323 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b40 article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119648 – volume: 38 start-page: 101 year: 2017 ident: 10.1016/j.nanoen.2023.109018_b125 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 33 issue: 45 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b153 article-title: Self-powered interactive fiber electronics with visual–digital synergies publication-title: Adv. Mater. doi: 10.1002/adma.202104681 – volume: 8 start-page: 150 year: 2014 ident: 10.1016/j.nanoen.2023.109018_b163 article-title: Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.05.018 – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b112 article-title: Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: An advanced hardware solution to long-distance target detection publication-title: Nano Energy – volume: 21 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b130 article-title: Underwater hybrid energy harvesting based on TENG-mteg for self-powered marine mammal condition monitoring system publication-title: Mater. Today Sustain. – volume: 427 year: 2021 ident: 10.1016/j.nanoen.2023.109018_b54 article-title: Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213597 – volume: 32 issue: 52 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b103 article-title: Sustainable triboelectric materials for smart active sensing systems publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202208277 – volume: 13 start-page: 1219 issue: 8 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b31 article-title: Triboelectric nanogenerators for harvesting diverse water kinetic energy publication-title: Micromachines doi: 10.3390/mi13081219 – volume: 11 start-page: 6131 issue: 6 year: 2017 ident: 10.1016/j.nanoen.2023.109018_b158 article-title: Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.7b02156 – year: 2023 ident: 10.1016/j.nanoen.2023.109018_b34 article-title: Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators publication-title: J. Energy Chem. – volume: 10 start-page: 7696 issue: 8 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b84 article-title: Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel publication-title: ACS Nano doi: 10.1021/acsnano.6b03042 – volume: 7 issue: 14 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b169 article-title: Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications publication-title: Adv. Sci. doi: 10.1002/advs.202000261 – volume: 10 start-page: 6526 issue: 7 year: 2016 ident: 10.1016/j.nanoen.2023.109018_b38 article-title: Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b03293 – volume: 15 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b47 article-title: Triboelectric nanogenerators for marine energy harvesting and sensing applications publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100487 – volume: 34 issue: 33 year: 2022 ident: 10.1016/j.nanoen.2023.109018_b56 article-title: Self-powered active sensing based on triboelectric generators publication-title: Adv. Mater. doi: 10.1002/adma.202200724 – volume: 5 issue: 9 year: 2020 ident: 10.1016/j.nanoen.2023.109018_b132 article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000531 – volume: 4 issue: 3 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b33 article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800588 – volume: 133 year: 2023 ident: 10.1016/j.nanoen.2023.109018_b145 article-title: 3D printed triboelectric nanogenerator for underwater ultrasonic sensing publication-title: Ultrasonics doi: 10.1016/j.ultras.2023.107045 – volume: 172 start-page: 134 year: 2019 ident: 10.1016/j.nanoen.2023.109018_b35 article-title: Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration publication-title: Energy doi: 10.1016/j.energy.2019.01.120 |
SSID | ssj0000651712 |
Score | 2.491789 |
SecondaryResourceType | review_article |
Snippet | Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109018 |
SubjectTerms | Underwater communication Underwater energy harvesting Underwater environment Underwater sensing Underwater tribolelctric nanogenerator |
Title | Underwater triboelectric nanogenerator |
URI | https://dx.doi.org/10.1016/j.nanoen.2023.109018 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvehBfGJ9lD2It7XNax_HUixVsRct9BaSbCoV2ZbS4s3f7sw-SgVR8LKwIcNuZpOZL9mZ-QCuk8SYbiZSXOJGhHKKFyssLXfhHZdKOUa5w0-jaDiWDxM1aUC_zoWhsMrK9pc2vbDWVUun0mZnMZt1njnuXXii6FiTgq0o4VfKmGb57SfbnLOgi2Vx8dOT-ockUGfQFWFeucnnngqhckGllbrE_vGTh9ryOoMD2K_gYtAr3-gQGj4_gr2tIoLHcFNQF30gZlwGRF81L5ltZi6gh74WZaVxY30C48HdS38YVuwHoUMYvwqty4xDPICIwCEMkMKkQnohLc84d7hRSrxKoww9j506lqaWYaPlxESVJnEsxCk083nuzyDwzuDYpxGPmZGS2KYT713mMxYlXZ6qFoh6xNpVpcGJoeJd1zFgb7rUkyY96VJPLQg3UouyNMYf_eNamfrbJ9ZovX-VPP-35AXs0h3FnzB1Cc3Vcu2vEEWsbLuYJm3Y6d0_DkdfNsbESA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHxFOMZw-IW9mapG16RBPTgG0XNmm3KEkzNIS6aRrixm_H7mMaEgKJSw9prTZuY39ObX8A11Jq3Up5gktcc19M8GC4oeXOnWUiDG1AtcP9QdQdicdxOK5Bu6qFobTK0vYXNj231uVIs9Rmcz6dNp8Zxi5MhrStSclWcgM2BS5fojG4_QxWGy3oY4M4_-tJAj5JVCV0eZ5XprOZo06ojFNvpRbRf_zkotbcTmcPdku86N0Vj7QPNZcdwM5aF8FDuMm5iz4QNC484q-aFdQ2U-vRTV_yvtIYWR_BqHM_bHf9kv7At4jjl76xqbYICBASWMQBguuEC8eFYSljFiMl6cIkStH1mIkNksQEOGgYUVElMo45P4Z6NsvcCXjOapz7JGJxoIUgumnpnE1dGkSyxZKwAbyasbJlb3CiqHhTVRLYqyr0pEhPqtBTA_yV1LzojfHH9XGlTPXtHSs0379Knv5b8gq2usN-T_UeBk9nsE1nKBklCM-hvly8uwuEFEtzmX8yX_CfxdY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+triboelectric+nanogenerator&rft.jtitle=Nano+energy&rft.au=Wang%2C+Siyuan&rft.au=Xu%2C+Peng&rft.au=Liu%2C+Jianhua&rft.au=Wang%2C+Hao&rft.date=2023-12-15&rft.issn=2211-2855&rft.volume=118&rft.spage=109018&rft_id=info:doi/10.1016%2Fj.nanoen.2023.109018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2023_109018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |