Underwater triboelectric nanogenerator

Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries. Recent breakthroughs in science and technology have propelled us from surface endeavors into the depths of the underwater world. However, a host...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 118; p. 109018
Main Authors Wang, Siyuan, Xu, Peng, Liu, Jianhua, Wang, Hao, Si, Jicang, Deng, Jian, Xu, Minyi, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries. Recent breakthroughs in science and technology have propelled us from surface endeavors into the depths of the underwater world. However, a host of challenges emerges beneath the waves, encompassing energy constraints, limited sensing capabilities, and communication obstacles for submerged equipment. These challenges, which resonate across diverse fields, demand innovative solutions to advance scientific pursuits and practical applications. Triboelectric nanogenerators (TENGs), pioneered by Zhong Lin Wang in 2012, represent a revolutionary leap in energy harvesting and self-powered sensing technologies. These devices have fostered exploration and innovation in various domains, including marine science and technology. In response to the unique challenges posed by the underwater environment, a specialized application of TENGs has emerged: underwater TENGs. These innovative devices hold the potential to transform underwater exploration by increasing energy harvesting, expanding sensing capabilities, and enhancing communication systems. This comprehensive review aims to demystify the domain of underwater TENG technology, delving into the theories, design strategies, and recent breakthroughs that underpin this emerging field. This review also contemplates the future trajectories of underwater TENGs, envisioning their transformative role in elevating underwater research and technology. [Display omitted] •A comprehensive review aims to demystify the domain of underwater TENG technology.•A holistic overview of the progress in the field of underwater TENGs.•A broad outlook on the future development of underwater TENG technology.
AbstractList Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries. Recent breakthroughs in science and technology have propelled us from surface endeavors into the depths of the underwater world. However, a host of challenges emerges beneath the waves, encompassing energy constraints, limited sensing capabilities, and communication obstacles for submerged equipment. These challenges, which resonate across diverse fields, demand innovative solutions to advance scientific pursuits and practical applications. Triboelectric nanogenerators (TENGs), pioneered by Zhong Lin Wang in 2012, represent a revolutionary leap in energy harvesting and self-powered sensing technologies. These devices have fostered exploration and innovation in various domains, including marine science and technology. In response to the unique challenges posed by the underwater environment, a specialized application of TENGs has emerged: underwater TENGs. These innovative devices hold the potential to transform underwater exploration by increasing energy harvesting, expanding sensing capabilities, and enhancing communication systems. This comprehensive review aims to demystify the domain of underwater TENG technology, delving into the theories, design strategies, and recent breakthroughs that underpin this emerging field. This review also contemplates the future trajectories of underwater TENGs, envisioning their transformative role in elevating underwater research and technology. [Display omitted] •A comprehensive review aims to demystify the domain of underwater TENG technology.•A holistic overview of the progress in the field of underwater TENGs.•A broad outlook on the future development of underwater TENG technology.
ArticleNumber 109018
Author Xu, Peng
Liu, Jianhua
Si, Jicang
Deng, Jian
Xu, Minyi
Wang, Siyuan
Wang, Zhong Lin
Wang, Hao
Author_xml – sequence: 1
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China
– sequence: 2
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, Beijing, China
– sequence: 3
  givenname: Jianhua
  surname: Liu
  fullname: Liu, Jianhua
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China
– sequence: 4
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China
– sequence: 5
  givenname: Jicang
  surname: Si
  fullname: Si, Jicang
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China
– sequence: 6
  givenname: Jian
  surname: Deng
  fullname: Deng, Jian
  email: zjudengjian@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310027, Zhejiang, China
– sequence: 7
  givenname: Minyi
  orcidid: 0000-0002-3772-8340
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, Liaoning, China
– sequence: 8
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zlwang@binn.cas.cn
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, No. 1 Yangyangdong Road, Beijing, 101400, Beijing, China
BookMark eNqFkE1LxDAQhnNYwXXdf-BhT95aM0mbNh4EWfyCBS_uOSTpVFJqImlQ_Pem1JMHncsMLzwvPHNGVj54JOQCaAkUxNVQeu0D-pJRxnMkKbQrsmYMoGBtXZ-S7TQNNI-ooQG2JpdH32H81AnjLkVnAo5o82F3c9Mreow6hXhOTno9Trj92RtyvL972T8Wh-eHp_3tobCcilQY22krBBe8tg3QimvJK-SVYR1jtmVti7UUHTBuegtSGsihYQ0HIdum4XxDrpdeG8M0ReyVdUknF3yK2o0KqJpF1aAWUTWLqkU0w9Uv-D26Nx2__sNuFgyz2IfDqCbr0FvsXMy_UF1wfxd8AywRcd8
CitedBy_id crossref_primary_10_1039_D4TA03575E
crossref_primary_10_1002_asia_202401109
crossref_primary_10_1016_j_mtchem_2024_102384
crossref_primary_10_1002_admt_202401744
crossref_primary_10_1002_admt_202500072
crossref_primary_10_1016_j_xcrp_2024_101871
crossref_primary_10_1016_j_apenergy_2024_124455
crossref_primary_10_1016_j_mtcomm_2024_109616
crossref_primary_10_1088_2631_7990_ada858
crossref_primary_10_1016_j_pnsc_2024_09_007
crossref_primary_10_1039_D4NA00222A
crossref_primary_10_1109_JSEN_2024_3417340
crossref_primary_10_1016_j_jallcom_2025_179623
crossref_primary_10_1016_j_nanoen_2025_110738
crossref_primary_10_1557_s43577_025_00875_1
crossref_primary_10_3390_app15052846
crossref_primary_10_1002_ece2_78
crossref_primary_10_1109_JSEN_2024_3395970
Cites_doi 10.1016/j.oceaneng.2023.113617
10.1016/j.nanoen.2017.12.049
10.1002/adfm.201805216
10.1017/jfm.2022.624
10.1016/j.nanoen.2014.11.034
10.1016/j.compscitech.2022.109542
10.1021/acsenergylett.2c01908
10.3390/s21041514
10.3390/en14185600
10.1021/acsami.0c08213
10.1063/5.0055552
10.1039/D3IM00070B
10.1038/s41467-020-15926-1
10.1016/j.nanoen.2021.106227
10.1016/j.adhoc.2005.01.004
10.1038/s41528-022-00160-0
10.1016/j.ymssp.2022.109729
10.1021/acsnano.5b00534
10.1002/adom.202102091
10.1016/j.nanoen.2019.05.007
10.1038/s41467-019-09461-x
10.1016/j.nanoen.2023.108387
10.1016/j.nanoen.2022.107691
10.3389/fmars.2019.00241
10.1016/j.isci.2020.101682
10.1002/eom2.12049
10.1016/j.nanoen.2023.108445
10.1002/aisy.202070020
10.1039/C4FD00159A
10.1039/C9NA00790C
10.1002/adfm.202106066
10.1007/s10854-022-09350-y
10.1016/j.nanoen.2018.11.022
10.1002/adfm.202111662
10.1002/admt.202001199
10.1021/acsami.0c03843
10.1039/D1TA04861A
10.1002/smll.202007805
10.1016/j.nanoen.2022.107428
10.1038/542159a
10.1016/j.mattod.2019.05.016
10.1002/aenm.202203040
10.1038/s43586-023-00220-3
10.1016/j.nanoen.2022.106926
10.1039/C9SE01184F
10.1007/s12274-022-4715-6
10.1016/j.nanoen.2021.105887
10.1021/acsaelm.2c00887
10.1021/acsnano.1c05127
10.4031/002533208786861263
10.1016/j.nanoen.2019.104272
10.1038/s41378-020-0163-1
10.1038/s41467-022-31042-8
10.1002/aelm.202100277
10.1016/j.nanoen.2021.106650
10.1007/s40544-018-0217-7
10.1146/annurev.fluid.40.111406.102139
10.1016/j.nanoen.2017.06.035
10.1016/j.nanoen.2019.02.051
10.3390/batteries8110215
10.1109/LRA.2022.3187514
10.1038/s41467-019-10433-4
10.1088/1361-6528/aa6612
10.1002/adma.201807201
10.1002/admt.202101098
10.3390/s21237849
10.1038/s41467-020-17842-w
10.1016/j.nanoen.2021.106335
10.1016/j.nanoen.2022.107633
10.1016/j.compositesb.2023.110574
10.1098/rsta.2011.0214
10.1016/j.elstat.2016.01.002
10.1016/j.nanoen.2020.104980
10.1023/A:1008984701078
10.1002/adma.201905696
10.1039/D1EE02623B
10.1002/aqc.3257
10.1016/j.ultsonch.2021.105718
10.1002/advs.202000186
10.1002/aenm.201502566
10.1016/j.nanoen.2021.106236
10.1016/j.nanoen.2022.107196
10.1038/s41467-020-19086-0
10.1063/1.5028478
10.1039/D0EE01258K
10.1016/j.nanoen.2019.04.004
10.1016/j.nanoen.2022.107879
10.1021/acsaelm.2c00537
10.1038/s41467-020-19059-3
10.1002/aesr.202000045
10.34133/research.0062
10.1007/s40820-020-0373-y
10.1007/s12274-023-6025-z
10.1109/MCE.2020.2988441
10.1016/j.nanoen.2019.104131
10.1002/adfm.202205438
10.1016/j.dsp.2021.103038
10.1016/j.nanoen.2021.106503
10.1016/j.nanoen.2021.106476
10.1016/j.nanoen.2022.107210
10.1021/acsnano.6b06622
10.1016/j.nanoen.2019.03.067
10.1007/s12274-016-1275-7
10.1002/adma.202004178
10.1039/D3IM00071K
10.1038/s41467-021-21729-9
10.1109/MNET.2019.1800425
10.1002/admi.201600187
10.1007/s12274-014-0559-z
10.1108/IR-01-2015-0010
10.1039/D1TA05694H
10.1038/s41528-023-00244-5
10.1016/j.gerr.2023.100006
10.1016/j.oceaneng.2017.11.045
10.1002/advs.201801883
10.1002/adfm.202303288
10.1002/adma.201706790
10.1016/j.nanoen.2020.104684
10.1103/PhysRevLett.126.124501
10.1038/s41467-019-14278-9
10.1016/j.mattod.2016.12.001
10.1016/j.oceaneng.2023.115376
10.1039/D0NR04326E
10.1016/j.mattod.2017.10.006
10.1016/j.nanoen.2023.108392
10.1016/j.nanoen.2016.07.028
10.3390/s22124460
10.1002/adfm.201900098
10.1002/adma.202205064
10.1016/j.apsusc.2022.154765
10.1016/j.nanoen.2012.01.004
10.1016/j.ijhydene.2019.05.035
10.1016/j.nanoen.2023.108210
10.1002/aenm.201501593
10.1016/j.nanoen.2020.105358
10.1016/j.nanoen.2018.11.006
10.1002/admt.202201245
10.1016/j.nanoen.2018.03.073
10.1016/j.nanoen.2021.105865
10.1016/j.apenergy.2022.119648
10.1016/j.nanoen.2017.04.053
10.1002/adma.202104681
10.1016/j.nanoen.2014.05.018
10.1016/j.ccr.2020.213597
10.1002/adfm.202208277
10.3390/mi13081219
10.1021/acsnano.7b02156
10.1021/acsnano.6b03042
10.1002/advs.202000261
10.1021/acsnano.6b03293
10.1016/j.rineng.2022.100487
10.1002/adma.202200724
10.1002/admt.202000531
10.1002/admt.201800588
10.1016/j.ultras.2023.107045
10.1016/j.energy.2019.01.120
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2023.109018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2023_109018
S2211285523008558
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-bcdac663635c71043a934e34b2d22c8288e596d123bfc199b1c82b27316987733
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 23:04:24 EDT 2025
Tue Jul 01 00:57:07 EDT 2025
Fri Feb 23 02:35:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Underwater communication
Underwater energy harvesting
Underwater sensing
Underwater tribolelctric nanogenerator
Underwater environment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-bcdac663635c71043a934e34b2d22c8288e596d123bfc199b1c82b27316987733
ORCID 0000-0002-3772-8340
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2023_109018
crossref_primary_10_1016_j_nanoen_2023_109018
elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_109018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Akyildiz, Pompili, Melodia (b17) 2005; 3
Zou, Guo, Xue, Zhang, Shen, Liu, Wang, He, Dai, Jiang (b157) 2020; 11
Heidemann, Stojanovic, Zorzi (b18) 2012; 370
Khalil, Saeed, Babar, Jan (b15) 2020; 10
Dong, Wang, Yang, Wang, Lu, Wang (b25) 2023
Wen, Guo, Zi, Yeh, Wang, Deng, Wang, Li, Hu, Zhu (b38) 2016; 10
Zheng, Xu, Meng, Liu, Wang, Wang, Xie, Tao, Xu (b29) 2022; 7
Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu (b67) 2019; 10
Levin, Bett, Gates, Heimbach, Howe, Janssen, McCurdy, Ruhl, Snelgrove, Stocks (b3) 2019; 6
Weydahl, Gilljam, Lian, Johannessen, Holm, Hasvold (b14) 2020; 45
Oh, Hajra, Divya, Panda, Shin, Oh, Lee, Oh, Deepti, Kim (b94) 2022; 33
Xu, Zheng, Liu, Liu, Wang, Wang, Guan, Fu, Xu, Xie (b113) 2023; 6
Lai, Chang, Yang, Su, Leu, Chu, Sha, Wu (b138) 2019; 60
Mistewicz, Jesionek, Kim, Hajra, Kozioł, Chrobok, Wang (b36) 2021; 78
Si, Sun, Wu, Li, Wang, Lin, Yang, Wang (b86) 2023
Burgo, Galembeck, Pollack (b73) 2016; 80
Pan, Yuan, Liang, Zou, Zhang, Bowen (b55) 2020; 23
Chandrasekhar, Vivekananthan, Khandelwal, Kim (b151) 2019; 60
Lin, Wang, Li (b6) 2023; 1
Zhang, Jing, Wang, Fan, Zhao, Wang, Cheng (b134) 2022; 7
Stojanovic (b20) 2006; 41
Wang, Gao, Zhu, Wang, Zhu, Zhao, Wang, Cheng (b40) 2022; 323
Jin, Sun, Li, Zhang, Zhu, Zhang, Yuan, Chen, Tian, Hou (b174) 2020; 11
Ahmed, Hassan, Jiang, Youssef, Liu, Hedaya, Yazid, Zu, Wang (b77) 2017; 28
Qin, Cheng, Zi, Gu, Zhang, Shang, Yang, Yang, Du, Wang (b166) 2018; 28
Yun, Kim, Ryoo, Kim, Jo, Kim (b101) 2021; 88
Wang, Jiang, Xu (b176) 2017; 39
Yu, Song, Zhang, Zhang, Chen, Zhai, Wang (b144) 2015; 8
Zhao, Yu, Wang, Wang, Li, Wang, Cheng (b172) 2021; 89
Wang (b71) 2017; 20
Chen, Wen, Shi, Jian, Li, Yeow, Sun (b44) 2020; 11
Zhang, Yang, Ren, Yang, Li, Li, Liu, Hu, He, Xi (b112) 2023
Sui, Shan, Hou, Tian, Hu, Xie (b37) 2023; 184
Zhang, Li, Cheng, Shen, Yi, Peng, Ning, Dong, Wang (b143) 2022; 2022
Matin Nazar, Idala Egbe, Abdollahi, Hariri-Ardebili (b22) 2021; 14
Rodrigues, Nunes, Clemente, Mathias, Correia, Rosa-Santos, Taveira-Pinto, Morais, Pereira, Ventura (b49) 2020; 13
Wang, Wen, Guo, Wu, He, Lin, Cao, Wang (b97) 2016; 10
Yu, Zhu, Wang, Zhai (b160) 2019; 29
Xiao, Yin, Chen (b28) 2022
Guo, He, Yuan, Tao, Liu, Song, Gao, Wang, Pan (b146) 2023; 110
Shi, Han, Han, Li, Ren (b89) 2022; 226
Zhang, Hu, Zeng, Yang, He, Li, Li, Yang, Hu, Xi (b114) 2021; 6
Chen, Tang, Jiang, Zhu, Chen, He, Xu, Guo, Lin, Li (b119) 2018; 45
Li, Dai, Zhang, Wang, You, Zhang (b57) 2021; 113
Duan, Lin, Zhang, Li, Zhu, Wu, Lei (b83) 2022; 91
Wang, Liu, Wang, Wang, Wang, Zhang, Zhao, Xu, Wang (b131) 2021; 15
Kim, Hur, Lee, Shin, Qiao, Mun, Lee, Moon, Kim, Baik (b129) 2022; 15
Tao, Yi, Yang, Tang, Yang, Wu, Chang, Yuan (b109) 2020; 6
Zhao, Shu, Ai, Lou, Sou, Lu, Jin, Wang, Wang, Wu (b26) 2022; 12
Lee, Yoon, Jiang, Wen, Seung, Kim, Wang (b92) 2016; 6
Lv, Yu, Huang, Yu, Wang, Zhang, Zhu (b98) 2019; 55
Li, Nagy, Graving, Bak-Coleman, Xie, Couzin (b178) 2020; 11
Rock, Sima, Knapen (b4) 2020; 30
Shen, Li, Guo, Yang, Wu, Wang, Luo, Xie, Peng, Pu (b50) 2021; 7
Chen, Tang, He, Deng, Yang, Zhu, Chen, Shao, Liu, Wang (b116) 2018; 21
Niu, Wang (b70) 2015; 14
Du, Tang, Fu, Shan, Zeng, Guo, Hu (b80) 2023
Zhang, Wang, Xu, Zhang, Yang, Guo, Zhang, Zhao (b54) 2021; 427
Khandelwal, Dahiya (b56) 2022; 34
Vivekananthan, Chandrasekhar, Alluri, Purusothaman, Kim (b85) 2020; 2
Jie, Jiang, Zhang, Wang, Cao (b162) 2016; 27
Leon, Sherrell, Šutka, Ellis (b171) 2023; 110
Kottapalli, Tao, Sengupta, Triantafyllou (b177) 2019
Das, Ravipati, Badhulika (b152) 2023
Zhang, Cao, Wang (b133) 2023; 108
Chen, Yang, Li, Fan, Zi, Jing, Guo, Wen, Pradel, Niu (b78) 2015; 9
Yang, Gong, Gu, Liu, Hou, Li, Zhang, Wang (b153) 2021; 33
Yuh (b9) 2000; 8
Lin, Zhang, Liao, Zhang (b82) 2023; 254
Wang, Shi, Yang, Tao, Li, Lei, Liu, Wang, Chen (b148) 2022; 18
Qu, Yuan, Li, Wang, Xu, Fan, Zhang, Qian, Wang, Wang (b105) 2023; 111
Jiang, Sun, Fan, Zhang (b84) 2016; 10
Dharmasena, Jayawardena, Mills, Dorey, Silva (b155) 2018; 48
Cui, Yu, Wang, Wan, Zhang (b31) 2022; 13
Chitre, Shahabudeen, Stojanovic (b19) 2008; 42
Dassanayaka, Alves, Wanasekara, Dharmasena, Ventura (b87) 2022; 32
Durukan, Cicek, Doganay, Gorur, Çınar, Unalan (b165) 2022; 32
Anwer, Khan, Ansari, Baek, Yi, Kim, Noh, Jeong (b102) 2022; 22
Chen, Wang, Zhang, Wang, Liu, Chen, Wei (b93) 2021; 12
Xu, Zhao, Wang, Zhang, Li, Pan, Wang (b74) 2019; 13
Sun, Liu, Luo, Liu, Feng, Chen, Wang (b159) 2022; 102
Zeng, Wang (b16) 2023; 285
Yang, Guo, Zhu, Sun, Zhang, He, Lee (b59) 2023; 13
LináWang (b69) 2014; 176
Tripathy, Sahoo, Mishra, Das, Balasubramaniam, Ramadoss (b96) 2023; 1
Liu, Xu, Zheng, Liu, Wang, Wang, Guan, Xie, Xu (b110) 2022; 101
Fang, Tong, Bu, Cao, Xu, Qi, Zhang (b167) 2020; 2
Jeon, Lee, Yoo, Yoo, Park, Kim (b150) 2021; 9
Zhao, Tian, Kuang, Ouyang, Yan, Wang, Li, Zhu (b95) 2016; 3
Chao, Alam, Cheng (b181) 2022; 947
Chen, Koh, Liu, Li, Fan, Liu, Yeo, Tan, Tee, He (b107) 2020; 12
Cao, Shi, Tan, Sepúlveda (b139) 2022
Lin, Xu, Chi Wang, Wang (b66) 2020; 11
Jiang, Li, Ying, Ping (b128) 2021; 17
Xu, Liu, Liu, Wang, Zheng, Wang, Chen, Wang, Wang, Fu (b41) 2022; 6
Qin, Xu, Lin, Zhan, Dong, Han, Wang, Feng, Wang (b111) 2022; 32
Chen, Miao, Guo, Chen, Song, Su, Zhang (b81) 2018; 112
Song, Zhu, Wang, Yang, Chen, Hong, Cui (b51) 2022; 53
Wang, Fu, Wang, Su, Zi (b58) 2022; 97
Liu, Zhou, Zhang, Zhao, Li, Li, Yin, Wang, Wang (b76) 2021; 9
Chatterjee, Burman, Khan, Saha, Choi, Lee, Lin (b32) 2020; 12
Niu, Zhou, Wang, Liu, Lin, Bando, Wang (b163) 2014; 8
Wang, Xu, Wang, Zheng, Liu, Liu, Chen, Wang, Xie, Tao (b142) 2022; 97
Li, Pei, Zhang, Kottapalli (b27) 2021; 84
Shao, Willatzen, Jiang, Tang, Chen, Wang, Wang (b156) 2019; 59
Mahmud, Zolfagharian, Gharaie, Kaynak, Farjana, Ellis, Chen, Kouzani (b120) 2021; 2
Xu, Zi, Wang, Zou, Dai, He, Wang, Wang, Feng, Li (b63) 2018; 30
Cheng, Gao, Wang (b33) 2019; 4
Wen, Sun, He, Shi, Zhu, Zhang, Li, Zhang, Lee (b169) 2020; 7
Guo, Wen, Zi, Yeh, Wang, Zhu, Hu, Wang (b121) 2016; 6
Marx (b7) 1990
Shan, Li, Yang, Feng, Wang, Xie (b35) 2019; 172
Ferrari, Wunsch (b2) 2009; 41
Xia, Liu, Zhu, Zi (b53) 2020; 2
Li, Xiong, Lv, Chen, Gao, Zhang, Lee (b104) 2020; 78
Wang, Qian, Zhao, Wang, Jiang, Wang, Meng, Li, Zhu, Chen (b124) 2023; 8
Zou, Tan, Shi, Ouyang, Jiang, Liu, Li, Yu, Wang, Qu (b43) 2019; 10
Deng, Xu, Qin, Li, Duan, Hou, Wang (b39) 2022; 34
Liu, Xu, Wang, Zheng, Liu, Wang, Chen, Tao, Xu (b137) 2021
Slabov, Kopyl, Soares dos Santos, Kholkin (b161) 2020; 12
Gao, Lu, Xie, Chen, Wu, Wang, Wang, Yue, Tong, Lei (b123) 2020; 72
Jiao (b173) 2021; 88
Zhang, Zhao, Yang, Yuan, Zhou, Yin, Liu, Li, Wang, Wang (b132) 2020; 5
Zhang, Hao, Yang, Su, Zhang, Wang, Wang, Li (b24) 2023
TP, Kumar (b13) 2015
Li, Ravi, Xie, Couzin (b179) 2021; 477
Liu, Xu, Xiao, Zhang, Qu, Lv, Chen, Song (b91) 2022; 4
Ahmed (b122) 2022; 10
Wang (b72) 2020; 68
Zhao, Xu, Shu, An, Ding, Liu, Wang, Zhao, Yu, Wang (b45) 2022; 13
S.A. Basith, A. Chandrasekhar, Synergistic Effect of Dual Surface Modified Ecoflex Polymer for Dynamic Triboelectric Nanogenerator Towards Sustainable Battery-Free Tally Counter, Adv. Mater. Technol. 2300495.
Shin, Bae, Moon, Kim, Choi, Kim, Yoon, Lee, Nah (b158) 2017; 11
Wang, Wang (b64) 2019; 30
Sun, Cui, Chen (b23) 2021; 21
Tian, Su, Wang, Wang, Zi (b46) 2022; 10
Wang, Liu, Wang, Zheng, Guan, Liu, Wang, Chen, Wang, Xie (b61) 2022; 7
Chen, Ren, Han, Wan, Zhang (b118) 2020; 75
Chen, Xing, Li, Wang, Xu (b175) 2020; 4
Melikoglu (b1) 2018; 148
Li, Zhang, Wang, Liu (b126) 2021; 21
Kaur, Singh, Sawhney, Sui, Trdan (b108) 2022; 4
Wang (b52) 2017; 542
Zhang, Jing, Wang, Zhu, Yu, Zhu, Cheng, Zhao, Wang (b135) 2023; 16
B. Shan, C. Liu, R. Chen, Q. Guanghao, S. Hao, N. Chen, G. Xing, A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator, Available at SSRN 4476236.
Wang, Xu, Wang, Wang, Liu, Song, Xie, Xu (b117) 2021
Su, Zhang, Li, Gong, Venkatesan, Jiang (b11) 2019; 33
Wei, Shi, Yao, Zhi, Hu, Yan, Shi, Yu, Huang (b88) 2023; 7
Pan, Zhang (b154) 2019; 7
Zhao, Liu, Wang, Hu, Zhang, Zhang, Wang, Du, Zou, Yuan (b136) 2022; 94
Lyu, Serov (b5) 2023
Lv, Zhang, Huang, Yu, Zhu (b90) 2021; 89
Luo, Gao, Wang (b68) 2021; 33
Wang, Wu, Liu, Zheng, Liu, Xu, Kong, Feng, Zhang, Wang (b100) 2020; 12
Mi, Lu, Wang, Zhao, Cao, Wang (b168) 2022; 8
Wang, Liu, Chen, Wang, Zhu, Yu, Song, Pan, Mi, Lee (b127) 2021; 90
Sun, Zhu, Jia, Zhao, Chu, Mao (b34) 2023
Wang, Zou, Yang, Li, Guo, Jiang, Jia, Cao (b115) 2019; 55
Deng, Mao, Brandt (b180) 2021; 126
Nowacki, Mistewicz, Hajra, Kim (b145) 2023; 133
Guan, Liu, Xu, Liu, Wu, Li, Ou-Yang (b42) 2022; 104
Wei, Wang, Liu, Yuan, Liu, Du, Zhu, Nie (b103) 2022; 32
Ahmed, Hassan, Mosa, Elsanadidy, Sharafeldin, Rusling, Ren (b147) 2019; 31
Heidemann, Ye, Wills, Syed, Li (b12) 2006
Nie, Ren, Xu, Lin, Zhan, Chen, Wang (b65) 2020; 32
Liu, Tong, Gao, Liu, Li, Zhang (b62) 2023
Zhou, Shen, Cui, Shao, Li, Zhang (b170) 2021; 84
Dai, Wang, Niu, Yi, Yin, Chen, Zhang, You (b164) 2017; 10
Fan, Tian, Wang (b21) 2012; 1
Wang, Wan, Fang, Yuan, Zhuo, Wang, Zhang (b60) 2022; 605
Cheng, Shao, Wang (b30) 2023; 3
Pang, Chen, Chu, Wang, Cao (b79) 2019; 66
Liu, Zheng, Li, Wang, Zhou (b99) 2019; 61
Tavakoli, Khojasteh, Haghani, Hirdaris (b8) 2023; 272
Chen, Zhang, Zhu, Wang (b48) 2020; 7
Lai, Hsiao, Wu, Wang (b75) 2019; 6
Kaidarova, Geraldi, Wilson, Kosel, Meekan, Eguíluz, Hussain, Shamim, Liao, Srivastava (b149) 2023
Xi, Wang, Zi, Li, Han, Cao, Hu, Wang (b125) 2017; 38
Liu, Liu, Sun, Lin, Feng, Si, Yang (b141) 2022; 99
Liu, Qu, Shan, Aranda, Chen, Li, Zhou, Yu, Wang, Mi (b130) 2023; 21
Bogue (b10) 2015; 42
Radhakrishnan, Joseph, Jelmy, Saji, Sanathanakrishnan, John (b47) 2022; 15
Ahmed (10.1016/j.nanoen.2023.109018_b77) 2017; 28
Tripathy (10.1016/j.nanoen.2023.109018_b96) 2023; 1
Chen (10.1016/j.nanoen.2023.109018_b175) 2020; 4
Zhao (10.1016/j.nanoen.2023.109018_b26) 2022; 12
Wang (10.1016/j.nanoen.2023.109018_b40) 2022; 323
Durukan (10.1016/j.nanoen.2023.109018_b165) 2022; 32
Wang (10.1016/j.nanoen.2023.109018_b60) 2022; 605
Cheng (10.1016/j.nanoen.2023.109018_b33) 2019; 4
Wen (10.1016/j.nanoen.2023.109018_b169) 2020; 7
Sui (10.1016/j.nanoen.2023.109018_b37) 2023; 184
Xu (10.1016/j.nanoen.2023.109018_b63) 2018; 30
Bogue (10.1016/j.nanoen.2023.109018_b10) 2015; 42
Lv (10.1016/j.nanoen.2023.109018_b90) 2021; 89
Zhang (10.1016/j.nanoen.2023.109018_b112) 2023
Chen (10.1016/j.nanoen.2023.109018_b119) 2018; 45
Yu (10.1016/j.nanoen.2023.109018_b160) 2019; 29
Akyildiz (10.1016/j.nanoen.2023.109018_b17) 2005; 3
Dong (10.1016/j.nanoen.2023.109018_b25) 2023
Kim (10.1016/j.nanoen.2023.109018_b129) 2022; 15
Levin (10.1016/j.nanoen.2023.109018_b3) 2019; 6
Li (10.1016/j.nanoen.2023.109018_b104) 2020; 78
Leon (10.1016/j.nanoen.2023.109018_b171) 2023; 110
Ferrari (10.1016/j.nanoen.2023.109018_b2) 2009; 41
Sun (10.1016/j.nanoen.2023.109018_b34) 2023
Du (10.1016/j.nanoen.2023.109018_b80) 2023
Slabov (10.1016/j.nanoen.2023.109018_b161) 2020; 12
Kaidarova (10.1016/j.nanoen.2023.109018_b149) 2023
Dassanayaka (10.1016/j.nanoen.2023.109018_b87) 2022; 32
Zheng (10.1016/j.nanoen.2023.109018_b29) 2022; 7
Xu (10.1016/j.nanoen.2023.109018_b74) 2019; 13
Song (10.1016/j.nanoen.2023.109018_b51) 2022; 53
Zhang (10.1016/j.nanoen.2023.109018_b134) 2022; 7
Zhang (10.1016/j.nanoen.2023.109018_b135) 2023; 16
LináWang (10.1016/j.nanoen.2023.109018_b69) 2014; 176
Dai (10.1016/j.nanoen.2023.109018_b164) 2017; 10
Wang (10.1016/j.nanoen.2023.109018_b97) 2016; 10
Wang (10.1016/j.nanoen.2023.109018_b58) 2022; 97
Mahmud (10.1016/j.nanoen.2023.109018_b120) 2021; 2
Chatterjee (10.1016/j.nanoen.2023.109018_b32) 2020; 12
Anwer (10.1016/j.nanoen.2023.109018_b102) 2022; 22
Chen (10.1016/j.nanoen.2023.109018_b78) 2015; 9
Qu (10.1016/j.nanoen.2023.109018_b105) 2023; 111
Stojanovic (10.1016/j.nanoen.2023.109018_b20) 2006; 41
Chen (10.1016/j.nanoen.2023.109018_b48) 2020; 7
Pan (10.1016/j.nanoen.2023.109018_b154) 2019; 7
Xi (10.1016/j.nanoen.2023.109018_b125) 2017; 38
Shan (10.1016/j.nanoen.2023.109018_b35) 2019; 172
TP (10.1016/j.nanoen.2023.109018_b13) 2015
Zeng (10.1016/j.nanoen.2023.109018_b16) 2023; 285
Xu (10.1016/j.nanoen.2023.109018_b113) 2023; 6
Zhang (10.1016/j.nanoen.2023.109018_b132) 2020; 5
Lai (10.1016/j.nanoen.2023.109018_b138) 2019; 60
Liu (10.1016/j.nanoen.2023.109018_b91) 2022; 4
Qin (10.1016/j.nanoen.2023.109018_b111) 2022; 32
Chao (10.1016/j.nanoen.2023.109018_b181) 2022; 947
Heidemann (10.1016/j.nanoen.2023.109018_b12) 2006
Deng (10.1016/j.nanoen.2023.109018_b180) 2021; 126
10.1016/j.nanoen.2023.109018_b106
Khalil (10.1016/j.nanoen.2023.109018_b15) 2020; 10
Mi (10.1016/j.nanoen.2023.109018_b168) 2022; 8
Wang (10.1016/j.nanoen.2023.109018_b100) 2020; 12
Chandrasekhar (10.1016/j.nanoen.2023.109018_b151) 2019; 60
Cui (10.1016/j.nanoen.2023.109018_b31) 2022; 13
Xu (10.1016/j.nanoen.2023.109018_b41) 2022; 6
Rodrigues (10.1016/j.nanoen.2023.109018_b49) 2020; 13
Guo (10.1016/j.nanoen.2023.109018_b146) 2023; 110
Tao (10.1016/j.nanoen.2023.109018_b109) 2020; 6
Liu (10.1016/j.nanoen.2023.109018_b110) 2022; 101
Zhao (10.1016/j.nanoen.2023.109018_b95) 2016; 3
Liu (10.1016/j.nanoen.2023.109018_b137) 2021
Lv (10.1016/j.nanoen.2023.109018_b98) 2019; 55
Zou (10.1016/j.nanoen.2023.109018_b157) 2020; 11
Zhang (10.1016/j.nanoen.2023.109018_b114) 2021; 6
Chen (10.1016/j.nanoen.2023.109018_b116) 2018; 21
Nowacki (10.1016/j.nanoen.2023.109018_b145) 2023; 133
Fang (10.1016/j.nanoen.2023.109018_b167) 2020; 2
Weydahl (10.1016/j.nanoen.2023.109018_b14) 2020; 45
Shao (10.1016/j.nanoen.2023.109018_b156) 2019; 59
Zhou (10.1016/j.nanoen.2023.109018_b170) 2021; 84
Wang (10.1016/j.nanoen.2023.109018_b117) 2021
Wang (10.1016/j.nanoen.2023.109018_b176) 2017; 39
Lin (10.1016/j.nanoen.2023.109018_b82) 2023; 254
Pan (10.1016/j.nanoen.2023.109018_b55) 2020; 23
Wang (10.1016/j.nanoen.2023.109018_b127) 2021; 90
Sun (10.1016/j.nanoen.2023.109018_b23) 2021; 21
Dharmasena (10.1016/j.nanoen.2023.109018_b155) 2018; 48
Melikoglu (10.1016/j.nanoen.2023.109018_b1) 2018; 148
Oh (10.1016/j.nanoen.2023.109018_b94) 2022; 33
Xiao (10.1016/j.nanoen.2023.109018_b28) 2022
Duan (10.1016/j.nanoen.2023.109018_b83) 2022; 91
Wei (10.1016/j.nanoen.2023.109018_b103) 2022; 32
Wang (10.1016/j.nanoen.2023.109018_b72) 2020; 68
Tavakoli (10.1016/j.nanoen.2023.109018_b8) 2023; 272
Guan (10.1016/j.nanoen.2023.109018_b42) 2022; 104
Yang (10.1016/j.nanoen.2023.109018_b153) 2021; 33
Guo (10.1016/j.nanoen.2023.109018_b121) 2016; 6
Ahmed (10.1016/j.nanoen.2023.109018_b147) 2019; 31
Chen (10.1016/j.nanoen.2023.109018_b107) 2020; 12
Sun (10.1016/j.nanoen.2023.109018_b159) 2022; 102
Yang (10.1016/j.nanoen.2023.109018_b59) 2023; 13
Cao (10.1016/j.nanoen.2023.109018_b139) 2022
Zhang (10.1016/j.nanoen.2023.109018_b24) 2023
Chen (10.1016/j.nanoen.2023.109018_b81) 2018; 112
Pang (10.1016/j.nanoen.2023.109018_b79) 2019; 66
Lee (10.1016/j.nanoen.2023.109018_b92) 2016; 6
Yuh (10.1016/j.nanoen.2023.109018_b9) 2000; 8
Qin (10.1016/j.nanoen.2023.109018_b166) 2018; 28
Zhang (10.1016/j.nanoen.2023.109018_b133) 2023; 108
Deng (10.1016/j.nanoen.2023.109018_b39) 2022; 34
Wang (10.1016/j.nanoen.2023.109018_b61) 2022; 7
Shin (10.1016/j.nanoen.2023.109018_b158) 2017; 11
Jiao (10.1016/j.nanoen.2023.109018_b173) 2021; 88
Marx (10.1016/j.nanoen.2023.109018_b7) 1990
Radhakrishnan (10.1016/j.nanoen.2023.109018_b47) 2022; 15
Si (10.1016/j.nanoen.2023.109018_b86) 2023
Su (10.1016/j.nanoen.2023.109018_b11) 2019; 33
Luo (10.1016/j.nanoen.2023.109018_b68) 2021; 33
Lai (10.1016/j.nanoen.2023.109018_b75) 2019; 6
Chen (10.1016/j.nanoen.2023.109018_b93) 2021; 12
Liu (10.1016/j.nanoen.2023.109018_b62) 2023
Xia (10.1016/j.nanoen.2023.109018_b53) 2020; 2
Zou (10.1016/j.nanoen.2023.109018_b43) 2019; 10
Wen (10.1016/j.nanoen.2023.109018_b38) 2016; 10
Fan (10.1016/j.nanoen.2023.109018_b21) 2012; 1
Cheng (10.1016/j.nanoen.2023.109018_b30) 2023; 3
Wang (10.1016/j.nanoen.2023.109018_b52) 2017; 542
Shi (10.1016/j.nanoen.2023.109018_b89) 2022; 226
Matin Nazar (10.1016/j.nanoen.2023.109018_b22) 2021; 14
Zhao (10.1016/j.nanoen.2023.109018_b45) 2022; 13
Das (10.1016/j.nanoen.2023.109018_b152) 2023
Nie (10.1016/j.nanoen.2023.109018_b65) 2020; 32
Wang (10.1016/j.nanoen.2023.109018_b131) 2021; 15
Yun (10.1016/j.nanoen.2023.109018_b101) 2021; 88
Shen (10.1016/j.nanoen.2023.109018_b50) 2021; 7
Jiang (10.1016/j.nanoen.2023.109018_b84) 2016; 10
Liu (10.1016/j.nanoen.2023.109018_b99) 2019; 61
Mistewicz (10.1016/j.nanoen.2023.109018_b36) 2021; 78
Zhang (10.1016/j.nanoen.2023.109018_b54) 2021; 427
Tian (10.1016/j.nanoen.2023.109018_b46) 2022; 10
Wang (10.1016/j.nanoen.2023.109018_b64) 2019; 30
10.1016/j.nanoen.2023.109018_b140
Jie (10.1016/j.nanoen.2023.109018_b162) 2016; 27
Lin (10.1016/j.nanoen.2023.109018_b6) 2023; 1
Jeon (10.1016/j.nanoen.2023.109018_b150) 2021; 9
Wang (10.1016/j.nanoen.2023.109018_b115) 2019; 55
Chen (10.1016/j.nanoen.2023.109018_b118) 2020; 75
Heidemann (10.1016/j.nanoen.2023.109018_b18) 2012; 370
Niu (10.1016/j.nanoen.2023.109018_b70) 2015; 14
Chitre (10.1016/j.nanoen.2023.109018_b19) 2008; 42
Liu (10.1016/j.nanoen.2023.109018_b130) 2023; 21
Zhang (10.1016/j.nanoen.2023.109018_b143) 2022; 2022
Rock (10.1016/j.nanoen.2023.109018_b4) 2020; 30
Li (10.1016/j.nanoen.2023.109018_b27) 2021; 84
Wang (10.1016/j.nanoen.2023.109018_b148) 2022; 18
Kottapalli (10.1016/j.nanoen.2023.109018_b177) 2019
Ahmed (10.1016/j.nanoen.2023.109018_b122) 2022; 10
Li (10.1016/j.nanoen.2023.109018_b57) 2021; 113
Lin (10.1016/j.nanoen.2023.109018_b66) 2020; 11
Burgo (10.1016/j.nanoen.2023.109018_b73) 2016; 80
Niu (10.1016/j.nanoen.2023.109018_b163) 2014; 8
Kaur (10.1016/j.nanoen.2023.109018_b108) 2022; 4
Wang (10.1016/j.nanoen.2023.109018_b124) 2023; 8
Li (10.1016/j.nanoen.2023.109018_b178) 2020; 11
Li (10.1016/j.nanoen.2023.109018_b126) 2021; 21
Li (10.1016/j.nanoen.2023.109018_b179) 2021; 477
Chen (10.1016/j.nanoen.2023.109018_b44) 2020; 11
Liu (10.1016/j.nanoen.2023.109018_b141) 2022; 99
Zou (10.1016/j.nanoen.2023.109018_b67) 2019; 10
Yu (10.1016/j.nanoen.2023.109018_b144) 2015; 8
Wei (10.1016/j.nanoen.2023.109018_b88) 2023; 7
Wang (10.1016/j.nanoen.2023.109018_b71) 2017; 20
Liu (10.1016/j.nanoen.2023.109018_b76) 2021; 9
Khandelwal (10.1016/j.nanoen.2023.109018_b56) 2022; 34
Vivekananthan (10.1016/j.nanoen.2023.109018_b85) 2020; 2
Lyu (10.1016/j.nanoen.2023.109018_b5) 2023
Jiang (10.1016/j.nanoen.2023.109018_b128) 2021; 17
Gao (10.1016/j.nanoen.2023.109018_b123) 2020; 72
Zhao (10.1016/j.nanoen.2023.109018_b136) 2022; 94
Wang (10.1016/j.nanoen.2023.109018_b142) 2022; 97
Zhao (10.1016/j.nanoen.2023.109018_b172) 2021; 89
Jin (10.1016/j.nanoen.2023.109018_b174) 2020; 11
References_xml – volume: 11
  start-page: 399
  year: 2020
  ident: b66
  article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
  publication-title: Nat. Commun.
– year: 2023
  ident: b112
  article-title: Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: An advanced hardware solution to long-distance target detection
  publication-title: Nano Energy
– year: 2023
  ident: b5
  article-title: Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis: a brief synopsis
  publication-title: Ind. Chem. Mater.
– volume: 13
  start-page: 1219
  year: 2022
  ident: b31
  article-title: Triboelectric nanogenerators for harvesting diverse water kinetic energy
  publication-title: Micromachines
– volume: 23
  year: 2020
  ident: b55
  article-title: Triboelectric and piezoelectric nanogenerators for future soft robots and machines
  publication-title: Iscience
– volume: 34
  year: 2022
  ident: b56
  article-title: Self-powered active sensing based on triboelectric generators
  publication-title: Adv. Mater.
– volume: 72
  year: 2020
  ident: b123
  article-title: A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module
  publication-title: Nano Energy
– volume: 34
  year: 2022
  ident: b39
  article-title: Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1514
  year: 2021
  ident: b126
  article-title: A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations
  publication-title: Sensors
– year: 2023
  ident: b25
  article-title: Robust solid-liquid triboelectric nanogenerators: Mechanisms, strategies and applications
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 0062
  year: 2023
  ident: b113
  article-title: Deep-learning-assisted underwater 3D tactile tensegrity
  publication-title: Research
– volume: 33
  year: 2021
  ident: b153
  article-title: Self-powered interactive fiber electronics with visual–digital synergies
  publication-title: Adv. Mater.
– volume: 8
  start-page: 215
  year: 2022
  ident: b168
  article-title: From triboelectric nanogenerator to uninterrupted power supply system: The key role of electrochemical batteries and supercapacitors
  publication-title: Batteries
– volume: 7
  start-page: 8659
  year: 2022
  end-page: 8666
  ident: b29
  article-title: Design, fabrication, and characterization of a hybrid bionic spherical robotics with multilegged feedback mechanism
  publication-title: IEEE Robot. Autom. Lett.
– volume: 12
  start-page: 17663
  year: 2020
  end-page: 17697
  ident: b32
  article-title: Recent advancements in solid–liquid triboelectric nanogenerators for energy harvesting and self-powered applications
  publication-title: Nanoscale
– volume: 15
  start-page: 15700
  year: 2021
  end-page: 15709
  ident: b131
  article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things
  publication-title: ACS Nano
– volume: 32
  year: 2020
  ident: b65
  article-title: Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface
  publication-title: Adv. Mater.
– start-page: 1853
  year: 2021
  end-page: 1857
  ident: b117
  article-title: Bionic tactile sensor based on triboelectric nanogenerator for motion perception
  publication-title: 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems
– volume: 33
  start-page: 86
  year: 2019
  end-page: 93
  ident: b11
  article-title: Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities
  publication-title: IEEE Netw.
– volume: 32
  year: 2022
  ident: b111
  article-title: Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1416
  year: 2021
  ident: b93
  article-title: Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing
  publication-title: Nature Commun.
– volume: 5
  year: 2020
  ident: b132
  article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting
  publication-title: Adv. Mater. Technol.
– volume: 370
  start-page: 158
  year: 2012
  end-page: 175
  ident: b18
  article-title: Underwater sensor networks: applications, advances and challenges
  publication-title: Phil. Trans. R. Soc. A
– volume: 13
  start-page: 2657
  year: 2020
  end-page: 2683
  ident: b49
  article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives
  publication-title: Energy Environ. Sci.
– volume: 97
  year: 2022
  ident: b58
  article-title: Tribophotonics: An emerging self-powered wireless solution toward smart city
  publication-title: Nano Energy
– volume: 66
  year: 2019
  ident: b79
  article-title: Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting
  publication-title: Nano Energy
– volume: 89
  year: 2021
  ident: b172
  article-title: Universal equivalent circuit model and verification of current source for triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 1
  year: 2023
  ident: b96
  article-title: Fabrication and feasibility study of polymer-based triboelectric nanogenerator towards blue energy harvesting
  publication-title: Green Energy Resour.
– volume: 97
  year: 2022
  ident: b142
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception
  publication-title: Nano Energy
– volume: 4
  start-page: 4694
  year: 2022
  end-page: 4707
  ident: b108
  article-title: Waste biomaterial–sno nanoparticles composite based green triboelectric nanogenerator for self-powered human motion monitoring
  publication-title: ACS Appl. Electron. Mater.
– volume: 947
  start-page: A8
  year: 2022
  ident: b181
  article-title: Hydrodynamic performance of slender swimmer: effect of travelling wavelength
  publication-title: J. Fluid Mech.
– volume: 7
  year: 2020
  ident: b169
  article-title: Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications
  publication-title: Adv. Sci.
– volume: 4
  start-page: 1063
  year: 2020
  end-page: 1077
  ident: b175
  article-title: Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system
  publication-title: Sustain. Energy Fuels
– volume: 148
  start-page: 563
  year: 2018
  end-page: 573
  ident: b1
  article-title: Current status and future of ocean energy sources: A global review
  publication-title: Ocean Eng.
– volume: 2
  year: 2021
  ident: b120
  article-title: 3D-printed triboelectric nanogenerators: State of the art, applications, and challenges
  publication-title: Adv. Energy Sustain. Res.
– volume: 10
  start-page: 1992
  year: 2022
  end-page: 1998
  ident: b122
  article-title: Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents
  publication-title: J. Mater. Chem. A
– volume: 75
  year: 2020
  ident: b118
  article-title: Hybrid energy cells based on triboelectric nanogenerator: from principle to system
  publication-title: Nano Energy
– start-page: 1
  year: 2023
  end-page: 7
  ident: b80
  article-title: Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy
  publication-title: Nano Res.
– volume: 10
  start-page: 32
  year: 2020
  end-page: 37
  ident: b15
  article-title: Toward the internet of underwater things: Recent developments and future challenges
  publication-title: IEEE Consum. Electron. Mag.
– volume: 42
  start-page: 103
  year: 2008
  end-page: 116
  ident: b19
  article-title: Underwater acoustic communications and networking: Recent advances and future challenges
  publication-title: Mar. Technol. Soc. J.
– volume: 6
  year: 2016
  ident: b92
  article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 18
  ident: b161
  article-title: Natural and eco-friendly materials for triboelectric energy harvesting
  publication-title: Nano-Micro Lett.
– volume: 6
  year: 2021
  ident: b114
  article-title: A non-encapsulated polymorphous U-shaped triboelectric nanogenerator for multiform hydropower harvesting
  publication-title: Adv. Mater. Technol.
– volume: 172
  start-page: 134
  year: 2019
  end-page: 140
  ident: b35
  article-title: Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration
  publication-title: Energy
– volume: 10
  start-page: 7696
  year: 2016
  end-page: 7704
  ident: b84
  article-title: Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel
  publication-title: ACS Nano
– volume: 101
  year: 2022
  ident: b110
  article-title: Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance
  publication-title: Nano Energy
– volume: 61
  start-page: 454
  year: 2019
  end-page: 461
  ident: b99
  article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: b21
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– year: 2023
  ident: b34
  article-title: Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
  publication-title: J. Energy Chem.
– volume: 3
  year: 2016
  ident: b95
  article-title: Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation
  publication-title: Adv. Mater. Interfaces
– volume: 323
  year: 2022
  ident: b40
  article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting
  publication-title: Appl. Energy
– volume: 45
  start-page: 380
  year: 2018
  end-page: 389
  ident: b119
  article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing
  publication-title: Nano Energy
– volume: 11
  start-page: 2093
  year: 2020
  ident: b157
  article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials
  publication-title: Nat. Commun.
– volume: 112
  year: 2018
  ident: b81
  article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 299
  year: 2023
  end-page: 311
  ident: b6
  article-title: Designing active and stable Ir-based catalysts for the acidic oxygen evolution reaction
  publication-title: Ind. Chem. Mater.
– start-page: 1
  year: 2022
  end-page: 10
  ident: b139
  article-title: Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection
  publication-title: Nano Res.
– volume: 32
  year: 2022
  ident: b87
  article-title: Recent progresses in wearable triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 715
  year: 2019
  end-page: 723
  ident: b138
  article-title: Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks
  publication-title: Nano Energy
– volume: 7
  year: 2021
  ident: b50
  article-title: Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators
  publication-title: Adv. Electron. Mater.
– volume: 6
  year: 2016
  ident: b121
  article-title: A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments
  publication-title: Adv. Energy Mater.
– volume: 94
  year: 2022
  ident: b136
  article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures
  publication-title: Nano Energy
– volume: 21
  year: 2023
  ident: b130
  article-title: Underwater hybrid energy harvesting based on TENG-mteg for self-powered marine mammal condition monitoring system
  publication-title: Mater. Today Sustain.
– volume: 11
  start-page: 5408
  year: 2020
  ident: b178
  article-title: Vortex phase matching as a strategy for schooling in robots and in fish
  publication-title: Nat. Commun.
– volume: 3
  start-page: 257
  year: 2005
  end-page: 279
  ident: b17
  article-title: Underwater acoustic sensor networks: research challenges
  publication-title: Ad hoc Netw.
– volume: 20
  start-page: 74
  year: 2017
  end-page: 82
  ident: b71
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
– volume: 91
  year: 2022
  ident: b83
  article-title: Machine-learned, waterproof mxene fiber-based glove platform for underwater interactivities
  publication-title: Nano Energy
– volume: 78
  year: 2020
  ident: b104
  article-title: Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 16
  start-page: 466
  year: 2023
  end-page: 472
  ident: b135
  article-title: Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting
  publication-title: Nano Res.
– volume: 8
  start-page: 150
  year: 2014
  end-page: 156
  ident: b163
  article-title: Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system
  publication-title: Nano Energy
– volume: 272
  year: 2023
  ident: b8
  article-title: A review on the progress and research directions of ocean engineering
  publication-title: Ocean Eng.
– volume: 22
  start-page: 4460
  year: 2022
  ident: b102
  article-title: Recent advances in touch sensors for flexible wearable devices
  publication-title: Sensors
– volume: 48
  start-page: 391
  year: 2018
  end-page: 400
  ident: b155
  article-title: A unified theoretical model for triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 21
  start-page: 88
  year: 2018
  end-page: 97
  ident: b116
  article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator
  publication-title: Mater. Today
– volume: 18
  year: 2022
  ident: b148
  article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring
  publication-title: Small
– volume: 21
  start-page: 7849
  year: 2021
  ident: b23
  article-title: Review of underwater sensing technologies and applications
  publication-title: Sensors
– volume: 15
  year: 2022
  ident: b47
  article-title: Triboelectric nanogenerators for marine energy harvesting and sensing applications
  publication-title: Results Eng.
– volume: 27
  start-page: 554
  year: 2016
  end-page: 560
  ident: b162
  article-title: A structural bionic design: from electric organs to systematic triboelectric generators
  publication-title: Nano Energy
– volume: 7
  year: 2022
  ident: b61
  article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring
  publication-title: Adv. Mater. Technol.
– volume: 110
  year: 2023
  ident: b171
  article-title: Decoupling piezoelectric and triboelectric signals from PENGs using the fast fourier transform
  publication-title: Nano Energy
– volume: 30
  year: 2018
  ident: b63
  article-title: On the electron-transfer mechanism in the contact-electrification effect
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1932
  year: 2019
  end-page: 1939
  ident: b74
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– volume: 99
  year: 2022
  ident: b141
  article-title: Triboelectric hydrophone for underwater detection of low-frequency sounds
  publication-title: Nano Energy
– volume: 11
  start-page: 6131
  year: 2017
  end-page: 6138
  ident: b158
  article-title: Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting
  publication-title: ACS Nano
– volume: 126
  year: 2021
  ident: b180
  article-title: Symmetry breaking of tail-clamped filaments in Stokes flow
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 5600
  year: 2021
  ident: b22
  article-title: Triboelectric nanogenerators for energy harvesting in ocean: A review on application and hybridization
  publication-title: Energies
– start-page: 228
  year: 2006
  end-page: 235
  ident: b12
  article-title: Research challenges and applications for underwater sensor networking
  publication-title: IEEE Wireless Communications and Networking Conference, 2006, Vol. 1
– volume: 90
  year: 2021
  ident: b127
  article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition
  publication-title: Nano Energy
– volume: 110
  year: 2023
  ident: b146
  article-title: Self-powered angle-resolved triboelectric nanogenerator for underwater vibration localization
  publication-title: Nano Energy
– volume: 184
  year: 2023
  ident: b37
  article-title: An underwater piezoelectric energy harvester based on magnetic coupling adaptable to low-speed water flow
  publication-title: Mech. Syst. Signal Process.
– volume: 3
  start-page: 39
  year: 2023
  ident: b30
  article-title: Triboelectric nanogenerators
  publication-title: Nat. Rev. Methods Primers
– volume: 7
  year: 2020
  ident: b48
  article-title: Polymer materials for high-performance triboelectric nanogenerators
  publication-title: Adv. Sci.
– volume: 7
  start-page: 4282
  year: 2022
  end-page: 4289
  ident: b134
  article-title: Enhancing low-velocity water flow energy harvesting of triboelectric–electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 5381
  year: 2020
  ident: b174
  article-title: Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
  publication-title: Nat. Commun.
– volume: 427
  year: 2021
  ident: b54
  article-title: Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 765
  year: 2015
  end-page: 773
  ident: b144
  article-title: Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator
  publication-title: Nano Res.
– volume: 226
  year: 2022
  ident: b89
  article-title: Research on the mechanical and water-repellent properties of bionic carbon fiber reinforced plastic composites inspired by coelacanth scale and lotus leaf
  publication-title: Compos. Sci. Technol.
– reference: B. Shan, C. Liu, R. Chen, Q. Guanghao, S. Hao, N. Chen, G. Xing, A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator, Available at SSRN 4476236.
– volume: 55
  start-page: 541
  year: 2019
  end-page: 547
  ident: b115
  article-title: Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting
  publication-title: Nano Energy
– volume: 4
  year: 2019
  ident: b33
  article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature
  publication-title: Adv. Mater. Technol.
– volume: 2
  year: 2020
  ident: b53
  article-title: Recent advances of triboelectric nanogenerator based applications in biomedical systems
  publication-title: EcoMat
– volume: 6
  year: 2019
  ident: b75
  article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors
  publication-title: Adv. Sci.
– volume: 60
  start-page: 850
  year: 2019
  end-page: 856
  ident: b151
  article-title: A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code
  publication-title: Nano Energy
– volume: 31
  year: 2019
  ident: b147
  article-title: An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface
  publication-title: Adv. Mater.
– volume: 78
  year: 2021
  ident: b36
  article-title: Nanogenerator for determination of acoustic power in ultrasonic reactors
  publication-title: Ultrason. Sonochem.
– volume: 2
  start-page: 746
  year: 2020
  end-page: 754
  ident: b85
  article-title: A highly reliable, impervious and sustainable triboelectric nanogenerator as a zero-power consuming active pressure sensor
  publication-title: Nanosci. Adv.
– volume: 2
  year: 2020
  ident: b167
  article-title: Overview of power management for triboelectric nanogenerators
  publication-title: Adv. Intell. Syst.
– volume: 10
  year: 2022
  ident: b46
  article-title: Underwater self-powered all-optical wireless ultrasonic sensing, positioning and communication with ultrafast response time and ultrahigh sensitivity
  publication-title: Adv. Opt. Mater.
– year: 2023
  ident: b62
  article-title: Environmentally-friendly natural materials for triboelectric nanogenerators: A review
  publication-title: J. Mater. Chem. A
– volume: 104
  year: 2022
  ident: b42
  article-title: A self-powered acoustic sensor excited by ultrasonic wave for detecting and locating underwater ultrasonic sources
  publication-title: Nano Energy
– volume: 88
  year: 2021
  ident: b173
  article-title: Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators
  publication-title: Nano Energy
– year: 1990
  ident: b7
  article-title: The History of Underwater Exploration
– volume: 176
  start-page: 447
  year: 2014
  end-page: 458
  ident: b69
  article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives
  publication-title: Faraday Discuss.
– volume: 10
  start-page: 2695
  year: 2019
  ident: b43
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nature Commun.
– volume: 28
  year: 2018
  ident: b166
  article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2022
  ident: b103
  article-title: Sustainable triboelectric materials for smart active sensing systems
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 532
  year: 2020
  end-page: 539
  ident: b4
  article-title: What is the ocean: A sea-change in our perceptions and values?
  publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst.
– volume: 2022
  year: 2022
  ident: b143
  article-title: Underwater monitoring networks based on cable-structured triboelectric nanogenerators
  publication-title: Research
– start-page: 1
  year: 2015
  end-page: 3
  ident: b13
  article-title: Underwater communications
  publication-title: 2015 IEEE Underwater Technology
– year: 2023
  ident: b86
  article-title: 3D interlocked all-textile structured triboelectric pressure sensor for accurately measuring epidermal pulse waves in amphibious environments
  publication-title: Nano Res.
– start-page: 1943
  year: 2021
  end-page: 1947
  ident: b137
  article-title: Development of a triboelectric palm-like sensor aiming at underwater perceptual construction
  publication-title: 2021 China Automation Congress
– volume: 33
  start-page: 26852
  year: 2022
  end-page: 26860
  ident: b94
  article-title: Polymer-multiferroics composite-based sustainable triboelectric energy harvester
  publication-title: J. Mater. Sci., Mater. Electron.
– volume: 9
  start-page: 21357
  year: 2021
  end-page: 21365
  ident: b76
  article-title: A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 161
  year: 2015
  end-page: 192
  ident: b70
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– year: 2019
  ident: b177
  article-title: Self-Powered and Soft Polymer MEMS/NEMS Devices
– volume: 8
  start-page: 7
  year: 2000
  end-page: 24
  ident: b9
  article-title: Design and control of autonomous underwater robots: A survey
  publication-title: Auton. Robots
– volume: 7
  start-page: 2
  year: 2019
  end-page: 17
  ident: b154
  article-title: Fundamental theories and basic principles of triboelectric effect: A review
  publication-title: Friction
– volume: 285
  year: 2023
  ident: b16
  article-title: In-situ wave energy harvesting for unmanned marine devices: A review
  publication-title: Ocean Eng.
– volume: 9
  start-page: 3324
  year: 2015
  end-page: 3331
  ident: b78
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
– volume: 84
  year: 2021
  ident: b27
  article-title: Bioinspired designs and biomimetic applications of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 605
  year: 2022
  ident: b60
  article-title: Water-based triboelectric nanogenerator for wireless energy transmission and self-powered communication via a solid-liquid-solid interaction
  publication-title: Appl. Surf. Sci.
– volume: 45
  start-page: 5543
  year: 2020
  end-page: 5553
  ident: b14
  article-title: Fuel cell systems for long-endurance autonomous underwater vehicles–challenges and benefits
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 56
  year: 2020
  ident: b109
  article-title: Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability
  publication-title: Microsyst. Nanoeng.
– volume: 17
  year: 2021
  ident: b128
  article-title: Fluorinated graphene-enabled durable triboelectric coating for water energy harvesting
  publication-title: Small
– volume: 80
  start-page: 30
  year: 2016
  end-page: 33
  ident: b73
  article-title: Where is water in the triboelectric series?
  publication-title: J. Electrost.
– volume: 10
  start-page: 11369
  year: 2016
  end-page: 11376
  ident: b97
  article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator
  publication-title: ACS Nano
– volume: 8
  year: 2023
  ident: b124
  article-title: Highly adaptive triboelectric-electromagnetic hybrid nanogenerator for scavenging flow energy and self-powered marine wireless sensing
  publication-title: Adv. Mater. Technol.
– volume: 12
  start-page: 31975
  year: 2020
  end-page: 31983
  ident: b107
  article-title: Super tough and self-healable poly (dimethylsiloxane) elastomer via hydrogen bonding association and its applications as triboelectric nanogenerators
  publication-title: ACS Appl. Mater. Inter.
– volume: 84
  year: 2021
  ident: b170
  article-title: Triboelectric nanogenerator based self-powered sensor for artificial intelligence
  publication-title: Nano Energy
– volume: 29
  year: 2019
  ident: b160
  article-title: Progress in triboelectric materials: toward high performance and widespread applications
  publication-title: Adv. Funct. Mater.
– volume: 68
  year: 2020
  ident: b72
  article-title: On the first principle theory of nanogenerators from Maxwell’s equations
  publication-title: Nano Energy
– start-page: 1
  year: 2023
  end-page: 13
  ident: b149
  article-title: Wearable sensors for monitoring marine environments and their inhabitants
  publication-title: Nature Biotechnol.
– volume: 12
  year: 2022
  ident: b26
  article-title: A highly sensitive triboelectric vibration sensor for machinery condition monitoring
  publication-title: Adv. Energy Mater.
– year: 2023
  ident: b152
  article-title: Nickel metal-organic framework/PVDF composite nanofibers based self-powered wireless sensor for pulse monitoring of underwater divers via triboelectrically generated Maxwell-displacement current
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 25
  year: 2022
  ident: b41
  article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception
  publication-title: npj Flex. Electron.
– volume: 254
  year: 2023
  ident: b82
  article-title: Microcracked strain sensor based on carbon nanotubes/copper composite film with high performance and waterproof property for underwater motion detection
  publication-title: Composites B
– volume: 88
  year: 2021
  ident: b101
  article-title: Paint based triboelectric nanogenerator using facile spray deposition towards smart traffic system and security application
  publication-title: Nano Energy
– volume: 59
  start-page: 380
  year: 2019
  end-page: 389
  ident: b156
  article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current
  publication-title: Nano Energy
– volume: 111
  year: 2023
  ident: b105
  article-title: All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping
  publication-title: Nano Energy
– volume: 33
  year: 2021
  ident: b68
  article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1243
  year: 2022
  end-page: 1255
  ident: b129
  article-title: Ferroelectrically augmented contact electrification enables efficient acoustic energy transfer through liquid and solid media
  publication-title: Energy Environ. Sci.
– volume: 102
  year: 2022
  ident: b159
  article-title: Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment
  publication-title: Nano Energy
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  ident: b176
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
– year: 2023
  ident: b24
  article-title: Recent advances in triboelectric nanogenerators for marine exploitation
  publication-title: Adv. Energy Mater.
– volume: 477
  year: 2021
  ident: b179
  article-title: Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 133
  year: 2023
  ident: b145
  article-title: 3D printed triboelectric nanogenerator for underwater ultrasonic sensing
  publication-title: Ultrasonics
– volume: 108
  year: 2023
  ident: b133
  article-title: The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems
  publication-title: Nano Energy
– volume: 32
  year: 2022
  ident: b165
  article-title: Multifunctional and physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1427
  year: 2019
  ident: b67
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
– volume: 113
  year: 2021
  ident: b57
  article-title: Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence
  publication-title: Digit. Signal Process.
– volume: 10
  start-page: 157
  year: 2017
  end-page: 171
  ident: b164
  article-title: Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance
  publication-title: Nano Res.
– volume: 6
  start-page: 241
  year: 2019
  ident: b3
  article-title: Global observing needs in the deep ocean
  publication-title: Front. Mar. Sci.
– volume: 55
  start-page: 463
  year: 2019
  end-page: 469
  ident: b98
  article-title: Gas-enhanced triboelectric nanogenerator based on fully-enclosed structure for energy harvesting and sensing
  publication-title: Nano Energy
– volume: 41
  start-page: 1
  year: 2006
  end-page: 5
  ident: b20
  article-title: Underwater wireless communications: Current achievements and research challenges
  publication-title: IEEE Ocean. Eng. Soc. Newsl.
– reference: S.A. Basith, A. Chandrasekhar, Synergistic Effect of Dual Surface Modified Ecoflex Polymer for Dynamic Triboelectric Nanogenerator Towards Sustainable Battery-Free Tally Counter, Adv. Mater. Technol. 2300495.
– volume: 10
  start-page: 6526
  year: 2016
  end-page: 6534
  ident: b38
  article-title: Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator
  publication-title: ACS Nano
– volume: 89
  year: 2021
  ident: b90
  article-title: Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 38
  start-page: 101
  year: 2017
  end-page: 108
  ident: b125
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 53
  year: 2022
  ident: b51
  article-title: Recent advances in ocean energy harvesting based on triboelectric nanogenerators
  publication-title: Sustain. Energy Technol. Assess.
– volume: 7
  start-page: 13
  year: 2023
  ident: b88
  article-title: Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring
  publication-title: npj Flex. Electron.
– start-page: 1
  year: 2022
  end-page: 50
  ident: b28
  article-title: Triboelectric nanogenerator for healthcare
  publication-title: Handbook of Triboelectric Nanogenerators
– volume: 4
  start-page: 3870
  year: 2022
  end-page: 3879
  ident: b91
  article-title: Highly adaptive liquid–solid triboelectric nanogenerator-assisted self-powered water wave motion sensor
  publication-title: ACS Appl. Electron. Mater.
– volume: 13
  start-page: 3325
  year: 2022
  ident: b45
  article-title: Underwater wireless communication via TENG-generated Maxwell’s displacement current
  publication-title: Nature Commun.
– volume: 28
  year: 2017
  ident: b77
  article-title: Design guidelines of triboelectric nanogenerator for water wave energy harvesters
  publication-title: Nanotechnology
– volume: 9
  year: 2021
  ident: b150
  article-title: Water-resistive and wearable triboelectric nanogenerators based on polyurethane/polyester textiles fabricated utilizing a planarization layer
  publication-title: APL Mater.
– volume: 30
  start-page: 34
  year: 2019
  end-page: 51
  ident: b64
  article-title: On the origin of contact-electrification
  publication-title: Mater. Today
– volume: 542
  start-page: 159
  year: 2017
  end-page: 160
  ident: b52
  article-title: New wave power
  publication-title: Nature
– volume: 41
  start-page: 253
  year: 2009
  end-page: 282
  ident: b2
  article-title: Ocean circulation kinetic energy: Reservoirs, sources, and sinks
  publication-title: Annu. Rev. Fluid Mech.
– volume: 42
  start-page: 186
  year: 2015
  end-page: 191
  ident: b10
  article-title: Underwater robots: a review of technologies and applications
  publication-title: Ind. Robot Int. J.
– volume: 11
  start-page: 4143
  year: 2020
  ident: b44
  article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication
  publication-title: Nat. Commun.
– volume: 13
  year: 2023
  ident: b59
  article-title: Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 31351
  year: 2020
  end-page: 31359
  ident: b100
  article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting
  publication-title: ACS Appl. Mater. Inter.
– volume: 272
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b8
  article-title: A review on the progress and research directions of ocean engineering
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113617
– volume: 45
  start-page: 380
  year: 2018
  ident: 10.1016/j.nanoen.2023.109018_b119
  article-title: Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.049
– start-page: 1
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b80
  article-title: Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy
  publication-title: Nano Res.
– volume: 28
  issue: 51
  year: 2018
  ident: 10.1016/j.nanoen.2023.109018_b166
  article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805216
– volume: 947
  start-page: A8
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b181
  article-title: Hydrodynamic performance of slender swimmer: effect of travelling wavelength
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.624
– year: 1990
  ident: 10.1016/j.nanoen.2023.109018_b7
– volume: 14
  start-page: 161
  year: 2015
  ident: 10.1016/j.nanoen.2023.109018_b70
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– volume: 13
  start-page: 1932
  issue: 2
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b74
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– volume: 226
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b89
  article-title: Research on the mechanical and water-repellent properties of bionic carbon fiber reinforced plastic composites inspired by coelacanth scale and lotus leaf
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2022.109542
– volume: 7
  start-page: 4282
  issue: 12
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b134
  article-title: Enhancing low-velocity water flow energy harvesting of triboelectric–electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01908
– volume: 21
  start-page: 1514
  issue: 4
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b126
  article-title: A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations
  publication-title: Sensors
  doi: 10.3390/s21041514
– volume: 14
  start-page: 5600
  issue: 18
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b22
  article-title: Triboelectric nanogenerators for energy harvesting in ocean: A review on application and hybridization
  publication-title: Energies
  doi: 10.3390/en14185600
– volume: 12
  start-page: 31975
  issue: 28
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b107
  article-title: Super tough and self-healable poly (dimethylsiloxane) elastomer via hydrogen bonding association and its applications as triboelectric nanogenerators
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.0c08213
– volume: 477
  issue: 2249
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b179
  article-title: Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 9
  issue: 8
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b150
  article-title: Water-resistive and wearable triboelectric nanogenerators based on polyurethane/polyester textiles fabricated utilizing a planarization layer
  publication-title: APL Mater.
  doi: 10.1063/5.0055552
– volume: 1
  start-page: 299
  issue: 3
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b6
  article-title: Designing active and stable Ir-based catalysts for the acidic oxygen evolution reaction
  publication-title: Ind. Chem. Mater.
  doi: 10.1039/D3IM00070B
– volume: 11
  start-page: 2093
  issue: 1
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b157
  article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15926-1
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b24
  article-title: Recent advances in triboelectric nanogenerators for marine exploitation
  publication-title: Adv. Energy Mater.
– volume: 88
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b173
  article-title: Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106227
– volume: 3
  start-page: 257
  issue: 3
  year: 2005
  ident: 10.1016/j.nanoen.2023.109018_b17
  article-title: Underwater acoustic sensor networks: research challenges
  publication-title: Ad hoc Netw.
  doi: 10.1016/j.adhoc.2005.01.004
– volume: 6
  start-page: 25
  issue: 1
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b41
  article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-022-00160-0
– volume: 184
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b37
  article-title: An underwater piezoelectric energy harvester based on magnetic coupling adaptable to low-speed water flow
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109729
– volume: 9
  start-page: 3324
  issue: 3
  year: 2015
  ident: 10.1016/j.nanoen.2023.109018_b78
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 10
  issue: 5
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b46
  article-title: Underwater self-powered all-optical wireless ultrasonic sensing, positioning and communication with ultrafast response time and ultrahigh sensitivity
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202102091
– volume: 61
  start-page: 454
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b99
  article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.007
– volume: 10
  start-page: 1427
  issue: 1
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b67
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 111
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b105
  article-title: All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108387
– volume: 102
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b159
  article-title: Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107691
– volume: 6
  start-page: 241
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b3
  article-title: Global observing needs in the deep ocean
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00241
– volume: 23
  issue: 11
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b55
  article-title: Triboelectric and piezoelectric nanogenerators for future soft robots and machines
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.101682
– start-page: 1
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b139
  article-title: Nanogenerator-based bidirectional pressure sensor array and its demonstration in underwater invasive species detection
  publication-title: Nano Res.
– volume: 2
  issue: 4
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b53
  article-title: Recent advances of triboelectric nanogenerator based applications in biomedical systems
  publication-title: EcoMat
  doi: 10.1002/eom2.12049
– volume: 110
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b171
  article-title: Decoupling piezoelectric and triboelectric signals from PENGs using the fast fourier transform
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108445
– volume: 2
  issue: 2
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b167
  article-title: Overview of power management for triboelectric nanogenerators
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202070020
– year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b177
– volume: 53
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b51
  article-title: Recent advances in ocean energy harvesting based on triboelectric nanogenerators
  publication-title: Sustain. Energy Technol. Assess.
– volume: 176
  start-page: 447
  year: 2014
  ident: 10.1016/j.nanoen.2023.109018_b69
  article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives
  publication-title: Faraday Discuss.
  doi: 10.1039/C4FD00159A
– ident: 10.1016/j.nanoen.2023.109018_b140
– volume: 2
  start-page: 746
  issue: 2
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b85
  article-title: A highly reliable, impervious and sustainable triboelectric nanogenerator as a zero-power consuming active pressure sensor
  publication-title: Nanosci. Adv.
  doi: 10.1039/C9NA00790C
– volume: 32
  issue: 1
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b165
  article-title: Multifunctional and physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106066
– start-page: 1943
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b137
  article-title: Development of a triboelectric palm-like sensor aiming at underwater perceptual construction
– volume: 33
  start-page: 26852
  issue: 36
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b94
  article-title: Polymer-multiferroics composite-based sustainable triboelectric energy harvester
  publication-title: J. Mater. Sci., Mater. Electron.
  doi: 10.1007/s10854-022-09350-y
– volume: 55
  start-page: 463
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b98
  article-title: Gas-enhanced triboelectric nanogenerator based on fully-enclosed structure for energy harvesting and sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.022
– volume: 32
  issue: 18
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b111
  article-title: Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111662
– volume: 6
  issue: 7
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b114
  article-title: A non-encapsulated polymorphous U-shaped triboelectric nanogenerator for multiform hydropower harvesting
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202001199
– volume: 12
  start-page: 31351
  issue: 28
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b100
  article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.0c03843
– start-page: 228
  year: 2006
  ident: 10.1016/j.nanoen.2023.109018_b12
  article-title: Research challenges and applications for underwater sensor networking
– volume: 10
  start-page: 1992
  issue: 4
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b122
  article-title: Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04861A
– volume: 17
  issue: 8
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b128
  article-title: Fluorinated graphene-enabled durable triboelectric coating for water energy harvesting
  publication-title: Small
  doi: 10.1002/smll.202007805
– volume: 99
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b141
  article-title: Triboelectric hydrophone for underwater detection of low-frequency sounds
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107428
– volume: 542
  start-page: 159
  issue: 7640
  year: 2017
  ident: 10.1016/j.nanoen.2023.109018_b52
  article-title: New wave power
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 30
  start-page: 34
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b64
  article-title: On the origin of contact-electrification
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 13
  issue: 1
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b59
  article-title: Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203040
– volume: 3
  start-page: 39
  issue: 1
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b30
  article-title: Triboelectric nanogenerators
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-023-00220-3
– volume: 94
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b136
  article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106926
– volume: 4
  start-page: 1063
  issue: 3
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b175
  article-title: Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C9SE01184F
– volume: 16
  start-page: 466
  issue: 1
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b135
  article-title: Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4715-6
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b170
  article-title: Triboelectric nanogenerator based self-powered sensor for artificial intelligence
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105887
– volume: 4
  start-page: 4694
  issue: 9
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b108
  article-title: Waste biomaterial–sno nanoparticles composite based green triboelectric nanogenerator for self-powered human motion monitoring
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c00887
– volume: 15
  start-page: 15700
  issue: 10
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b131
  article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05127
– volume: 42
  start-page: 103
  issue: 1
  year: 2008
  ident: 10.1016/j.nanoen.2023.109018_b19
  article-title: Underwater acoustic communications and networking: Recent advances and future challenges
  publication-title: Mar. Technol. Soc. J.
  doi: 10.4031/002533208786861263
– start-page: 1853
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b117
  article-title: Bionic tactile sensor based on triboelectric nanogenerator for motion perception
– volume: 68
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b72
  article-title: On the first principle theory of nanogenerators from Maxwell’s equations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104272
– volume: 18
  issue: 10
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b148
  article-title: Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring
  publication-title: Small
– volume: 6
  start-page: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b109
  article-title: Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0163-1
– volume: 13
  start-page: 3325
  issue: 1
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b45
  article-title: Underwater wireless communication via TENG-generated Maxwell’s displacement current
  publication-title: Nature Commun.
  doi: 10.1038/s41467-022-31042-8
– volume: 7
  issue: 9
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b50
  article-title: Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202100277
– volume: 91
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b83
  article-title: Machine-learned, waterproof mxene fiber-based glove platform for underwater interactivities
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106650
– start-page: 1
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b28
  article-title: Triboelectric nanogenerator for healthcare
– volume: 7
  start-page: 2
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b154
  article-title: Fundamental theories and basic principles of triboelectric effect: A review
  publication-title: Friction
  doi: 10.1007/s40544-018-0217-7
– volume: 2022
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b143
  article-title: Underwater monitoring networks based on cable-structured triboelectric nanogenerators
  publication-title: Research
– volume: 41
  start-page: 253
  year: 2009
  ident: 10.1016/j.nanoen.2023.109018_b2
  article-title: Ocean circulation kinetic energy: Reservoirs, sources, and sinks
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.40.111406.102139
– volume: 39
  start-page: 9
  year: 2017
  ident: 10.1016/j.nanoen.2023.109018_b176
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 59
  start-page: 380
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b156
  article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.051
– volume: 8
  start-page: 215
  issue: 11
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b168
  article-title: From triboelectric nanogenerator to uninterrupted power supply system: The key role of electrochemical batteries and supercapacitors
  publication-title: Batteries
  doi: 10.3390/batteries8110215
– volume: 7
  start-page: 8659
  issue: 4
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b29
  article-title: Design, fabrication, and characterization of a hybrid bionic spherical robotics with multilegged feedback mechanism
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3187514
– volume: 10
  start-page: 2695
  issue: 1
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b43
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-10433-4
– volume: 28
  issue: 18
  year: 2017
  ident: 10.1016/j.nanoen.2023.109018_b77
  article-title: Design guidelines of triboelectric nanogenerator for water wave energy harvesters
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa6612
– volume: 31
  issue: 11
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b147
  article-title: An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807201
– volume: 7
  issue: 6
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b61
  article-title: A self-powered triboelectric coral-like sensor integrated buoy for irregular and ultra-low frequency ocean wave monitoring
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202101098
– volume: 21
  start-page: 7849
  issue: 23
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b23
  article-title: Review of underwater sensing technologies and applications
  publication-title: Sensors
  doi: 10.3390/s21237849
– volume: 11
  start-page: 4143
  issue: 1
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b44
  article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17842-w
– volume: 89
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b172
  article-title: Universal equivalent circuit model and verification of current source for triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106335
– volume: 101
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b110
  article-title: Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107633
– volume: 254
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b82
  article-title: Microcracked strain sensor based on carbon nanotubes/copper composite film with high performance and waterproof property for underwater motion detection
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2023.110574
– volume: 370
  start-page: 158
  issue: 1958
  year: 2012
  ident: 10.1016/j.nanoen.2023.109018_b18
  article-title: Underwater sensor networks: applications, advances and challenges
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2011.0214
– volume: 80
  start-page: 30
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b73
  article-title: Where is water in the triboelectric series?
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2016.01.002
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b118
  article-title: Hybrid energy cells based on triboelectric nanogenerator: from principle to system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104980
– volume: 8
  start-page: 7
  year: 2000
  ident: 10.1016/j.nanoen.2023.109018_b9
  article-title: Design and control of autonomous underwater robots: A survey
  publication-title: Auton. Robots
  doi: 10.1023/A:1008984701078
– volume: 32
  issue: 2
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b65
  article-title: Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905696
– volume: 15
  start-page: 1243
  issue: 3
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b129
  article-title: Ferroelectrically augmented contact electrification enables efficient acoustic energy transfer through liquid and solid media
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02623B
– volume: 30
  start-page: 532
  issue: 3
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b4
  article-title: What is the ocean: A sea-change in our perceptions and values?
  publication-title: Aquat. Conserv. Mar. Freshw. Ecosyst.
  doi: 10.1002/aqc.3257
– volume: 78
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b36
  article-title: Nanogenerator for determination of acoustic power in ultrasonic reactors
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2021.105718
– start-page: 1
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b149
  article-title: Wearable sensors for monitoring marine environments and their inhabitants
  publication-title: Nature Biotechnol.
– volume: 7
  issue: 14
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b48
  article-title: Polymer materials for high-performance triboelectric nanogenerators
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000186
– volume: 6
  issue: 11
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b92
  article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502566
– volume: 88
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b101
  article-title: Paint based triboelectric nanogenerator using facile spray deposition towards smart traffic system and security application
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106236
– volume: 97
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b58
  article-title: Tribophotonics: An emerging self-powered wireless solution toward smart city
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107196
– volume: 11
  start-page: 5408
  issue: 1
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b178
  article-title: Vortex phase matching as a strategy for schooling in robots and in fish
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19086-0
– volume: 112
  issue: 20
  year: 2018
  ident: 10.1016/j.nanoen.2023.109018_b81
  article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5028478
– volume: 13
  start-page: 2657
  issue: 9
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b49
  article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01258K
– volume: 60
  start-page: 850
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b151
  article-title: A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.004
– start-page: 1
  year: 2015
  ident: 10.1016/j.nanoen.2023.109018_b13
  article-title: Underwater communications
– volume: 104
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b42
  article-title: A self-powered acoustic sensor excited by ultrasonic wave for detecting and locating underwater ultrasonic sources
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107879
– volume: 4
  start-page: 3870
  issue: 8
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b91
  article-title: Highly adaptive liquid–solid triboelectric nanogenerator-assisted self-powered water wave motion sensor
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c00537
– volume: 11
  start-page: 5381
  issue: 1
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b174
  article-title: Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19059-3
– volume: 2
  issue: 3
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b120
  article-title: 3D-printed triboelectric nanogenerators: State of the art, applications, and challenges
  publication-title: Adv. Energy Sustain. Res.
  doi: 10.1002/aesr.202000045
– volume: 6
  start-page: 0062
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b113
  article-title: Deep-learning-assisted underwater 3D tactile tensegrity
  publication-title: Research
  doi: 10.34133/research.0062
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b161
  article-title: Natural and eco-friendly materials for triboelectric energy harvesting
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0373-y
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b86
  article-title: 3D interlocked all-textile structured triboelectric pressure sensor for accurately measuring epidermal pulse waves in amphibious environments
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6025-z
– volume: 10
  start-page: 32
  issue: 6
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b15
  article-title: Toward the internet of underwater things: Recent developments and future challenges
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2020.2988441
– volume: 66
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b79
  article-title: Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104131
– volume: 32
  issue: 44
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b87
  article-title: Recent progresses in wearable triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202205438
– volume: 113
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b57
  article-title: Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2021.103038
– volume: 90
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b127
  article-title: An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106503
– volume: 89
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b90
  article-title: Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106476
– volume: 97
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b142
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107210
– volume: 10
  start-page: 11369
  issue: 12
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b97
  article-title: Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06622
– volume: 60
  start-page: 715
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b138
  article-title: Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.067
– volume: 10
  start-page: 157
  year: 2017
  ident: 10.1016/j.nanoen.2023.109018_b164
  article-title: Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1275-7
– volume: 33
  issue: 17
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b68
  article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004178
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b5
  article-title: Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis: a brief synopsis
  publication-title: Ind. Chem. Mater.
  doi: 10.1039/D3IM00071K
– volume: 12
  start-page: 1416
  issue: 1
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b93
  article-title: Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing
  publication-title: Nature Commun.
  doi: 10.1038/s41467-021-21729-9
– volume: 33
  start-page: 86
  issue: 6
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b11
  article-title: Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1800425
– volume: 3
  issue: 17
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b95
  article-title: Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600187
– volume: 8
  start-page: 765
  year: 2015
  ident: 10.1016/j.nanoen.2023.109018_b144
  article-title: Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0559-z
– volume: 41
  start-page: 1
  issue: 2
  year: 2006
  ident: 10.1016/j.nanoen.2023.109018_b20
  article-title: Underwater wireless communications: Current achievements and research challenges
  publication-title: IEEE Ocean. Eng. Soc. Newsl.
– volume: 42
  start-page: 186
  issue: 3
  year: 2015
  ident: 10.1016/j.nanoen.2023.109018_b10
  article-title: Underwater robots: a review of technologies and applications
  publication-title: Ind. Robot Int. J.
  doi: 10.1108/IR-01-2015-0010
– volume: 9
  start-page: 21357
  issue: 37
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b76
  article-title: A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05694H
– volume: 7
  start-page: 13
  issue: 1
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b88
  article-title: Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-023-00244-5
– volume: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b96
  article-title: Fabrication and feasibility study of polymer-based triboelectric nanogenerator towards blue energy harvesting
  publication-title: Green Energy Resour.
  doi: 10.1016/j.gerr.2023.100006
– volume: 148
  start-page: 563
  year: 2018
  ident: 10.1016/j.nanoen.2023.109018_b1
  article-title: Current status and future of ocean energy sources: A global review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.11.045
– volume: 6
  issue: 5
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b75
  article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801883
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b152
  article-title: Nickel metal-organic framework/PVDF composite nanofibers based self-powered wireless sensor for pulse monitoring of underwater divers via triboelectrically generated Maxwell-displacement current
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303288
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b25
  article-title: Robust solid-liquid triboelectric nanogenerators: Mechanisms, strategies and applications
  publication-title: Adv. Funct. Mater.
– volume: 30
  issue: 15
  year: 2018
  ident: 10.1016/j.nanoen.2023.109018_b63
  article-title: On the electron-transfer mechanism in the contact-electrification effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 72
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b123
  article-title: A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104684
– volume: 126
  issue: 12
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b180
  article-title: Symmetry breaking of tail-clamped filaments in Stokes flow
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.124501
– volume: 11
  start-page: 399
  issue: 1
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b66
  article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14278-9
– volume: 20
  start-page: 74
  issue: 2
  year: 2017
  ident: 10.1016/j.nanoen.2023.109018_b71
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 285
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b16
  article-title: In-situ wave energy harvesting for unmanned marine devices: A review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115376
– volume: 12
  start-page: 17663
  issue: 34
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b32
  article-title: Recent advancements in solid–liquid triboelectric nanogenerators for energy harvesting and self-powered applications
  publication-title: Nanoscale
  doi: 10.1039/D0NR04326E
– volume: 21
  start-page: 88
  issue: 1
  year: 2018
  ident: 10.1016/j.nanoen.2023.109018_b116
  article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.10.006
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b62
  article-title: Environmentally-friendly natural materials for triboelectric nanogenerators: A review
  publication-title: J. Mater. Chem. A
– volume: 110
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b146
  article-title: Self-powered angle-resolved triboelectric nanogenerator for underwater vibration localization
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108392
– ident: 10.1016/j.nanoen.2023.109018_b106
– volume: 27
  start-page: 554
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b162
  article-title: A structural bionic design: from electric organs to systematic triboelectric generators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.028
– volume: 22
  start-page: 4460
  issue: 12
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b102
  article-title: Recent advances in touch sensors for flexible wearable devices
  publication-title: Sensors
  doi: 10.3390/s22124460
– volume: 29
  issue: 41
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b160
  article-title: Progress in triboelectric materials: toward high performance and widespread applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900098
– volume: 34
  issue: 39
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b39
  article-title: Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205064
– volume: 605
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b60
  article-title: Water-based triboelectric nanogenerator for wireless energy transmission and self-powered communication via a solid-liquid-solid interaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154765
– volume: 12
  issue: 37
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b26
  article-title: A highly sensitive triboelectric vibration sensor for machinery condition monitoring
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 328
  issue: 2
  year: 2012
  ident: 10.1016/j.nanoen.2023.109018_b21
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 45
  start-page: 5543
  issue: 8
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b14
  article-title: Fuel cell systems for long-endurance autonomous underwater vehicles–challenges and benefits
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.035
– volume: 108
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b133
  article-title: The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108210
– volume: 6
  issue: 6
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b121
  article-title: A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501593
– volume: 78
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b104
  article-title: Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105358
– volume: 55
  start-page: 541
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b115
  article-title: Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.006
– volume: 8
  issue: 4
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b124
  article-title: Highly adaptive triboelectric-electromagnetic hybrid nanogenerator for scavenging flow energy and self-powered marine wireless sensing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202201245
– volume: 48
  start-page: 391
  year: 2018
  ident: 10.1016/j.nanoen.2023.109018_b155
  article-title: A unified theoretical model for triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.073
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b27
  article-title: Bioinspired designs and biomimetic applications of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105865
– volume: 323
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b40
  article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119648
– volume: 38
  start-page: 101
  year: 2017
  ident: 10.1016/j.nanoen.2023.109018_b125
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 33
  issue: 45
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b153
  article-title: Self-powered interactive fiber electronics with visual–digital synergies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104681
– volume: 8
  start-page: 150
  year: 2014
  ident: 10.1016/j.nanoen.2023.109018_b163
  article-title: Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.05.018
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b112
  article-title: Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: An advanced hardware solution to long-distance target detection
  publication-title: Nano Energy
– volume: 21
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b130
  article-title: Underwater hybrid energy harvesting based on TENG-mteg for self-powered marine mammal condition monitoring system
  publication-title: Mater. Today Sustain.
– volume: 427
  year: 2021
  ident: 10.1016/j.nanoen.2023.109018_b54
  article-title: Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213597
– volume: 32
  issue: 52
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b103
  article-title: Sustainable triboelectric materials for smart active sensing systems
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202208277
– volume: 13
  start-page: 1219
  issue: 8
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b31
  article-title: Triboelectric nanogenerators for harvesting diverse water kinetic energy
  publication-title: Micromachines
  doi: 10.3390/mi13081219
– volume: 11
  start-page: 6131
  issue: 6
  year: 2017
  ident: 10.1016/j.nanoen.2023.109018_b158
  article-title: Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02156
– year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b34
  article-title: Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
  publication-title: J. Energy Chem.
– volume: 10
  start-page: 7696
  issue: 8
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b84
  article-title: Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03042
– volume: 7
  issue: 14
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b169
  article-title: Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000261
– volume: 10
  start-page: 6526
  issue: 7
  year: 2016
  ident: 10.1016/j.nanoen.2023.109018_b38
  article-title: Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03293
– volume: 15
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b47
  article-title: Triboelectric nanogenerators for marine energy harvesting and sensing applications
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100487
– volume: 34
  issue: 33
  year: 2022
  ident: 10.1016/j.nanoen.2023.109018_b56
  article-title: Self-powered active sensing based on triboelectric generators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200724
– volume: 5
  issue: 9
  year: 2020
  ident: 10.1016/j.nanoen.2023.109018_b132
  article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000531
– volume: 4
  issue: 3
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b33
  article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800588
– volume: 133
  year: 2023
  ident: 10.1016/j.nanoen.2023.109018_b145
  article-title: 3D printed triboelectric nanogenerator for underwater ultrasonic sensing
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2023.107045
– volume: 172
  start-page: 134
  year: 2019
  ident: 10.1016/j.nanoen.2023.109018_b35
  article-title: Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.120
SSID ssj0000651712
Score 2.491789
SecondaryResourceType review_article
Snippet Exploring the vast expanse of oceans, Earth’s largest realm and a vital resource repository, has intrigued humanity, transcending disciplinary boundaries....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109018
SubjectTerms Underwater communication
Underwater energy harvesting
Underwater environment
Underwater sensing
Underwater tribolelctric nanogenerator
Title Underwater triboelectric nanogenerator
URI https://dx.doi.org/10.1016/j.nanoen.2023.109018
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvehBfGJ9lD2It7XNax_HUixVsRct9BaSbCoV2ZbS4s3f7sw-SgVR8LKwIcNuZpOZL9mZ-QCuk8SYbiZSXOJGhHKKFyssLXfhHZdKOUa5w0-jaDiWDxM1aUC_zoWhsMrK9pc2vbDWVUun0mZnMZt1njnuXXii6FiTgq0o4VfKmGb57SfbnLOgi2Vx8dOT-ockUGfQFWFeucnnngqhckGllbrE_vGTh9ryOoMD2K_gYtAr3-gQGj4_gr2tIoLHcFNQF30gZlwGRF81L5ltZi6gh74WZaVxY30C48HdS38YVuwHoUMYvwqty4xDPICIwCEMkMKkQnohLc84d7hRSrxKoww9j506lqaWYaPlxESVJnEsxCk083nuzyDwzuDYpxGPmZGS2KYT713mMxYlXZ6qFoh6xNpVpcGJoeJd1zFgb7rUkyY96VJPLQg3UouyNMYf_eNamfrbJ9ZovX-VPP-35AXs0h3FnzB1Cc3Vcu2vEEWsbLuYJm3Y6d0_DkdfNsbESA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHxFOMZw-IW9mapG16RBPTgG0XNmm3KEkzNIS6aRrixm_H7mMaEgKJSw9prTZuY39ObX8A11Jq3Up5gktcc19M8GC4oeXOnWUiDG1AtcP9QdQdicdxOK5Bu6qFobTK0vYXNj231uVIs9Rmcz6dNp8Zxi5MhrStSclWcgM2BS5fojG4_QxWGy3oY4M4_-tJAj5JVCV0eZ5XprOZo06ojFNvpRbRf_zkotbcTmcPdku86N0Vj7QPNZcdwM5aF8FDuMm5iz4QNC484q-aFdQ2U-vRTV_yvtIYWR_BqHM_bHf9kv7At4jjl76xqbYICBASWMQBguuEC8eFYSljFiMl6cIkStH1mIkNksQEOGgYUVElMo45P4Z6NsvcCXjOapz7JGJxoIUgumnpnE1dGkSyxZKwAbyasbJlb3CiqHhTVRLYqyr0pEhPqtBTA_yV1LzojfHH9XGlTPXtHSs0379Knv5b8gq2usN-T_UeBk9nsE1nKBklCM-hvly8uwuEFEtzmX8yX_CfxdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+triboelectric+nanogenerator&rft.jtitle=Nano+energy&rft.au=Wang%2C+Siyuan&rft.au=Xu%2C+Peng&rft.au=Liu%2C+Jianhua&rft.au=Wang%2C+Hao&rft.date=2023-12-15&rft.issn=2211-2855&rft.volume=118&rft.spage=109018&rft_id=info:doi/10.1016%2Fj.nanoen.2023.109018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2023_109018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon